2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
10 * Alan Cox : Fixed the worst of the load
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
45 #include <linux/interrupt.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
61 #include <net/protocol.h>
64 #include <net/checksum.h>
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
72 static struct kmem_cache *skbuff_head_cache __read_mostly;
73 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
75 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
76 struct pipe_buffer *buf)
78 struct sk_buff *skb = (struct sk_buff *) buf->private;
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
86 struct sk_buff *skb = (struct sk_buff *) buf->private;
91 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
92 struct pipe_buffer *buf)
98 /* Pipe buffer operations for a socket. */
99 static struct pipe_buf_operations sock_pipe_buf_ops = {
101 .map = generic_pipe_buf_map,
102 .unmap = generic_pipe_buf_unmap,
103 .confirm = generic_pipe_buf_confirm,
104 .release = sock_pipe_buf_release,
105 .steal = sock_pipe_buf_steal,
106 .get = sock_pipe_buf_get,
110 * Keep out-of-line to prevent kernel bloat.
111 * __builtin_return_address is not used because it is not always
116 * skb_over_panic - private function
121 * Out of line support code for skb_put(). Not user callable.
123 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
125 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
126 "data:%p tail:%#lx end:%#lx dev:%s\n",
127 here, skb->len, sz, skb->head, skb->data,
128 (unsigned long)skb->tail, (unsigned long)skb->end,
129 skb->dev ? skb->dev->name : "<NULL>");
134 * skb_under_panic - private function
139 * Out of line support code for skb_push(). Not user callable.
142 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
144 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
145 "data:%p tail:%#lx end:%#lx dev:%s\n",
146 here, skb->len, sz, skb->head, skb->data,
147 (unsigned long)skb->tail, (unsigned long)skb->end,
148 skb->dev ? skb->dev->name : "<NULL>");
152 void skb_truesize_bug(struct sk_buff *skb)
154 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
155 "len=%u, sizeof(sk_buff)=%Zd\n",
156 skb->truesize, skb->len, sizeof(struct sk_buff));
158 EXPORT_SYMBOL(skb_truesize_bug);
160 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
161 * 'private' fields and also do memory statistics to find all the
167 * __alloc_skb - allocate a network buffer
168 * @size: size to allocate
169 * @gfp_mask: allocation mask
170 * @fclone: allocate from fclone cache instead of head cache
171 * and allocate a cloned (child) skb
172 * @node: numa node to allocate memory on
174 * Allocate a new &sk_buff. The returned buffer has no headroom and a
175 * tail room of size bytes. The object has a reference count of one.
176 * The return is the buffer. On a failure the return is %NULL.
178 * Buffers may only be allocated from interrupts using a @gfp_mask of
181 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
182 int fclone, int node)
184 struct kmem_cache *cache;
185 struct skb_shared_info *shinfo;
189 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
192 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
196 size = SKB_DATA_ALIGN(size);
197 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
203 * See comment in sk_buff definition, just before the 'tail' member
205 memset(skb, 0, offsetof(struct sk_buff, tail));
206 skb->truesize = size + sizeof(struct sk_buff);
207 atomic_set(&skb->users, 1);
210 skb_reset_tail_pointer(skb);
211 skb->end = skb->tail + size;
212 /* make sure we initialize shinfo sequentially */
213 shinfo = skb_shinfo(skb);
214 atomic_set(&shinfo->dataref, 1);
215 shinfo->nr_frags = 0;
216 shinfo->gso_size = 0;
217 shinfo->gso_segs = 0;
218 shinfo->gso_type = 0;
219 shinfo->ip6_frag_id = 0;
220 shinfo->frag_list = NULL;
223 struct sk_buff *child = skb + 1;
224 atomic_t *fclone_ref = (atomic_t *) (child + 1);
226 skb->fclone = SKB_FCLONE_ORIG;
227 atomic_set(fclone_ref, 1);
229 child->fclone = SKB_FCLONE_UNAVAILABLE;
234 kmem_cache_free(cache, skb);
240 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
241 * @dev: network device to receive on
242 * @length: length to allocate
243 * @gfp_mask: get_free_pages mask, passed to alloc_skb
245 * Allocate a new &sk_buff and assign it a usage count of one. The
246 * buffer has unspecified headroom built in. Users should allocate
247 * the headroom they think they need without accounting for the
248 * built in space. The built in space is used for optimisations.
250 * %NULL is returned if there is no free memory.
252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
253 unsigned int length, gfp_t gfp_mask)
255 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
258 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
260 skb_reserve(skb, NET_SKB_PAD);
266 static void skb_drop_list(struct sk_buff **listp)
268 struct sk_buff *list = *listp;
273 struct sk_buff *this = list;
279 static inline void skb_drop_fraglist(struct sk_buff *skb)
281 skb_drop_list(&skb_shinfo(skb)->frag_list);
284 static void skb_clone_fraglist(struct sk_buff *skb)
286 struct sk_buff *list;
288 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
292 static void skb_release_data(struct sk_buff *skb)
295 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
296 &skb_shinfo(skb)->dataref)) {
297 if (skb_shinfo(skb)->nr_frags) {
299 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
300 put_page(skb_shinfo(skb)->frags[i].page);
303 if (skb_shinfo(skb)->frag_list)
304 skb_drop_fraglist(skb);
311 * Free an skbuff by memory without cleaning the state.
313 static void kfree_skbmem(struct sk_buff *skb)
315 struct sk_buff *other;
316 atomic_t *fclone_ref;
318 switch (skb->fclone) {
319 case SKB_FCLONE_UNAVAILABLE:
320 kmem_cache_free(skbuff_head_cache, skb);
323 case SKB_FCLONE_ORIG:
324 fclone_ref = (atomic_t *) (skb + 2);
325 if (atomic_dec_and_test(fclone_ref))
326 kmem_cache_free(skbuff_fclone_cache, skb);
329 case SKB_FCLONE_CLONE:
330 fclone_ref = (atomic_t *) (skb + 1);
333 /* The clone portion is available for
334 * fast-cloning again.
336 skb->fclone = SKB_FCLONE_UNAVAILABLE;
338 if (atomic_dec_and_test(fclone_ref))
339 kmem_cache_free(skbuff_fclone_cache, other);
344 /* Free everything but the sk_buff shell. */
345 static void skb_release_all(struct sk_buff *skb)
347 dst_release(skb->dst);
349 secpath_put(skb->sp);
351 if (skb->destructor) {
353 skb->destructor(skb);
355 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
356 nf_conntrack_put(skb->nfct);
357 nf_conntrack_put_reasm(skb->nfct_reasm);
359 #ifdef CONFIG_BRIDGE_NETFILTER
360 nf_bridge_put(skb->nf_bridge);
362 /* XXX: IS this still necessary? - JHS */
363 #ifdef CONFIG_NET_SCHED
365 #ifdef CONFIG_NET_CLS_ACT
369 skb_release_data(skb);
373 * __kfree_skb - private function
376 * Free an sk_buff. Release anything attached to the buffer.
377 * Clean the state. This is an internal helper function. Users should
378 * always call kfree_skb
381 void __kfree_skb(struct sk_buff *skb)
383 skb_release_all(skb);
388 * kfree_skb - free an sk_buff
389 * @skb: buffer to free
391 * Drop a reference to the buffer and free it if the usage count has
394 void kfree_skb(struct sk_buff *skb)
398 if (likely(atomic_read(&skb->users) == 1))
400 else if (likely(!atomic_dec_and_test(&skb->users)))
405 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
407 new->tstamp = old->tstamp;
409 new->transport_header = old->transport_header;
410 new->network_header = old->network_header;
411 new->mac_header = old->mac_header;
412 new->dst = dst_clone(old->dst);
414 new->sp = secpath_get(old->sp);
416 memcpy(new->cb, old->cb, sizeof(old->cb));
417 new->csum_start = old->csum_start;
418 new->csum_offset = old->csum_offset;
419 new->local_df = old->local_df;
420 new->pkt_type = old->pkt_type;
421 new->ip_summed = old->ip_summed;
422 skb_copy_queue_mapping(new, old);
423 new->priority = old->priority;
424 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
425 new->ipvs_property = old->ipvs_property;
427 new->protocol = old->protocol;
428 new->mark = old->mark;
430 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
431 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
432 new->nf_trace = old->nf_trace;
434 #ifdef CONFIG_NET_SCHED
435 new->tc_index = old->tc_index;
436 #ifdef CONFIG_NET_CLS_ACT
437 new->tc_verd = old->tc_verd;
440 skb_copy_secmark(new, old);
443 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
445 #define C(x) n->x = skb->x
447 n->next = n->prev = NULL;
449 __copy_skb_header(n, skb);
454 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
457 n->destructor = NULL;
464 atomic_set(&n->users, 1);
466 atomic_inc(&(skb_shinfo(skb)->dataref));
474 * skb_morph - morph one skb into another
475 * @dst: the skb to receive the contents
476 * @src: the skb to supply the contents
478 * This is identical to skb_clone except that the target skb is
479 * supplied by the user.
481 * The target skb is returned upon exit.
483 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
485 skb_release_all(dst);
486 return __skb_clone(dst, src);
488 EXPORT_SYMBOL_GPL(skb_morph);
491 * skb_clone - duplicate an sk_buff
492 * @skb: buffer to clone
493 * @gfp_mask: allocation priority
495 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
496 * copies share the same packet data but not structure. The new
497 * buffer has a reference count of 1. If the allocation fails the
498 * function returns %NULL otherwise the new buffer is returned.
500 * If this function is called from an interrupt gfp_mask() must be
504 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
509 if (skb->fclone == SKB_FCLONE_ORIG &&
510 n->fclone == SKB_FCLONE_UNAVAILABLE) {
511 atomic_t *fclone_ref = (atomic_t *) (n + 1);
512 n->fclone = SKB_FCLONE_CLONE;
513 atomic_inc(fclone_ref);
515 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
518 n->fclone = SKB_FCLONE_UNAVAILABLE;
521 return __skb_clone(n, skb);
524 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
526 #ifndef NET_SKBUFF_DATA_USES_OFFSET
528 * Shift between the two data areas in bytes
530 unsigned long offset = new->data - old->data;
533 __copy_skb_header(new, old);
535 #ifndef NET_SKBUFF_DATA_USES_OFFSET
536 /* {transport,network,mac}_header are relative to skb->head */
537 new->transport_header += offset;
538 new->network_header += offset;
539 new->mac_header += offset;
541 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
542 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
543 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
547 * skb_copy - create private copy of an sk_buff
548 * @skb: buffer to copy
549 * @gfp_mask: allocation priority
551 * Make a copy of both an &sk_buff and its data. This is used when the
552 * caller wishes to modify the data and needs a private copy of the
553 * data to alter. Returns %NULL on failure or the pointer to the buffer
554 * on success. The returned buffer has a reference count of 1.
556 * As by-product this function converts non-linear &sk_buff to linear
557 * one, so that &sk_buff becomes completely private and caller is allowed
558 * to modify all the data of returned buffer. This means that this
559 * function is not recommended for use in circumstances when only
560 * header is going to be modified. Use pskb_copy() instead.
563 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
565 int headerlen = skb->data - skb->head;
567 * Allocate the copy buffer
570 #ifdef NET_SKBUFF_DATA_USES_OFFSET
571 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
573 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
578 /* Set the data pointer */
579 skb_reserve(n, headerlen);
580 /* Set the tail pointer and length */
581 skb_put(n, skb->len);
583 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
586 copy_skb_header(n, skb);
592 * pskb_copy - create copy of an sk_buff with private head.
593 * @skb: buffer to copy
594 * @gfp_mask: allocation priority
596 * Make a copy of both an &sk_buff and part of its data, located
597 * in header. Fragmented data remain shared. This is used when
598 * the caller wishes to modify only header of &sk_buff and needs
599 * private copy of the header to alter. Returns %NULL on failure
600 * or the pointer to the buffer on success.
601 * The returned buffer has a reference count of 1.
604 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
607 * Allocate the copy buffer
610 #ifdef NET_SKBUFF_DATA_USES_OFFSET
611 n = alloc_skb(skb->end, gfp_mask);
613 n = alloc_skb(skb->end - skb->head, gfp_mask);
618 /* Set the data pointer */
619 skb_reserve(n, skb->data - skb->head);
620 /* Set the tail pointer and length */
621 skb_put(n, skb_headlen(skb));
623 skb_copy_from_linear_data(skb, n->data, n->len);
625 n->truesize += skb->data_len;
626 n->data_len = skb->data_len;
629 if (skb_shinfo(skb)->nr_frags) {
632 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
633 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
634 get_page(skb_shinfo(n)->frags[i].page);
636 skb_shinfo(n)->nr_frags = i;
639 if (skb_shinfo(skb)->frag_list) {
640 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
641 skb_clone_fraglist(n);
644 copy_skb_header(n, skb);
650 * pskb_expand_head - reallocate header of &sk_buff
651 * @skb: buffer to reallocate
652 * @nhead: room to add at head
653 * @ntail: room to add at tail
654 * @gfp_mask: allocation priority
656 * Expands (or creates identical copy, if &nhead and &ntail are zero)
657 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
658 * reference count of 1. Returns zero in the case of success or error,
659 * if expansion failed. In the last case, &sk_buff is not changed.
661 * All the pointers pointing into skb header may change and must be
662 * reloaded after call to this function.
665 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
670 #ifdef NET_SKBUFF_DATA_USES_OFFSET
671 int size = nhead + skb->end + ntail;
673 int size = nhead + (skb->end - skb->head) + ntail;
680 size = SKB_DATA_ALIGN(size);
682 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
686 /* Copy only real data... and, alas, header. This should be
687 * optimized for the cases when header is void. */
688 #ifdef NET_SKBUFF_DATA_USES_OFFSET
689 memcpy(data + nhead, skb->head, skb->tail);
691 memcpy(data + nhead, skb->head, skb->tail - skb->head);
693 memcpy(data + size, skb_end_pointer(skb),
694 sizeof(struct skb_shared_info));
696 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
697 get_page(skb_shinfo(skb)->frags[i].page);
699 if (skb_shinfo(skb)->frag_list)
700 skb_clone_fraglist(skb);
702 skb_release_data(skb);
704 off = (data + nhead) - skb->head;
708 #ifdef NET_SKBUFF_DATA_USES_OFFSET
712 skb->end = skb->head + size;
714 /* {transport,network,mac}_header and tail are relative to skb->head */
716 skb->transport_header += off;
717 skb->network_header += off;
718 skb->mac_header += off;
719 skb->csum_start += nhead;
723 atomic_set(&skb_shinfo(skb)->dataref, 1);
730 /* Make private copy of skb with writable head and some headroom */
732 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
734 struct sk_buff *skb2;
735 int delta = headroom - skb_headroom(skb);
738 skb2 = pskb_copy(skb, GFP_ATOMIC);
740 skb2 = skb_clone(skb, GFP_ATOMIC);
741 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
752 * skb_copy_expand - copy and expand sk_buff
753 * @skb: buffer to copy
754 * @newheadroom: new free bytes at head
755 * @newtailroom: new free bytes at tail
756 * @gfp_mask: allocation priority
758 * Make a copy of both an &sk_buff and its data and while doing so
759 * allocate additional space.
761 * This is used when the caller wishes to modify the data and needs a
762 * private copy of the data to alter as well as more space for new fields.
763 * Returns %NULL on failure or the pointer to the buffer
764 * on success. The returned buffer has a reference count of 1.
766 * You must pass %GFP_ATOMIC as the allocation priority if this function
767 * is called from an interrupt.
769 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
770 int newheadroom, int newtailroom,
774 * Allocate the copy buffer
776 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
778 int oldheadroom = skb_headroom(skb);
779 int head_copy_len, head_copy_off;
785 skb_reserve(n, newheadroom);
787 /* Set the tail pointer and length */
788 skb_put(n, skb->len);
790 head_copy_len = oldheadroom;
792 if (newheadroom <= head_copy_len)
793 head_copy_len = newheadroom;
795 head_copy_off = newheadroom - head_copy_len;
797 /* Copy the linear header and data. */
798 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
799 skb->len + head_copy_len))
802 copy_skb_header(n, skb);
804 off = newheadroom - oldheadroom;
805 n->csum_start += off;
806 #ifdef NET_SKBUFF_DATA_USES_OFFSET
807 n->transport_header += off;
808 n->network_header += off;
809 n->mac_header += off;
816 * skb_pad - zero pad the tail of an skb
817 * @skb: buffer to pad
820 * Ensure that a buffer is followed by a padding area that is zero
821 * filled. Used by network drivers which may DMA or transfer data
822 * beyond the buffer end onto the wire.
824 * May return error in out of memory cases. The skb is freed on error.
827 int skb_pad(struct sk_buff *skb, int pad)
832 /* If the skbuff is non linear tailroom is always zero.. */
833 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
834 memset(skb->data+skb->len, 0, pad);
838 ntail = skb->data_len + pad - (skb->end - skb->tail);
839 if (likely(skb_cloned(skb) || ntail > 0)) {
840 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
845 /* FIXME: The use of this function with non-linear skb's really needs
848 err = skb_linearize(skb);
852 memset(skb->data + skb->len, 0, pad);
860 /* Trims skb to length len. It can change skb pointers.
863 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
865 struct sk_buff **fragp;
866 struct sk_buff *frag;
867 int offset = skb_headlen(skb);
868 int nfrags = skb_shinfo(skb)->nr_frags;
872 if (skb_cloned(skb) &&
873 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
880 for (; i < nfrags; i++) {
881 int end = offset + skb_shinfo(skb)->frags[i].size;
888 skb_shinfo(skb)->frags[i++].size = len - offset;
891 skb_shinfo(skb)->nr_frags = i;
893 for (; i < nfrags; i++)
894 put_page(skb_shinfo(skb)->frags[i].page);
896 if (skb_shinfo(skb)->frag_list)
897 skb_drop_fraglist(skb);
901 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
902 fragp = &frag->next) {
903 int end = offset + frag->len;
905 if (skb_shared(frag)) {
906 struct sk_buff *nfrag;
908 nfrag = skb_clone(frag, GFP_ATOMIC);
909 if (unlikely(!nfrag))
912 nfrag->next = frag->next;
924 unlikely((err = pskb_trim(frag, len - offset))))
928 skb_drop_list(&frag->next);
933 if (len > skb_headlen(skb)) {
934 skb->data_len -= skb->len - len;
939 skb_set_tail_pointer(skb, len);
946 * __pskb_pull_tail - advance tail of skb header
947 * @skb: buffer to reallocate
948 * @delta: number of bytes to advance tail
950 * The function makes a sense only on a fragmented &sk_buff,
951 * it expands header moving its tail forward and copying necessary
952 * data from fragmented part.
954 * &sk_buff MUST have reference count of 1.
956 * Returns %NULL (and &sk_buff does not change) if pull failed
957 * or value of new tail of skb in the case of success.
959 * All the pointers pointing into skb header may change and must be
960 * reloaded after call to this function.
963 /* Moves tail of skb head forward, copying data from fragmented part,
964 * when it is necessary.
965 * 1. It may fail due to malloc failure.
966 * 2. It may change skb pointers.
968 * It is pretty complicated. Luckily, it is called only in exceptional cases.
970 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
972 /* If skb has not enough free space at tail, get new one
973 * plus 128 bytes for future expansions. If we have enough
974 * room at tail, reallocate without expansion only if skb is cloned.
976 int i, k, eat = (skb->tail + delta) - skb->end;
978 if (eat > 0 || skb_cloned(skb)) {
979 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
984 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
987 /* Optimization: no fragments, no reasons to preestimate
988 * size of pulled pages. Superb.
990 if (!skb_shinfo(skb)->frag_list)
993 /* Estimate size of pulled pages. */
995 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
996 if (skb_shinfo(skb)->frags[i].size >= eat)
998 eat -= skb_shinfo(skb)->frags[i].size;
1001 /* If we need update frag list, we are in troubles.
1002 * Certainly, it possible to add an offset to skb data,
1003 * but taking into account that pulling is expected to
1004 * be very rare operation, it is worth to fight against
1005 * further bloating skb head and crucify ourselves here instead.
1006 * Pure masohism, indeed. 8)8)
1009 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1010 struct sk_buff *clone = NULL;
1011 struct sk_buff *insp = NULL;
1016 if (list->len <= eat) {
1017 /* Eaten as whole. */
1022 /* Eaten partially. */
1024 if (skb_shared(list)) {
1025 /* Sucks! We need to fork list. :-( */
1026 clone = skb_clone(list, GFP_ATOMIC);
1032 /* This may be pulled without
1036 if (!pskb_pull(list, eat)) {
1045 /* Free pulled out fragments. */
1046 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1047 skb_shinfo(skb)->frag_list = list->next;
1050 /* And insert new clone at head. */
1053 skb_shinfo(skb)->frag_list = clone;
1056 /* Success! Now we may commit changes to skb data. */
1061 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1062 if (skb_shinfo(skb)->frags[i].size <= eat) {
1063 put_page(skb_shinfo(skb)->frags[i].page);
1064 eat -= skb_shinfo(skb)->frags[i].size;
1066 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1068 skb_shinfo(skb)->frags[k].page_offset += eat;
1069 skb_shinfo(skb)->frags[k].size -= eat;
1075 skb_shinfo(skb)->nr_frags = k;
1078 skb->data_len -= delta;
1080 return skb_tail_pointer(skb);
1083 /* Copy some data bits from skb to kernel buffer. */
1085 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1088 int start = skb_headlen(skb);
1090 if (offset > (int)skb->len - len)
1094 if ((copy = start - offset) > 0) {
1097 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1098 if ((len -= copy) == 0)
1104 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1107 BUG_TRAP(start <= offset + len);
1109 end = start + skb_shinfo(skb)->frags[i].size;
1110 if ((copy = end - offset) > 0) {
1116 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1118 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1119 offset - start, copy);
1120 kunmap_skb_frag(vaddr);
1122 if ((len -= copy) == 0)
1130 if (skb_shinfo(skb)->frag_list) {
1131 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1133 for (; list; list = list->next) {
1136 BUG_TRAP(start <= offset + len);
1138 end = start + list->len;
1139 if ((copy = end - offset) > 0) {
1142 if (skb_copy_bits(list, offset - start,
1145 if ((len -= copy) == 0)
1161 * Callback from splice_to_pipe(), if we need to release some pages
1162 * at the end of the spd in case we error'ed out in filling the pipe.
1164 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1166 struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private;
1172 * Fill page/offset/length into spd, if it can hold more pages.
1174 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1175 unsigned int len, unsigned int offset,
1176 struct sk_buff *skb)
1178 if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1181 spd->pages[spd->nr_pages] = page;
1182 spd->partial[spd->nr_pages].len = len;
1183 spd->partial[spd->nr_pages].offset = offset;
1184 spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb);
1190 * Map linear and fragment data from the skb to spd. Returns number of
1193 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1194 unsigned int *total_len,
1195 struct splice_pipe_desc *spd)
1197 unsigned int nr_pages = spd->nr_pages;
1198 unsigned int poff, plen, len, toff, tlen;
1207 * if the offset is greater than the linear part, go directly to
1210 headlen = skb_headlen(skb);
1211 if (toff >= headlen) {
1217 * first map the linear region into the pages/partial map, skipping
1218 * any potential initial offset.
1221 while (len < headlen) {
1222 void *p = skb->data + len;
1224 poff = (unsigned long) p & (PAGE_SIZE - 1);
1225 plen = min_t(unsigned int, headlen - len, PAGE_SIZE - poff);
1238 plen = min(plen, tlen);
1243 * just jump directly to update and return, no point
1244 * in going over fragments when the output is full.
1246 if (spd_fill_page(spd, virt_to_page(p), plen, poff, skb))
1253 * then map the fragments
1256 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1257 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1260 poff = f->page_offset;
1272 plen = min(plen, tlen);
1276 if (spd_fill_page(spd, f->page, plen, poff, skb))
1283 if (spd->nr_pages - nr_pages) {
1293 * Map data from the skb to a pipe. Should handle both the linear part,
1294 * the fragments, and the frag list. It does NOT handle frag lists within
1295 * the frag list, if such a thing exists. We'd probably need to recurse to
1296 * handle that cleanly.
1298 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset,
1299 struct pipe_inode_info *pipe, unsigned int tlen,
1302 struct partial_page partial[PIPE_BUFFERS];
1303 struct page *pages[PIPE_BUFFERS];
1304 struct splice_pipe_desc spd = {
1308 .ops = &sock_pipe_buf_ops,
1309 .spd_release = sock_spd_release,
1311 struct sk_buff *skb;
1314 * I'd love to avoid the clone here, but tcp_read_sock()
1315 * ignores reference counts and unconditonally kills the sk_buff
1316 * on return from the actor.
1318 skb = skb_clone(__skb, GFP_KERNEL);
1323 * __skb_splice_bits() only fails if the output has no room left,
1324 * so no point in going over the frag_list for the error case.
1326 if (__skb_splice_bits(skb, &offset, &tlen, &spd))
1332 * now see if we have a frag_list to map
1334 if (skb_shinfo(skb)->frag_list) {
1335 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1337 for (; list && tlen; list = list->next) {
1338 if (__skb_splice_bits(list, &offset, &tlen, &spd))
1345 * drop our reference to the clone, the pipe consumption will
1354 * Drop the socket lock, otherwise we have reverse
1355 * locking dependencies between sk_lock and i_mutex
1356 * here as compared to sendfile(). We enter here
1357 * with the socket lock held, and splice_to_pipe() will
1358 * grab the pipe inode lock. For sendfile() emulation,
1359 * we call into ->sendpage() with the i_mutex lock held
1360 * and networking will grab the socket lock.
1362 release_sock(__skb->sk);
1363 ret = splice_to_pipe(pipe, &spd);
1364 lock_sock(__skb->sk);
1372 * skb_store_bits - store bits from kernel buffer to skb
1373 * @skb: destination buffer
1374 * @offset: offset in destination
1375 * @from: source buffer
1376 * @len: number of bytes to copy
1378 * Copy the specified number of bytes from the source buffer to the
1379 * destination skb. This function handles all the messy bits of
1380 * traversing fragment lists and such.
1383 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1386 int start = skb_headlen(skb);
1388 if (offset > (int)skb->len - len)
1391 if ((copy = start - offset) > 0) {
1394 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1395 if ((len -= copy) == 0)
1401 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1402 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1405 BUG_TRAP(start <= offset + len);
1407 end = start + frag->size;
1408 if ((copy = end - offset) > 0) {
1414 vaddr = kmap_skb_frag(frag);
1415 memcpy(vaddr + frag->page_offset + offset - start,
1417 kunmap_skb_frag(vaddr);
1419 if ((len -= copy) == 0)
1427 if (skb_shinfo(skb)->frag_list) {
1428 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1430 for (; list; list = list->next) {
1433 BUG_TRAP(start <= offset + len);
1435 end = start + list->len;
1436 if ((copy = end - offset) > 0) {
1439 if (skb_store_bits(list, offset - start,
1442 if ((len -= copy) == 0)
1457 EXPORT_SYMBOL(skb_store_bits);
1459 /* Checksum skb data. */
1461 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1462 int len, __wsum csum)
1464 int start = skb_headlen(skb);
1465 int i, copy = start - offset;
1468 /* Checksum header. */
1472 csum = csum_partial(skb->data + offset, copy, csum);
1473 if ((len -= copy) == 0)
1479 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1482 BUG_TRAP(start <= offset + len);
1484 end = start + skb_shinfo(skb)->frags[i].size;
1485 if ((copy = end - offset) > 0) {
1488 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1492 vaddr = kmap_skb_frag(frag);
1493 csum2 = csum_partial(vaddr + frag->page_offset +
1494 offset - start, copy, 0);
1495 kunmap_skb_frag(vaddr);
1496 csum = csum_block_add(csum, csum2, pos);
1505 if (skb_shinfo(skb)->frag_list) {
1506 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1508 for (; list; list = list->next) {
1511 BUG_TRAP(start <= offset + len);
1513 end = start + list->len;
1514 if ((copy = end - offset) > 0) {
1518 csum2 = skb_checksum(list, offset - start,
1520 csum = csum_block_add(csum, csum2, pos);
1521 if ((len -= copy) == 0)
1534 /* Both of above in one bottle. */
1536 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1537 u8 *to, int len, __wsum csum)
1539 int start = skb_headlen(skb);
1540 int i, copy = start - offset;
1547 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1549 if ((len -= copy) == 0)
1556 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1559 BUG_TRAP(start <= offset + len);
1561 end = start + skb_shinfo(skb)->frags[i].size;
1562 if ((copy = end - offset) > 0) {
1565 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1569 vaddr = kmap_skb_frag(frag);
1570 csum2 = csum_partial_copy_nocheck(vaddr +
1574 kunmap_skb_frag(vaddr);
1575 csum = csum_block_add(csum, csum2, pos);
1585 if (skb_shinfo(skb)->frag_list) {
1586 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1588 for (; list; list = list->next) {
1592 BUG_TRAP(start <= offset + len);
1594 end = start + list->len;
1595 if ((copy = end - offset) > 0) {
1598 csum2 = skb_copy_and_csum_bits(list,
1601 csum = csum_block_add(csum, csum2, pos);
1602 if ((len -= copy) == 0)
1615 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1620 if (skb->ip_summed == CHECKSUM_PARTIAL)
1621 csstart = skb->csum_start - skb_headroom(skb);
1623 csstart = skb_headlen(skb);
1625 BUG_ON(csstart > skb_headlen(skb));
1627 skb_copy_from_linear_data(skb, to, csstart);
1630 if (csstart != skb->len)
1631 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1632 skb->len - csstart, 0);
1634 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1635 long csstuff = csstart + skb->csum_offset;
1637 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1642 * skb_dequeue - remove from the head of the queue
1643 * @list: list to dequeue from
1645 * Remove the head of the list. The list lock is taken so the function
1646 * may be used safely with other locking list functions. The head item is
1647 * returned or %NULL if the list is empty.
1650 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1652 unsigned long flags;
1653 struct sk_buff *result;
1655 spin_lock_irqsave(&list->lock, flags);
1656 result = __skb_dequeue(list);
1657 spin_unlock_irqrestore(&list->lock, flags);
1662 * skb_dequeue_tail - remove from the tail of the queue
1663 * @list: list to dequeue from
1665 * Remove the tail of the list. The list lock is taken so the function
1666 * may be used safely with other locking list functions. The tail item is
1667 * returned or %NULL if the list is empty.
1669 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1671 unsigned long flags;
1672 struct sk_buff *result;
1674 spin_lock_irqsave(&list->lock, flags);
1675 result = __skb_dequeue_tail(list);
1676 spin_unlock_irqrestore(&list->lock, flags);
1681 * skb_queue_purge - empty a list
1682 * @list: list to empty
1684 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1685 * the list and one reference dropped. This function takes the list
1686 * lock and is atomic with respect to other list locking functions.
1688 void skb_queue_purge(struct sk_buff_head *list)
1690 struct sk_buff *skb;
1691 while ((skb = skb_dequeue(list)) != NULL)
1696 * skb_queue_head - queue a buffer at the list head
1697 * @list: list to use
1698 * @newsk: buffer to queue
1700 * Queue a buffer at the start of the list. This function takes the
1701 * list lock and can be used safely with other locking &sk_buff functions
1704 * A buffer cannot be placed on two lists at the same time.
1706 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1708 unsigned long flags;
1710 spin_lock_irqsave(&list->lock, flags);
1711 __skb_queue_head(list, newsk);
1712 spin_unlock_irqrestore(&list->lock, flags);
1716 * skb_queue_tail - queue a buffer at the list tail
1717 * @list: list to use
1718 * @newsk: buffer to queue
1720 * Queue a buffer at the tail of the list. This function takes the
1721 * list lock and can be used safely with other locking &sk_buff functions
1724 * A buffer cannot be placed on two lists at the same time.
1726 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1728 unsigned long flags;
1730 spin_lock_irqsave(&list->lock, flags);
1731 __skb_queue_tail(list, newsk);
1732 spin_unlock_irqrestore(&list->lock, flags);
1736 * skb_unlink - remove a buffer from a list
1737 * @skb: buffer to remove
1738 * @list: list to use
1740 * Remove a packet from a list. The list locks are taken and this
1741 * function is atomic with respect to other list locked calls
1743 * You must know what list the SKB is on.
1745 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1747 unsigned long flags;
1749 spin_lock_irqsave(&list->lock, flags);
1750 __skb_unlink(skb, list);
1751 spin_unlock_irqrestore(&list->lock, flags);
1755 * skb_append - append a buffer
1756 * @old: buffer to insert after
1757 * @newsk: buffer to insert
1758 * @list: list to use
1760 * Place a packet after a given packet in a list. The list locks are taken
1761 * and this function is atomic with respect to other list locked calls.
1762 * A buffer cannot be placed on two lists at the same time.
1764 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1766 unsigned long flags;
1768 spin_lock_irqsave(&list->lock, flags);
1769 __skb_append(old, newsk, list);
1770 spin_unlock_irqrestore(&list->lock, flags);
1775 * skb_insert - insert a buffer
1776 * @old: buffer to insert before
1777 * @newsk: buffer to insert
1778 * @list: list to use
1780 * Place a packet before a given packet in a list. The list locks are
1781 * taken and this function is atomic with respect to other list locked
1784 * A buffer cannot be placed on two lists at the same time.
1786 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1788 unsigned long flags;
1790 spin_lock_irqsave(&list->lock, flags);
1791 __skb_insert(newsk, old->prev, old, list);
1792 spin_unlock_irqrestore(&list->lock, flags);
1795 static inline void skb_split_inside_header(struct sk_buff *skb,
1796 struct sk_buff* skb1,
1797 const u32 len, const int pos)
1801 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1803 /* And move data appendix as is. */
1804 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1805 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1807 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1808 skb_shinfo(skb)->nr_frags = 0;
1809 skb1->data_len = skb->data_len;
1810 skb1->len += skb1->data_len;
1813 skb_set_tail_pointer(skb, len);
1816 static inline void skb_split_no_header(struct sk_buff *skb,
1817 struct sk_buff* skb1,
1818 const u32 len, int pos)
1821 const int nfrags = skb_shinfo(skb)->nr_frags;
1823 skb_shinfo(skb)->nr_frags = 0;
1824 skb1->len = skb1->data_len = skb->len - len;
1826 skb->data_len = len - pos;
1828 for (i = 0; i < nfrags; i++) {
1829 int size = skb_shinfo(skb)->frags[i].size;
1831 if (pos + size > len) {
1832 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1836 * We have two variants in this case:
1837 * 1. Move all the frag to the second
1838 * part, if it is possible. F.e.
1839 * this approach is mandatory for TUX,
1840 * where splitting is expensive.
1841 * 2. Split is accurately. We make this.
1843 get_page(skb_shinfo(skb)->frags[i].page);
1844 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1845 skb_shinfo(skb1)->frags[0].size -= len - pos;
1846 skb_shinfo(skb)->frags[i].size = len - pos;
1847 skb_shinfo(skb)->nr_frags++;
1851 skb_shinfo(skb)->nr_frags++;
1854 skb_shinfo(skb1)->nr_frags = k;
1858 * skb_split - Split fragmented skb to two parts at length len.
1859 * @skb: the buffer to split
1860 * @skb1: the buffer to receive the second part
1861 * @len: new length for skb
1863 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1865 int pos = skb_headlen(skb);
1867 if (len < pos) /* Split line is inside header. */
1868 skb_split_inside_header(skb, skb1, len, pos);
1869 else /* Second chunk has no header, nothing to copy. */
1870 skb_split_no_header(skb, skb1, len, pos);
1874 * skb_prepare_seq_read - Prepare a sequential read of skb data
1875 * @skb: the buffer to read
1876 * @from: lower offset of data to be read
1877 * @to: upper offset of data to be read
1878 * @st: state variable
1880 * Initializes the specified state variable. Must be called before
1881 * invoking skb_seq_read() for the first time.
1883 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1884 unsigned int to, struct skb_seq_state *st)
1886 st->lower_offset = from;
1887 st->upper_offset = to;
1888 st->root_skb = st->cur_skb = skb;
1889 st->frag_idx = st->stepped_offset = 0;
1890 st->frag_data = NULL;
1894 * skb_seq_read - Sequentially read skb data
1895 * @consumed: number of bytes consumed by the caller so far
1896 * @data: destination pointer for data to be returned
1897 * @st: state variable
1899 * Reads a block of skb data at &consumed relative to the
1900 * lower offset specified to skb_prepare_seq_read(). Assigns
1901 * the head of the data block to &data and returns the length
1902 * of the block or 0 if the end of the skb data or the upper
1903 * offset has been reached.
1905 * The caller is not required to consume all of the data
1906 * returned, i.e. &consumed is typically set to the number
1907 * of bytes already consumed and the next call to
1908 * skb_seq_read() will return the remaining part of the block.
1910 * Note: The size of each block of data returned can be arbitary,
1911 * this limitation is the cost for zerocopy seqeuental
1912 * reads of potentially non linear data.
1914 * Note: Fragment lists within fragments are not implemented
1915 * at the moment, state->root_skb could be replaced with
1916 * a stack for this purpose.
1918 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1919 struct skb_seq_state *st)
1921 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1924 if (unlikely(abs_offset >= st->upper_offset))
1928 block_limit = skb_headlen(st->cur_skb);
1930 if (abs_offset < block_limit) {
1931 *data = st->cur_skb->data + abs_offset;
1932 return block_limit - abs_offset;
1935 if (st->frag_idx == 0 && !st->frag_data)
1936 st->stepped_offset += skb_headlen(st->cur_skb);
1938 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1939 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1940 block_limit = frag->size + st->stepped_offset;
1942 if (abs_offset < block_limit) {
1944 st->frag_data = kmap_skb_frag(frag);
1946 *data = (u8 *) st->frag_data + frag->page_offset +
1947 (abs_offset - st->stepped_offset);
1949 return block_limit - abs_offset;
1952 if (st->frag_data) {
1953 kunmap_skb_frag(st->frag_data);
1954 st->frag_data = NULL;
1958 st->stepped_offset += frag->size;
1961 if (st->frag_data) {
1962 kunmap_skb_frag(st->frag_data);
1963 st->frag_data = NULL;
1966 if (st->cur_skb->next) {
1967 st->cur_skb = st->cur_skb->next;
1970 } else if (st->root_skb == st->cur_skb &&
1971 skb_shinfo(st->root_skb)->frag_list) {
1972 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1980 * skb_abort_seq_read - Abort a sequential read of skb data
1981 * @st: state variable
1983 * Must be called if skb_seq_read() was not called until it
1986 void skb_abort_seq_read(struct skb_seq_state *st)
1989 kunmap_skb_frag(st->frag_data);
1992 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1994 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1995 struct ts_config *conf,
1996 struct ts_state *state)
1998 return skb_seq_read(offset, text, TS_SKB_CB(state));
2001 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2003 skb_abort_seq_read(TS_SKB_CB(state));
2007 * skb_find_text - Find a text pattern in skb data
2008 * @skb: the buffer to look in
2009 * @from: search offset
2011 * @config: textsearch configuration
2012 * @state: uninitialized textsearch state variable
2014 * Finds a pattern in the skb data according to the specified
2015 * textsearch configuration. Use textsearch_next() to retrieve
2016 * subsequent occurrences of the pattern. Returns the offset
2017 * to the first occurrence or UINT_MAX if no match was found.
2019 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2020 unsigned int to, struct ts_config *config,
2021 struct ts_state *state)
2025 config->get_next_block = skb_ts_get_next_block;
2026 config->finish = skb_ts_finish;
2028 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2030 ret = textsearch_find(config, state);
2031 return (ret <= to - from ? ret : UINT_MAX);
2035 * skb_append_datato_frags: - append the user data to a skb
2036 * @sk: sock structure
2037 * @skb: skb structure to be appened with user data.
2038 * @getfrag: call back function to be used for getting the user data
2039 * @from: pointer to user message iov
2040 * @length: length of the iov message
2042 * Description: This procedure append the user data in the fragment part
2043 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2045 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2046 int (*getfrag)(void *from, char *to, int offset,
2047 int len, int odd, struct sk_buff *skb),
2048 void *from, int length)
2051 skb_frag_t *frag = NULL;
2052 struct page *page = NULL;
2058 /* Return error if we don't have space for new frag */
2059 frg_cnt = skb_shinfo(skb)->nr_frags;
2060 if (frg_cnt >= MAX_SKB_FRAGS)
2063 /* allocate a new page for next frag */
2064 page = alloc_pages(sk->sk_allocation, 0);
2066 /* If alloc_page fails just return failure and caller will
2067 * free previous allocated pages by doing kfree_skb()
2072 /* initialize the next frag */
2073 sk->sk_sndmsg_page = page;
2074 sk->sk_sndmsg_off = 0;
2075 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2076 skb->truesize += PAGE_SIZE;
2077 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2079 /* get the new initialized frag */
2080 frg_cnt = skb_shinfo(skb)->nr_frags;
2081 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2083 /* copy the user data to page */
2084 left = PAGE_SIZE - frag->page_offset;
2085 copy = (length > left)? left : length;
2087 ret = getfrag(from, (page_address(frag->page) +
2088 frag->page_offset + frag->size),
2089 offset, copy, 0, skb);
2093 /* copy was successful so update the size parameters */
2094 sk->sk_sndmsg_off += copy;
2097 skb->data_len += copy;
2101 } while (length > 0);
2107 * skb_pull_rcsum - pull skb and update receive checksum
2108 * @skb: buffer to update
2109 * @start: start of data before pull
2110 * @len: length of data pulled
2112 * This function performs an skb_pull on the packet and updates
2113 * update the CHECKSUM_COMPLETE checksum. It should be used on
2114 * receive path processing instead of skb_pull unless you know
2115 * that the checksum difference is zero (e.g., a valid IP header)
2116 * or you are setting ip_summed to CHECKSUM_NONE.
2118 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2120 BUG_ON(len > skb->len);
2122 BUG_ON(skb->len < skb->data_len);
2123 skb_postpull_rcsum(skb, skb->data, len);
2124 return skb->data += len;
2127 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2130 * skb_segment - Perform protocol segmentation on skb.
2131 * @skb: buffer to segment
2132 * @features: features for the output path (see dev->features)
2134 * This function performs segmentation on the given skb. It returns
2135 * the segment at the given position. It returns NULL if there are
2136 * no more segments to generate, or when an error is encountered.
2138 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2140 struct sk_buff *segs = NULL;
2141 struct sk_buff *tail = NULL;
2142 unsigned int mss = skb_shinfo(skb)->gso_size;
2143 unsigned int doffset = skb->data - skb_mac_header(skb);
2144 unsigned int offset = doffset;
2145 unsigned int headroom;
2147 int sg = features & NETIF_F_SG;
2148 int nfrags = skb_shinfo(skb)->nr_frags;
2153 __skb_push(skb, doffset);
2154 headroom = skb_headroom(skb);
2155 pos = skb_headlen(skb);
2158 struct sk_buff *nskb;
2164 len = skb->len - offset;
2168 hsize = skb_headlen(skb) - offset;
2171 if (hsize > len || !sg)
2174 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
2175 if (unlikely(!nskb))
2184 nskb->dev = skb->dev;
2185 skb_copy_queue_mapping(nskb, skb);
2186 nskb->priority = skb->priority;
2187 nskb->protocol = skb->protocol;
2188 nskb->dst = dst_clone(skb->dst);
2189 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
2190 nskb->pkt_type = skb->pkt_type;
2191 nskb->mac_len = skb->mac_len;
2193 skb_reserve(nskb, headroom);
2194 skb_reset_mac_header(nskb);
2195 skb_set_network_header(nskb, skb->mac_len);
2196 nskb->transport_header = (nskb->network_header +
2197 skb_network_header_len(skb));
2198 skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
2201 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2207 frag = skb_shinfo(nskb)->frags;
2210 nskb->ip_summed = CHECKSUM_PARTIAL;
2211 nskb->csum = skb->csum;
2212 skb_copy_from_linear_data_offset(skb, offset,
2213 skb_put(nskb, hsize), hsize);
2215 while (pos < offset + len) {
2216 BUG_ON(i >= nfrags);
2218 *frag = skb_shinfo(skb)->frags[i];
2219 get_page(frag->page);
2223 frag->page_offset += offset - pos;
2224 frag->size -= offset - pos;
2229 if (pos + size <= offset + len) {
2233 frag->size -= pos + size - (offset + len);
2240 skb_shinfo(nskb)->nr_frags = k;
2241 nskb->data_len = len - hsize;
2242 nskb->len += nskb->data_len;
2243 nskb->truesize += nskb->data_len;
2244 } while ((offset += len) < skb->len);
2249 while ((skb = segs)) {
2253 return ERR_PTR(err);
2256 EXPORT_SYMBOL_GPL(skb_segment);
2258 void __init skb_init(void)
2260 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2261 sizeof(struct sk_buff),
2263 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2265 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2266 (2*sizeof(struct sk_buff)) +
2269 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2274 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2275 * @skb: Socket buffer containing the buffers to be mapped
2276 * @sg: The scatter-gather list to map into
2277 * @offset: The offset into the buffer's contents to start mapping
2278 * @len: Length of buffer space to be mapped
2280 * Fill the specified scatter-gather list with mappings/pointers into a
2281 * region of the buffer space attached to a socket buffer.
2284 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2286 int start = skb_headlen(skb);
2287 int i, copy = start - offset;
2293 sg_set_buf(sg, skb->data + offset, copy);
2295 if ((len -= copy) == 0)
2300 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2303 BUG_TRAP(start <= offset + len);
2305 end = start + skb_shinfo(skb)->frags[i].size;
2306 if ((copy = end - offset) > 0) {
2307 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2311 sg_set_page(&sg[elt], frag->page, copy,
2312 frag->page_offset+offset-start);
2321 if (skb_shinfo(skb)->frag_list) {
2322 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2324 for (; list; list = list->next) {
2327 BUG_TRAP(start <= offset + len);
2329 end = start + list->len;
2330 if ((copy = end - offset) > 0) {
2333 elt += __skb_to_sgvec(list, sg+elt, offset - start,
2335 if ((len -= copy) == 0)
2346 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2348 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2350 sg_mark_end(&sg[nsg - 1]);
2356 * skb_cow_data - Check that a socket buffer's data buffers are writable
2357 * @skb: The socket buffer to check.
2358 * @tailbits: Amount of trailing space to be added
2359 * @trailer: Returned pointer to the skb where the @tailbits space begins
2361 * Make sure that the data buffers attached to a socket buffer are
2362 * writable. If they are not, private copies are made of the data buffers
2363 * and the socket buffer is set to use these instead.
2365 * If @tailbits is given, make sure that there is space to write @tailbits
2366 * bytes of data beyond current end of socket buffer. @trailer will be
2367 * set to point to the skb in which this space begins.
2369 * The number of scatterlist elements required to completely map the
2370 * COW'd and extended socket buffer will be returned.
2372 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2376 struct sk_buff *skb1, **skb_p;
2378 /* If skb is cloned or its head is paged, reallocate
2379 * head pulling out all the pages (pages are considered not writable
2380 * at the moment even if they are anonymous).
2382 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2383 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2386 /* Easy case. Most of packets will go this way. */
2387 if (!skb_shinfo(skb)->frag_list) {
2388 /* A little of trouble, not enough of space for trailer.
2389 * This should not happen, when stack is tuned to generate
2390 * good frames. OK, on miss we reallocate and reserve even more
2391 * space, 128 bytes is fair. */
2393 if (skb_tailroom(skb) < tailbits &&
2394 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2402 /* Misery. We are in troubles, going to mincer fragments... */
2405 skb_p = &skb_shinfo(skb)->frag_list;
2408 while ((skb1 = *skb_p) != NULL) {
2411 /* The fragment is partially pulled by someone,
2412 * this can happen on input. Copy it and everything
2415 if (skb_shared(skb1))
2418 /* If the skb is the last, worry about trailer. */
2420 if (skb1->next == NULL && tailbits) {
2421 if (skb_shinfo(skb1)->nr_frags ||
2422 skb_shinfo(skb1)->frag_list ||
2423 skb_tailroom(skb1) < tailbits)
2424 ntail = tailbits + 128;
2430 skb_shinfo(skb1)->nr_frags ||
2431 skb_shinfo(skb1)->frag_list) {
2432 struct sk_buff *skb2;
2434 /* Fuck, we are miserable poor guys... */
2436 skb2 = skb_copy(skb1, GFP_ATOMIC);
2438 skb2 = skb_copy_expand(skb1,
2442 if (unlikely(skb2 == NULL))
2446 skb_set_owner_w(skb2, skb1->sk);
2448 /* Looking around. Are we still alive?
2449 * OK, link new skb, drop old one */
2451 skb2->next = skb1->next;
2458 skb_p = &skb1->next;
2464 EXPORT_SYMBOL(___pskb_trim);
2465 EXPORT_SYMBOL(__kfree_skb);
2466 EXPORT_SYMBOL(kfree_skb);
2467 EXPORT_SYMBOL(__pskb_pull_tail);
2468 EXPORT_SYMBOL(__alloc_skb);
2469 EXPORT_SYMBOL(__netdev_alloc_skb);
2470 EXPORT_SYMBOL(pskb_copy);
2471 EXPORT_SYMBOL(pskb_expand_head);
2472 EXPORT_SYMBOL(skb_checksum);
2473 EXPORT_SYMBOL(skb_clone);
2474 EXPORT_SYMBOL(skb_copy);
2475 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2476 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2477 EXPORT_SYMBOL(skb_copy_bits);
2478 EXPORT_SYMBOL(skb_copy_expand);
2479 EXPORT_SYMBOL(skb_over_panic);
2480 EXPORT_SYMBOL(skb_pad);
2481 EXPORT_SYMBOL(skb_realloc_headroom);
2482 EXPORT_SYMBOL(skb_under_panic);
2483 EXPORT_SYMBOL(skb_dequeue);
2484 EXPORT_SYMBOL(skb_dequeue_tail);
2485 EXPORT_SYMBOL(skb_insert);
2486 EXPORT_SYMBOL(skb_queue_purge);
2487 EXPORT_SYMBOL(skb_queue_head);
2488 EXPORT_SYMBOL(skb_queue_tail);
2489 EXPORT_SYMBOL(skb_unlink);
2490 EXPORT_SYMBOL(skb_append);
2491 EXPORT_SYMBOL(skb_split);
2492 EXPORT_SYMBOL(skb_prepare_seq_read);
2493 EXPORT_SYMBOL(skb_seq_read);
2494 EXPORT_SYMBOL(skb_abort_seq_read);
2495 EXPORT_SYMBOL(skb_find_text);
2496 EXPORT_SYMBOL(skb_append_datato_frags);
2498 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2499 EXPORT_SYMBOL_GPL(skb_cow_data);