2 * arch/arm/common/dmabounce.c
4 * Special dma_{map/unmap/dma_sync}_* routines for systems that have
5 * limited DMA windows. These functions utilize bounce buffers to
6 * copy data to/from buffers located outside the DMA region. This
7 * only works for systems in which DMA memory is at the bottom of
8 * RAM and the remainder of memory is at the top an the DMA memory
9 * can be marked as ZONE_DMA. Anything beyond that such as discontigous
10 * DMA windows will require custom implementations that reserve memory
11 * areas at early bootup.
13 * Original version by Brad Parker (brad@heeltoe.com)
14 * Re-written by Christopher Hoover <ch@murgatroid.com>
15 * Made generic by Deepak Saxena <dsaxena@plexity.net>
17 * Copyright (C) 2002 Hewlett Packard Company.
18 * Copyright (C) 2004 MontaVista Software, Inc.
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * version 2 as published by the Free Software Foundation.
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/device.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/list.h>
37 #define DO_STATS(X) do { X ; } while (0)
39 #define DO_STATS(X) do { } while (0)
42 /* ************************************************** */
45 struct list_head node;
47 /* original request */
52 /* safe buffer info */
53 struct dma_pool *pool;
55 dma_addr_t safe_dma_addr;
58 struct dmabounce_device_info {
59 struct list_head node;
62 struct dma_pool *small_buffer_pool;
63 struct dma_pool *large_buffer_pool;
64 struct list_head safe_buffers;
65 unsigned long small_buffer_size, large_buffer_size;
67 unsigned long sbp_allocs;
68 unsigned long lbp_allocs;
69 unsigned long total_allocs;
70 unsigned long map_op_count;
71 unsigned long bounce_count;
75 static LIST_HEAD(dmabounce_devs);
78 static void print_alloc_stats(struct dmabounce_device_info *device_info)
81 "%s: dmabounce: sbp: %lu, lbp: %lu, other: %lu, total: %lu\n",
82 device_info->dev->bus_id,
83 device_info->sbp_allocs, device_info->lbp_allocs,
84 device_info->total_allocs - device_info->sbp_allocs -
85 device_info->lbp_allocs,
86 device_info->total_allocs);
90 /* find the given device in the dmabounce device list */
91 static inline struct dmabounce_device_info *
92 find_dmabounce_dev(struct device *dev)
94 struct list_head *entry;
96 list_for_each(entry, &dmabounce_devs) {
97 struct dmabounce_device_info *d =
98 list_entry(entry, struct dmabounce_device_info, node);
107 /* allocate a 'safe' buffer and keep track of it */
108 static inline struct safe_buffer *
109 alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
110 size_t size, enum dma_data_direction dir)
112 struct safe_buffer *buf;
113 struct dma_pool *pool;
114 struct device *dev = device_info->dev;
116 dma_addr_t safe_dma_addr;
118 dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",
119 __func__, ptr, size, dir);
121 DO_STATS ( device_info->total_allocs++ );
123 buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC);
125 dev_warn(dev, "%s: kmalloc failed\n", __func__);
129 if (size <= device_info->small_buffer_size) {
130 pool = device_info->small_buffer_pool;
131 safe = dma_pool_alloc(pool, GFP_ATOMIC, &safe_dma_addr);
133 DO_STATS ( device_info->sbp_allocs++ );
134 } else if (size <= device_info->large_buffer_size) {
135 pool = device_info->large_buffer_pool;
136 safe = dma_pool_alloc(pool, GFP_ATOMIC, &safe_dma_addr);
138 DO_STATS ( device_info->lbp_allocs++ );
141 safe = dma_alloc_coherent(dev, size, &safe_dma_addr, GFP_ATOMIC);
145 dev_warn(device_info->dev,
146 "%s: could not alloc dma memory (size=%d)\n",
153 if (device_info->total_allocs % 1000 == 0)
154 print_alloc_stats(device_info);
159 buf->direction = dir;
162 buf->safe_dma_addr = safe_dma_addr;
164 list_add(&buf->node, &device_info->safe_buffers);
169 /* determine if a buffer is from our "safe" pool */
170 static inline struct safe_buffer *
171 find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr)
173 struct list_head *entry;
175 list_for_each(entry, &device_info->safe_buffers) {
176 struct safe_buffer *b =
177 list_entry(entry, struct safe_buffer, node);
179 if (b->safe_dma_addr == safe_dma_addr)
187 free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf)
189 dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);
191 list_del(&buf->node);
194 dma_pool_free(buf->pool, buf->safe, buf->safe_dma_addr);
196 dma_free_coherent(device_info->dev, buf->size, buf->safe,
202 /* ************************************************** */
206 static void print_map_stats(struct dmabounce_device_info *device_info)
209 "%s: dmabounce: map_op_count=%lu, bounce_count=%lu\n",
210 device_info->dev->bus_id,
211 device_info->map_op_count, device_info->bounce_count);
215 static inline dma_addr_t
216 map_single(struct device *dev, void *ptr, size_t size,
217 enum dma_data_direction dir)
219 struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
221 int needs_bounce = 0;
224 DO_STATS ( device_info->map_op_count++ );
226 dma_addr = virt_to_dma(dev, ptr);
229 unsigned long mask = *dev->dma_mask;
232 limit = (mask + 1) & ~mask;
233 if (limit && size > limit) {
234 dev_err(dev, "DMA mapping too big (requested %#x "
235 "mask %#Lx)\n", size, *dev->dma_mask);
240 * Figure out if we need to bounce from the DMA mask.
242 needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask;
245 if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) {
246 struct safe_buffer *buf;
248 buf = alloc_safe_buffer(device_info, ptr, size, dir);
250 dev_err(dev, "%s: unable to map unsafe buffer %p!\n",
256 "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
257 __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
258 buf->safe, (void *) buf->safe_dma_addr);
260 if ((dir == DMA_TO_DEVICE) ||
261 (dir == DMA_BIDIRECTIONAL)) {
262 dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n",
263 __func__, ptr, buf->safe, size);
264 memcpy(buf->safe, ptr, size);
266 consistent_sync(buf->safe, size, dir);
268 dma_addr = buf->safe_dma_addr;
270 consistent_sync(ptr, size, dir);
277 unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
278 enum dma_data_direction dir)
280 struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
281 struct safe_buffer *buf = NULL;
284 * Trying to unmap an invalid mapping
286 if (dma_addr == ~0) {
287 dev_err(dev, "Trying to unmap invalid mapping\n");
292 buf = find_safe_buffer(device_info, dma_addr);
295 BUG_ON(buf->size != size);
298 "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
299 __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
300 buf->safe, (void *) buf->safe_dma_addr);
303 DO_STATS ( device_info->bounce_count++ );
305 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {
309 "%s: copy back safe %p to unsafe %p size %d\n",
310 __func__, buf->safe, buf->ptr, size);
311 memcpy(buf->ptr, buf->safe, size);
314 * DMA buffers must have the same cache properties
315 * as if they were really used for DMA - which means
316 * data must be written back to RAM. Note that
317 * we don't use dmac_flush_range() here for the
318 * bidirectional case because we know the cache
319 * lines will be coherent with the data written.
321 ptr = (unsigned long)buf->ptr;
322 dmac_clean_range(ptr, ptr + size);
324 free_safe_buffer(device_info, buf);
329 sync_single(struct device *dev, dma_addr_t dma_addr, size_t size,
330 enum dma_data_direction dir)
332 struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
333 struct safe_buffer *buf = NULL;
336 buf = find_safe_buffer(device_info, dma_addr);
340 * Both of these checks from original code need to be
341 * commented out b/c some drivers rely on the following:
343 * 1) Drivers may map a large chunk of memory into DMA space
344 * but only sync a small portion of it. Good example is
345 * allocating a large buffer, mapping it, and then
346 * breaking it up into small descriptors. No point
347 * in syncing the whole buffer if you only have to
348 * touch one descriptor.
350 * 2) Buffers that are mapped as DMA_BIDIRECTIONAL are
351 * usually only synced in one dir at a time.
353 * See drivers/net/eepro100.c for examples of both cases.
357 * BUG_ON(buf->size != size);
358 * BUG_ON(buf->direction != dir);
362 "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
363 __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
364 buf->safe, (void *) buf->safe_dma_addr);
366 DO_STATS ( device_info->bounce_count++ );
369 case DMA_FROM_DEVICE:
371 "%s: copy back safe %p to unsafe %p size %d\n",
372 __func__, buf->safe, buf->ptr, size);
373 memcpy(buf->ptr, buf->safe, size);
377 "%s: copy out unsafe %p to safe %p, size %d\n",
378 __func__,buf->ptr, buf->safe, size);
379 memcpy(buf->safe, buf->ptr, size);
381 case DMA_BIDIRECTIONAL:
382 BUG(); /* is this allowed? what does it mean? */
386 consistent_sync(buf->safe, size, dir);
388 consistent_sync(dma_to_virt(dev, dma_addr), size, dir);
392 /* ************************************************** */
395 * see if a buffer address is in an 'unsafe' range. if it is
396 * allocate a 'safe' buffer and copy the unsafe buffer into it.
397 * substitute the safe buffer for the unsafe one.
398 * (basically move the buffer from an unsafe area to a safe one)
401 dma_map_single(struct device *dev, void *ptr, size_t size,
402 enum dma_data_direction dir)
407 dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
408 __func__, ptr, size, dir);
410 BUG_ON(dir == DMA_NONE);
412 local_irq_save(flags);
414 dma_addr = map_single(dev, ptr, size, dir);
416 local_irq_restore(flags);
422 * see if a mapped address was really a "safe" buffer and if so, copy
423 * the data from the safe buffer back to the unsafe buffer and free up
424 * the safe buffer. (basically return things back to the way they
429 dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
430 enum dma_data_direction dir)
434 dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
435 __func__, (void *) dma_addr, size, dir);
437 BUG_ON(dir == DMA_NONE);
439 local_irq_save(flags);
441 unmap_single(dev, dma_addr, size, dir);
443 local_irq_restore(flags);
447 dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
448 enum dma_data_direction dir)
453 dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
454 __func__, sg, nents, dir);
456 BUG_ON(dir == DMA_NONE);
458 local_irq_save(flags);
460 for (i = 0; i < nents; i++, sg++) {
461 struct page *page = sg->page;
462 unsigned int offset = sg->offset;
463 unsigned int length = sg->length;
464 void *ptr = page_address(page) + offset;
467 map_single(dev, ptr, length, dir);
470 local_irq_restore(flags);
476 dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
477 enum dma_data_direction dir)
482 dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
483 __func__, sg, nents, dir);
485 BUG_ON(dir == DMA_NONE);
487 local_irq_save(flags);
489 for (i = 0; i < nents; i++, sg++) {
490 dma_addr_t dma_addr = sg->dma_address;
491 unsigned int length = sg->length;
493 unmap_single(dev, dma_addr, length, dir);
496 local_irq_restore(flags);
500 dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, size_t size,
501 enum dma_data_direction dir)
505 dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
506 __func__, (void *) dma_addr, size, dir);
508 local_irq_save(flags);
510 sync_single(dev, dma_addr, size, dir);
512 local_irq_restore(flags);
516 dma_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, size_t size,
517 enum dma_data_direction dir)
521 dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
522 __func__, (void *) dma_addr, size, dir);
524 local_irq_save(flags);
526 sync_single(dev, dma_addr, size, dir);
528 local_irq_restore(flags);
532 dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
533 enum dma_data_direction dir)
538 dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
539 __func__, sg, nents, dir);
541 BUG_ON(dir == DMA_NONE);
543 local_irq_save(flags);
545 for (i = 0; i < nents; i++, sg++) {
546 dma_addr_t dma_addr = sg->dma_address;
547 unsigned int length = sg->length;
549 sync_single(dev, dma_addr, length, dir);
552 local_irq_restore(flags);
556 dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
557 enum dma_data_direction dir)
562 dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
563 __func__, sg, nents, dir);
565 BUG_ON(dir == DMA_NONE);
567 local_irq_save(flags);
569 for (i = 0; i < nents; i++, sg++) {
570 dma_addr_t dma_addr = sg->dma_address;
571 unsigned int length = sg->length;
573 sync_single(dev, dma_addr, length, dir);
576 local_irq_restore(flags);
580 dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size,
581 unsigned long large_buffer_size)
583 struct dmabounce_device_info *device_info;
585 device_info = kmalloc(sizeof(struct dmabounce_device_info), GFP_ATOMIC);
588 "Could not allocated dmabounce_device_info for %s",
593 device_info->small_buffer_pool =
594 dma_pool_create("small_dmabounce_pool",
597 0 /* byte alignment */,
598 0 /* no page-crossing issues */);
599 if (!device_info->small_buffer_pool) {
601 "dmabounce: could not allocate small DMA pool for %s\n",
607 if (large_buffer_size) {
608 device_info->large_buffer_pool =
609 dma_pool_create("large_dmabounce_pool",
612 0 /* byte alignment */,
613 0 /* no page-crossing issues */);
614 if (!device_info->large_buffer_pool) {
616 "dmabounce: could not allocate large DMA pool for %s\n",
618 dma_pool_destroy(device_info->small_buffer_pool);
624 device_info->dev = dev;
625 device_info->small_buffer_size = small_buffer_size;
626 device_info->large_buffer_size = large_buffer_size;
627 INIT_LIST_HEAD(&device_info->safe_buffers);
630 device_info->sbp_allocs = 0;
631 device_info->lbp_allocs = 0;
632 device_info->total_allocs = 0;
633 device_info->map_op_count = 0;
634 device_info->bounce_count = 0;
637 list_add(&device_info->node, &dmabounce_devs);
639 printk(KERN_INFO "dmabounce: registered device %s on %s bus\n",
640 dev->bus_id, dev->bus->name);
646 dmabounce_unregister_dev(struct device *dev)
648 struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
652 "%s: Never registered with dmabounce but attempting" \
653 "to unregister!\n", dev->bus_id);
657 if (!list_empty(&device_info->safe_buffers)) {
659 "%s: Removing from dmabounce with pending buffers!\n",
664 if (device_info->small_buffer_pool)
665 dma_pool_destroy(device_info->small_buffer_pool);
666 if (device_info->large_buffer_pool)
667 dma_pool_destroy(device_info->large_buffer_pool);
670 print_alloc_stats(device_info);
671 print_map_stats(device_info);
674 list_del(&device_info->node);
678 printk(KERN_INFO "dmabounce: device %s on %s bus unregistered\n",
679 dev->bus_id, dev->bus->name);
683 EXPORT_SYMBOL(dma_map_single);
684 EXPORT_SYMBOL(dma_unmap_single);
685 EXPORT_SYMBOL(dma_map_sg);
686 EXPORT_SYMBOL(dma_unmap_sg);
687 EXPORT_SYMBOL(dma_sync_single);
688 EXPORT_SYMBOL(dma_sync_sg);
689 EXPORT_SYMBOL(dmabounce_register_dev);
690 EXPORT_SYMBOL(dmabounce_unregister_dev);
692 MODULE_AUTHOR("Christopher Hoover <ch@hpl.hp.com>, Deepak Saxena <dsaxena@plexity.net>");
693 MODULE_DESCRIPTION("Special dma_{map/unmap/dma_sync}_* routines for systems with limited DMA windows");
694 MODULE_LICENSE("GPL");