V4L/DVB (10645): vivi: introduce v4l2_device and do several cleanups
[linux-2.6] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67
68 #ifdef CONFIG_PPC_OF
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #endif
72
73 #define PFX "ipmi_si: "
74
75 /* Measure times between events in the driver. */
76 #undef DEBUG_TIMING
77
78 /* Call every 10 ms. */
79 #define SI_TIMEOUT_TIME_USEC    10000
80 #define SI_USEC_PER_JIFFY       (1000000/HZ)
81 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
82 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
83                                       short timeout */
84
85 /* Bit for BMC global enables. */
86 #define IPMI_BMC_RCV_MSG_INTR     0x01
87 #define IPMI_BMC_EVT_MSG_INTR     0x02
88 #define IPMI_BMC_EVT_MSG_BUFF     0x04
89 #define IPMI_BMC_SYS_LOG          0x08
90
91 enum si_intf_state {
92         SI_NORMAL,
93         SI_GETTING_FLAGS,
94         SI_GETTING_EVENTS,
95         SI_CLEARING_FLAGS,
96         SI_CLEARING_FLAGS_THEN_SET_IRQ,
97         SI_GETTING_MESSAGES,
98         SI_ENABLE_INTERRUPTS1,
99         SI_ENABLE_INTERRUPTS2,
100         SI_DISABLE_INTERRUPTS1,
101         SI_DISABLE_INTERRUPTS2
102         /* FIXME - add watchdog stuff. */
103 };
104
105 /* Some BT-specific defines we need here. */
106 #define IPMI_BT_INTMASK_REG             2
107 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
108 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
109
110 enum si_type {
111     SI_KCS, SI_SMIC, SI_BT
112 };
113 static char *si_to_str[] = { "kcs", "smic", "bt" };
114
115 #define DEVICE_NAME "ipmi_si"
116
117 static struct platform_driver ipmi_driver = {
118         .driver = {
119                 .name = DEVICE_NAME,
120                 .bus = &platform_bus_type
121         }
122 };
123
124
125 /*
126  * Indexes into stats[] in smi_info below.
127  */
128 enum si_stat_indexes {
129         /*
130          * Number of times the driver requested a timer while an operation
131          * was in progress.
132          */
133         SI_STAT_short_timeouts = 0,
134
135         /*
136          * Number of times the driver requested a timer while nothing was in
137          * progress.
138          */
139         SI_STAT_long_timeouts,
140
141         /* Number of times the interface was idle while being polled. */
142         SI_STAT_idles,
143
144         /* Number of interrupts the driver handled. */
145         SI_STAT_interrupts,
146
147         /* Number of time the driver got an ATTN from the hardware. */
148         SI_STAT_attentions,
149
150         /* Number of times the driver requested flags from the hardware. */
151         SI_STAT_flag_fetches,
152
153         /* Number of times the hardware didn't follow the state machine. */
154         SI_STAT_hosed_count,
155
156         /* Number of completed messages. */
157         SI_STAT_complete_transactions,
158
159         /* Number of IPMI events received from the hardware. */
160         SI_STAT_events,
161
162         /* Number of watchdog pretimeouts. */
163         SI_STAT_watchdog_pretimeouts,
164
165         /* Number of asyncronous messages received. */
166         SI_STAT_incoming_messages,
167
168
169         /* This *must* remain last, add new values above this. */
170         SI_NUM_STATS
171 };
172
173 struct smi_info {
174         int                    intf_num;
175         ipmi_smi_t             intf;
176         struct si_sm_data      *si_sm;
177         struct si_sm_handlers  *handlers;
178         enum si_type           si_type;
179         spinlock_t             si_lock;
180         spinlock_t             msg_lock;
181         struct list_head       xmit_msgs;
182         struct list_head       hp_xmit_msgs;
183         struct ipmi_smi_msg    *curr_msg;
184         enum si_intf_state     si_state;
185
186         /*
187          * Used to handle the various types of I/O that can occur with
188          * IPMI
189          */
190         struct si_sm_io io;
191         int (*io_setup)(struct smi_info *info);
192         void (*io_cleanup)(struct smi_info *info);
193         int (*irq_setup)(struct smi_info *info);
194         void (*irq_cleanup)(struct smi_info *info);
195         unsigned int io_size;
196         char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
197         void (*addr_source_cleanup)(struct smi_info *info);
198         void *addr_source_data;
199
200         /*
201          * Per-OEM handler, called from handle_flags().  Returns 1
202          * when handle_flags() needs to be re-run or 0 indicating it
203          * set si_state itself.
204          */
205         int (*oem_data_avail_handler)(struct smi_info *smi_info);
206
207         /*
208          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
209          * is set to hold the flags until we are done handling everything
210          * from the flags.
211          */
212 #define RECEIVE_MSG_AVAIL       0x01
213 #define EVENT_MSG_BUFFER_FULL   0x02
214 #define WDT_PRE_TIMEOUT_INT     0x08
215 #define OEM0_DATA_AVAIL     0x20
216 #define OEM1_DATA_AVAIL     0x40
217 #define OEM2_DATA_AVAIL     0x80
218 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
219                              OEM1_DATA_AVAIL | \
220                              OEM2_DATA_AVAIL)
221         unsigned char       msg_flags;
222
223         /*
224          * If set to true, this will request events the next time the
225          * state machine is idle.
226          */
227         atomic_t            req_events;
228
229         /*
230          * If true, run the state machine to completion on every send
231          * call.  Generally used after a panic to make sure stuff goes
232          * out.
233          */
234         int                 run_to_completion;
235
236         /* The I/O port of an SI interface. */
237         int                 port;
238
239         /*
240          * The space between start addresses of the two ports.  For
241          * instance, if the first port is 0xca2 and the spacing is 4, then
242          * the second port is 0xca6.
243          */
244         unsigned int        spacing;
245
246         /* zero if no irq; */
247         int                 irq;
248
249         /* The timer for this si. */
250         struct timer_list   si_timer;
251
252         /* The time (in jiffies) the last timeout occurred at. */
253         unsigned long       last_timeout_jiffies;
254
255         /* Used to gracefully stop the timer without race conditions. */
256         atomic_t            stop_operation;
257
258         /*
259          * The driver will disable interrupts when it gets into a
260          * situation where it cannot handle messages due to lack of
261          * memory.  Once that situation clears up, it will re-enable
262          * interrupts.
263          */
264         int interrupt_disabled;
265
266         /* From the get device id response... */
267         struct ipmi_device_id device_id;
268
269         /* Driver model stuff. */
270         struct device *dev;
271         struct platform_device *pdev;
272
273         /*
274          * True if we allocated the device, false if it came from
275          * someplace else (like PCI).
276          */
277         int dev_registered;
278
279         /* Slave address, could be reported from DMI. */
280         unsigned char slave_addr;
281
282         /* Counters and things for the proc filesystem. */
283         atomic_t stats[SI_NUM_STATS];
284
285         struct task_struct *thread;
286
287         struct list_head link;
288 };
289
290 #define smi_inc_stat(smi, stat) \
291         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
292 #define smi_get_stat(smi, stat) \
293         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
294
295 #define SI_MAX_PARMS 4
296
297 static int force_kipmid[SI_MAX_PARMS];
298 static int num_force_kipmid;
299
300 static int unload_when_empty = 1;
301
302 static int try_smi_init(struct smi_info *smi);
303 static void cleanup_one_si(struct smi_info *to_clean);
304
305 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
306 static int register_xaction_notifier(struct notifier_block *nb)
307 {
308         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
309 }
310
311 static void deliver_recv_msg(struct smi_info *smi_info,
312                              struct ipmi_smi_msg *msg)
313 {
314         /* Deliver the message to the upper layer with the lock
315            released. */
316         spin_unlock(&(smi_info->si_lock));
317         ipmi_smi_msg_received(smi_info->intf, msg);
318         spin_lock(&(smi_info->si_lock));
319 }
320
321 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
322 {
323         struct ipmi_smi_msg *msg = smi_info->curr_msg;
324
325         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
326                 cCode = IPMI_ERR_UNSPECIFIED;
327         /* else use it as is */
328
329         /* Make it a reponse */
330         msg->rsp[0] = msg->data[0] | 4;
331         msg->rsp[1] = msg->data[1];
332         msg->rsp[2] = cCode;
333         msg->rsp_size = 3;
334
335         smi_info->curr_msg = NULL;
336         deliver_recv_msg(smi_info, msg);
337 }
338
339 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
340 {
341         int              rv;
342         struct list_head *entry = NULL;
343 #ifdef DEBUG_TIMING
344         struct timeval t;
345 #endif
346
347         /*
348          * No need to save flags, we aleady have interrupts off and we
349          * already hold the SMI lock.
350          */
351         if (!smi_info->run_to_completion)
352                 spin_lock(&(smi_info->msg_lock));
353
354         /* Pick the high priority queue first. */
355         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
356                 entry = smi_info->hp_xmit_msgs.next;
357         } else if (!list_empty(&(smi_info->xmit_msgs))) {
358                 entry = smi_info->xmit_msgs.next;
359         }
360
361         if (!entry) {
362                 smi_info->curr_msg = NULL;
363                 rv = SI_SM_IDLE;
364         } else {
365                 int err;
366
367                 list_del(entry);
368                 smi_info->curr_msg = list_entry(entry,
369                                                 struct ipmi_smi_msg,
370                                                 link);
371 #ifdef DEBUG_TIMING
372                 do_gettimeofday(&t);
373                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
374 #endif
375                 err = atomic_notifier_call_chain(&xaction_notifier_list,
376                                 0, smi_info);
377                 if (err & NOTIFY_STOP_MASK) {
378                         rv = SI_SM_CALL_WITHOUT_DELAY;
379                         goto out;
380                 }
381                 err = smi_info->handlers->start_transaction(
382                         smi_info->si_sm,
383                         smi_info->curr_msg->data,
384                         smi_info->curr_msg->data_size);
385                 if (err)
386                         return_hosed_msg(smi_info, err);
387
388                 rv = SI_SM_CALL_WITHOUT_DELAY;
389         }
390  out:
391         if (!smi_info->run_to_completion)
392                 spin_unlock(&(smi_info->msg_lock));
393
394         return rv;
395 }
396
397 static void start_enable_irq(struct smi_info *smi_info)
398 {
399         unsigned char msg[2];
400
401         /*
402          * If we are enabling interrupts, we have to tell the
403          * BMC to use them.
404          */
405         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
406         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
407
408         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
409         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
410 }
411
412 static void start_disable_irq(struct smi_info *smi_info)
413 {
414         unsigned char msg[2];
415
416         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
417         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
418
419         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
420         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
421 }
422
423 static void start_clear_flags(struct smi_info *smi_info)
424 {
425         unsigned char msg[3];
426
427         /* Make sure the watchdog pre-timeout flag is not set at startup. */
428         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
429         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
430         msg[2] = WDT_PRE_TIMEOUT_INT;
431
432         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
433         smi_info->si_state = SI_CLEARING_FLAGS;
434 }
435
436 /*
437  * When we have a situtaion where we run out of memory and cannot
438  * allocate messages, we just leave them in the BMC and run the system
439  * polled until we can allocate some memory.  Once we have some
440  * memory, we will re-enable the interrupt.
441  */
442 static inline void disable_si_irq(struct smi_info *smi_info)
443 {
444         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
445                 start_disable_irq(smi_info);
446                 smi_info->interrupt_disabled = 1;
447         }
448 }
449
450 static inline void enable_si_irq(struct smi_info *smi_info)
451 {
452         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
453                 start_enable_irq(smi_info);
454                 smi_info->interrupt_disabled = 0;
455         }
456 }
457
458 static void handle_flags(struct smi_info *smi_info)
459 {
460  retry:
461         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
462                 /* Watchdog pre-timeout */
463                 smi_inc_stat(smi_info, watchdog_pretimeouts);
464
465                 start_clear_flags(smi_info);
466                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
467                 spin_unlock(&(smi_info->si_lock));
468                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
469                 spin_lock(&(smi_info->si_lock));
470         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
471                 /* Messages available. */
472                 smi_info->curr_msg = ipmi_alloc_smi_msg();
473                 if (!smi_info->curr_msg) {
474                         disable_si_irq(smi_info);
475                         smi_info->si_state = SI_NORMAL;
476                         return;
477                 }
478                 enable_si_irq(smi_info);
479
480                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
481                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
482                 smi_info->curr_msg->data_size = 2;
483
484                 smi_info->handlers->start_transaction(
485                         smi_info->si_sm,
486                         smi_info->curr_msg->data,
487                         smi_info->curr_msg->data_size);
488                 smi_info->si_state = SI_GETTING_MESSAGES;
489         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
490                 /* Events available. */
491                 smi_info->curr_msg = ipmi_alloc_smi_msg();
492                 if (!smi_info->curr_msg) {
493                         disable_si_irq(smi_info);
494                         smi_info->si_state = SI_NORMAL;
495                         return;
496                 }
497                 enable_si_irq(smi_info);
498
499                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
500                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
501                 smi_info->curr_msg->data_size = 2;
502
503                 smi_info->handlers->start_transaction(
504                         smi_info->si_sm,
505                         smi_info->curr_msg->data,
506                         smi_info->curr_msg->data_size);
507                 smi_info->si_state = SI_GETTING_EVENTS;
508         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
509                    smi_info->oem_data_avail_handler) {
510                 if (smi_info->oem_data_avail_handler(smi_info))
511                         goto retry;
512         } else
513                 smi_info->si_state = SI_NORMAL;
514 }
515
516 static void handle_transaction_done(struct smi_info *smi_info)
517 {
518         struct ipmi_smi_msg *msg;
519 #ifdef DEBUG_TIMING
520         struct timeval t;
521
522         do_gettimeofday(&t);
523         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
524 #endif
525         switch (smi_info->si_state) {
526         case SI_NORMAL:
527                 if (!smi_info->curr_msg)
528                         break;
529
530                 smi_info->curr_msg->rsp_size
531                         = smi_info->handlers->get_result(
532                                 smi_info->si_sm,
533                                 smi_info->curr_msg->rsp,
534                                 IPMI_MAX_MSG_LENGTH);
535
536                 /*
537                  * Do this here becase deliver_recv_msg() releases the
538                  * lock, and a new message can be put in during the
539                  * time the lock is released.
540                  */
541                 msg = smi_info->curr_msg;
542                 smi_info->curr_msg = NULL;
543                 deliver_recv_msg(smi_info, msg);
544                 break;
545
546         case SI_GETTING_FLAGS:
547         {
548                 unsigned char msg[4];
549                 unsigned int  len;
550
551                 /* We got the flags from the SMI, now handle them. */
552                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
553                 if (msg[2] != 0) {
554                         /* Error fetching flags, just give up for now. */
555                         smi_info->si_state = SI_NORMAL;
556                 } else if (len < 4) {
557                         /*
558                          * Hmm, no flags.  That's technically illegal, but
559                          * don't use uninitialized data.
560                          */
561                         smi_info->si_state = SI_NORMAL;
562                 } else {
563                         smi_info->msg_flags = msg[3];
564                         handle_flags(smi_info);
565                 }
566                 break;
567         }
568
569         case SI_CLEARING_FLAGS:
570         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
571         {
572                 unsigned char msg[3];
573
574                 /* We cleared the flags. */
575                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
576                 if (msg[2] != 0) {
577                         /* Error clearing flags */
578                         printk(KERN_WARNING
579                                "ipmi_si: Error clearing flags: %2.2x\n",
580                                msg[2]);
581                 }
582                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
583                         start_enable_irq(smi_info);
584                 else
585                         smi_info->si_state = SI_NORMAL;
586                 break;
587         }
588
589         case SI_GETTING_EVENTS:
590         {
591                 smi_info->curr_msg->rsp_size
592                         = smi_info->handlers->get_result(
593                                 smi_info->si_sm,
594                                 smi_info->curr_msg->rsp,
595                                 IPMI_MAX_MSG_LENGTH);
596
597                 /*
598                  * Do this here becase deliver_recv_msg() releases the
599                  * lock, and a new message can be put in during the
600                  * time the lock is released.
601                  */
602                 msg = smi_info->curr_msg;
603                 smi_info->curr_msg = NULL;
604                 if (msg->rsp[2] != 0) {
605                         /* Error getting event, probably done. */
606                         msg->done(msg);
607
608                         /* Take off the event flag. */
609                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
610                         handle_flags(smi_info);
611                 } else {
612                         smi_inc_stat(smi_info, events);
613
614                         /*
615                          * Do this before we deliver the message
616                          * because delivering the message releases the
617                          * lock and something else can mess with the
618                          * state.
619                          */
620                         handle_flags(smi_info);
621
622                         deliver_recv_msg(smi_info, msg);
623                 }
624                 break;
625         }
626
627         case SI_GETTING_MESSAGES:
628         {
629                 smi_info->curr_msg->rsp_size
630                         = smi_info->handlers->get_result(
631                                 smi_info->si_sm,
632                                 smi_info->curr_msg->rsp,
633                                 IPMI_MAX_MSG_LENGTH);
634
635                 /*
636                  * Do this here becase deliver_recv_msg() releases the
637                  * lock, and a new message can be put in during the
638                  * time the lock is released.
639                  */
640                 msg = smi_info->curr_msg;
641                 smi_info->curr_msg = NULL;
642                 if (msg->rsp[2] != 0) {
643                         /* Error getting event, probably done. */
644                         msg->done(msg);
645
646                         /* Take off the msg flag. */
647                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
648                         handle_flags(smi_info);
649                 } else {
650                         smi_inc_stat(smi_info, incoming_messages);
651
652                         /*
653                          * Do this before we deliver the message
654                          * because delivering the message releases the
655                          * lock and something else can mess with the
656                          * state.
657                          */
658                         handle_flags(smi_info);
659
660                         deliver_recv_msg(smi_info, msg);
661                 }
662                 break;
663         }
664
665         case SI_ENABLE_INTERRUPTS1:
666         {
667                 unsigned char msg[4];
668
669                 /* We got the flags from the SMI, now handle them. */
670                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
671                 if (msg[2] != 0) {
672                         printk(KERN_WARNING
673                                "ipmi_si: Could not enable interrupts"
674                                ", failed get, using polled mode.\n");
675                         smi_info->si_state = SI_NORMAL;
676                 } else {
677                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
678                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
679                         msg[2] = (msg[3] |
680                                   IPMI_BMC_RCV_MSG_INTR |
681                                   IPMI_BMC_EVT_MSG_INTR);
682                         smi_info->handlers->start_transaction(
683                                 smi_info->si_sm, msg, 3);
684                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
685                 }
686                 break;
687         }
688
689         case SI_ENABLE_INTERRUPTS2:
690         {
691                 unsigned char msg[4];
692
693                 /* We got the flags from the SMI, now handle them. */
694                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
695                 if (msg[2] != 0) {
696                         printk(KERN_WARNING
697                                "ipmi_si: Could not enable interrupts"
698                                ", failed set, using polled mode.\n");
699                 }
700                 smi_info->si_state = SI_NORMAL;
701                 break;
702         }
703
704         case SI_DISABLE_INTERRUPTS1:
705         {
706                 unsigned char msg[4];
707
708                 /* We got the flags from the SMI, now handle them. */
709                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
710                 if (msg[2] != 0) {
711                         printk(KERN_WARNING
712                                "ipmi_si: Could not disable interrupts"
713                                ", failed get.\n");
714                         smi_info->si_state = SI_NORMAL;
715                 } else {
716                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
717                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
718                         msg[2] = (msg[3] &
719                                   ~(IPMI_BMC_RCV_MSG_INTR |
720                                     IPMI_BMC_EVT_MSG_INTR));
721                         smi_info->handlers->start_transaction(
722                                 smi_info->si_sm, msg, 3);
723                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
724                 }
725                 break;
726         }
727
728         case SI_DISABLE_INTERRUPTS2:
729         {
730                 unsigned char msg[4];
731
732                 /* We got the flags from the SMI, now handle them. */
733                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
734                 if (msg[2] != 0) {
735                         printk(KERN_WARNING
736                                "ipmi_si: Could not disable interrupts"
737                                ", failed set.\n");
738                 }
739                 smi_info->si_state = SI_NORMAL;
740                 break;
741         }
742         }
743 }
744
745 /*
746  * Called on timeouts and events.  Timeouts should pass the elapsed
747  * time, interrupts should pass in zero.  Must be called with
748  * si_lock held and interrupts disabled.
749  */
750 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
751                                            int time)
752 {
753         enum si_sm_result si_sm_result;
754
755  restart:
756         /*
757          * There used to be a loop here that waited a little while
758          * (around 25us) before giving up.  That turned out to be
759          * pointless, the minimum delays I was seeing were in the 300us
760          * range, which is far too long to wait in an interrupt.  So
761          * we just run until the state machine tells us something
762          * happened or it needs a delay.
763          */
764         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
765         time = 0;
766         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
767                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
768
769         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
770                 smi_inc_stat(smi_info, complete_transactions);
771
772                 handle_transaction_done(smi_info);
773                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
774         } else if (si_sm_result == SI_SM_HOSED) {
775                 smi_inc_stat(smi_info, hosed_count);
776
777                 /*
778                  * Do the before return_hosed_msg, because that
779                  * releases the lock.
780                  */
781                 smi_info->si_state = SI_NORMAL;
782                 if (smi_info->curr_msg != NULL) {
783                         /*
784                          * If we were handling a user message, format
785                          * a response to send to the upper layer to
786                          * tell it about the error.
787                          */
788                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
789                 }
790                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
791         }
792
793         /*
794          * We prefer handling attn over new messages.  But don't do
795          * this if there is not yet an upper layer to handle anything.
796          */
797         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
798                 unsigned char msg[2];
799
800                 smi_inc_stat(smi_info, attentions);
801
802                 /*
803                  * Got a attn, send down a get message flags to see
804                  * what's causing it.  It would be better to handle
805                  * this in the upper layer, but due to the way
806                  * interrupts work with the SMI, that's not really
807                  * possible.
808                  */
809                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
810                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
811
812                 smi_info->handlers->start_transaction(
813                         smi_info->si_sm, msg, 2);
814                 smi_info->si_state = SI_GETTING_FLAGS;
815                 goto restart;
816         }
817
818         /* If we are currently idle, try to start the next message. */
819         if (si_sm_result == SI_SM_IDLE) {
820                 smi_inc_stat(smi_info, idles);
821
822                 si_sm_result = start_next_msg(smi_info);
823                 if (si_sm_result != SI_SM_IDLE)
824                         goto restart;
825         }
826
827         if ((si_sm_result == SI_SM_IDLE)
828             && (atomic_read(&smi_info->req_events))) {
829                 /*
830                  * We are idle and the upper layer requested that I fetch
831                  * events, so do so.
832                  */
833                 atomic_set(&smi_info->req_events, 0);
834
835                 smi_info->curr_msg = ipmi_alloc_smi_msg();
836                 if (!smi_info->curr_msg)
837                         goto out;
838
839                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
840                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
841                 smi_info->curr_msg->data_size = 2;
842
843                 smi_info->handlers->start_transaction(
844                         smi_info->si_sm,
845                         smi_info->curr_msg->data,
846                         smi_info->curr_msg->data_size);
847                 smi_info->si_state = SI_GETTING_EVENTS;
848                 goto restart;
849         }
850  out:
851         return si_sm_result;
852 }
853
854 static void sender(void                *send_info,
855                    struct ipmi_smi_msg *msg,
856                    int                 priority)
857 {
858         struct smi_info   *smi_info = send_info;
859         enum si_sm_result result;
860         unsigned long     flags;
861 #ifdef DEBUG_TIMING
862         struct timeval    t;
863 #endif
864
865         if (atomic_read(&smi_info->stop_operation)) {
866                 msg->rsp[0] = msg->data[0] | 4;
867                 msg->rsp[1] = msg->data[1];
868                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
869                 msg->rsp_size = 3;
870                 deliver_recv_msg(smi_info, msg);
871                 return;
872         }
873
874 #ifdef DEBUG_TIMING
875         do_gettimeofday(&t);
876         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
877 #endif
878
879         if (smi_info->run_to_completion) {
880                 /*
881                  * If we are running to completion, then throw it in
882                  * the list and run transactions until everything is
883                  * clear.  Priority doesn't matter here.
884                  */
885
886                 /*
887                  * Run to completion means we are single-threaded, no
888                  * need for locks.
889                  */
890                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
891
892                 result = smi_event_handler(smi_info, 0);
893                 while (result != SI_SM_IDLE) {
894                         udelay(SI_SHORT_TIMEOUT_USEC);
895                         result = smi_event_handler(smi_info,
896                                                    SI_SHORT_TIMEOUT_USEC);
897                 }
898                 return;
899         }
900
901         spin_lock_irqsave(&smi_info->msg_lock, flags);
902         if (priority > 0)
903                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
904         else
905                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
906         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
907
908         spin_lock_irqsave(&smi_info->si_lock, flags);
909         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
910                 start_next_msg(smi_info);
911         spin_unlock_irqrestore(&smi_info->si_lock, flags);
912 }
913
914 static void set_run_to_completion(void *send_info, int i_run_to_completion)
915 {
916         struct smi_info   *smi_info = send_info;
917         enum si_sm_result result;
918
919         smi_info->run_to_completion = i_run_to_completion;
920         if (i_run_to_completion) {
921                 result = smi_event_handler(smi_info, 0);
922                 while (result != SI_SM_IDLE) {
923                         udelay(SI_SHORT_TIMEOUT_USEC);
924                         result = smi_event_handler(smi_info,
925                                                    SI_SHORT_TIMEOUT_USEC);
926                 }
927         }
928 }
929
930 static int ipmi_thread(void *data)
931 {
932         struct smi_info *smi_info = data;
933         unsigned long flags;
934         enum si_sm_result smi_result;
935
936         set_user_nice(current, 19);
937         while (!kthread_should_stop()) {
938                 spin_lock_irqsave(&(smi_info->si_lock), flags);
939                 smi_result = smi_event_handler(smi_info, 0);
940                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
941                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
942                         ; /* do nothing */
943                 else if (smi_result == SI_SM_CALL_WITH_DELAY)
944                         schedule();
945                 else
946                         schedule_timeout_interruptible(1);
947         }
948         return 0;
949 }
950
951
952 static void poll(void *send_info)
953 {
954         struct smi_info *smi_info = send_info;
955         unsigned long flags;
956
957         /*
958          * Make sure there is some delay in the poll loop so we can
959          * drive time forward and timeout things.
960          */
961         udelay(10);
962         spin_lock_irqsave(&smi_info->si_lock, flags);
963         smi_event_handler(smi_info, 10);
964         spin_unlock_irqrestore(&smi_info->si_lock, flags);
965 }
966
967 static void request_events(void *send_info)
968 {
969         struct smi_info *smi_info = send_info;
970
971         if (atomic_read(&smi_info->stop_operation))
972                 return;
973
974         atomic_set(&smi_info->req_events, 1);
975 }
976
977 static int initialized;
978
979 static void smi_timeout(unsigned long data)
980 {
981         struct smi_info   *smi_info = (struct smi_info *) data;
982         enum si_sm_result smi_result;
983         unsigned long     flags;
984         unsigned long     jiffies_now;
985         long              time_diff;
986 #ifdef DEBUG_TIMING
987         struct timeval    t;
988 #endif
989
990         spin_lock_irqsave(&(smi_info->si_lock), flags);
991 #ifdef DEBUG_TIMING
992         do_gettimeofday(&t);
993         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
994 #endif
995         jiffies_now = jiffies;
996         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
997                      * SI_USEC_PER_JIFFY);
998         smi_result = smi_event_handler(smi_info, time_diff);
999
1000         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1001
1002         smi_info->last_timeout_jiffies = jiffies_now;
1003
1004         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1005                 /* Running with interrupts, only do long timeouts. */
1006                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1007                 smi_inc_stat(smi_info, long_timeouts);
1008                 goto do_add_timer;
1009         }
1010
1011         /*
1012          * If the state machine asks for a short delay, then shorten
1013          * the timer timeout.
1014          */
1015         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1016                 smi_inc_stat(smi_info, short_timeouts);
1017                 smi_info->si_timer.expires = jiffies + 1;
1018         } else {
1019                 smi_inc_stat(smi_info, long_timeouts);
1020                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1021         }
1022
1023  do_add_timer:
1024         add_timer(&(smi_info->si_timer));
1025 }
1026
1027 static irqreturn_t si_irq_handler(int irq, void *data)
1028 {
1029         struct smi_info *smi_info = data;
1030         unsigned long   flags;
1031 #ifdef DEBUG_TIMING
1032         struct timeval  t;
1033 #endif
1034
1035         spin_lock_irqsave(&(smi_info->si_lock), flags);
1036
1037         smi_inc_stat(smi_info, interrupts);
1038
1039 #ifdef DEBUG_TIMING
1040         do_gettimeofday(&t);
1041         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1042 #endif
1043         smi_event_handler(smi_info, 0);
1044         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1045         return IRQ_HANDLED;
1046 }
1047
1048 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1049 {
1050         struct smi_info *smi_info = data;
1051         /* We need to clear the IRQ flag for the BT interface. */
1052         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1053                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1054                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1055         return si_irq_handler(irq, data);
1056 }
1057
1058 static int smi_start_processing(void       *send_info,
1059                                 ipmi_smi_t intf)
1060 {
1061         struct smi_info *new_smi = send_info;
1062         int             enable = 0;
1063
1064         new_smi->intf = intf;
1065
1066         /* Try to claim any interrupts. */
1067         if (new_smi->irq_setup)
1068                 new_smi->irq_setup(new_smi);
1069
1070         /* Set up the timer that drives the interface. */
1071         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1072         new_smi->last_timeout_jiffies = jiffies;
1073         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1074
1075         /*
1076          * Check if the user forcefully enabled the daemon.
1077          */
1078         if (new_smi->intf_num < num_force_kipmid)
1079                 enable = force_kipmid[new_smi->intf_num];
1080         /*
1081          * The BT interface is efficient enough to not need a thread,
1082          * and there is no need for a thread if we have interrupts.
1083          */
1084         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1085                 enable = 1;
1086
1087         if (enable) {
1088                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1089                                               "kipmi%d", new_smi->intf_num);
1090                 if (IS_ERR(new_smi->thread)) {
1091                         printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1092                                " kernel thread due to error %ld, only using"
1093                                " timers to drive the interface\n",
1094                                PTR_ERR(new_smi->thread));
1095                         new_smi->thread = NULL;
1096                 }
1097         }
1098
1099         return 0;
1100 }
1101
1102 static void set_maintenance_mode(void *send_info, int enable)
1103 {
1104         struct smi_info   *smi_info = send_info;
1105
1106         if (!enable)
1107                 atomic_set(&smi_info->req_events, 0);
1108 }
1109
1110 static struct ipmi_smi_handlers handlers = {
1111         .owner                  = THIS_MODULE,
1112         .start_processing       = smi_start_processing,
1113         .sender                 = sender,
1114         .request_events         = request_events,
1115         .set_maintenance_mode   = set_maintenance_mode,
1116         .set_run_to_completion  = set_run_to_completion,
1117         .poll                   = poll,
1118 };
1119
1120 /*
1121  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1122  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1123  */
1124
1125 static LIST_HEAD(smi_infos);
1126 static DEFINE_MUTEX(smi_infos_lock);
1127 static int smi_num; /* Used to sequence the SMIs */
1128
1129 #define DEFAULT_REGSPACING      1
1130 #define DEFAULT_REGSIZE         1
1131
1132 static int           si_trydefaults = 1;
1133 static char          *si_type[SI_MAX_PARMS];
1134 #define MAX_SI_TYPE_STR 30
1135 static char          si_type_str[MAX_SI_TYPE_STR];
1136 static unsigned long addrs[SI_MAX_PARMS];
1137 static unsigned int num_addrs;
1138 static unsigned int  ports[SI_MAX_PARMS];
1139 static unsigned int num_ports;
1140 static int           irqs[SI_MAX_PARMS];
1141 static unsigned int num_irqs;
1142 static int           regspacings[SI_MAX_PARMS];
1143 static unsigned int num_regspacings;
1144 static int           regsizes[SI_MAX_PARMS];
1145 static unsigned int num_regsizes;
1146 static int           regshifts[SI_MAX_PARMS];
1147 static unsigned int num_regshifts;
1148 static int slave_addrs[SI_MAX_PARMS];
1149 static unsigned int num_slave_addrs;
1150
1151 #define IPMI_IO_ADDR_SPACE  0
1152 #define IPMI_MEM_ADDR_SPACE 1
1153 static char *addr_space_to_str[] = { "i/o", "mem" };
1154
1155 static int hotmod_handler(const char *val, struct kernel_param *kp);
1156
1157 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1158 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1159                  " Documentation/IPMI.txt in the kernel sources for the"
1160                  " gory details.");
1161
1162 module_param_named(trydefaults, si_trydefaults, bool, 0);
1163 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1164                  " default scan of the KCS and SMIC interface at the standard"
1165                  " address");
1166 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1167 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1168                  " interface separated by commas.  The types are 'kcs',"
1169                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1170                  " the first interface to kcs and the second to bt");
1171 module_param_array(addrs, ulong, &num_addrs, 0);
1172 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1173                  " addresses separated by commas.  Only use if an interface"
1174                  " is in memory.  Otherwise, set it to zero or leave"
1175                  " it blank.");
1176 module_param_array(ports, uint, &num_ports, 0);
1177 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1178                  " addresses separated by commas.  Only use if an interface"
1179                  " is a port.  Otherwise, set it to zero or leave"
1180                  " it blank.");
1181 module_param_array(irqs, int, &num_irqs, 0);
1182 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1183                  " addresses separated by commas.  Only use if an interface"
1184                  " has an interrupt.  Otherwise, set it to zero or leave"
1185                  " it blank.");
1186 module_param_array(regspacings, int, &num_regspacings, 0);
1187 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1188                  " and each successive register used by the interface.  For"
1189                  " instance, if the start address is 0xca2 and the spacing"
1190                  " is 2, then the second address is at 0xca4.  Defaults"
1191                  " to 1.");
1192 module_param_array(regsizes, int, &num_regsizes, 0);
1193 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1194                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1195                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1196                  " the 8-bit IPMI register has to be read from a larger"
1197                  " register.");
1198 module_param_array(regshifts, int, &num_regshifts, 0);
1199 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1200                  " IPMI register, in bits.  For instance, if the data"
1201                  " is read from a 32-bit word and the IPMI data is in"
1202                  " bit 8-15, then the shift would be 8");
1203 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1204 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1205                  " the controller.  Normally this is 0x20, but can be"
1206                  " overridden by this parm.  This is an array indexed"
1207                  " by interface number.");
1208 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1209 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1210                  " disabled(0).  Normally the IPMI driver auto-detects"
1211                  " this, but the value may be overridden by this parm.");
1212 module_param(unload_when_empty, int, 0);
1213 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1214                  " specified or found, default is 1.  Setting to 0"
1215                  " is useful for hot add of devices using hotmod.");
1216
1217
1218 static void std_irq_cleanup(struct smi_info *info)
1219 {
1220         if (info->si_type == SI_BT)
1221                 /* Disable the interrupt in the BT interface. */
1222                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1223         free_irq(info->irq, info);
1224 }
1225
1226 static int std_irq_setup(struct smi_info *info)
1227 {
1228         int rv;
1229
1230         if (!info->irq)
1231                 return 0;
1232
1233         if (info->si_type == SI_BT) {
1234                 rv = request_irq(info->irq,
1235                                  si_bt_irq_handler,
1236                                  IRQF_SHARED | IRQF_DISABLED,
1237                                  DEVICE_NAME,
1238                                  info);
1239                 if (!rv)
1240                         /* Enable the interrupt in the BT interface. */
1241                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1242                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1243         } else
1244                 rv = request_irq(info->irq,
1245                                  si_irq_handler,
1246                                  IRQF_SHARED | IRQF_DISABLED,
1247                                  DEVICE_NAME,
1248                                  info);
1249         if (rv) {
1250                 printk(KERN_WARNING
1251                        "ipmi_si: %s unable to claim interrupt %d,"
1252                        " running polled\n",
1253                        DEVICE_NAME, info->irq);
1254                 info->irq = 0;
1255         } else {
1256                 info->irq_cleanup = std_irq_cleanup;
1257                 printk("  Using irq %d\n", info->irq);
1258         }
1259
1260         return rv;
1261 }
1262
1263 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1264 {
1265         unsigned int addr = io->addr_data;
1266
1267         return inb(addr + (offset * io->regspacing));
1268 }
1269
1270 static void port_outb(struct si_sm_io *io, unsigned int offset,
1271                       unsigned char b)
1272 {
1273         unsigned int addr = io->addr_data;
1274
1275         outb(b, addr + (offset * io->regspacing));
1276 }
1277
1278 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1279 {
1280         unsigned int addr = io->addr_data;
1281
1282         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1283 }
1284
1285 static void port_outw(struct si_sm_io *io, unsigned int offset,
1286                       unsigned char b)
1287 {
1288         unsigned int addr = io->addr_data;
1289
1290         outw(b << io->regshift, addr + (offset * io->regspacing));
1291 }
1292
1293 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1294 {
1295         unsigned int addr = io->addr_data;
1296
1297         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1298 }
1299
1300 static void port_outl(struct si_sm_io *io, unsigned int offset,
1301                       unsigned char b)
1302 {
1303         unsigned int addr = io->addr_data;
1304
1305         outl(b << io->regshift, addr+(offset * io->regspacing));
1306 }
1307
1308 static void port_cleanup(struct smi_info *info)
1309 {
1310         unsigned int addr = info->io.addr_data;
1311         int          idx;
1312
1313         if (addr) {
1314                 for (idx = 0; idx < info->io_size; idx++)
1315                         release_region(addr + idx * info->io.regspacing,
1316                                        info->io.regsize);
1317         }
1318 }
1319
1320 static int port_setup(struct smi_info *info)
1321 {
1322         unsigned int addr = info->io.addr_data;
1323         int          idx;
1324
1325         if (!addr)
1326                 return -ENODEV;
1327
1328         info->io_cleanup = port_cleanup;
1329
1330         /*
1331          * Figure out the actual inb/inw/inl/etc routine to use based
1332          * upon the register size.
1333          */
1334         switch (info->io.regsize) {
1335         case 1:
1336                 info->io.inputb = port_inb;
1337                 info->io.outputb = port_outb;
1338                 break;
1339         case 2:
1340                 info->io.inputb = port_inw;
1341                 info->io.outputb = port_outw;
1342                 break;
1343         case 4:
1344                 info->io.inputb = port_inl;
1345                 info->io.outputb = port_outl;
1346                 break;
1347         default:
1348                 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1349                        info->io.regsize);
1350                 return -EINVAL;
1351         }
1352
1353         /*
1354          * Some BIOSes reserve disjoint I/O regions in their ACPI
1355          * tables.  This causes problems when trying to register the
1356          * entire I/O region.  Therefore we must register each I/O
1357          * port separately.
1358          */
1359         for (idx = 0; idx < info->io_size; idx++) {
1360                 if (request_region(addr + idx * info->io.regspacing,
1361                                    info->io.regsize, DEVICE_NAME) == NULL) {
1362                         /* Undo allocations */
1363                         while (idx--) {
1364                                 release_region(addr + idx * info->io.regspacing,
1365                                                info->io.regsize);
1366                         }
1367                         return -EIO;
1368                 }
1369         }
1370         return 0;
1371 }
1372
1373 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1374 {
1375         return readb((io->addr)+(offset * io->regspacing));
1376 }
1377
1378 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1379                      unsigned char b)
1380 {
1381         writeb(b, (io->addr)+(offset * io->regspacing));
1382 }
1383
1384 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1385 {
1386         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1387                 & 0xff;
1388 }
1389
1390 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1391                      unsigned char b)
1392 {
1393         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1394 }
1395
1396 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1397 {
1398         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1399                 & 0xff;
1400 }
1401
1402 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1403                      unsigned char b)
1404 {
1405         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1406 }
1407
1408 #ifdef readq
1409 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1410 {
1411         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1412                 & 0xff;
1413 }
1414
1415 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1416                      unsigned char b)
1417 {
1418         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1419 }
1420 #endif
1421
1422 static void mem_cleanup(struct smi_info *info)
1423 {
1424         unsigned long addr = info->io.addr_data;
1425         int           mapsize;
1426
1427         if (info->io.addr) {
1428                 iounmap(info->io.addr);
1429
1430                 mapsize = ((info->io_size * info->io.regspacing)
1431                            - (info->io.regspacing - info->io.regsize));
1432
1433                 release_mem_region(addr, mapsize);
1434         }
1435 }
1436
1437 static int mem_setup(struct smi_info *info)
1438 {
1439         unsigned long addr = info->io.addr_data;
1440         int           mapsize;
1441
1442         if (!addr)
1443                 return -ENODEV;
1444
1445         info->io_cleanup = mem_cleanup;
1446
1447         /*
1448          * Figure out the actual readb/readw/readl/etc routine to use based
1449          * upon the register size.
1450          */
1451         switch (info->io.regsize) {
1452         case 1:
1453                 info->io.inputb = intf_mem_inb;
1454                 info->io.outputb = intf_mem_outb;
1455                 break;
1456         case 2:
1457                 info->io.inputb = intf_mem_inw;
1458                 info->io.outputb = intf_mem_outw;
1459                 break;
1460         case 4:
1461                 info->io.inputb = intf_mem_inl;
1462                 info->io.outputb = intf_mem_outl;
1463                 break;
1464 #ifdef readq
1465         case 8:
1466                 info->io.inputb = mem_inq;
1467                 info->io.outputb = mem_outq;
1468                 break;
1469 #endif
1470         default:
1471                 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1472                        info->io.regsize);
1473                 return -EINVAL;
1474         }
1475
1476         /*
1477          * Calculate the total amount of memory to claim.  This is an
1478          * unusual looking calculation, but it avoids claiming any
1479          * more memory than it has to.  It will claim everything
1480          * between the first address to the end of the last full
1481          * register.
1482          */
1483         mapsize = ((info->io_size * info->io.regspacing)
1484                    - (info->io.regspacing - info->io.regsize));
1485
1486         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1487                 return -EIO;
1488
1489         info->io.addr = ioremap(addr, mapsize);
1490         if (info->io.addr == NULL) {
1491                 release_mem_region(addr, mapsize);
1492                 return -EIO;
1493         }
1494         return 0;
1495 }
1496
1497 /*
1498  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1499  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1500  * Options are:
1501  *   rsp=<regspacing>
1502  *   rsi=<regsize>
1503  *   rsh=<regshift>
1504  *   irq=<irq>
1505  *   ipmb=<ipmb addr>
1506  */
1507 enum hotmod_op { HM_ADD, HM_REMOVE };
1508 struct hotmod_vals {
1509         char *name;
1510         int  val;
1511 };
1512 static struct hotmod_vals hotmod_ops[] = {
1513         { "add",        HM_ADD },
1514         { "remove",     HM_REMOVE },
1515         { NULL }
1516 };
1517 static struct hotmod_vals hotmod_si[] = {
1518         { "kcs",        SI_KCS },
1519         { "smic",       SI_SMIC },
1520         { "bt",         SI_BT },
1521         { NULL }
1522 };
1523 static struct hotmod_vals hotmod_as[] = {
1524         { "mem",        IPMI_MEM_ADDR_SPACE },
1525         { "i/o",        IPMI_IO_ADDR_SPACE },
1526         { NULL }
1527 };
1528
1529 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1530 {
1531         char *s;
1532         int  i;
1533
1534         s = strchr(*curr, ',');
1535         if (!s) {
1536                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1537                 return -EINVAL;
1538         }
1539         *s = '\0';
1540         s++;
1541         for (i = 0; hotmod_ops[i].name; i++) {
1542                 if (strcmp(*curr, v[i].name) == 0) {
1543                         *val = v[i].val;
1544                         *curr = s;
1545                         return 0;
1546                 }
1547         }
1548
1549         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1550         return -EINVAL;
1551 }
1552
1553 static int check_hotmod_int_op(const char *curr, const char *option,
1554                                const char *name, int *val)
1555 {
1556         char *n;
1557
1558         if (strcmp(curr, name) == 0) {
1559                 if (!option) {
1560                         printk(KERN_WARNING PFX
1561                                "No option given for '%s'\n",
1562                                curr);
1563                         return -EINVAL;
1564                 }
1565                 *val = simple_strtoul(option, &n, 0);
1566                 if ((*n != '\0') || (*option == '\0')) {
1567                         printk(KERN_WARNING PFX
1568                                "Bad option given for '%s'\n",
1569                                curr);
1570                         return -EINVAL;
1571                 }
1572                 return 1;
1573         }
1574         return 0;
1575 }
1576
1577 static int hotmod_handler(const char *val, struct kernel_param *kp)
1578 {
1579         char *str = kstrdup(val, GFP_KERNEL);
1580         int  rv;
1581         char *next, *curr, *s, *n, *o;
1582         enum hotmod_op op;
1583         enum si_type si_type;
1584         int  addr_space;
1585         unsigned long addr;
1586         int regspacing;
1587         int regsize;
1588         int regshift;
1589         int irq;
1590         int ipmb;
1591         int ival;
1592         int len;
1593         struct smi_info *info;
1594
1595         if (!str)
1596                 return -ENOMEM;
1597
1598         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1599         len = strlen(str);
1600         ival = len - 1;
1601         while ((ival >= 0) && isspace(str[ival])) {
1602                 str[ival] = '\0';
1603                 ival--;
1604         }
1605
1606         for (curr = str; curr; curr = next) {
1607                 regspacing = 1;
1608                 regsize = 1;
1609                 regshift = 0;
1610                 irq = 0;
1611                 ipmb = 0x20;
1612
1613                 next = strchr(curr, ':');
1614                 if (next) {
1615                         *next = '\0';
1616                         next++;
1617                 }
1618
1619                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1620                 if (rv)
1621                         break;
1622                 op = ival;
1623
1624                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1625                 if (rv)
1626                         break;
1627                 si_type = ival;
1628
1629                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1630                 if (rv)
1631                         break;
1632
1633                 s = strchr(curr, ',');
1634                 if (s) {
1635                         *s = '\0';
1636                         s++;
1637                 }
1638                 addr = simple_strtoul(curr, &n, 0);
1639                 if ((*n != '\0') || (*curr == '\0')) {
1640                         printk(KERN_WARNING PFX "Invalid hotmod address"
1641                                " '%s'\n", curr);
1642                         break;
1643                 }
1644
1645                 while (s) {
1646                         curr = s;
1647                         s = strchr(curr, ',');
1648                         if (s) {
1649                                 *s = '\0';
1650                                 s++;
1651                         }
1652                         o = strchr(curr, '=');
1653                         if (o) {
1654                                 *o = '\0';
1655                                 o++;
1656                         }
1657                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1658                         if (rv < 0)
1659                                 goto out;
1660                         else if (rv)
1661                                 continue;
1662                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1663                         if (rv < 0)
1664                                 goto out;
1665                         else if (rv)
1666                                 continue;
1667                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1668                         if (rv < 0)
1669                                 goto out;
1670                         else if (rv)
1671                                 continue;
1672                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1673                         if (rv < 0)
1674                                 goto out;
1675                         else if (rv)
1676                                 continue;
1677                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1678                         if (rv < 0)
1679                                 goto out;
1680                         else if (rv)
1681                                 continue;
1682
1683                         rv = -EINVAL;
1684                         printk(KERN_WARNING PFX
1685                                "Invalid hotmod option '%s'\n",
1686                                curr);
1687                         goto out;
1688                 }
1689
1690                 if (op == HM_ADD) {
1691                         info = kzalloc(sizeof(*info), GFP_KERNEL);
1692                         if (!info) {
1693                                 rv = -ENOMEM;
1694                                 goto out;
1695                         }
1696
1697                         info->addr_source = "hotmod";
1698                         info->si_type = si_type;
1699                         info->io.addr_data = addr;
1700                         info->io.addr_type = addr_space;
1701                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1702                                 info->io_setup = mem_setup;
1703                         else
1704                                 info->io_setup = port_setup;
1705
1706                         info->io.addr = NULL;
1707                         info->io.regspacing = regspacing;
1708                         if (!info->io.regspacing)
1709                                 info->io.regspacing = DEFAULT_REGSPACING;
1710                         info->io.regsize = regsize;
1711                         if (!info->io.regsize)
1712                                 info->io.regsize = DEFAULT_REGSPACING;
1713                         info->io.regshift = regshift;
1714                         info->irq = irq;
1715                         if (info->irq)
1716                                 info->irq_setup = std_irq_setup;
1717                         info->slave_addr = ipmb;
1718
1719                         try_smi_init(info);
1720                 } else {
1721                         /* remove */
1722                         struct smi_info *e, *tmp_e;
1723
1724                         mutex_lock(&smi_infos_lock);
1725                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1726                                 if (e->io.addr_type != addr_space)
1727                                         continue;
1728                                 if (e->si_type != si_type)
1729                                         continue;
1730                                 if (e->io.addr_data == addr)
1731                                         cleanup_one_si(e);
1732                         }
1733                         mutex_unlock(&smi_infos_lock);
1734                 }
1735         }
1736         rv = len;
1737  out:
1738         kfree(str);
1739         return rv;
1740 }
1741
1742 static __devinit void hardcode_find_bmc(void)
1743 {
1744         int             i;
1745         struct smi_info *info;
1746
1747         for (i = 0; i < SI_MAX_PARMS; i++) {
1748                 if (!ports[i] && !addrs[i])
1749                         continue;
1750
1751                 info = kzalloc(sizeof(*info), GFP_KERNEL);
1752                 if (!info)
1753                         return;
1754
1755                 info->addr_source = "hardcoded";
1756
1757                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1758                         info->si_type = SI_KCS;
1759                 } else if (strcmp(si_type[i], "smic") == 0) {
1760                         info->si_type = SI_SMIC;
1761                 } else if (strcmp(si_type[i], "bt") == 0) {
1762                         info->si_type = SI_BT;
1763                 } else {
1764                         printk(KERN_WARNING
1765                                "ipmi_si: Interface type specified "
1766                                "for interface %d, was invalid: %s\n",
1767                                i, si_type[i]);
1768                         kfree(info);
1769                         continue;
1770                 }
1771
1772                 if (ports[i]) {
1773                         /* An I/O port */
1774                         info->io_setup = port_setup;
1775                         info->io.addr_data = ports[i];
1776                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1777                 } else if (addrs[i]) {
1778                         /* A memory port */
1779                         info->io_setup = mem_setup;
1780                         info->io.addr_data = addrs[i];
1781                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1782                 } else {
1783                         printk(KERN_WARNING
1784                                "ipmi_si: Interface type specified "
1785                                "for interface %d, "
1786                                "but port and address were not set or "
1787                                "set to zero.\n", i);
1788                         kfree(info);
1789                         continue;
1790                 }
1791
1792                 info->io.addr = NULL;
1793                 info->io.regspacing = regspacings[i];
1794                 if (!info->io.regspacing)
1795                         info->io.regspacing = DEFAULT_REGSPACING;
1796                 info->io.regsize = regsizes[i];
1797                 if (!info->io.regsize)
1798                         info->io.regsize = DEFAULT_REGSPACING;
1799                 info->io.regshift = regshifts[i];
1800                 info->irq = irqs[i];
1801                 if (info->irq)
1802                         info->irq_setup = std_irq_setup;
1803
1804                 try_smi_init(info);
1805         }
1806 }
1807
1808 #ifdef CONFIG_ACPI
1809
1810 #include <linux/acpi.h>
1811
1812 /*
1813  * Once we get an ACPI failure, we don't try any more, because we go
1814  * through the tables sequentially.  Once we don't find a table, there
1815  * are no more.
1816  */
1817 static int acpi_failure;
1818
1819 /* For GPE-type interrupts. */
1820 static u32 ipmi_acpi_gpe(void *context)
1821 {
1822         struct smi_info *smi_info = context;
1823         unsigned long   flags;
1824 #ifdef DEBUG_TIMING
1825         struct timeval t;
1826 #endif
1827
1828         spin_lock_irqsave(&(smi_info->si_lock), flags);
1829
1830         smi_inc_stat(smi_info, interrupts);
1831
1832 #ifdef DEBUG_TIMING
1833         do_gettimeofday(&t);
1834         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1835 #endif
1836         smi_event_handler(smi_info, 0);
1837         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1838
1839         return ACPI_INTERRUPT_HANDLED;
1840 }
1841
1842 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1843 {
1844         if (!info->irq)
1845                 return;
1846
1847         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1848 }
1849
1850 static int acpi_gpe_irq_setup(struct smi_info *info)
1851 {
1852         acpi_status status;
1853
1854         if (!info->irq)
1855                 return 0;
1856
1857         /* FIXME - is level triggered right? */
1858         status = acpi_install_gpe_handler(NULL,
1859                                           info->irq,
1860                                           ACPI_GPE_LEVEL_TRIGGERED,
1861                                           &ipmi_acpi_gpe,
1862                                           info);
1863         if (status != AE_OK) {
1864                 printk(KERN_WARNING
1865                        "ipmi_si: %s unable to claim ACPI GPE %d,"
1866                        " running polled\n",
1867                        DEVICE_NAME, info->irq);
1868                 info->irq = 0;
1869                 return -EINVAL;
1870         } else {
1871                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1872                 printk("  Using ACPI GPE %d\n", info->irq);
1873                 return 0;
1874         }
1875 }
1876
1877 /*
1878  * Defined at
1879  * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1880  * Docs/TechPapers/IA64/hpspmi.pdf
1881  */
1882 struct SPMITable {
1883         s8      Signature[4];
1884         u32     Length;
1885         u8      Revision;
1886         u8      Checksum;
1887         s8      OEMID[6];
1888         s8      OEMTableID[8];
1889         s8      OEMRevision[4];
1890         s8      CreatorID[4];
1891         s8      CreatorRevision[4];
1892         u8      InterfaceType;
1893         u8      IPMIlegacy;
1894         s16     SpecificationRevision;
1895
1896         /*
1897          * Bit 0 - SCI interrupt supported
1898          * Bit 1 - I/O APIC/SAPIC
1899          */
1900         u8      InterruptType;
1901
1902         /*
1903          * If bit 0 of InterruptType is set, then this is the SCI
1904          * interrupt in the GPEx_STS register.
1905          */
1906         u8      GPE;
1907
1908         s16     Reserved;
1909
1910         /*
1911          * If bit 1 of InterruptType is set, then this is the I/O
1912          * APIC/SAPIC interrupt.
1913          */
1914         u32     GlobalSystemInterrupt;
1915
1916         /* The actual register address. */
1917         struct acpi_generic_address addr;
1918
1919         u8      UID[4];
1920
1921         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
1922 };
1923
1924 static __devinit int try_init_acpi(struct SPMITable *spmi)
1925 {
1926         struct smi_info  *info;
1927         u8               addr_space;
1928
1929         if (spmi->IPMIlegacy != 1) {
1930             printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1931             return -ENODEV;
1932         }
1933
1934         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1935                 addr_space = IPMI_MEM_ADDR_SPACE;
1936         else
1937                 addr_space = IPMI_IO_ADDR_SPACE;
1938
1939         info = kzalloc(sizeof(*info), GFP_KERNEL);
1940         if (!info) {
1941                 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1942                 return -ENOMEM;
1943         }
1944
1945         info->addr_source = "ACPI";
1946
1947         /* Figure out the interface type. */
1948         switch (spmi->InterfaceType) {
1949         case 1: /* KCS */
1950                 info->si_type = SI_KCS;
1951                 break;
1952         case 2: /* SMIC */
1953                 info->si_type = SI_SMIC;
1954                 break;
1955         case 3: /* BT */
1956                 info->si_type = SI_BT;
1957                 break;
1958         default:
1959                 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1960                         spmi->InterfaceType);
1961                 kfree(info);
1962                 return -EIO;
1963         }
1964
1965         if (spmi->InterruptType & 1) {
1966                 /* We've got a GPE interrupt. */
1967                 info->irq = spmi->GPE;
1968                 info->irq_setup = acpi_gpe_irq_setup;
1969         } else if (spmi->InterruptType & 2) {
1970                 /* We've got an APIC/SAPIC interrupt. */
1971                 info->irq = spmi->GlobalSystemInterrupt;
1972                 info->irq_setup = std_irq_setup;
1973         } else {
1974                 /* Use the default interrupt setting. */
1975                 info->irq = 0;
1976                 info->irq_setup = NULL;
1977         }
1978
1979         if (spmi->addr.bit_width) {
1980                 /* A (hopefully) properly formed register bit width. */
1981                 info->io.regspacing = spmi->addr.bit_width / 8;
1982         } else {
1983                 info->io.regspacing = DEFAULT_REGSPACING;
1984         }
1985         info->io.regsize = info->io.regspacing;
1986         info->io.regshift = spmi->addr.bit_offset;
1987
1988         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1989                 info->io_setup = mem_setup;
1990                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1991         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1992                 info->io_setup = port_setup;
1993                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1994         } else {
1995                 kfree(info);
1996                 printk(KERN_WARNING
1997                        "ipmi_si: Unknown ACPI I/O Address type\n");
1998                 return -EIO;
1999         }
2000         info->io.addr_data = spmi->addr.address;
2001
2002         try_smi_init(info);
2003
2004         return 0;
2005 }
2006
2007 static __devinit void acpi_find_bmc(void)
2008 {
2009         acpi_status      status;
2010         struct SPMITable *spmi;
2011         int              i;
2012
2013         if (acpi_disabled)
2014                 return;
2015
2016         if (acpi_failure)
2017                 return;
2018
2019         for (i = 0; ; i++) {
2020                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2021                                         (struct acpi_table_header **)&spmi);
2022                 if (status != AE_OK)
2023                         return;
2024
2025                 try_init_acpi(spmi);
2026         }
2027 }
2028 #endif
2029
2030 #ifdef CONFIG_DMI
2031 struct dmi_ipmi_data {
2032         u8              type;
2033         u8              addr_space;
2034         unsigned long   base_addr;
2035         u8              irq;
2036         u8              offset;
2037         u8              slave_addr;
2038 };
2039
2040 static int __devinit decode_dmi(const struct dmi_header *dm,
2041                                 struct dmi_ipmi_data *dmi)
2042 {
2043         const u8        *data = (const u8 *)dm;
2044         unsigned long   base_addr;
2045         u8              reg_spacing;
2046         u8              len = dm->length;
2047
2048         dmi->type = data[4];
2049
2050         memcpy(&base_addr, data+8, sizeof(unsigned long));
2051         if (len >= 0x11) {
2052                 if (base_addr & 1) {
2053                         /* I/O */
2054                         base_addr &= 0xFFFE;
2055                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2056                 } else
2057                         /* Memory */
2058                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2059
2060                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2061                    is odd. */
2062                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2063
2064                 dmi->irq = data[0x11];
2065
2066                 /* The top two bits of byte 0x10 hold the register spacing. */
2067                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2068                 switch (reg_spacing) {
2069                 case 0x00: /* Byte boundaries */
2070                     dmi->offset = 1;
2071                     break;
2072                 case 0x01: /* 32-bit boundaries */
2073                     dmi->offset = 4;
2074                     break;
2075                 case 0x02: /* 16-byte boundaries */
2076                     dmi->offset = 16;
2077                     break;
2078                 default:
2079                     /* Some other interface, just ignore it. */
2080                     return -EIO;
2081                 }
2082         } else {
2083                 /* Old DMI spec. */
2084                 /*
2085                  * Note that technically, the lower bit of the base
2086                  * address should be 1 if the address is I/O and 0 if
2087                  * the address is in memory.  So many systems get that
2088                  * wrong (and all that I have seen are I/O) so we just
2089                  * ignore that bit and assume I/O.  Systems that use
2090                  * memory should use the newer spec, anyway.
2091                  */
2092                 dmi->base_addr = base_addr & 0xfffe;
2093                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2094                 dmi->offset = 1;
2095         }
2096
2097         dmi->slave_addr = data[6];
2098
2099         return 0;
2100 }
2101
2102 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2103 {
2104         struct smi_info *info;
2105
2106         info = kzalloc(sizeof(*info), GFP_KERNEL);
2107         if (!info) {
2108                 printk(KERN_ERR
2109                        "ipmi_si: Could not allocate SI data\n");
2110                 return;
2111         }
2112
2113         info->addr_source = "SMBIOS";
2114
2115         switch (ipmi_data->type) {
2116         case 0x01: /* KCS */
2117                 info->si_type = SI_KCS;
2118                 break;
2119         case 0x02: /* SMIC */
2120                 info->si_type = SI_SMIC;
2121                 break;
2122         case 0x03: /* BT */
2123                 info->si_type = SI_BT;
2124                 break;
2125         default:
2126                 kfree(info);
2127                 return;
2128         }
2129
2130         switch (ipmi_data->addr_space) {
2131         case IPMI_MEM_ADDR_SPACE:
2132                 info->io_setup = mem_setup;
2133                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2134                 break;
2135
2136         case IPMI_IO_ADDR_SPACE:
2137                 info->io_setup = port_setup;
2138                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2139                 break;
2140
2141         default:
2142                 kfree(info);
2143                 printk(KERN_WARNING
2144                        "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2145                        ipmi_data->addr_space);
2146                 return;
2147         }
2148         info->io.addr_data = ipmi_data->base_addr;
2149
2150         info->io.regspacing = ipmi_data->offset;
2151         if (!info->io.regspacing)
2152                 info->io.regspacing = DEFAULT_REGSPACING;
2153         info->io.regsize = DEFAULT_REGSPACING;
2154         info->io.regshift = 0;
2155
2156         info->slave_addr = ipmi_data->slave_addr;
2157
2158         info->irq = ipmi_data->irq;
2159         if (info->irq)
2160                 info->irq_setup = std_irq_setup;
2161
2162         try_smi_init(info);
2163 }
2164
2165 static void __devinit dmi_find_bmc(void)
2166 {
2167         const struct dmi_device *dev = NULL;
2168         struct dmi_ipmi_data data;
2169         int                  rv;
2170
2171         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2172                 memset(&data, 0, sizeof(data));
2173                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2174                                 &data);
2175                 if (!rv)
2176                         try_init_dmi(&data);
2177         }
2178 }
2179 #endif /* CONFIG_DMI */
2180
2181 #ifdef CONFIG_PCI
2182
2183 #define PCI_ERMC_CLASSCODE              0x0C0700
2184 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2185 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2186 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2187 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2188 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2189
2190 #define PCI_HP_VENDOR_ID    0x103C
2191 #define PCI_MMC_DEVICE_ID   0x121A
2192 #define PCI_MMC_ADDR_CW     0x10
2193
2194 static void ipmi_pci_cleanup(struct smi_info *info)
2195 {
2196         struct pci_dev *pdev = info->addr_source_data;
2197
2198         pci_disable_device(pdev);
2199 }
2200
2201 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2202                                     const struct pci_device_id *ent)
2203 {
2204         int rv;
2205         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2206         struct smi_info *info;
2207         int first_reg_offset = 0;
2208
2209         info = kzalloc(sizeof(*info), GFP_KERNEL);
2210         if (!info)
2211                 return -ENOMEM;
2212
2213         info->addr_source = "PCI";
2214
2215         switch (class_type) {
2216         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2217                 info->si_type = SI_SMIC;
2218                 break;
2219
2220         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2221                 info->si_type = SI_KCS;
2222                 break;
2223
2224         case PCI_ERMC_CLASSCODE_TYPE_BT:
2225                 info->si_type = SI_BT;
2226                 break;
2227
2228         default:
2229                 kfree(info);
2230                 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2231                        pci_name(pdev), class_type);
2232                 return -ENOMEM;
2233         }
2234
2235         rv = pci_enable_device(pdev);
2236         if (rv) {
2237                 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2238                        pci_name(pdev));
2239                 kfree(info);
2240                 return rv;
2241         }
2242
2243         info->addr_source_cleanup = ipmi_pci_cleanup;
2244         info->addr_source_data = pdev;
2245
2246         if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
2247                 first_reg_offset = 1;
2248
2249         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2250                 info->io_setup = port_setup;
2251                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2252         } else {
2253                 info->io_setup = mem_setup;
2254                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2255         }
2256         info->io.addr_data = pci_resource_start(pdev, 0);
2257
2258         info->io.regspacing = DEFAULT_REGSPACING;
2259         info->io.regsize = DEFAULT_REGSPACING;
2260         info->io.regshift = 0;
2261
2262         info->irq = pdev->irq;
2263         if (info->irq)
2264                 info->irq_setup = std_irq_setup;
2265
2266         info->dev = &pdev->dev;
2267         pci_set_drvdata(pdev, info);
2268
2269         return try_smi_init(info);
2270 }
2271
2272 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2273 {
2274         struct smi_info *info = pci_get_drvdata(pdev);
2275         cleanup_one_si(info);
2276 }
2277
2278 #ifdef CONFIG_PM
2279 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2280 {
2281         return 0;
2282 }
2283
2284 static int ipmi_pci_resume(struct pci_dev *pdev)
2285 {
2286         return 0;
2287 }
2288 #endif
2289
2290 static struct pci_device_id ipmi_pci_devices[] = {
2291         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2292         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2293         { 0, }
2294 };
2295 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2296
2297 static struct pci_driver ipmi_pci_driver = {
2298         .name =         DEVICE_NAME,
2299         .id_table =     ipmi_pci_devices,
2300         .probe =        ipmi_pci_probe,
2301         .remove =       __devexit_p(ipmi_pci_remove),
2302 #ifdef CONFIG_PM
2303         .suspend =      ipmi_pci_suspend,
2304         .resume =       ipmi_pci_resume,
2305 #endif
2306 };
2307 #endif /* CONFIG_PCI */
2308
2309
2310 #ifdef CONFIG_PPC_OF
2311 static int __devinit ipmi_of_probe(struct of_device *dev,
2312                          const struct of_device_id *match)
2313 {
2314         struct smi_info *info;
2315         struct resource resource;
2316         const int *regsize, *regspacing, *regshift;
2317         struct device_node *np = dev->node;
2318         int ret;
2319         int proplen;
2320
2321         dev_info(&dev->dev, PFX "probing via device tree\n");
2322
2323         ret = of_address_to_resource(np, 0, &resource);
2324         if (ret) {
2325                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2326                 return ret;
2327         }
2328
2329         regsize = of_get_property(np, "reg-size", &proplen);
2330         if (regsize && proplen != 4) {
2331                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2332                 return -EINVAL;
2333         }
2334
2335         regspacing = of_get_property(np, "reg-spacing", &proplen);
2336         if (regspacing && proplen != 4) {
2337                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2338                 return -EINVAL;
2339         }
2340
2341         regshift = of_get_property(np, "reg-shift", &proplen);
2342         if (regshift && proplen != 4) {
2343                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2344                 return -EINVAL;
2345         }
2346
2347         info = kzalloc(sizeof(*info), GFP_KERNEL);
2348
2349         if (!info) {
2350                 dev_err(&dev->dev,
2351                         PFX "could not allocate memory for OF probe\n");
2352                 return -ENOMEM;
2353         }
2354
2355         info->si_type           = (enum si_type) match->data;
2356         info->addr_source       = "device-tree";
2357         info->irq_setup         = std_irq_setup;
2358
2359         if (resource.flags & IORESOURCE_IO) {
2360                 info->io_setup          = port_setup;
2361                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2362         } else {
2363                 info->io_setup          = mem_setup;
2364                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2365         }
2366
2367         info->io.addr_data      = resource.start;
2368
2369         info->io.regsize        = regsize ? *regsize : DEFAULT_REGSIZE;
2370         info->io.regspacing     = regspacing ? *regspacing : DEFAULT_REGSPACING;
2371         info->io.regshift       = regshift ? *regshift : 0;
2372
2373         info->irq               = irq_of_parse_and_map(dev->node, 0);
2374         info->dev               = &dev->dev;
2375
2376         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2377                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2378                 info->irq);
2379
2380         dev->dev.driver_data = (void *) info;
2381
2382         return try_smi_init(info);
2383 }
2384
2385 static int __devexit ipmi_of_remove(struct of_device *dev)
2386 {
2387         cleanup_one_si(dev->dev.driver_data);
2388         return 0;
2389 }
2390
2391 static struct of_device_id ipmi_match[] =
2392 {
2393         { .type = "ipmi", .compatible = "ipmi-kcs",
2394           .data = (void *)(unsigned long) SI_KCS },
2395         { .type = "ipmi", .compatible = "ipmi-smic",
2396           .data = (void *)(unsigned long) SI_SMIC },
2397         { .type = "ipmi", .compatible = "ipmi-bt",
2398           .data = (void *)(unsigned long) SI_BT },
2399         {},
2400 };
2401
2402 static struct of_platform_driver ipmi_of_platform_driver = {
2403         .name           = "ipmi",
2404         .match_table    = ipmi_match,
2405         .probe          = ipmi_of_probe,
2406         .remove         = __devexit_p(ipmi_of_remove),
2407 };
2408 #endif /* CONFIG_PPC_OF */
2409
2410
2411 static int try_get_dev_id(struct smi_info *smi_info)
2412 {
2413         unsigned char         msg[2];
2414         unsigned char         *resp;
2415         unsigned long         resp_len;
2416         enum si_sm_result     smi_result;
2417         int                   rv = 0;
2418
2419         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2420         if (!resp)
2421                 return -ENOMEM;
2422
2423         /*
2424          * Do a Get Device ID command, since it comes back with some
2425          * useful info.
2426          */
2427         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2428         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2429         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2430
2431         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2432         for (;;) {
2433                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2434                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2435                         schedule_timeout_uninterruptible(1);
2436                         smi_result = smi_info->handlers->event(
2437                                 smi_info->si_sm, 100);
2438                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2439                         smi_result = smi_info->handlers->event(
2440                                 smi_info->si_sm, 0);
2441                 } else
2442                         break;
2443         }
2444         if (smi_result == SI_SM_HOSED) {
2445                 /*
2446                  * We couldn't get the state machine to run, so whatever's at
2447                  * the port is probably not an IPMI SMI interface.
2448                  */
2449                 rv = -ENODEV;
2450                 goto out;
2451         }
2452
2453         /* Otherwise, we got some data. */
2454         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2455                                                   resp, IPMI_MAX_MSG_LENGTH);
2456
2457         /* Check and record info from the get device id, in case we need it. */
2458         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2459
2460  out:
2461         kfree(resp);
2462         return rv;
2463 }
2464
2465 static int type_file_read_proc(char *page, char **start, off_t off,
2466                                int count, int *eof, void *data)
2467 {
2468         struct smi_info *smi = data;
2469
2470         return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2471 }
2472
2473 static int stat_file_read_proc(char *page, char **start, off_t off,
2474                                int count, int *eof, void *data)
2475 {
2476         char            *out = (char *) page;
2477         struct smi_info *smi = data;
2478
2479         out += sprintf(out, "interrupts_enabled:    %d\n",
2480                        smi->irq && !smi->interrupt_disabled);
2481         out += sprintf(out, "short_timeouts:        %u\n",
2482                        smi_get_stat(smi, short_timeouts));
2483         out += sprintf(out, "long_timeouts:         %u\n",
2484                        smi_get_stat(smi, long_timeouts));
2485         out += sprintf(out, "idles:                 %u\n",
2486                        smi_get_stat(smi, idles));
2487         out += sprintf(out, "interrupts:            %u\n",
2488                        smi_get_stat(smi, interrupts));
2489         out += sprintf(out, "attentions:            %u\n",
2490                        smi_get_stat(smi, attentions));
2491         out += sprintf(out, "flag_fetches:          %u\n",
2492                        smi_get_stat(smi, flag_fetches));
2493         out += sprintf(out, "hosed_count:           %u\n",
2494                        smi_get_stat(smi, hosed_count));
2495         out += sprintf(out, "complete_transactions: %u\n",
2496                        smi_get_stat(smi, complete_transactions));
2497         out += sprintf(out, "events:                %u\n",
2498                        smi_get_stat(smi, events));
2499         out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2500                        smi_get_stat(smi, watchdog_pretimeouts));
2501         out += sprintf(out, "incoming_messages:     %u\n",
2502                        smi_get_stat(smi, incoming_messages));
2503
2504         return out - page;
2505 }
2506
2507 static int param_read_proc(char *page, char **start, off_t off,
2508                            int count, int *eof, void *data)
2509 {
2510         struct smi_info *smi = data;
2511
2512         return sprintf(page,
2513                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2514                        si_to_str[smi->si_type],
2515                        addr_space_to_str[smi->io.addr_type],
2516                        smi->io.addr_data,
2517                        smi->io.regspacing,
2518                        smi->io.regsize,
2519                        smi->io.regshift,
2520                        smi->irq,
2521                        smi->slave_addr);
2522 }
2523
2524 /*
2525  * oem_data_avail_to_receive_msg_avail
2526  * @info - smi_info structure with msg_flags set
2527  *
2528  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2529  * Returns 1 indicating need to re-run handle_flags().
2530  */
2531 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2532 {
2533         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2534                                RECEIVE_MSG_AVAIL);
2535         return 1;
2536 }
2537
2538 /*
2539  * setup_dell_poweredge_oem_data_handler
2540  * @info - smi_info.device_id must be populated
2541  *
2542  * Systems that match, but have firmware version < 1.40 may assert
2543  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2544  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2545  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2546  * as RECEIVE_MSG_AVAIL instead.
2547  *
2548  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2549  * assert the OEM[012] bits, and if it did, the driver would have to
2550  * change to handle that properly, we don't actually check for the
2551  * firmware version.
2552  * Device ID = 0x20                BMC on PowerEdge 8G servers
2553  * Device Revision = 0x80
2554  * Firmware Revision1 = 0x01       BMC version 1.40
2555  * Firmware Revision2 = 0x40       BCD encoded
2556  * IPMI Version = 0x51             IPMI 1.5
2557  * Manufacturer ID = A2 02 00      Dell IANA
2558  *
2559  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2560  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2561  *
2562  */
2563 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2564 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2565 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2566 #define DELL_IANA_MFR_ID 0x0002a2
2567 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2568 {
2569         struct ipmi_device_id *id = &smi_info->device_id;
2570         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2571                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2572                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2573                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2574                         smi_info->oem_data_avail_handler =
2575                                 oem_data_avail_to_receive_msg_avail;
2576                 } else if (ipmi_version_major(id) < 1 ||
2577                            (ipmi_version_major(id) == 1 &&
2578                             ipmi_version_minor(id) < 5)) {
2579                         smi_info->oem_data_avail_handler =
2580                                 oem_data_avail_to_receive_msg_avail;
2581                 }
2582         }
2583 }
2584
2585 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2586 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2587 {
2588         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2589
2590         /* Make it a reponse */
2591         msg->rsp[0] = msg->data[0] | 4;
2592         msg->rsp[1] = msg->data[1];
2593         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2594         msg->rsp_size = 3;
2595         smi_info->curr_msg = NULL;
2596         deliver_recv_msg(smi_info, msg);
2597 }
2598
2599 /*
2600  * dell_poweredge_bt_xaction_handler
2601  * @info - smi_info.device_id must be populated
2602  *
2603  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2604  * not respond to a Get SDR command if the length of the data
2605  * requested is exactly 0x3A, which leads to command timeouts and no
2606  * data returned.  This intercepts such commands, and causes userspace
2607  * callers to try again with a different-sized buffer, which succeeds.
2608  */
2609
2610 #define STORAGE_NETFN 0x0A
2611 #define STORAGE_CMD_GET_SDR 0x23
2612 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2613                                              unsigned long unused,
2614                                              void *in)
2615 {
2616         struct smi_info *smi_info = in;
2617         unsigned char *data = smi_info->curr_msg->data;
2618         unsigned int size   = smi_info->curr_msg->data_size;
2619         if (size >= 8 &&
2620             (data[0]>>2) == STORAGE_NETFN &&
2621             data[1] == STORAGE_CMD_GET_SDR &&
2622             data[7] == 0x3A) {
2623                 return_hosed_msg_badsize(smi_info);
2624                 return NOTIFY_STOP;
2625         }
2626         return NOTIFY_DONE;
2627 }
2628
2629 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2630         .notifier_call  = dell_poweredge_bt_xaction_handler,
2631 };
2632
2633 /*
2634  * setup_dell_poweredge_bt_xaction_handler
2635  * @info - smi_info.device_id must be filled in already
2636  *
2637  * Fills in smi_info.device_id.start_transaction_pre_hook
2638  * when we know what function to use there.
2639  */
2640 static void
2641 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2642 {
2643         struct ipmi_device_id *id = &smi_info->device_id;
2644         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2645             smi_info->si_type == SI_BT)
2646                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2647 }
2648
2649 /*
2650  * setup_oem_data_handler
2651  * @info - smi_info.device_id must be filled in already
2652  *
2653  * Fills in smi_info.device_id.oem_data_available_handler
2654  * when we know what function to use there.
2655  */
2656
2657 static void setup_oem_data_handler(struct smi_info *smi_info)
2658 {
2659         setup_dell_poweredge_oem_data_handler(smi_info);
2660 }
2661
2662 static void setup_xaction_handlers(struct smi_info *smi_info)
2663 {
2664         setup_dell_poweredge_bt_xaction_handler(smi_info);
2665 }
2666
2667 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2668 {
2669         if (smi_info->intf) {
2670                 /*
2671                  * The timer and thread are only running if the
2672                  * interface has been started up and registered.
2673                  */
2674                 if (smi_info->thread != NULL)
2675                         kthread_stop(smi_info->thread);
2676                 del_timer_sync(&smi_info->si_timer);
2677         }
2678 }
2679
2680 static __devinitdata struct ipmi_default_vals
2681 {
2682         int type;
2683         int port;
2684 } ipmi_defaults[] =
2685 {
2686         { .type = SI_KCS, .port = 0xca2 },
2687         { .type = SI_SMIC, .port = 0xca9 },
2688         { .type = SI_BT, .port = 0xe4 },
2689         { .port = 0 }
2690 };
2691
2692 static __devinit void default_find_bmc(void)
2693 {
2694         struct smi_info *info;
2695         int             i;
2696
2697         for (i = 0; ; i++) {
2698                 if (!ipmi_defaults[i].port)
2699                         break;
2700 #ifdef CONFIG_PPC
2701                 if (check_legacy_ioport(ipmi_defaults[i].port))
2702                         continue;
2703 #endif
2704                 info = kzalloc(sizeof(*info), GFP_KERNEL);
2705                 if (!info)
2706                         return;
2707
2708                 info->addr_source = NULL;
2709
2710                 info->si_type = ipmi_defaults[i].type;
2711                 info->io_setup = port_setup;
2712                 info->io.addr_data = ipmi_defaults[i].port;
2713                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2714
2715                 info->io.addr = NULL;
2716                 info->io.regspacing = DEFAULT_REGSPACING;
2717                 info->io.regsize = DEFAULT_REGSPACING;
2718                 info->io.regshift = 0;
2719
2720                 if (try_smi_init(info) == 0) {
2721                         /* Found one... */
2722                         printk(KERN_INFO "ipmi_si: Found default %s state"
2723                                " machine at %s address 0x%lx\n",
2724                                si_to_str[info->si_type],
2725                                addr_space_to_str[info->io.addr_type],
2726                                info->io.addr_data);
2727                         return;
2728                 }
2729         }
2730 }
2731
2732 static int is_new_interface(struct smi_info *info)
2733 {
2734         struct smi_info *e;
2735
2736         list_for_each_entry(e, &smi_infos, link) {
2737                 if (e->io.addr_type != info->io.addr_type)
2738                         continue;
2739                 if (e->io.addr_data == info->io.addr_data)
2740                         return 0;
2741         }
2742
2743         return 1;
2744 }
2745
2746 static int try_smi_init(struct smi_info *new_smi)
2747 {
2748         int rv;
2749         int i;
2750
2751         if (new_smi->addr_source) {
2752                 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2753                        " machine at %s address 0x%lx, slave address 0x%x,"
2754                        " irq %d\n",
2755                        new_smi->addr_source,
2756                        si_to_str[new_smi->si_type],
2757                        addr_space_to_str[new_smi->io.addr_type],
2758                        new_smi->io.addr_data,
2759                        new_smi->slave_addr, new_smi->irq);
2760         }
2761
2762         mutex_lock(&smi_infos_lock);
2763         if (!is_new_interface(new_smi)) {
2764                 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2765                 rv = -EBUSY;
2766                 goto out_err;
2767         }
2768
2769         /* So we know not to free it unless we have allocated one. */
2770         new_smi->intf = NULL;
2771         new_smi->si_sm = NULL;
2772         new_smi->handlers = NULL;
2773
2774         switch (new_smi->si_type) {
2775         case SI_KCS:
2776                 new_smi->handlers = &kcs_smi_handlers;
2777                 break;
2778
2779         case SI_SMIC:
2780                 new_smi->handlers = &smic_smi_handlers;
2781                 break;
2782
2783         case SI_BT:
2784                 new_smi->handlers = &bt_smi_handlers;
2785                 break;
2786
2787         default:
2788                 /* No support for anything else yet. */
2789                 rv = -EIO;
2790                 goto out_err;
2791         }
2792
2793         /* Allocate the state machine's data and initialize it. */
2794         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2795         if (!new_smi->si_sm) {
2796                 printk(KERN_ERR "Could not allocate state machine memory\n");
2797                 rv = -ENOMEM;
2798                 goto out_err;
2799         }
2800         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2801                                                         &new_smi->io);
2802
2803         /* Now that we know the I/O size, we can set up the I/O. */
2804         rv = new_smi->io_setup(new_smi);
2805         if (rv) {
2806                 printk(KERN_ERR "Could not set up I/O space\n");
2807                 goto out_err;
2808         }
2809
2810         spin_lock_init(&(new_smi->si_lock));
2811         spin_lock_init(&(new_smi->msg_lock));
2812
2813         /* Do low-level detection first. */
2814         if (new_smi->handlers->detect(new_smi->si_sm)) {
2815                 if (new_smi->addr_source)
2816                         printk(KERN_INFO "ipmi_si: Interface detection"
2817                                " failed\n");
2818                 rv = -ENODEV;
2819                 goto out_err;
2820         }
2821
2822         /*
2823          * Attempt a get device id command.  If it fails, we probably
2824          * don't have a BMC here.
2825          */
2826         rv = try_get_dev_id(new_smi);
2827         if (rv) {
2828                 if (new_smi->addr_source)
2829                         printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2830                                " at this location\n");
2831                 goto out_err;
2832         }
2833
2834         setup_oem_data_handler(new_smi);
2835         setup_xaction_handlers(new_smi);
2836
2837         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2838         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2839         new_smi->curr_msg = NULL;
2840         atomic_set(&new_smi->req_events, 0);
2841         new_smi->run_to_completion = 0;
2842         for (i = 0; i < SI_NUM_STATS; i++)
2843                 atomic_set(&new_smi->stats[i], 0);
2844
2845         new_smi->interrupt_disabled = 0;
2846         atomic_set(&new_smi->stop_operation, 0);
2847         new_smi->intf_num = smi_num;
2848         smi_num++;
2849
2850         /*
2851          * Start clearing the flags before we enable interrupts or the
2852          * timer to avoid racing with the timer.
2853          */
2854         start_clear_flags(new_smi);
2855         /* IRQ is defined to be set when non-zero. */
2856         if (new_smi->irq)
2857                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2858
2859         if (!new_smi->dev) {
2860                 /*
2861                  * If we don't already have a device from something
2862                  * else (like PCI), then register a new one.
2863                  */
2864                 new_smi->pdev = platform_device_alloc("ipmi_si",
2865                                                       new_smi->intf_num);
2866                 if (rv) {
2867                         printk(KERN_ERR
2868                                "ipmi_si_intf:"
2869                                " Unable to allocate platform device\n");
2870                         goto out_err;
2871                 }
2872                 new_smi->dev = &new_smi->pdev->dev;
2873                 new_smi->dev->driver = &ipmi_driver.driver;
2874
2875                 rv = platform_device_add(new_smi->pdev);
2876                 if (rv) {
2877                         printk(KERN_ERR
2878                                "ipmi_si_intf:"
2879                                " Unable to register system interface device:"
2880                                " %d\n",
2881                                rv);
2882                         goto out_err;
2883                 }
2884                 new_smi->dev_registered = 1;
2885         }
2886
2887         rv = ipmi_register_smi(&handlers,
2888                                new_smi,
2889                                &new_smi->device_id,
2890                                new_smi->dev,
2891                                "bmc",
2892                                new_smi->slave_addr);
2893         if (rv) {
2894                 printk(KERN_ERR
2895                        "ipmi_si: Unable to register device: error %d\n",
2896                        rv);
2897                 goto out_err_stop_timer;
2898         }
2899
2900         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2901                                      type_file_read_proc,
2902                                      new_smi, THIS_MODULE);
2903         if (rv) {
2904                 printk(KERN_ERR
2905                        "ipmi_si: Unable to create proc entry: %d\n",
2906                        rv);
2907                 goto out_err_stop_timer;
2908         }
2909
2910         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2911                                      stat_file_read_proc,
2912                                      new_smi, THIS_MODULE);
2913         if (rv) {
2914                 printk(KERN_ERR
2915                        "ipmi_si: Unable to create proc entry: %d\n",
2916                        rv);
2917                 goto out_err_stop_timer;
2918         }
2919
2920         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
2921                                      param_read_proc,
2922                                      new_smi, THIS_MODULE);
2923         if (rv) {
2924                 printk(KERN_ERR
2925                        "ipmi_si: Unable to create proc entry: %d\n",
2926                        rv);
2927                 goto out_err_stop_timer;
2928         }
2929
2930         list_add_tail(&new_smi->link, &smi_infos);
2931
2932         mutex_unlock(&smi_infos_lock);
2933
2934         printk(KERN_INFO "IPMI %s interface initialized\n",
2935                si_to_str[new_smi->si_type]);
2936
2937         return 0;
2938
2939  out_err_stop_timer:
2940         atomic_inc(&new_smi->stop_operation);
2941         wait_for_timer_and_thread(new_smi);
2942
2943  out_err:
2944         if (new_smi->intf)
2945                 ipmi_unregister_smi(new_smi->intf);
2946
2947         if (new_smi->irq_cleanup)
2948                 new_smi->irq_cleanup(new_smi);
2949
2950         /*
2951          * Wait until we know that we are out of any interrupt
2952          * handlers might have been running before we freed the
2953          * interrupt.
2954          */
2955         synchronize_sched();
2956
2957         if (new_smi->si_sm) {
2958                 if (new_smi->handlers)
2959                         new_smi->handlers->cleanup(new_smi->si_sm);
2960                 kfree(new_smi->si_sm);
2961         }
2962         if (new_smi->addr_source_cleanup)
2963                 new_smi->addr_source_cleanup(new_smi);
2964         if (new_smi->io_cleanup)
2965                 new_smi->io_cleanup(new_smi);
2966
2967         if (new_smi->dev_registered)
2968                 platform_device_unregister(new_smi->pdev);
2969
2970         kfree(new_smi);
2971
2972         mutex_unlock(&smi_infos_lock);
2973
2974         return rv;
2975 }
2976
2977 static __devinit int init_ipmi_si(void)
2978 {
2979         int  i;
2980         char *str;
2981         int  rv;
2982
2983         if (initialized)
2984                 return 0;
2985         initialized = 1;
2986
2987         /* Register the device drivers. */
2988         rv = driver_register(&ipmi_driver.driver);
2989         if (rv) {
2990                 printk(KERN_ERR
2991                        "init_ipmi_si: Unable to register driver: %d\n",
2992                        rv);
2993                 return rv;
2994         }
2995
2996
2997         /* Parse out the si_type string into its components. */
2998         str = si_type_str;
2999         if (*str != '\0') {
3000                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3001                         si_type[i] = str;
3002                         str = strchr(str, ',');
3003                         if (str) {
3004                                 *str = '\0';
3005                                 str++;
3006                         } else {
3007                                 break;
3008                         }
3009                 }
3010         }
3011
3012         printk(KERN_INFO "IPMI System Interface driver.\n");
3013
3014         hardcode_find_bmc();
3015
3016 #ifdef CONFIG_DMI
3017         dmi_find_bmc();
3018 #endif
3019
3020 #ifdef CONFIG_ACPI
3021         acpi_find_bmc();
3022 #endif
3023
3024 #ifdef CONFIG_PCI
3025         rv = pci_register_driver(&ipmi_pci_driver);
3026         if (rv)
3027                 printk(KERN_ERR
3028                        "init_ipmi_si: Unable to register PCI driver: %d\n",
3029                        rv);
3030 #endif
3031
3032 #ifdef CONFIG_PPC_OF
3033         of_register_platform_driver(&ipmi_of_platform_driver);
3034 #endif
3035
3036         if (si_trydefaults) {
3037                 mutex_lock(&smi_infos_lock);
3038                 if (list_empty(&smi_infos)) {
3039                         /* No BMC was found, try defaults. */
3040                         mutex_unlock(&smi_infos_lock);
3041                         default_find_bmc();
3042                 } else {
3043                         mutex_unlock(&smi_infos_lock);
3044                 }
3045         }
3046
3047         mutex_lock(&smi_infos_lock);
3048         if (unload_when_empty && list_empty(&smi_infos)) {
3049                 mutex_unlock(&smi_infos_lock);
3050 #ifdef CONFIG_PCI
3051                 pci_unregister_driver(&ipmi_pci_driver);
3052 #endif
3053
3054 #ifdef CONFIG_PPC_OF
3055                 of_unregister_platform_driver(&ipmi_of_platform_driver);
3056 #endif
3057                 driver_unregister(&ipmi_driver.driver);
3058                 printk(KERN_WARNING
3059                        "ipmi_si: Unable to find any System Interface(s)\n");
3060                 return -ENODEV;
3061         } else {
3062                 mutex_unlock(&smi_infos_lock);
3063                 return 0;
3064         }
3065 }
3066 module_init(init_ipmi_si);
3067
3068 static void cleanup_one_si(struct smi_info *to_clean)
3069 {
3070         int           rv;
3071         unsigned long flags;
3072
3073         if (!to_clean)
3074                 return;
3075
3076         list_del(&to_clean->link);
3077
3078         /* Tell the driver that we are shutting down. */
3079         atomic_inc(&to_clean->stop_operation);
3080
3081         /*
3082          * Make sure the timer and thread are stopped and will not run
3083          * again.
3084          */
3085         wait_for_timer_and_thread(to_clean);
3086
3087         /*
3088          * Timeouts are stopped, now make sure the interrupts are off
3089          * for the device.  A little tricky with locks to make sure
3090          * there are no races.
3091          */
3092         spin_lock_irqsave(&to_clean->si_lock, flags);
3093         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3094                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3095                 poll(to_clean);
3096                 schedule_timeout_uninterruptible(1);
3097                 spin_lock_irqsave(&to_clean->si_lock, flags);
3098         }
3099         disable_si_irq(to_clean);
3100         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3101         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3102                 poll(to_clean);
3103                 schedule_timeout_uninterruptible(1);
3104         }
3105
3106         /* Clean up interrupts and make sure that everything is done. */
3107         if (to_clean->irq_cleanup)
3108                 to_clean->irq_cleanup(to_clean);
3109         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3110                 poll(to_clean);
3111                 schedule_timeout_uninterruptible(1);
3112         }
3113
3114         rv = ipmi_unregister_smi(to_clean->intf);
3115         if (rv) {
3116                 printk(KERN_ERR
3117                        "ipmi_si: Unable to unregister device: errno=%d\n",
3118                        rv);
3119         }
3120
3121         to_clean->handlers->cleanup(to_clean->si_sm);
3122
3123         kfree(to_clean->si_sm);
3124
3125         if (to_clean->addr_source_cleanup)
3126                 to_clean->addr_source_cleanup(to_clean);
3127         if (to_clean->io_cleanup)
3128                 to_clean->io_cleanup(to_clean);
3129
3130         if (to_clean->dev_registered)
3131                 platform_device_unregister(to_clean->pdev);
3132
3133         kfree(to_clean);
3134 }
3135
3136 static __exit void cleanup_ipmi_si(void)
3137 {
3138         struct smi_info *e, *tmp_e;
3139
3140         if (!initialized)
3141                 return;
3142
3143 #ifdef CONFIG_PCI
3144         pci_unregister_driver(&ipmi_pci_driver);
3145 #endif
3146
3147 #ifdef CONFIG_PPC_OF
3148         of_unregister_platform_driver(&ipmi_of_platform_driver);
3149 #endif
3150
3151         mutex_lock(&smi_infos_lock);
3152         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3153                 cleanup_one_si(e);
3154         mutex_unlock(&smi_infos_lock);
3155
3156         driver_unregister(&ipmi_driver.driver);
3157 }
3158 module_exit(cleanup_ipmi_si);
3159
3160 MODULE_LICENSE("GPL");
3161 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3162 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3163                    " system interfaces.");