4 * Procedures for interfacing to Open Firmware.
6 * Paul Mackerras August 1996.
7 * Copyright (C) 1996 Paul Mackerras.
9 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
10 * {engebret|bergner}@us.ibm.com
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/version.h>
26 #include <linux/threads.h>
27 #include <linux/spinlock.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/proc_fs.h>
31 #include <linux/stringify.h>
32 #include <linux/delay.h>
33 #include <linux/initrd.h>
34 #include <linux/bitops.h>
37 #include <asm/abs_addr.h>
39 #include <asm/processor.h>
43 #include <asm/system.h>
45 #include <asm/pgtable.h>
47 #include <asm/iommu.h>
48 #include <asm/bootinfo.h>
49 #include <asm/ppcdebug.h>
50 #include <asm/btext.h>
51 #include <asm/sections.h>
52 #include <asm/machdep.h>
54 #ifdef CONFIG_LOGO_LINUX_CLUT224
55 #include <linux/linux_logo.h>
56 extern const struct linux_logo logo_linux_clut224;
60 * Properties whose value is longer than this get excluded from our
61 * copy of the device tree. This value does need to be big enough to
62 * ensure that we don't lose things like the interrupt-map property
63 * on a PCI-PCI bridge.
65 #define MAX_PROPERTY_LENGTH (1UL * 1024 * 1024)
68 * Eventually bump that one up
70 #define DEVTREE_CHUNK_SIZE 0x100000
73 * This is the size of the local memory reserve map that gets copied
74 * into the boot params passed to the kernel. That size is totally
75 * flexible as the kernel just reads the list until it encounters an
76 * entry with size 0, so it can be changed without breaking binary
79 #define MEM_RESERVE_MAP_SIZE 8
82 * prom_init() is called very early on, before the kernel text
83 * and data have been mapped to KERNELBASE. At this point the code
84 * is running at whatever address it has been loaded at, so
85 * references to extern and static variables must be relocated
86 * explicitly. The procedure reloc_offset() returns the address
87 * we're currently running at minus the address we were linked at.
88 * (Note that strings count as static variables.)
90 * Because OF may have mapped I/O devices into the area starting at
91 * KERNELBASE, particularly on CHRP machines, we can't safely call
92 * OF once the kernel has been mapped to KERNELBASE. Therefore all
93 * OF calls should be done within prom_init(), and prom_init()
94 * and all routines called within it must be careful to relocate
95 * references as necessary.
97 * Note that the bss is cleared *after* prom_init runs, so we have
98 * to make sure that any static or extern variables it accesses
99 * are put in the data segment.
103 #define PROM_BUG() do { \
104 prom_printf("kernel BUG at %s line 0x%x!\n", \
105 RELOC(__FILE__), __LINE__); \
106 __asm__ __volatile__(".long " BUG_ILLEGAL_INSTR); \
110 #define prom_debug(x...) prom_printf(x)
112 #define prom_debug(x...)
116 typedef u32 prom_arg_t;
123 prom_arg_t *rets; /* Pointer to return values in args[16]. */
133 struct prom_args args;
134 unsigned long version;
135 unsigned long root_size_cells;
136 unsigned long root_addr_cells;
139 struct pci_reg_property {
140 struct pci_address addr;
145 struct mem_map_entry {
152 extern void __start(unsigned long r3, unsigned long r4, unsigned long r5);
154 extern void enter_prom(struct prom_args *args, unsigned long entry);
155 extern void copy_and_flush(unsigned long dest, unsigned long src,
156 unsigned long size, unsigned long offset);
158 extern unsigned long klimit;
161 static struct prom_t __initdata prom;
163 #define PROM_SCRATCH_SIZE 256
165 static char __initdata of_stdout_device[256];
166 static char __initdata prom_scratch[PROM_SCRATCH_SIZE];
168 static unsigned long __initdata dt_header_start;
169 static unsigned long __initdata dt_struct_start, dt_struct_end;
170 static unsigned long __initdata dt_string_start, dt_string_end;
172 static unsigned long __initdata prom_initrd_start, prom_initrd_end;
174 static int __initdata iommu_force_on;
175 static int __initdata ppc64_iommu_off;
176 static int __initdata of_platform;
178 static char __initdata prom_cmd_line[COMMAND_LINE_SIZE];
180 static unsigned long __initdata prom_memory_limit;
181 static unsigned long __initdata prom_tce_alloc_start;
182 static unsigned long __initdata prom_tce_alloc_end;
184 static unsigned long __initdata alloc_top;
185 static unsigned long __initdata alloc_top_high;
186 static unsigned long __initdata alloc_bottom;
187 static unsigned long __initdata rmo_top;
188 static unsigned long __initdata ram_top;
190 static struct mem_map_entry __initdata mem_reserve_map[MEM_RESERVE_MAP_SIZE];
191 static int __initdata mem_reserve_cnt;
193 static cell_t __initdata regbuf[1024];
196 #define MAX_CPU_THREADS 2
202 unsigned int threadid;
203 } hmt_thread_data[NR_CPUS];
204 #endif /* CONFIG_HMT */
207 * This are used in calls to call_prom. The 4th and following
208 * arguments to call_prom should be 32-bit values. 64 bit values
209 * are truncated to 32 bits (and fortunately don't get interpreted
212 #define ADDR(x) (u32) ((unsigned long)(x) - offset)
215 * Error results ... some OF calls will return "-1" on error, some
216 * will return 0, some will return either. To simplify, here are
217 * macros to use with any ihandle or phandle return value to check if
221 #define PROM_ERROR (-1u)
222 #define PHANDLE_VALID(p) ((p) != 0 && (p) != PROM_ERROR)
223 #define IHANDLE_VALID(i) ((i) != 0 && (i) != PROM_ERROR)
226 /* This is the one and *ONLY* place where we actually call open
227 * firmware from, since we need to make sure we're running in 32b
228 * mode when we do. We switch back to 64b mode upon return.
231 static int __init call_prom(const char *service, int nargs, int nret, ...)
234 unsigned long offset = reloc_offset();
235 struct prom_t *_prom = PTRRELOC(&prom);
238 _prom->args.service = ADDR(service);
239 _prom->args.nargs = nargs;
240 _prom->args.nret = nret;
241 _prom->args.rets = (prom_arg_t *)&(_prom->args.args[nargs]);
243 va_start(list, nret);
244 for (i=0; i < nargs; i++)
245 _prom->args.args[i] = va_arg(list, prom_arg_t);
248 for (i=0; i < nret ;i++)
249 _prom->args.rets[i] = 0;
251 enter_prom(&_prom->args, _prom->entry);
253 return (nret > 0) ? _prom->args.rets[0] : 0;
257 static unsigned int __init prom_claim(unsigned long virt, unsigned long size,
260 return (unsigned int)call_prom("claim", 3, 1,
261 (prom_arg_t)virt, (prom_arg_t)size,
265 static void __init prom_print(const char *msg)
268 unsigned long offset = reloc_offset();
269 struct prom_t *_prom = PTRRELOC(&prom);
271 if (_prom->stdout == 0)
274 for (p = msg; *p != 0; p = q) {
275 for (q = p; *q != 0 && *q != '\n'; ++q)
278 call_prom("write", 3, 1, _prom->stdout, p, q - p);
282 call_prom("write", 3, 1, _prom->stdout, ADDR("\r\n"), 2);
287 static void __init prom_print_hex(unsigned long val)
289 unsigned long offset = reloc_offset();
290 int i, nibbles = sizeof(val)*2;
291 char buf[sizeof(val)*2+1];
292 struct prom_t *_prom = PTRRELOC(&prom);
294 for (i = nibbles-1; i >= 0; i--) {
295 buf[i] = (val & 0xf) + '0';
297 buf[i] += ('a'-'0'-10);
301 call_prom("write", 3, 1, _prom->stdout, buf, nibbles);
305 static void __init prom_printf(const char *format, ...)
307 unsigned long offset = reloc_offset();
308 const char *p, *q, *s;
311 struct prom_t *_prom = PTRRELOC(&prom);
313 va_start(args, format);
314 for (p = PTRRELOC(format); *p != 0; p = q) {
315 for (q = p; *q != 0 && *q != '\n' && *q != '%'; ++q)
318 call_prom("write", 3, 1, _prom->stdout, p, q - p);
323 call_prom("write", 3, 1, _prom->stdout,
333 s = va_arg(args, const char *);
338 v = va_arg(args, unsigned long);
346 static void __init __attribute__((noreturn)) prom_panic(const char *reason)
348 unsigned long offset = reloc_offset();
350 prom_print(PTRRELOC(reason));
351 /* ToDo: should put up an SRC here */
352 call_prom("exit", 0, 0);
354 for (;;) /* should never get here */
359 static int __init prom_next_node(phandle *nodep)
363 if ((node = *nodep) != 0
364 && (*nodep = call_prom("child", 1, 1, node)) != 0)
366 if ((*nodep = call_prom("peer", 1, 1, node)) != 0)
369 if ((node = call_prom("parent", 1, 1, node)) == 0)
371 if ((*nodep = call_prom("peer", 1, 1, node)) != 0)
376 static int __init prom_getprop(phandle node, const char *pname,
377 void *value, size_t valuelen)
379 unsigned long offset = reloc_offset();
381 return call_prom("getprop", 4, 1, node, ADDR(pname),
382 (u32)(unsigned long) value, (u32) valuelen);
385 static int __init prom_getproplen(phandle node, const char *pname)
387 unsigned long offset = reloc_offset();
389 return call_prom("getproplen", 2, 1, node, ADDR(pname));
392 static int __init prom_setprop(phandle node, const char *pname,
393 void *value, size_t valuelen)
395 unsigned long offset = reloc_offset();
397 return call_prom("setprop", 4, 1, node, ADDR(pname),
398 (u32)(unsigned long) value, (u32) valuelen);
401 /* We can't use the standard versions because of RELOC headaches. */
402 #define isxdigit(c) (('0' <= (c) && (c) <= '9') \
403 || ('a' <= (c) && (c) <= 'f') \
404 || ('A' <= (c) && (c) <= 'F'))
406 #define isdigit(c) ('0' <= (c) && (c) <= '9')
407 #define islower(c) ('a' <= (c) && (c) <= 'z')
408 #define toupper(c) (islower(c) ? ((c) - 'a' + 'A') : (c))
410 unsigned long prom_strtoul(const char *cp, const char **endp)
412 unsigned long result = 0, base = 10, value;
417 if (toupper(*cp) == 'X') {
423 while (isxdigit(*cp) &&
424 (value = isdigit(*cp) ? *cp - '0' : toupper(*cp) - 'A' + 10) < base) {
425 result = result * base + value;
435 unsigned long prom_memparse(const char *ptr, const char **retptr)
437 unsigned long ret = prom_strtoul(ptr, retptr);
441 * We can't use a switch here because GCC *may* generate a
442 * jump table which won't work, because we're not running at
443 * the address we're linked at.
445 if ('G' == **retptr || 'g' == **retptr)
448 if ('M' == **retptr || 'm' == **retptr)
451 if ('K' == **retptr || 'k' == **retptr)
463 * Early parsing of the command line passed to the kernel, used for
464 * "mem=x" and the options that affect the iommu
466 static void __init early_cmdline_parse(void)
468 unsigned long offset = reloc_offset();
469 struct prom_t *_prom = PTRRELOC(&prom);
473 RELOC(prom_cmd_line[0]) = 0;
474 p = RELOC(prom_cmd_line);
475 if ((long)_prom->chosen > 0)
476 l = prom_getprop(_prom->chosen, "bootargs", p, COMMAND_LINE_SIZE-1);
477 #ifdef CONFIG_CMDLINE
478 if (l == 0) /* dbl check */
479 strlcpy(RELOC(prom_cmd_line),
480 RELOC(CONFIG_CMDLINE), sizeof(prom_cmd_line));
481 #endif /* CONFIG_CMDLINE */
482 prom_printf("command line: %s\n", RELOC(prom_cmd_line));
484 opt = strstr(RELOC(prom_cmd_line), RELOC("iommu="));
486 prom_printf("iommu opt is: %s\n", opt);
488 while (*opt && *opt == ' ')
490 if (!strncmp(opt, RELOC("off"), 3))
491 RELOC(ppc64_iommu_off) = 1;
492 else if (!strncmp(opt, RELOC("force"), 5))
493 RELOC(iommu_force_on) = 1;
496 opt = strstr(RELOC(prom_cmd_line), RELOC("mem="));
499 RELOC(prom_memory_limit) = prom_memparse(opt, (const char **)&opt);
500 /* Align to 16 MB == size of large page */
501 RELOC(prom_memory_limit) = ALIGN(RELOC(prom_memory_limit), 0x1000000);
506 * To tell the firmware what our capabilities are, we have to pass
507 * it a fake 32-bit ELF header containing a couple of PT_NOTE sections
508 * that contain structures that contain the actual values.
510 static struct fake_elf {
517 char name[8]; /* "PowerPC" */
531 char name[24]; /* "IBM,RPA-Client-Config" */
545 .e_ident = { 0x7f, 'E', 'L', 'F',
546 ELFCLASS32, ELFDATA2MSB, EV_CURRENT },
547 .e_type = ET_EXEC, /* yeah right */
549 .e_version = EV_CURRENT,
550 .e_phoff = offsetof(struct fake_elf, phdr),
551 .e_phentsize = sizeof(Elf32_Phdr),
557 .p_offset = offsetof(struct fake_elf, chrpnote),
558 .p_filesz = sizeof(struct chrpnote)
561 .p_offset = offsetof(struct fake_elf, rpanote),
562 .p_filesz = sizeof(struct rpanote)
566 .namesz = sizeof("PowerPC"),
567 .descsz = sizeof(struct chrpdesc),
571 .real_mode = ~0U, /* ~0 means "don't care" */
580 .namesz = sizeof("IBM,RPA-Client-Config"),
581 .descsz = sizeof(struct rpadesc),
583 .name = "IBM,RPA-Client-Config",
586 .min_rmo_size = 64, /* in megabytes */
587 .min_rmo_percent = 0,
588 .max_pft_size = 48, /* 2^48 bytes max PFT size */
596 static void __init prom_send_capabilities(void)
598 unsigned long offset = reloc_offset();
601 elfloader = call_prom("open", 1, 1, ADDR("/packages/elf-loader"));
602 if (elfloader == 0) {
603 prom_printf("couldn't open /packages/elf-loader\n");
606 call_prom("call-method", 3, 1, ADDR("process-elf-header"),
607 elfloader, ADDR(&fake_elf));
608 call_prom("close", 1, 0, elfloader);
612 * Memory allocation strategy... our layout is normally:
614 * at 14Mb or more we vmlinux, then a gap and initrd. In some rare cases, initrd
615 * might end up beeing before the kernel though. We assume this won't override
616 * the final kernel at 0, we have no provision to handle that in this version,
617 * but it should hopefully never happen.
619 * alloc_top is set to the top of RMO, eventually shrink down if the TCEs overlap
620 * alloc_bottom is set to the top of kernel/initrd
622 * from there, allocations are done that way : rtas is allocated topmost, and
623 * the device-tree is allocated from the bottom. We try to grow the device-tree
624 * allocation as we progress. If we can't, then we fail, we don't currently have
625 * a facility to restart elsewhere, but that shouldn't be necessary neither
627 * Note that calls to reserve_mem have to be done explicitely, memory allocated
628 * with either alloc_up or alloc_down isn't automatically reserved.
633 * Allocates memory in the RMO upward from the kernel/initrd
635 * When align is 0, this is a special case, it means to allocate in place
636 * at the current location of alloc_bottom or fail (that is basically
637 * extending the previous allocation). Used for the device-tree flattening
639 static unsigned long __init alloc_up(unsigned long size, unsigned long align)
641 unsigned long offset = reloc_offset();
642 unsigned long base = _ALIGN_UP(RELOC(alloc_bottom), align);
643 unsigned long addr = 0;
645 prom_debug("alloc_up(%x, %x)\n", size, align);
646 if (RELOC(ram_top) == 0)
647 prom_panic("alloc_up() called with mem not initialized\n");
650 base = _ALIGN_UP(RELOC(alloc_bottom), align);
652 base = RELOC(alloc_bottom);
654 for(; (base + size) <= RELOC(alloc_top);
655 base = _ALIGN_UP(base + 0x100000, align)) {
656 prom_debug(" trying: 0x%x\n\r", base);
657 addr = (unsigned long)prom_claim(base, size, 0);
658 if (addr != PROM_ERROR)
666 RELOC(alloc_bottom) = addr;
668 prom_debug(" -> %x\n", addr);
669 prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom));
670 prom_debug(" alloc_top : %x\n", RELOC(alloc_top));
671 prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
672 prom_debug(" rmo_top : %x\n", RELOC(rmo_top));
673 prom_debug(" ram_top : %x\n", RELOC(ram_top));
679 * Allocates memory downard, either from top of RMO, or if highmem
680 * is set, from the top of RAM. Note that this one doesn't handle
681 * failures. In does claim memory if highmem is not set.
683 static unsigned long __init alloc_down(unsigned long size, unsigned long align,
686 unsigned long offset = reloc_offset();
687 unsigned long base, addr = 0;
689 prom_debug("alloc_down(%x, %x, %s)\n", size, align,
690 highmem ? RELOC("(high)") : RELOC("(low)"));
691 if (RELOC(ram_top) == 0)
692 prom_panic("alloc_down() called with mem not initialized\n");
695 /* Carve out storage for the TCE table. */
696 addr = _ALIGN_DOWN(RELOC(alloc_top_high) - size, align);
697 if (addr <= RELOC(alloc_bottom))
700 /* Will we bump into the RMO ? If yes, check out that we
701 * didn't overlap existing allocations there, if we did,
702 * we are dead, we must be the first in town !
704 if (addr < RELOC(rmo_top)) {
705 /* Good, we are first */
706 if (RELOC(alloc_top) == RELOC(rmo_top))
707 RELOC(alloc_top) = RELOC(rmo_top) = addr;
711 RELOC(alloc_top_high) = addr;
716 base = _ALIGN_DOWN(RELOC(alloc_top) - size, align);
717 for(; base > RELOC(alloc_bottom); base = _ALIGN_DOWN(base - 0x100000, align)) {
718 prom_debug(" trying: 0x%x\n\r", base);
719 addr = (unsigned long)prom_claim(base, size, 0);
720 if (addr != PROM_ERROR)
726 RELOC(alloc_top) = addr;
729 prom_debug(" -> %x\n", addr);
730 prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom));
731 prom_debug(" alloc_top : %x\n", RELOC(alloc_top));
732 prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
733 prom_debug(" rmo_top : %x\n", RELOC(rmo_top));
734 prom_debug(" ram_top : %x\n", RELOC(ram_top));
742 static unsigned long __init prom_next_cell(int s, cell_t **cellp)
747 /* Ignore more than 2 cells */
763 * Very dumb function for adding to the memory reserve list, but
764 * we don't need anything smarter at this point
766 * XXX Eventually check for collisions. They should NEVER happen
767 * if problems seem to show up, it would be a good start to track
770 static void reserve_mem(unsigned long base, unsigned long size)
772 unsigned long offset = reloc_offset();
773 unsigned long top = base + size;
774 unsigned long cnt = RELOC(mem_reserve_cnt);
779 /* We need to always keep one empty entry so that we
780 * have our terminator with "size" set to 0 since we are
781 * dumb and just copy this entire array to the boot params
783 base = _ALIGN_DOWN(base, PAGE_SIZE);
784 top = _ALIGN_UP(top, PAGE_SIZE);
787 if (cnt >= (MEM_RESERVE_MAP_SIZE - 1))
788 prom_panic("Memory reserve map exhausted !\n");
789 RELOC(mem_reserve_map)[cnt].base = base;
790 RELOC(mem_reserve_map)[cnt].size = size;
791 RELOC(mem_reserve_cnt) = cnt + 1;
795 * Initialize memory allocation mecanism, parse "memory" nodes and
796 * obtain that way the top of memory and RMO to setup out local allocator
798 static void __init prom_init_mem(void)
801 char *path, type[64];
804 unsigned long offset = reloc_offset();
805 struct prom_t *_prom = PTRRELOC(&prom);
808 * We iterate the memory nodes to find
809 * 1) top of RMO (first node)
812 prom_debug("root_addr_cells: %x\n", (long)_prom->root_addr_cells);
813 prom_debug("root_size_cells: %x\n", (long)_prom->root_size_cells);
815 prom_debug("scanning memory:\n");
816 path = RELOC(prom_scratch);
818 for (node = 0; prom_next_node(&node); ) {
820 prom_getprop(node, "device_type", type, sizeof(type));
822 if (strcmp(type, RELOC("memory")))
825 plen = prom_getprop(node, "reg", RELOC(regbuf), sizeof(regbuf));
826 if (plen > sizeof(regbuf)) {
827 prom_printf("memory node too large for buffer !\n");
828 plen = sizeof(regbuf);
831 endp = p + (plen / sizeof(cell_t));
834 memset(path, 0, PROM_SCRATCH_SIZE);
835 call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1);
836 prom_debug(" node %s :\n", path);
837 #endif /* DEBUG_PROM */
839 while ((endp - p) >= (_prom->root_addr_cells + _prom->root_size_cells)) {
840 unsigned long base, size;
842 base = prom_next_cell(_prom->root_addr_cells, &p);
843 size = prom_next_cell(_prom->root_size_cells, &p);
847 prom_debug(" %x %x\n", base, size);
849 RELOC(rmo_top) = size;
850 if ((base + size) > RELOC(ram_top))
851 RELOC(ram_top) = base + size;
855 RELOC(alloc_bottom) = PAGE_ALIGN(RELOC(klimit) - offset + 0x4000);
857 /* Check if we have an initrd after the kernel, if we do move our bottom
860 if (RELOC(prom_initrd_start)) {
861 if (RELOC(prom_initrd_end) > RELOC(alloc_bottom))
862 RELOC(alloc_bottom) = PAGE_ALIGN(RELOC(prom_initrd_end));
866 * If prom_memory_limit is set we reduce the upper limits *except* for
867 * alloc_top_high. This must be the real top of RAM so we can put
871 RELOC(alloc_top_high) = RELOC(ram_top);
873 if (RELOC(prom_memory_limit)) {
874 if (RELOC(prom_memory_limit) <= RELOC(alloc_bottom)) {
875 prom_printf("Ignoring mem=%x <= alloc_bottom.\n",
876 RELOC(prom_memory_limit));
877 RELOC(prom_memory_limit) = 0;
878 } else if (RELOC(prom_memory_limit) >= RELOC(ram_top)) {
879 prom_printf("Ignoring mem=%x >= ram_top.\n",
880 RELOC(prom_memory_limit));
881 RELOC(prom_memory_limit) = 0;
883 RELOC(ram_top) = RELOC(prom_memory_limit);
884 RELOC(rmo_top) = min(RELOC(rmo_top), RELOC(prom_memory_limit));
889 * Setup our top alloc point, that is top of RMO or top of
890 * segment 0 when running non-LPAR.
892 if ( RELOC(of_platform) == PLATFORM_PSERIES_LPAR )
893 RELOC(alloc_top) = RELOC(rmo_top);
895 RELOC(alloc_top) = RELOC(rmo_top) = min(0x40000000ul, RELOC(ram_top));
897 prom_printf("memory layout at init:\n");
898 prom_printf(" memory_limit : %x (16 MB aligned)\n", RELOC(prom_memory_limit));
899 prom_printf(" alloc_bottom : %x\n", RELOC(alloc_bottom));
900 prom_printf(" alloc_top : %x\n", RELOC(alloc_top));
901 prom_printf(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
902 prom_printf(" rmo_top : %x\n", RELOC(rmo_top));
903 prom_printf(" ram_top : %x\n", RELOC(ram_top));
908 * Allocate room for and instanciate RTAS
910 static void __init prom_instantiate_rtas(void)
912 unsigned long offset = reloc_offset();
913 struct prom_t *_prom = PTRRELOC(&prom);
919 prom_debug("prom_instantiate_rtas: start...\n");
921 rtas_node = call_prom("finddevice", 1, 1, ADDR("/rtas"));
922 prom_debug("rtas_node: %x\n", rtas_node);
923 if (!PHANDLE_VALID(rtas_node))
926 prom_getprop(rtas_node, "rtas-size", &size, sizeof(size));
930 base = alloc_down(size, PAGE_SIZE, 0);
932 prom_printf("RTAS allocation failed !\n");
936 rtas_inst = call_prom("open", 1, 1, ADDR("/rtas"));
937 if (!IHANDLE_VALID(rtas_inst)) {
938 prom_printf("opening rtas package failed");
942 prom_printf("instantiating rtas at 0x%x ...", base);
944 if (call_prom("call-method", 3, 2,
945 ADDR("instantiate-rtas"),
946 rtas_inst, base) != PROM_ERROR) {
947 entry = (long)_prom->args.rets[1];
950 prom_printf(" failed\n");
953 prom_printf(" done\n");
955 reserve_mem(base, size);
957 prom_setprop(rtas_node, "linux,rtas-base", &base, sizeof(base));
958 prom_setprop(rtas_node, "linux,rtas-entry", &entry, sizeof(entry));
960 prom_debug("rtas base = 0x%x\n", base);
961 prom_debug("rtas entry = 0x%x\n", entry);
962 prom_debug("rtas size = 0x%x\n", (long)size);
964 prom_debug("prom_instantiate_rtas: end...\n");
969 * Allocate room for and initialize TCE tables
971 static void __init prom_initialize_tce_table(void)
975 unsigned long offset = reloc_offset();
976 char compatible[64], type[64], model[64];
977 char *path = RELOC(prom_scratch);
979 u32 minalign, minsize;
980 u64 tce_entry, *tce_entryp;
981 u64 local_alloc_top, local_alloc_bottom;
984 if (RELOC(ppc64_iommu_off))
987 prom_debug("starting prom_initialize_tce_table\n");
989 /* Cache current top of allocs so we reserve a single block */
990 local_alloc_top = RELOC(alloc_top_high);
991 local_alloc_bottom = local_alloc_top;
993 /* Search all nodes looking for PHBs. */
994 for (node = 0; prom_next_node(&node); ) {
998 prom_getprop(node, "compatible",
999 compatible, sizeof(compatible));
1000 prom_getprop(node, "device_type", type, sizeof(type));
1001 prom_getprop(node, "model", model, sizeof(model));
1003 if ((type[0] == 0) || (strstr(type, RELOC("pci")) == NULL))
1006 /* Keep the old logic in tack to avoid regression. */
1007 if (compatible[0] != 0) {
1008 if ((strstr(compatible, RELOC("python")) == NULL) &&
1009 (strstr(compatible, RELOC("Speedwagon")) == NULL) &&
1010 (strstr(compatible, RELOC("Winnipeg")) == NULL))
1012 } else if (model[0] != 0) {
1013 if ((strstr(model, RELOC("ython")) == NULL) &&
1014 (strstr(model, RELOC("peedwagon")) == NULL) &&
1015 (strstr(model, RELOC("innipeg")) == NULL))
1019 if (prom_getprop(node, "tce-table-minalign", &minalign,
1020 sizeof(minalign)) == PROM_ERROR)
1022 if (prom_getprop(node, "tce-table-minsize", &minsize,
1023 sizeof(minsize)) == PROM_ERROR)
1024 minsize = 4UL << 20;
1027 * Even though we read what OF wants, we just set the table
1028 * size to 4 MB. This is enough to map 2GB of PCI DMA space.
1029 * By doing this, we avoid the pitfalls of trying to DMA to
1030 * MMIO space and the DMA alias hole.
1032 * On POWER4, firmware sets the TCE region by assuming
1033 * each TCE table is 8MB. Using this memory for anything
1034 * else will impact performance, so we always allocate 8MB.
1037 if (__is_processor(PV_POWER4) || __is_processor(PV_POWER4p))
1038 minsize = 8UL << 20;
1040 minsize = 4UL << 20;
1042 /* Align to the greater of the align or size */
1043 align = max(minalign, minsize);
1044 base = alloc_down(minsize, align, 1);
1046 prom_panic("ERROR, cannot find space for TCE table.\n");
1047 if (base < local_alloc_bottom)
1048 local_alloc_bottom = base;
1050 /* Save away the TCE table attributes for later use. */
1051 prom_setprop(node, "linux,tce-base", &base, sizeof(base));
1052 prom_setprop(node, "linux,tce-size", &minsize, sizeof(minsize));
1054 /* It seems OF doesn't null-terminate the path :-( */
1055 memset(path, 0, sizeof(path));
1056 /* Call OF to setup the TCE hardware */
1057 if (call_prom("package-to-path", 3, 1, node,
1058 path, PROM_SCRATCH_SIZE-1) == PROM_ERROR) {
1059 prom_printf("package-to-path failed\n");
1062 prom_debug("TCE table: %s\n", path);
1063 prom_debug("\tnode = 0x%x\n", node);
1064 prom_debug("\tbase = 0x%x\n", base);
1065 prom_debug("\tsize = 0x%x\n", minsize);
1067 /* Initialize the table to have a one-to-one mapping
1068 * over the allocated size.
1070 tce_entryp = (unsigned long *)base;
1071 for (i = 0; i < (minsize >> 3) ;tce_entryp++, i++) {
1072 tce_entry = (i << PAGE_SHIFT);
1074 *tce_entryp = tce_entry;
1077 prom_printf("opening PHB %s", path);
1078 phb_node = call_prom("open", 1, 1, path);
1080 prom_printf("... failed\n");
1082 prom_printf("... done\n");
1084 call_prom("call-method", 6, 0, ADDR("set-64-bit-addressing"),
1085 phb_node, -1, minsize,
1086 (u32) base, (u32) (base >> 32));
1087 call_prom("close", 1, 0, phb_node);
1090 reserve_mem(local_alloc_bottom, local_alloc_top - local_alloc_bottom);
1092 if (RELOC(prom_memory_limit)) {
1094 * We align the start to a 16MB boundary so we can map the TCE area
1095 * using large pages if possible. The end should be the top of RAM
1096 * so no need to align it.
1098 RELOC(prom_tce_alloc_start) = _ALIGN_DOWN(local_alloc_bottom, 0x1000000);
1099 RELOC(prom_tce_alloc_end) = local_alloc_top;
1102 /* Flag the first invalid entry */
1103 prom_debug("ending prom_initialize_tce_table\n");
1107 * With CHRP SMP we need to use the OF to start the other
1108 * processors so we can't wait until smp_boot_cpus (the OF is
1109 * trashed by then) so we have to put the processors into
1110 * a holding pattern controlled by the kernel (not OF) before
1111 * we destroy the OF.
1113 * This uses a chunk of low memory, puts some holding pattern
1114 * code there and sends the other processors off to there until
1115 * smp_boot_cpus tells them to do something. The holding pattern
1116 * checks that address until its cpu # is there, when it is that
1117 * cpu jumps to __secondary_start(). smp_boot_cpus() takes care
1118 * of setting those values.
1120 * We also use physical address 0x4 here to tell when a cpu
1121 * is in its holding pattern code.
1123 * Fixup comment... DRENG / PPPBBB - Peter
1127 static void __init prom_hold_cpus(void)
1132 unsigned long offset = reloc_offset();
1135 unsigned int interrupt_server[MAX_CPU_THREADS];
1136 unsigned int cpu_threads, hw_cpu_num;
1138 extern void __secondary_hold(void);
1139 extern unsigned long __secondary_hold_spinloop;
1140 extern unsigned long __secondary_hold_acknowledge;
1141 unsigned long *spinloop
1142 = (void *)virt_to_abs(&__secondary_hold_spinloop);
1143 unsigned long *acknowledge
1144 = (void *)virt_to_abs(&__secondary_hold_acknowledge);
1145 unsigned long secondary_hold
1146 = virt_to_abs(*PTRRELOC((unsigned long *)__secondary_hold));
1147 struct prom_t *_prom = PTRRELOC(&prom);
1149 prom_debug("prom_hold_cpus: start...\n");
1150 prom_debug(" 1) spinloop = 0x%x\n", (unsigned long)spinloop);
1151 prom_debug(" 1) *spinloop = 0x%x\n", *spinloop);
1152 prom_debug(" 1) acknowledge = 0x%x\n",
1153 (unsigned long)acknowledge);
1154 prom_debug(" 1) *acknowledge = 0x%x\n", *acknowledge);
1155 prom_debug(" 1) secondary_hold = 0x%x\n", secondary_hold);
1157 /* Set the common spinloop variable, so all of the secondary cpus
1158 * will block when they are awakened from their OF spinloop.
1159 * This must occur for both SMP and non SMP kernels, since OF will
1160 * be trashed when we move the kernel.
1165 for (i=0; i < NR_CPUS; i++) {
1166 RELOC(hmt_thread_data)[i].pir = 0xdeadbeef;
1170 for (node = 0; prom_next_node(&node); ) {
1172 prom_getprop(node, "device_type", type, sizeof(type));
1173 if (strcmp(type, RELOC("cpu")) != 0)
1176 /* Skip non-configured cpus. */
1177 if (prom_getprop(node, "status", type, sizeof(type)) > 0)
1178 if (strcmp(type, RELOC("okay")) != 0)
1182 prom_getprop(node, "reg", ®, sizeof(reg));
1184 prom_debug("\ncpuid = 0x%x\n", cpuid);
1185 prom_debug("cpu hw idx = 0x%x\n", reg);
1187 /* Init the acknowledge var which will be reset by
1188 * the secondary cpu when it awakens from its OF
1191 *acknowledge = (unsigned long)-1;
1193 propsize = prom_getprop(node, "ibm,ppc-interrupt-server#s",
1195 sizeof(interrupt_server));
1197 /* no property. old hardware has no SMT */
1199 interrupt_server[0] = reg; /* fake it with phys id */
1201 /* We have a threaded processor */
1202 cpu_threads = propsize / sizeof(u32);
1203 if (cpu_threads > MAX_CPU_THREADS) {
1204 prom_printf("SMT: too many threads!\n"
1205 "SMT: found %x, max is %x\n",
1206 cpu_threads, MAX_CPU_THREADS);
1207 cpu_threads = 1; /* ToDo: panic? */
1211 hw_cpu_num = interrupt_server[0];
1212 if (hw_cpu_num != _prom->cpu) {
1213 /* Primary Thread of non-boot cpu */
1214 prom_printf("%x : starting cpu hw idx %x... ", cpuid, reg);
1215 call_prom("start-cpu", 3, 0, node,
1216 secondary_hold, reg);
1218 for ( i = 0 ; (i < 100000000) &&
1219 (*acknowledge == ((unsigned long)-1)); i++ )
1222 if (*acknowledge == reg) {
1223 prom_printf("done\n");
1224 /* We have to get every CPU out of OF,
1225 * even if we never start it. */
1226 if (cpuid >= NR_CPUS)
1229 prom_printf("failed: %x\n", *acknowledge);
1234 prom_printf("%x : boot cpu %x\n", cpuid, reg);
1238 /* Init paca for secondary threads. They start later. */
1239 for (i=1; i < cpu_threads; i++) {
1241 if (cpuid >= NR_CPUS)
1244 #endif /* CONFIG_SMP */
1248 /* Only enable HMT on processors that provide support. */
1249 if (__is_processor(PV_PULSAR) ||
1250 __is_processor(PV_ICESTAR) ||
1251 __is_processor(PV_SSTAR)) {
1252 prom_printf(" starting secondary threads\n");
1254 for (i = 0; i < NR_CPUS; i += 2) {
1259 unsigned long pir = mfspr(SPRN_PIR);
1260 if (__is_processor(PV_PULSAR)) {
1261 RELOC(hmt_thread_data)[i].pir =
1264 RELOC(hmt_thread_data)[i].pir =
1270 prom_printf("Processor is not HMT capable\n");
1274 if (cpuid > NR_CPUS)
1275 prom_printf("WARNING: maximum CPUs (" __stringify(NR_CPUS)
1276 ") exceeded: ignoring extras\n");
1278 prom_debug("prom_hold_cpus: end...\n");
1282 static void __init prom_init_client_services(unsigned long pp)
1284 unsigned long offset = reloc_offset();
1285 struct prom_t *_prom = PTRRELOC(&prom);
1287 /* Get a handle to the prom entry point before anything else */
1290 /* Init default value for phys size */
1291 _prom->root_size_cells = 1;
1292 _prom->root_addr_cells = 2;
1294 /* get a handle for the stdout device */
1295 _prom->chosen = call_prom("finddevice", 1, 1, ADDR("/chosen"));
1296 if (!PHANDLE_VALID(_prom->chosen))
1297 prom_panic("cannot find chosen"); /* msg won't be printed :( */
1299 /* get device tree root */
1300 _prom->root = call_prom("finddevice", 1, 1, ADDR("/"));
1301 if (!PHANDLE_VALID(_prom->root))
1302 prom_panic("cannot find device tree root"); /* msg won't be printed :( */
1305 static void __init prom_init_stdout(void)
1307 unsigned long offset = reloc_offset();
1308 struct prom_t *_prom = PTRRELOC(&prom);
1309 char *path = RELOC(of_stdout_device);
1313 if (prom_getprop(_prom->chosen, "stdout", &val, sizeof(val)) <= 0)
1314 prom_panic("cannot find stdout");
1316 _prom->stdout = val;
1318 /* Get the full OF pathname of the stdout device */
1319 memset(path, 0, 256);
1320 call_prom("instance-to-path", 3, 1, _prom->stdout, path, 255);
1321 val = call_prom("instance-to-package", 1, 1, _prom->stdout);
1322 prom_setprop(_prom->chosen, "linux,stdout-package", &val, sizeof(val));
1323 prom_printf("OF stdout device is: %s\n", RELOC(of_stdout_device));
1324 prom_setprop(_prom->chosen, "linux,stdout-path",
1325 RELOC(of_stdout_device), strlen(RELOC(of_stdout_device))+1);
1327 /* If it's a display, note it */
1328 memset(type, 0, sizeof(type));
1329 prom_getprop(val, "device_type", type, sizeof(type));
1330 if (strcmp(type, RELOC("display")) == 0) {
1331 _prom->disp_node = val;
1332 prom_setprop(val, "linux,boot-display", NULL, 0);
1336 static void __init prom_close_stdin(void)
1338 unsigned long offset = reloc_offset();
1339 struct prom_t *_prom = PTRRELOC(&prom);
1342 if (prom_getprop(_prom->chosen, "stdin", &val, sizeof(val)) > 0)
1343 call_prom("close", 1, 0, val);
1346 static int __init prom_find_machine_type(void)
1348 unsigned long offset = reloc_offset();
1349 struct prom_t *_prom = PTRRELOC(&prom);
1354 len = prom_getprop(_prom->root, "compatible",
1355 compat, sizeof(compat)-1);
1359 char *p = &compat[i];
1363 if (strstr(p, RELOC("Power Macintosh")) ||
1364 strstr(p, RELOC("MacRISC4")))
1365 return PLATFORM_POWERMAC;
1366 if (strstr(p, RELOC("Momentum,Maple")))
1367 return PLATFORM_MAPLE;
1371 /* Default to pSeries. We need to know if we are running LPAR */
1372 rtas = call_prom("finddevice", 1, 1, ADDR("/rtas"));
1373 if (PHANDLE_VALID(rtas)) {
1374 int x = prom_getproplen(rtas, "ibm,hypertas-functions");
1375 if (x != PROM_ERROR) {
1376 prom_printf("Hypertas detected, assuming LPAR !\n");
1377 return PLATFORM_PSERIES_LPAR;
1380 return PLATFORM_PSERIES;
1383 static int __init prom_set_color(ihandle ih, int i, int r, int g, int b)
1385 unsigned long offset = reloc_offset();
1387 return call_prom("call-method", 6, 1, ADDR("color!"), ih, i, b, g, r);
1391 * If we have a display that we don't know how to drive,
1392 * we will want to try to execute OF's open method for it
1393 * later. However, OF will probably fall over if we do that
1394 * we've taken over the MMU.
1395 * So we check whether we will need to open the display,
1396 * and if so, open it now.
1398 static void __init prom_check_displays(void)
1400 unsigned long offset = reloc_offset();
1401 struct prom_t *_prom = PTRRELOC(&prom);
1402 char type[16], *path;
1407 static unsigned char default_colors[] = {
1425 const unsigned char *clut;
1427 prom_printf("Looking for displays\n");
1428 for (node = 0; prom_next_node(&node); ) {
1429 memset(type, 0, sizeof(type));
1430 prom_getprop(node, "device_type", type, sizeof(type));
1431 if (strcmp(type, RELOC("display")) != 0)
1434 /* It seems OF doesn't null-terminate the path :-( */
1435 path = RELOC(prom_scratch);
1436 memset(path, 0, PROM_SCRATCH_SIZE);
1439 * leave some room at the end of the path for appending extra
1442 if (call_prom("package-to-path", 3, 1, node, path,
1443 PROM_SCRATCH_SIZE-10) == PROM_ERROR)
1445 prom_printf("found display : %s, opening ... ", path);
1447 ih = call_prom("open", 1, 1, path);
1449 prom_printf("failed\n");
1454 prom_printf("done\n");
1455 prom_setprop(node, "linux,opened", NULL, 0);
1458 * stdout wasn't a display node, pick the first we can find
1461 if (_prom->disp_node == 0)
1462 _prom->disp_node = node;
1464 /* Setup a useable color table when the appropriate
1465 * method is available. Should update this to set-colors */
1466 clut = RELOC(default_colors);
1467 for (i = 0; i < 32; i++, clut += 3)
1468 if (prom_set_color(ih, i, clut[0], clut[1],
1472 #ifdef CONFIG_LOGO_LINUX_CLUT224
1473 clut = PTRRELOC(RELOC(logo_linux_clut224.clut));
1474 for (i = 0; i < RELOC(logo_linux_clut224.clutsize); i++, clut += 3)
1475 if (prom_set_color(ih, i + 32, clut[0], clut[1],
1478 #endif /* CONFIG_LOGO_LINUX_CLUT224 */
1483 /* Return (relocated) pointer to this much memory: moves initrd if reqd. */
1484 static void __init *make_room(unsigned long *mem_start, unsigned long *mem_end,
1485 unsigned long needed, unsigned long align)
1487 unsigned long offset = reloc_offset();
1490 *mem_start = _ALIGN(*mem_start, align);
1491 while ((*mem_start + needed) > *mem_end) {
1492 unsigned long room, chunk;
1494 prom_debug("Chunk exhausted, claiming more at %x...\n",
1495 RELOC(alloc_bottom));
1496 room = RELOC(alloc_top) - RELOC(alloc_bottom);
1497 if (room > DEVTREE_CHUNK_SIZE)
1498 room = DEVTREE_CHUNK_SIZE;
1499 if (room < PAGE_SIZE)
1500 prom_panic("No memory for flatten_device_tree (no room)");
1501 chunk = alloc_up(room, 0);
1503 prom_panic("No memory for flatten_device_tree (claim failed)");
1504 *mem_end = RELOC(alloc_top);
1507 ret = (void *)*mem_start;
1508 *mem_start += needed;
1513 #define dt_push_token(token, mem_start, mem_end) \
1514 do { *((u32 *)make_room(mem_start, mem_end, 4, 4)) = token; } while(0)
1516 static unsigned long __init dt_find_string(char *str)
1518 unsigned long offset = reloc_offset();
1521 s = os = (char *)RELOC(dt_string_start);
1523 while (s < (char *)RELOC(dt_string_end)) {
1524 if (strcmp(s, str) == 0)
1532 * The Open Firmware 1275 specification states properties must be 31 bytes or
1533 * less, however not all firmwares obey this. Make it 64 bytes to be safe.
1535 #define MAX_PROPERTY_NAME 64
1537 static void __init scan_dt_build_strings(phandle node, unsigned long *mem_start,
1538 unsigned long *mem_end)
1540 unsigned long offset = reloc_offset();
1541 char *prev_name, *namep, *sstart;
1545 sstart = (char *)RELOC(dt_string_start);
1547 /* get and store all property names */
1548 prev_name = RELOC("");
1552 /* 64 is max len of name including nul. */
1553 namep = make_room(mem_start, mem_end, MAX_PROPERTY_NAME, 1);
1554 rc = call_prom("nextprop", 3, 1, node, prev_name, namep);
1556 /* No more nodes: unwind alloc */
1557 *mem_start = (unsigned long)namep;
1560 soff = dt_find_string(namep);
1562 *mem_start = (unsigned long)namep;
1563 namep = sstart + soff;
1565 /* Trim off some if we can */
1566 *mem_start = (unsigned long)namep + strlen(namep) + 1;
1567 RELOC(dt_string_end) = *mem_start;
1572 /* do all our children */
1573 child = call_prom("child", 1, 1, node);
1574 while (child != (phandle)0) {
1575 scan_dt_build_strings(child, mem_start, mem_end);
1576 child = call_prom("peer", 1, 1, child);
1580 static void __init scan_dt_build_struct(phandle node, unsigned long *mem_start,
1581 unsigned long *mem_end)
1585 char *namep, *prev_name, *sstart, *p, *ep;
1587 unsigned char *valp;
1588 unsigned long offset = reloc_offset();
1589 char pname[MAX_PROPERTY_NAME];
1592 path = RELOC(prom_scratch);
1594 dt_push_token(OF_DT_BEGIN_NODE, mem_start, mem_end);
1596 /* get the node's full name */
1597 namep = (char *)*mem_start;
1598 l = call_prom("package-to-path", 3, 1, node,
1599 namep, *mem_end - *mem_start);
1601 /* Didn't fit? Get more room. */
1602 if (l+1 > *mem_end - *mem_start) {
1603 namep = make_room(mem_start, mem_end, l+1, 1);
1604 call_prom("package-to-path", 3, 1, node, namep, l);
1607 /* Fixup an Apple bug where they have bogus \0 chars in the
1608 * middle of the path in some properties
1610 for (p = namep, ep = namep + l; p < ep; p++)
1612 memmove(p, p+1, ep - p);
1615 *mem_start = _ALIGN(((unsigned long) namep) + strlen(namep) + 1, 4);
1618 /* get it again for debugging */
1619 memset(path, 0, PROM_SCRATCH_SIZE);
1620 call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1);
1622 /* get and store all properties */
1623 prev_name = RELOC("");
1624 sstart = (char *)RELOC(dt_string_start);
1628 rc = call_prom("nextprop", 3, 1, node, prev_name, pname);
1632 /* find string offset */
1633 soff = dt_find_string(pname);
1635 prom_printf("WARNING: Can't find string index for <%s>, node %s\n",
1639 prev_name = sstart + soff;
1642 l = call_prom("getproplen", 2, 1, node, pname);
1645 if (l == PROM_ERROR)
1647 if (l > MAX_PROPERTY_LENGTH) {
1648 prom_printf("WARNING: ignoring large property ");
1649 /* It seems OF doesn't null-terminate the path :-( */
1650 prom_printf("[%s] ", path);
1651 prom_printf("%s length 0x%x\n", pname, l);
1655 /* push property head */
1656 dt_push_token(OF_DT_PROP, mem_start, mem_end);
1657 dt_push_token(l, mem_start, mem_end);
1658 dt_push_token(soff, mem_start, mem_end);
1660 /* push property content */
1661 align = (l >= 8) ? 8 : 4;
1662 valp = make_room(mem_start, mem_end, l, align);
1663 call_prom("getprop", 4, 1, node, pname, valp, l);
1664 *mem_start = _ALIGN(*mem_start, 4);
1667 /* Add a "linux,phandle" property. */
1668 soff = dt_find_string(RELOC("linux,phandle"));
1670 prom_printf("WARNING: Can't find string index for <linux-phandle>"
1671 " node %s\n", path);
1673 dt_push_token(OF_DT_PROP, mem_start, mem_end);
1674 dt_push_token(4, mem_start, mem_end);
1675 dt_push_token(soff, mem_start, mem_end);
1676 valp = make_room(mem_start, mem_end, 4, 4);
1677 *(u32 *)valp = node;
1680 /* do all our children */
1681 child = call_prom("child", 1, 1, node);
1682 while (child != (phandle)0) {
1683 scan_dt_build_struct(child, mem_start, mem_end);
1684 child = call_prom("peer", 1, 1, child);
1687 dt_push_token(OF_DT_END_NODE, mem_start, mem_end);
1690 static void __init flatten_device_tree(void)
1693 unsigned long offset = reloc_offset();
1694 unsigned long mem_start, mem_end, room;
1695 struct boot_param_header *hdr;
1700 * Check how much room we have between alloc top & bottom (+/- a
1701 * few pages), crop to 4Mb, as this is our "chuck" size
1703 room = RELOC(alloc_top) - RELOC(alloc_bottom) - 0x4000;
1704 if (room > DEVTREE_CHUNK_SIZE)
1705 room = DEVTREE_CHUNK_SIZE;
1706 prom_debug("starting device tree allocs at %x\n", RELOC(alloc_bottom));
1708 /* Now try to claim that */
1709 mem_start = (unsigned long)alloc_up(room, PAGE_SIZE);
1711 prom_panic("Can't allocate initial device-tree chunk\n");
1712 mem_end = RELOC(alloc_top);
1714 /* Get root of tree */
1715 root = call_prom("peer", 1, 1, (phandle)0);
1716 if (root == (phandle)0)
1717 prom_panic ("couldn't get device tree root\n");
1719 /* Build header and make room for mem rsv map */
1720 mem_start = _ALIGN(mem_start, 4);
1721 hdr = make_room(&mem_start, &mem_end, sizeof(struct boot_param_header), 4);
1722 RELOC(dt_header_start) = (unsigned long)hdr;
1723 rsvmap = make_room(&mem_start, &mem_end, sizeof(mem_reserve_map), 8);
1725 /* Start of strings */
1726 mem_start = PAGE_ALIGN(mem_start);
1727 RELOC(dt_string_start) = mem_start;
1728 mem_start += 4; /* hole */
1730 /* Add "linux,phandle" in there, we'll need it */
1731 namep = make_room(&mem_start, &mem_end, 16, 1);
1732 strcpy(namep, RELOC("linux,phandle"));
1733 mem_start = (unsigned long)namep + strlen(namep) + 1;
1734 RELOC(dt_string_end) = mem_start;
1736 /* Build string array */
1737 prom_printf("Building dt strings...\n");
1738 scan_dt_build_strings(root, &mem_start, &mem_end);
1740 /* Build structure */
1741 mem_start = PAGE_ALIGN(mem_start);
1742 RELOC(dt_struct_start) = mem_start;
1743 prom_printf("Building dt structure...\n");
1744 scan_dt_build_struct(root, &mem_start, &mem_end);
1745 dt_push_token(OF_DT_END, &mem_start, &mem_end);
1746 RELOC(dt_struct_end) = PAGE_ALIGN(mem_start);
1749 hdr->magic = OF_DT_HEADER;
1750 hdr->totalsize = RELOC(dt_struct_end) - RELOC(dt_header_start);
1751 hdr->off_dt_struct = RELOC(dt_struct_start) - RELOC(dt_header_start);
1752 hdr->off_dt_strings = RELOC(dt_string_start) - RELOC(dt_header_start);
1753 hdr->off_mem_rsvmap = ((unsigned long)rsvmap) - RELOC(dt_header_start);
1754 hdr->version = OF_DT_VERSION;
1755 hdr->last_comp_version = 1;
1757 /* Reserve the whole thing and copy the reserve map in, we
1758 * also bump mem_reserve_cnt to cause further reservations to
1759 * fail since it's too late.
1761 reserve_mem(RELOC(dt_header_start), hdr->totalsize);
1762 memcpy(rsvmap, RELOC(mem_reserve_map), sizeof(mem_reserve_map));
1767 prom_printf("reserved memory map:\n");
1768 for (i = 0; i < RELOC(mem_reserve_cnt); i++)
1769 prom_printf(" %x - %x\n", RELOC(mem_reserve_map)[i].base,
1770 RELOC(mem_reserve_map)[i].size);
1773 RELOC(mem_reserve_cnt) = MEM_RESERVE_MAP_SIZE;
1775 prom_printf("Device tree strings 0x%x -> 0x%x\n",
1776 RELOC(dt_string_start), RELOC(dt_string_end));
1777 prom_printf("Device tree struct 0x%x -> 0x%x\n",
1778 RELOC(dt_struct_start), RELOC(dt_struct_end));
1783 static void __init fixup_device_tree(void)
1785 unsigned long offset = reloc_offset();
1786 phandle u3, i2c, mpic;
1791 /* Some G5s have a missing interrupt definition, fix it up here */
1792 u3 = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000"));
1793 if (!PHANDLE_VALID(u3))
1795 i2c = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/i2c@f8001000"));
1796 if (!PHANDLE_VALID(i2c))
1798 mpic = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/mpic@f8040000"));
1799 if (!PHANDLE_VALID(mpic))
1802 /* check if proper rev of u3 */
1803 if (prom_getprop(u3, "device-rev", &u3_rev, sizeof(u3_rev))
1808 /* does it need fixup ? */
1809 if (prom_getproplen(i2c, "interrupts") > 0)
1811 /* interrupt on this revision of u3 is number 0 and level */
1814 prom_setprop(i2c, "interrupts", &interrupts, sizeof(interrupts));
1816 prom_setprop(i2c, "interrupt-parent", &parent, sizeof(parent));
1820 static void __init prom_find_boot_cpu(void)
1822 unsigned long offset = reloc_offset();
1823 struct prom_t *_prom = PTRRELOC(&prom);
1828 if (prom_getprop(_prom->chosen, "cpu", &prom_cpu, sizeof(prom_cpu)) <= 0)
1829 prom_panic("cannot find boot cpu");
1831 cpu_pkg = call_prom("instance-to-package", 1, 1, prom_cpu);
1833 prom_setprop(cpu_pkg, "linux,boot-cpu", NULL, 0);
1834 prom_getprop(cpu_pkg, "reg", &getprop_rval, sizeof(getprop_rval));
1835 _prom->cpu = getprop_rval;
1837 prom_debug("Booting CPU hw index = 0x%x\n", _prom->cpu);
1840 static void __init prom_check_initrd(unsigned long r3, unsigned long r4)
1842 #ifdef CONFIG_BLK_DEV_INITRD
1843 unsigned long offset = reloc_offset();
1844 struct prom_t *_prom = PTRRELOC(&prom);
1846 if ( r3 && r4 && r4 != 0xdeadbeef) {
1849 RELOC(prom_initrd_start) = (r3 >= KERNELBASE) ? __pa(r3) : r3;
1850 RELOC(prom_initrd_end) = RELOC(prom_initrd_start) + r4;
1852 val = (u64)RELOC(prom_initrd_start);
1853 prom_setprop(_prom->chosen, "linux,initrd-start", &val, sizeof(val));
1854 val = (u64)RELOC(prom_initrd_end);
1855 prom_setprop(_prom->chosen, "linux,initrd-end", &val, sizeof(val));
1857 reserve_mem(RELOC(prom_initrd_start),
1858 RELOC(prom_initrd_end) - RELOC(prom_initrd_start));
1860 prom_debug("initrd_start=0x%x\n", RELOC(prom_initrd_start));
1861 prom_debug("initrd_end=0x%x\n", RELOC(prom_initrd_end));
1863 #endif /* CONFIG_BLK_DEV_INITRD */
1867 * We enter here early on, when the Open Firmware prom is still
1868 * handling exceptions and the MMU hash table for us.
1871 unsigned long __init prom_init(unsigned long r3, unsigned long r4, unsigned long pp,
1872 unsigned long r6, unsigned long r7)
1874 unsigned long offset = reloc_offset();
1875 struct prom_t *_prom = PTRRELOC(&prom);
1876 unsigned long phys = KERNELBASE - offset;
1880 * First zero the BSS
1882 memset(PTRRELOC(&__bss_start), 0, __bss_stop - __bss_start);
1885 * Init interface to Open Firmware, get some node references,
1888 prom_init_client_services(pp);
1891 * Init prom stdout device
1894 prom_debug("klimit=0x%x\n", RELOC(klimit));
1895 prom_debug("offset=0x%x\n", offset);
1898 * Check for an initrd
1900 prom_check_initrd(r3, r4);
1903 * Get default machine type. At this point, we do not differenciate
1904 * between pSeries SMP and pSeries LPAR
1906 RELOC(of_platform) = prom_find_machine_type();
1907 getprop_rval = RELOC(of_platform);
1908 prom_setprop(_prom->chosen, "linux,platform",
1909 &getprop_rval, sizeof(getprop_rval));
1912 * On pSeries, inform the firmware about our capabilities
1914 if (RELOC(of_platform) & PLATFORM_PSERIES)
1915 prom_send_capabilities();
1918 * On pSeries and BPA, copy the CPU hold code
1920 if (RELOC(of_platform) & (PLATFORM_PSERIES | PLATFORM_BPA))
1921 copy_and_flush(0, KERNELBASE - offset, 0x100, 0);
1924 * Get memory cells format
1927 prom_getprop(_prom->root, "#size-cells",
1928 &getprop_rval, sizeof(getprop_rval));
1929 _prom->root_size_cells = getprop_rval;
1931 prom_getprop(_prom->root, "#address-cells",
1932 &getprop_rval, sizeof(getprop_rval));
1933 _prom->root_addr_cells = getprop_rval;
1936 * Do early parsing of command line
1938 early_cmdline_parse();
1941 * Initialize memory management within prom_init
1946 * Determine which cpu is actually running right _now_
1948 prom_find_boot_cpu();
1951 * Initialize display devices
1953 prom_check_displays();
1956 * Initialize IOMMU (TCE tables) on pSeries. Do that before anything else
1957 * that uses the allocator, we need to make sure we get the top of memory
1958 * available for us here...
1960 if (RELOC(of_platform) == PLATFORM_PSERIES)
1961 prom_initialize_tce_table();
1964 * On non-powermacs, try to instantiate RTAS and puts all CPUs
1965 * in spin-loops. PowerMacs don't have a working RTAS and use
1966 * a different way to spin CPUs
1968 if (RELOC(of_platform) != PLATFORM_POWERMAC) {
1969 prom_instantiate_rtas();
1974 * Fill in some infos for use by the kernel later on
1976 if (RELOC(ppc64_iommu_off))
1977 prom_setprop(_prom->chosen, "linux,iommu-off", NULL, 0);
1979 if (RELOC(iommu_force_on))
1980 prom_setprop(_prom->chosen, "linux,iommu-force-on", NULL, 0);
1982 if (RELOC(prom_memory_limit))
1983 prom_setprop(_prom->chosen, "linux,memory-limit",
1984 PTRRELOC(&prom_memory_limit), sizeof(RELOC(prom_memory_limit)));
1986 if (RELOC(prom_tce_alloc_start)) {
1987 prom_setprop(_prom->chosen, "linux,tce-alloc-start",
1988 PTRRELOC(&prom_tce_alloc_start), sizeof(RELOC(prom_tce_alloc_start)));
1989 prom_setprop(_prom->chosen, "linux,tce-alloc-end",
1990 PTRRELOC(&prom_tce_alloc_end), sizeof(RELOC(prom_tce_alloc_end)));
1994 * Fixup any known bugs in the device-tree
1996 fixup_device_tree();
1999 * Now finally create the flattened device-tree
2001 prom_printf("copying OF device tree ...\n");
2002 flatten_device_tree();
2004 /* in case stdin is USB and still active on IBM machines... */
2008 * Call OF "quiesce" method to shut down pending DMA's from
2011 prom_printf("Calling quiesce ...\n");
2012 call_prom("quiesce", 0, 0);
2015 * And finally, call the kernel passing it the flattened device
2016 * tree and NULL as r5, thus triggering the new entry point which
2017 * is common to us and kexec
2019 prom_printf("returning from prom_init\n");
2020 prom_debug("->dt_header_start=0x%x\n", RELOC(dt_header_start));
2021 prom_debug("->phys=0x%x\n", phys);
2023 __start(RELOC(dt_header_start), phys, 0);