2 * linux/kernel/time/ntp.c
4 * NTP state machine interfaces and logic.
6 * This code was mainly moved from kernel/timer.c and kernel/time.c
7 * Please see those files for relevant copyright info and historical
12 #include <linux/time.h>
13 #include <linux/timex.h>
15 #include <asm/div64.h>
16 #include <asm/timex.h>
19 * Timekeeping variables
21 unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
22 unsigned long tick_nsec; /* ACTHZ period (nsec) */
23 static u64 tick_length, tick_length_base;
25 #define MAX_TICKADJ 500 /* microsecs */
26 #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
27 TICK_LENGTH_SHIFT) / HZ)
30 * phase-lock loop variables
32 /* TIME_ERROR prevents overwriting the CMOS clock */
33 static int time_state = TIME_OK; /* clock synchronization status */
34 int time_status = STA_UNSYNC; /* clock status bits */
35 static long time_offset; /* time adjustment (ns) */
36 static long time_constant = 2; /* pll time constant */
37 long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
38 long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
39 long time_freq; /* frequency offset (scaled ppm)*/
40 static long time_reftime; /* time at last adjustment (s) */
43 #define CLOCK_TICK_OVERFLOW (LATCH * HZ - CLOCK_TICK_RATE)
44 #define CLOCK_TICK_ADJUST (((s64)CLOCK_TICK_OVERFLOW * NSEC_PER_SEC) / \
47 static void ntp_update_frequency(void)
49 tick_length_base = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) << TICK_LENGTH_SHIFT;
50 tick_length_base += (s64)CLOCK_TICK_ADJUST << TICK_LENGTH_SHIFT;
51 tick_length_base += (s64)time_freq << (TICK_LENGTH_SHIFT - SHIFT_NSEC);
53 do_div(tick_length_base, HZ);
55 tick_nsec = tick_length_base >> TICK_LENGTH_SHIFT;
59 * ntp_clear - Clears the NTP state variables
61 * Must be called while holding a write on the xtime_lock
65 time_adjust = 0; /* stop active adjtime() */
66 time_status |= STA_UNSYNC;
67 time_maxerror = NTP_PHASE_LIMIT;
68 time_esterror = NTP_PHASE_LIMIT;
70 ntp_update_frequency();
72 tick_length = tick_length_base;
77 * this routine handles the overflow of the microsecond field
79 * The tricky bits of code to handle the accurate clock support
80 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
81 * They were originally developed for SUN and DEC kernels.
82 * All the kudos should go to Dave for this stuff.
84 void second_overflow(void)
88 /* Bump the maxerror field */
89 time_maxerror += MAXFREQ >> SHIFT_USEC;
90 if (time_maxerror > NTP_PHASE_LIMIT) {
91 time_maxerror = NTP_PHASE_LIMIT;
92 time_status |= STA_UNSYNC;
96 * Leap second processing. If in leap-insert state at the end of the
97 * day, the system clock is set back one second; if in leap-delete
98 * state, the system clock is set ahead one second. The microtime()
99 * routine or external clock driver will insure that reported time is
100 * always monotonic. The ugly divides should be replaced.
102 switch (time_state) {
104 if (time_status & STA_INS)
105 time_state = TIME_INS;
106 else if (time_status & STA_DEL)
107 time_state = TIME_DEL;
110 if (xtime.tv_sec % 86400 == 0) {
112 wall_to_monotonic.tv_sec++;
114 * The timer interpolator will make time change
115 * gradually instead of an immediate jump by one second
117 time_interpolator_update(-NSEC_PER_SEC);
118 time_state = TIME_OOP;
120 printk(KERN_NOTICE "Clock: inserting leap second "
125 if ((xtime.tv_sec + 1) % 86400 == 0) {
127 wall_to_monotonic.tv_sec--;
129 * Use of time interpolator for a gradual change of
132 time_interpolator_update(NSEC_PER_SEC);
133 time_state = TIME_WAIT;
135 printk(KERN_NOTICE "Clock: deleting leap second "
140 time_state = TIME_WAIT;
143 if (!(time_status & (STA_INS | STA_DEL)))
144 time_state = TIME_OK;
148 * Compute the phase adjustment for the next second. The offset is
149 * reduced by a fixed factor times the time constant.
151 tick_length = tick_length_base;
152 time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
153 time_offset -= time_adj;
154 tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE);
156 if (unlikely(time_adjust)) {
157 if (time_adjust > MAX_TICKADJ) {
158 time_adjust -= MAX_TICKADJ;
159 tick_length += MAX_TICKADJ_SCALED;
160 } else if (time_adjust < -MAX_TICKADJ) {
161 time_adjust += MAX_TICKADJ;
162 tick_length -= MAX_TICKADJ_SCALED;
165 tick_length += (s64)(time_adjust * NSEC_PER_USEC /
166 HZ) << TICK_LENGTH_SHIFT;
172 * Return how long ticks are at the moment, that is, how much time
173 * update_wall_time_one_tick will add to xtime next time we call it
174 * (assuming no calls to do_adjtimex in the meantime).
175 * The return value is in fixed-point nanoseconds shifted by the
176 * specified number of bits to the right of the binary point.
177 * This function has no side-effects.
179 u64 current_tick_length(void)
185 void __attribute__ ((weak)) notify_arch_cmos_timer(void)
190 /* adjtimex mainly allows reading (and writing, if superuser) of
191 * kernel time-keeping variables. used by xntpd.
193 int do_adjtimex(struct timex *txc)
195 long ltemp, mtemp, save_adjust;
196 s64 freq_adj, temp64;
199 /* In order to modify anything, you gotta be super-user! */
200 if (txc->modes && !capable(CAP_SYS_TIME))
203 /* Now we validate the data before disabling interrupts */
205 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
206 /* singleshot must not be used with any other mode bits */
207 if (txc->modes != ADJ_OFFSET_SINGLESHOT)
210 if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
211 /* adjustment Offset limited to +- .512 seconds */
212 if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
215 /* if the quartz is off by more than 10% something is VERY wrong ! */
216 if (txc->modes & ADJ_TICK)
217 if (txc->tick < 900000/USER_HZ ||
218 txc->tick > 1100000/USER_HZ)
221 write_seqlock_irq(&xtime_lock);
222 result = time_state; /* mostly `TIME_OK' */
224 /* Save for later - semantics of adjtime is to return old value */
225 save_adjust = time_adjust;
227 #if 0 /* STA_CLOCKERR is never set yet */
228 time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */
230 /* If there are input parameters, then process them */
233 if (txc->modes & ADJ_STATUS) /* only set allowed bits */
234 time_status = (txc->status & ~STA_RONLY) |
235 (time_status & STA_RONLY);
237 if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */
238 if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
242 time_freq = ((s64)txc->freq * NSEC_PER_USEC) >> (SHIFT_USEC - SHIFT_NSEC);
245 if (txc->modes & ADJ_MAXERROR) {
246 if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
250 time_maxerror = txc->maxerror;
253 if (txc->modes & ADJ_ESTERROR) {
254 if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
258 time_esterror = txc->esterror;
261 if (txc->modes & ADJ_TIMECONST) { /* p. 24 */
262 if (txc->constant < 0) { /* NTP v4 uses values > 6 */
266 time_constant = min(txc->constant + 4, (long)MAXTC);
269 if (txc->modes & ADJ_OFFSET) { /* values checked earlier */
270 if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
271 /* adjtime() is independent from ntp_adjtime() */
272 time_adjust = txc->offset;
274 else if (time_status & STA_PLL) {
275 ltemp = txc->offset * NSEC_PER_USEC;
278 * Scale the phase adjustment and
279 * clamp to the operating range.
281 time_offset = min(ltemp, MAXPHASE * NSEC_PER_USEC);
282 time_offset = max(time_offset, -MAXPHASE * NSEC_PER_USEC);
285 * Select whether the frequency is to be controlled
286 * and in which mode (PLL or FLL). Clamp to the operating
287 * range. Ugly multiply/divide should be replaced someday.
290 if (time_status & STA_FREQHOLD || time_reftime == 0)
291 time_reftime = xtime.tv_sec;
292 mtemp = xtime.tv_sec - time_reftime;
293 time_reftime = xtime.tv_sec;
295 freq_adj = (s64)time_offset * mtemp;
296 freq_adj = shift_right(freq_adj, time_constant * 2 +
297 (SHIFT_PLL + 2) * 2 - SHIFT_NSEC);
298 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
299 temp64 = (s64)time_offset << (SHIFT_NSEC - SHIFT_FLL);
300 if (time_offset < 0) {
302 do_div(temp64, mtemp);
305 do_div(temp64, mtemp);
309 freq_adj += time_freq;
310 freq_adj = min(freq_adj, (s64)MAXFREQ_NSEC);
311 time_freq = max(freq_adj, (s64)-MAXFREQ_NSEC);
312 time_offset = (time_offset / HZ) << SHIFT_UPDATE;
314 } /* txc->modes & ADJ_OFFSET */
315 if (txc->modes & ADJ_TICK)
316 tick_usec = txc->tick;
318 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
319 ntp_update_frequency();
321 leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
324 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
325 txc->offset = save_adjust;
327 txc->offset = shift_right(time_offset, SHIFT_UPDATE) * HZ / 1000;
328 txc->freq = (time_freq / NSEC_PER_USEC) << (SHIFT_USEC - SHIFT_NSEC);
329 txc->maxerror = time_maxerror;
330 txc->esterror = time_esterror;
331 txc->status = time_status;
332 txc->constant = time_constant;
334 txc->tolerance = MAXFREQ;
335 txc->tick = tick_usec;
337 /* PPS is not implemented, so these are zero */
346 write_sequnlock_irq(&xtime_lock);
347 do_gettimeofday(&txc->time);
348 notify_arch_cmos_timer();