Merge branches 'release', 'bugzilla-12011', 'bugzilla-12632', 'misc' and 'suspend...
[linux-2.6] / arch / x86 / kernel / cpu / cpufreq / powernow-k8.c
1 /*
2  *   (c) 2003-2006 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Support : mark.langsdorf@amd.com
8  *
9  *  Based on the powernow-k7.c module written by Dave Jones.
10  *  (C) 2003 Dave Jones on behalf of SuSE Labs
11  *  (C) 2004 Dominik Brodowski <linux@brodo.de>
12  *  (C) 2004 Pavel Machek <pavel@suse.cz>
13  *  Licensed under the terms of the GNU GPL License version 2.
14  *  Based upon datasheets & sample CPUs kindly provided by AMD.
15  *
16  *  Valuable input gratefully received from Dave Jones, Pavel Machek,
17  *  Dominik Brodowski, Jacob Shin, and others.
18  *  Originally developed by Paul Devriendt.
19  *  Processor information obtained from Chapter 9 (Power and Thermal Management)
20  *  of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21  *  Opteron Processors" available for download from www.amd.com
22  *
23  *  Tables for specific CPUs can be inferred from
24  *     http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h>        /* for current / set_cpus_allowed() */
36
37 #include <asm/msr.h>
38 #include <asm/io.h>
39 #include <asm/delay.h>
40
41 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
42 #include <linux/acpi.h>
43 #include <linux/mutex.h>
44 #include <acpi/processor.h>
45 #endif
46
47 #define PFX "powernow-k8: "
48 #define VERSION "version 2.20.00"
49 #include "powernow-k8.h"
50
51 /* serialize freq changes  */
52 static DEFINE_MUTEX(fidvid_mutex);
53
54 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
55
56 static int cpu_family = CPU_OPTERON;
57
58 #ifndef CONFIG_SMP
59 DEFINE_PER_CPU(cpumask_t, cpu_core_map);
60 #endif
61
62 /* Return a frequency in MHz, given an input fid */
63 static u32 find_freq_from_fid(u32 fid)
64 {
65         return 800 + (fid * 100);
66 }
67
68 /* Return a frequency in KHz, given an input fid */
69 static u32 find_khz_freq_from_fid(u32 fid)
70 {
71         return 1000 * find_freq_from_fid(fid);
72 }
73
74 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data, u32 pstate)
75 {
76         return data[pstate].frequency;
77 }
78
79 /* Return the vco fid for an input fid
80  *
81  * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
82  * only from corresponding high fids. This returns "high" fid corresponding to
83  * "low" one.
84  */
85 static u32 convert_fid_to_vco_fid(u32 fid)
86 {
87         if (fid < HI_FID_TABLE_BOTTOM)
88                 return 8 + (2 * fid);
89         else
90                 return fid;
91 }
92
93 /*
94  * Return 1 if the pending bit is set. Unless we just instructed the processor
95  * to transition to a new state, seeing this bit set is really bad news.
96  */
97 static int pending_bit_stuck(void)
98 {
99         u32 lo, hi;
100
101         if (cpu_family == CPU_HW_PSTATE)
102                 return 0;
103
104         rdmsr(MSR_FIDVID_STATUS, lo, hi);
105         return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
106 }
107
108 /*
109  * Update the global current fid / vid values from the status msr.
110  * Returns 1 on error.
111  */
112 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
113 {
114         u32 lo, hi;
115         u32 i = 0;
116
117         if (cpu_family == CPU_HW_PSTATE) {
118                 if (data->currpstate == HW_PSTATE_INVALID) {
119                         /* read (initial) hw pstate if not yet set */
120                         rdmsr(MSR_PSTATE_STATUS, lo, hi);
121                         i = lo & HW_PSTATE_MASK;
122
123                         /*
124                          * a workaround for family 11h erratum 311 might cause
125                          * an "out-of-range Pstate if the core is in Pstate-0
126                          */
127                         if (i >= data->numps)
128                                 data->currpstate = HW_PSTATE_0;
129                         else
130                                 data->currpstate = i;
131                 }
132                 return 0;
133         }
134         do {
135                 if (i++ > 10000) {
136                         dprintk("detected change pending stuck\n");
137                         return 1;
138                 }
139                 rdmsr(MSR_FIDVID_STATUS, lo, hi);
140         } while (lo & MSR_S_LO_CHANGE_PENDING);
141
142         data->currvid = hi & MSR_S_HI_CURRENT_VID;
143         data->currfid = lo & MSR_S_LO_CURRENT_FID;
144
145         return 0;
146 }
147
148 /* the isochronous relief time */
149 static void count_off_irt(struct powernow_k8_data *data)
150 {
151         udelay((1 << data->irt) * 10);
152         return;
153 }
154
155 /* the voltage stabilization time */
156 static void count_off_vst(struct powernow_k8_data *data)
157 {
158         udelay(data->vstable * VST_UNITS_20US);
159         return;
160 }
161
162 /* need to init the control msr to a safe value (for each cpu) */
163 static void fidvid_msr_init(void)
164 {
165         u32 lo, hi;
166         u8 fid, vid;
167
168         rdmsr(MSR_FIDVID_STATUS, lo, hi);
169         vid = hi & MSR_S_HI_CURRENT_VID;
170         fid = lo & MSR_S_LO_CURRENT_FID;
171         lo = fid | (vid << MSR_C_LO_VID_SHIFT);
172         hi = MSR_C_HI_STP_GNT_BENIGN;
173         dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
174         wrmsr(MSR_FIDVID_CTL, lo, hi);
175 }
176
177 /* write the new fid value along with the other control fields to the msr */
178 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
179 {
180         u32 lo;
181         u32 savevid = data->currvid;
182         u32 i = 0;
183
184         if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
185                 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
186                 return 1;
187         }
188
189         lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
190
191         dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
192                 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
193
194         do {
195                 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
196                 if (i++ > 100) {
197                         printk(KERN_ERR PFX "Hardware error - pending bit very stuck - no further pstate changes possible\n");
198                         return 1;
199                 }
200         } while (query_current_values_with_pending_wait(data));
201
202         count_off_irt(data);
203
204         if (savevid != data->currvid) {
205                 printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n",
206                        savevid, data->currvid);
207                 return 1;
208         }
209
210         if (fid != data->currfid) {
211                 printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
212                         data->currfid);
213                 return 1;
214         }
215
216         return 0;
217 }
218
219 /* Write a new vid to the hardware */
220 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
221 {
222         u32 lo;
223         u32 savefid = data->currfid;
224         int i = 0;
225
226         if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
227                 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
228                 return 1;
229         }
230
231         lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
232
233         dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
234                 vid, lo, STOP_GRANT_5NS);
235
236         do {
237                 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
238                 if (i++ > 100) {
239                         printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
240                         return 1;
241                 }
242         } while (query_current_values_with_pending_wait(data));
243
244         if (savefid != data->currfid) {
245                 printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n",
246                        savefid, data->currfid);
247                 return 1;
248         }
249
250         if (vid != data->currvid) {
251                 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid,
252                                 data->currvid);
253                 return 1;
254         }
255
256         return 0;
257 }
258
259 /*
260  * Reduce the vid by the max of step or reqvid.
261  * Decreasing vid codes represent increasing voltages:
262  * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
263  */
264 static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
265 {
266         if ((data->currvid - reqvid) > step)
267                 reqvid = data->currvid - step;
268
269         if (write_new_vid(data, reqvid))
270                 return 1;
271
272         count_off_vst(data);
273
274         return 0;
275 }
276
277 /* Change hardware pstate by single MSR write */
278 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
279 {
280         wrmsr(MSR_PSTATE_CTRL, pstate, 0);
281         data->currpstate = pstate;
282         return 0;
283 }
284
285 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
286 static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
287 {
288         if (core_voltage_pre_transition(data, reqvid))
289                 return 1;
290
291         if (core_frequency_transition(data, reqfid))
292                 return 1;
293
294         if (core_voltage_post_transition(data, reqvid))
295                 return 1;
296
297         if (query_current_values_with_pending_wait(data))
298                 return 1;
299
300         if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
301                 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
302                                 smp_processor_id(),
303                                 reqfid, reqvid, data->currfid, data->currvid);
304                 return 1;
305         }
306
307         dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
308                 smp_processor_id(), data->currfid, data->currvid);
309
310         return 0;
311 }
312
313 /* Phase 1 - core voltage transition ... setup voltage */
314 static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
315 {
316         u32 rvosteps = data->rvo;
317         u32 savefid = data->currfid;
318         u32 maxvid, lo;
319
320         dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
321                 smp_processor_id(),
322                 data->currfid, data->currvid, reqvid, data->rvo);
323
324         rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
325         maxvid = 0x1f & (maxvid >> 16);
326         dprintk("ph1 maxvid=0x%x\n", maxvid);
327         if (reqvid < maxvid) /* lower numbers are higher voltages */
328                 reqvid = maxvid;
329
330         while (data->currvid > reqvid) {
331                 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
332                         data->currvid, reqvid);
333                 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
334                         return 1;
335         }
336
337         while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
338                 if (data->currvid == maxvid) {
339                         rvosteps = 0;
340                 } else {
341                         dprintk("ph1: changing vid for rvo, req 0x%x\n",
342                                 data->currvid - 1);
343                         if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
344                                 return 1;
345                         rvosteps--;
346                 }
347         }
348
349         if (query_current_values_with_pending_wait(data))
350                 return 1;
351
352         if (savefid != data->currfid) {
353                 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid);
354                 return 1;
355         }
356
357         dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
358                 data->currfid, data->currvid);
359
360         return 0;
361 }
362
363 /* Phase 2 - core frequency transition */
364 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
365 {
366         u32 vcoreqfid, vcocurrfid, vcofiddiff, fid_interval, savevid = data->currvid;
367
368         if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
369                 printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n",
370                         reqfid, data->currfid);
371                 return 1;
372         }
373
374         if (data->currfid == reqfid) {
375                 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid);
376                 return 0;
377         }
378
379         dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
380                 smp_processor_id(),
381                 data->currfid, data->currvid, reqfid);
382
383         vcoreqfid = convert_fid_to_vco_fid(reqfid);
384         vcocurrfid = convert_fid_to_vco_fid(data->currfid);
385         vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
386             : vcoreqfid - vcocurrfid;
387
388         while (vcofiddiff > 2) {
389                 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
390
391                 if (reqfid > data->currfid) {
392                         if (data->currfid > LO_FID_TABLE_TOP) {
393                                 if (write_new_fid(data, data->currfid + fid_interval)) {
394                                         return 1;
395                                 }
396                         } else {
397                                 if (write_new_fid
398                                     (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
399                                         return 1;
400                                 }
401                         }
402                 } else {
403                         if (write_new_fid(data, data->currfid - fid_interval))
404                                 return 1;
405                 }
406
407                 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
408                 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
409                     : vcoreqfid - vcocurrfid;
410         }
411
412         if (write_new_fid(data, reqfid))
413                 return 1;
414
415         if (query_current_values_with_pending_wait(data))
416                 return 1;
417
418         if (data->currfid != reqfid) {
419                 printk(KERN_ERR PFX
420                         "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
421                         data->currfid, reqfid);
422                 return 1;
423         }
424
425         if (savevid != data->currvid) {
426                 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
427                         savevid, data->currvid);
428                 return 1;
429         }
430
431         dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
432                 data->currfid, data->currvid);
433
434         return 0;
435 }
436
437 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
438 static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
439 {
440         u32 savefid = data->currfid;
441         u32 savereqvid = reqvid;
442
443         dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
444                 smp_processor_id(),
445                 data->currfid, data->currvid);
446
447         if (reqvid != data->currvid) {
448                 if (write_new_vid(data, reqvid))
449                         return 1;
450
451                 if (savefid != data->currfid) {
452                         printk(KERN_ERR PFX
453                                "ph3: bad fid change, save 0x%x, curr 0x%x\n",
454                                savefid, data->currfid);
455                         return 1;
456                 }
457
458                 if (data->currvid != reqvid) {
459                         printk(KERN_ERR PFX
460                                "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
461                                reqvid, data->currvid);
462                         return 1;
463                 }
464         }
465
466         if (query_current_values_with_pending_wait(data))
467                 return 1;
468
469         if (savereqvid != data->currvid) {
470                 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
471                 return 1;
472         }
473
474         if (savefid != data->currfid) {
475                 dprintk("ph3 failed, currfid changed 0x%x\n",
476                         data->currfid);
477                 return 1;
478         }
479
480         dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
481                 data->currfid, data->currvid);
482
483         return 0;
484 }
485
486 static int check_supported_cpu(unsigned int cpu)
487 {
488         cpumask_t oldmask;
489         u32 eax, ebx, ecx, edx;
490         unsigned int rc = 0;
491
492         oldmask = current->cpus_allowed;
493         set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
494
495         if (smp_processor_id() != cpu) {
496                 printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
497                 goto out;
498         }
499
500         if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
501                 goto out;
502
503         eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
504         if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
505             ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
506                 goto out;
507
508         if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
509                 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
510                     ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
511                         printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
512                         goto out;
513                 }
514
515                 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
516                 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
517                         printk(KERN_INFO PFX
518                                "No frequency change capabilities detected\n");
519                         goto out;
520                 }
521
522                 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
523                 if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
524                         printk(KERN_INFO PFX "Power state transitions not supported\n");
525                         goto out;
526                 }
527         } else { /* must be a HW Pstate capable processor */
528                 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
529                 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
530                         cpu_family = CPU_HW_PSTATE;
531                 else
532                         goto out;
533         }
534
535         rc = 1;
536
537 out:
538         set_cpus_allowed_ptr(current, &oldmask);
539         return rc;
540 }
541
542 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
543 {
544         unsigned int j;
545         u8 lastfid = 0xff;
546
547         for (j = 0; j < data->numps; j++) {
548                 if (pst[j].vid > LEAST_VID) {
549                         printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
550                                j, pst[j].vid);
551                         return -EINVAL;
552                 }
553                 if (pst[j].vid < data->rvo) {   /* vid + rvo >= 0 */
554                         printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
555                                " %d\n", j);
556                         return -ENODEV;
557                 }
558                 if (pst[j].vid < maxvid + data->rvo) {  /* vid + rvo >= maxvid */
559                         printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
560                                " %d\n", j);
561                         return -ENODEV;
562                 }
563                 if (pst[j].fid > MAX_FID) {
564                         printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
565                                " %d\n", j);
566                         return -ENODEV;
567                 }
568                 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
569                         /* Only first fid is allowed to be in "low" range */
570                         printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
571                                "0x%x\n", j, pst[j].fid);
572                         return -EINVAL;
573                 }
574                 if (pst[j].fid < lastfid)
575                         lastfid = pst[j].fid;
576         }
577         if (lastfid & 1) {
578                 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
579                 return -EINVAL;
580         }
581         if (lastfid > LO_FID_TABLE_TOP)
582                 printk(KERN_INFO FW_BUG PFX  "first fid not from lo freq table\n");
583
584         return 0;
585 }
586
587 static void print_basics(struct powernow_k8_data *data)
588 {
589         int j;
590         for (j = 0; j < data->numps; j++) {
591                 if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID) {
592                         if (cpu_family == CPU_HW_PSTATE) {
593                                 printk(KERN_INFO PFX "   %d : pstate %d (%d MHz)\n",
594                                         j,
595                                         data->powernow_table[j].index,
596                                         data->powernow_table[j].frequency/1000);
597                         } else {
598                                 printk(KERN_INFO PFX "   %d : fid 0x%x (%d MHz), vid 0x%x\n",
599                                         j,
600                                         data->powernow_table[j].index & 0xff,
601                                         data->powernow_table[j].frequency/1000,
602                                         data->powernow_table[j].index >> 8);
603                         }
604                 }
605         }
606         if (data->batps)
607                 printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
608 }
609
610 static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
611 {
612         struct cpufreq_frequency_table *powernow_table;
613         unsigned int j;
614
615         if (data->batps) {    /* use ACPI support to get full speed on mains power */
616                 printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
617                 data->numps = data->batps;
618         }
619
620         for ( j=1; j<data->numps; j++ ) {
621                 if (pst[j-1].fid >= pst[j].fid) {
622                         printk(KERN_ERR PFX "PST out of sequence\n");
623                         return -EINVAL;
624                 }
625         }
626
627         if (data->numps < 2) {
628                 printk(KERN_ERR PFX "no p states to transition\n");
629                 return -ENODEV;
630         }
631
632         if (check_pst_table(data, pst, maxvid))
633                 return -EINVAL;
634
635         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
636                 * (data->numps + 1)), GFP_KERNEL);
637         if (!powernow_table) {
638                 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
639                 return -ENOMEM;
640         }
641
642         for (j = 0; j < data->numps; j++) {
643                 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
644                 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
645                 powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
646         }
647         powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
648         powernow_table[data->numps].index = 0;
649
650         if (query_current_values_with_pending_wait(data)) {
651                 kfree(powernow_table);
652                 return -EIO;
653         }
654
655         dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
656         data->powernow_table = powernow_table;
657         if (first_cpu(per_cpu(cpu_core_map, data->cpu)) == data->cpu)
658                 print_basics(data);
659
660         for (j = 0; j < data->numps; j++)
661                 if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
662                         return 0;
663
664         dprintk("currfid/vid do not match PST, ignoring\n");
665         return 0;
666 }
667
668 /* Find and validate the PSB/PST table in BIOS. */
669 static int find_psb_table(struct powernow_k8_data *data)
670 {
671         struct psb_s *psb;
672         unsigned int i;
673         u32 mvs;
674         u8 maxvid;
675         u32 cpst = 0;
676         u32 thiscpuid;
677
678         for (i = 0xc0000; i < 0xffff0; i += 0x10) {
679                 /* Scan BIOS looking for the signature. */
680                 /* It can not be at ffff0 - it is too big. */
681
682                 psb = phys_to_virt(i);
683                 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
684                         continue;
685
686                 dprintk("found PSB header at 0x%p\n", psb);
687
688                 dprintk("table vers: 0x%x\n", psb->tableversion);
689                 if (psb->tableversion != PSB_VERSION_1_4) {
690                         printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
691                         return -ENODEV;
692                 }
693
694                 dprintk("flags: 0x%x\n", psb->flags1);
695                 if (psb->flags1) {
696                         printk(KERN_ERR FW_BUG PFX "unknown flags\n");
697                         return -ENODEV;
698                 }
699
700                 data->vstable = psb->vstable;
701                 dprintk("voltage stabilization time: %d(*20us)\n", data->vstable);
702
703                 dprintk("flags2: 0x%x\n", psb->flags2);
704                 data->rvo = psb->flags2 & 3;
705                 data->irt = ((psb->flags2) >> 2) & 3;
706                 mvs = ((psb->flags2) >> 4) & 3;
707                 data->vidmvs = 1 << mvs;
708                 data->batps = ((psb->flags2) >> 6) & 3;
709
710                 dprintk("ramp voltage offset: %d\n", data->rvo);
711                 dprintk("isochronous relief time: %d\n", data->irt);
712                 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
713
714                 dprintk("numpst: 0x%x\n", psb->num_tables);
715                 cpst = psb->num_tables;
716                 if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){
717                         thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
718                         if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) {
719                                 cpst = 1;
720                         }
721                 }
722                 if (cpst != 1) {
723                         printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
724                         return -ENODEV;
725                 }
726
727                 data->plllock = psb->plllocktime;
728                 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
729                 dprintk("maxfid: 0x%x\n", psb->maxfid);
730                 dprintk("maxvid: 0x%x\n", psb->maxvid);
731                 maxvid = psb->maxvid;
732
733                 data->numps = psb->numps;
734                 dprintk("numpstates: 0x%x\n", data->numps);
735                 return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
736         }
737         /*
738          * If you see this message, complain to BIOS manufacturer. If
739          * he tells you "we do not support Linux" or some similar
740          * nonsense, remember that Windows 2000 uses the same legacy
741          * mechanism that the old Linux PSB driver uses. Tell them it
742          * is broken with Windows 2000.
743          *
744          * The reference to the AMD documentation is chapter 9 in the
745          * BIOS and Kernel Developer's Guide, which is available on
746          * www.amd.com
747          */
748         printk(KERN_ERR PFX "BIOS error - no PSB or ACPI _PSS objects\n");
749         return -ENODEV;
750 }
751
752 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
753 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
754 {
755         if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
756                 return;
757
758         data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
759         data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
760         data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
761         data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
762         data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
763         data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
764 }
765
766 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
767 {
768         struct cpufreq_frequency_table *powernow_table;
769         int ret_val = -ENODEV;
770
771         if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
772                 dprintk("register performance failed: bad ACPI data\n");
773                 return -EIO;
774         }
775
776         /* verify the data contained in the ACPI structures */
777         if (data->acpi_data.state_count <= 1) {
778                 dprintk("No ACPI P-States\n");
779                 goto err_out;
780         }
781
782         if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
783                 (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
784                 dprintk("Invalid control/status registers (%x - %x)\n",
785                         data->acpi_data.control_register.space_id,
786                         data->acpi_data.status_register.space_id);
787                 goto err_out;
788         }
789
790         /* fill in data->powernow_table */
791         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
792                 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
793         if (!powernow_table) {
794                 dprintk("powernow_table memory alloc failure\n");
795                 goto err_out;
796         }
797
798         if (cpu_family == CPU_HW_PSTATE)
799                 ret_val = fill_powernow_table_pstate(data, powernow_table);
800         else
801                 ret_val = fill_powernow_table_fidvid(data, powernow_table);
802         if (ret_val)
803                 goto err_out_mem;
804
805         powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
806         powernow_table[data->acpi_data.state_count].index = 0;
807         data->powernow_table = powernow_table;
808
809         /* fill in data */
810         data->numps = data->acpi_data.state_count;
811         if (first_cpu(per_cpu(cpu_core_map, data->cpu)) == data->cpu)
812                 print_basics(data);
813         powernow_k8_acpi_pst_values(data, 0);
814
815         /* notify BIOS that we exist */
816         acpi_processor_notify_smm(THIS_MODULE);
817
818         if (!alloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
819                 printk(KERN_ERR PFX
820                                 "unable to alloc powernow_k8_data cpumask\n");
821                 ret_val = -ENOMEM;
822                 goto err_out_mem;
823         }
824
825         return 0;
826
827 err_out_mem:
828         kfree(powernow_table);
829
830 err_out:
831         acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
832
833         /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
834         data->acpi_data.state_count = 0;
835
836         return ret_val;
837 }
838
839 static int fill_powernow_table_pstate(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
840 {
841         int i;
842         u32 hi = 0, lo = 0;
843         rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
844         data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
845
846         for (i = 0; i < data->acpi_data.state_count; i++) {
847                 u32 index;
848
849                 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
850                 if (index > data->max_hw_pstate) {
851                         printk(KERN_ERR PFX "invalid pstate %d - bad value %d.\n", i, index);
852                         printk(KERN_ERR PFX "Please report to BIOS manufacturer\n");
853                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
854                         continue;
855                 }
856                 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
857                 if (!(hi & HW_PSTATE_VALID_MASK)) {
858                         dprintk("invalid pstate %d, ignoring\n", index);
859                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
860                         continue;
861                 }
862
863                 powernow_table[i].index = index;
864
865                 powernow_table[i].frequency = data->acpi_data.states[i].core_frequency * 1000;
866         }
867         return 0;
868 }
869
870 static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
871 {
872         int i;
873         int cntlofreq = 0;
874         for (i = 0; i < data->acpi_data.state_count; i++) {
875                 u32 fid;
876                 u32 vid;
877
878                 if (data->exttype) {
879                         fid = data->acpi_data.states[i].status & EXT_FID_MASK;
880                         vid = (data->acpi_data.states[i].status >> VID_SHIFT) & EXT_VID_MASK;
881                 } else {
882                         fid = data->acpi_data.states[i].control & FID_MASK;
883                         vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
884                 }
885
886                 dprintk("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
887
888                 powernow_table[i].index = fid; /* lower 8 bits */
889                 powernow_table[i].index |= (vid << 8); /* upper 8 bits */
890                 powernow_table[i].frequency = find_khz_freq_from_fid(fid);
891
892                 /* verify frequency is OK */
893                 if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
894                         (powernow_table[i].frequency < (MIN_FREQ * 1000))) {
895                         dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency);
896                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
897                         continue;
898                 }
899
900                 /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
901                 if (vid == VID_OFF) {
902                         dprintk("invalid vid %u, ignoring\n", vid);
903                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
904                         continue;
905                 }
906
907                 /* verify only 1 entry from the lo frequency table */
908                 if (fid < HI_FID_TABLE_BOTTOM) {
909                         if (cntlofreq) {
910                                 /* if both entries are the same, ignore this one ... */
911                                 if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
912                                     (powernow_table[i].index != powernow_table[cntlofreq].index)) {
913                                         printk(KERN_ERR PFX "Too many lo freq table entries\n");
914                                         return 1;
915                                 }
916
917                                 dprintk("double low frequency table entry, ignoring it.\n");
918                                 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
919                                 continue;
920                         } else
921                                 cntlofreq = i;
922                 }
923
924                 if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
925                         printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
926                                 powernow_table[i].frequency,
927                                 (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
928                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
929                         continue;
930                 }
931         }
932         return 0;
933 }
934
935 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
936 {
937         if (data->acpi_data.state_count)
938                 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
939         free_cpumask_var(data->acpi_data.shared_cpu_map);
940 }
941
942 static int get_transition_latency(struct powernow_k8_data *data)
943 {
944         int max_latency = 0;
945         int i;
946         for (i = 0; i < data->acpi_data.state_count; i++) {
947                 int cur_latency = data->acpi_data.states[i].transition_latency
948                         + data->acpi_data.states[i].bus_master_latency;
949                 if (cur_latency > max_latency)
950                         max_latency = cur_latency;
951         }
952         /* value in usecs, needs to be in nanoseconds */
953         return 1000 * max_latency;
954 }
955
956 #else
957 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
958 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
959 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
960 static int get_transition_latency(struct powernow_k8_data *data) { return 0; }
961 #endif /* CONFIG_X86_POWERNOW_K8_ACPI */
962
963 /* Take a frequency, and issue the fid/vid transition command */
964 static int transition_frequency_fidvid(struct powernow_k8_data *data, unsigned int index)
965 {
966         u32 fid = 0;
967         u32 vid = 0;
968         int res, i;
969         struct cpufreq_freqs freqs;
970
971         dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
972
973         /* fid/vid correctness check for k8 */
974         /* fid are the lower 8 bits of the index we stored into
975          * the cpufreq frequency table in find_psb_table, vid
976          * are the upper 8 bits.
977          */
978         fid = data->powernow_table[index].index & 0xFF;
979         vid = (data->powernow_table[index].index & 0xFF00) >> 8;
980
981         dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
982
983         if (query_current_values_with_pending_wait(data))
984                 return 1;
985
986         if ((data->currvid == vid) && (data->currfid == fid)) {
987                 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
988                         fid, vid);
989                 return 0;
990         }
991
992         if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
993                 printk(KERN_ERR PFX
994                        "ignoring illegal change in lo freq table-%x to 0x%x\n",
995                        data->currfid, fid);
996                 return 1;
997         }
998
999         dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1000                 smp_processor_id(), fid, vid);
1001         freqs.old = find_khz_freq_from_fid(data->currfid);
1002         freqs.new = find_khz_freq_from_fid(fid);
1003
1004         for_each_cpu_mask_nr(i, *(data->available_cores)) {
1005                 freqs.cpu = i;
1006                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1007         }
1008
1009         res = transition_fid_vid(data, fid, vid);
1010         freqs.new = find_khz_freq_from_fid(data->currfid);
1011
1012         for_each_cpu_mask_nr(i, *(data->available_cores)) {
1013                 freqs.cpu = i;
1014                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1015         }
1016         return res;
1017 }
1018
1019 /* Take a frequency, and issue the hardware pstate transition command */
1020 static int transition_frequency_pstate(struct powernow_k8_data *data, unsigned int index)
1021 {
1022         u32 pstate = 0;
1023         int res, i;
1024         struct cpufreq_freqs freqs;
1025
1026         dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1027
1028         /* get MSR index for hardware pstate transition */
1029         pstate = index & HW_PSTATE_MASK;
1030         if (pstate > data->max_hw_pstate)
1031                 return 0;
1032         freqs.old = find_khz_freq_from_pstate(data->powernow_table, data->currpstate);
1033         freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1034
1035         for_each_cpu_mask_nr(i, *(data->available_cores)) {
1036                 freqs.cpu = i;
1037                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1038         }
1039
1040         res = transition_pstate(data, pstate);
1041         freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1042
1043         for_each_cpu_mask_nr(i, *(data->available_cores)) {
1044                 freqs.cpu = i;
1045                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1046         }
1047         return res;
1048 }
1049
1050 /* Driver entry point to switch to the target frequency */
1051 static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
1052 {
1053         cpumask_t oldmask;
1054         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1055         u32 checkfid;
1056         u32 checkvid;
1057         unsigned int newstate;
1058         int ret = -EIO;
1059
1060         if (!data)
1061                 return -EINVAL;
1062
1063         checkfid = data->currfid;
1064         checkvid = data->currvid;
1065
1066         /* only run on specific CPU from here on */
1067         oldmask = current->cpus_allowed;
1068         set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1069
1070         if (smp_processor_id() != pol->cpu) {
1071                 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1072                 goto err_out;
1073         }
1074
1075         if (pending_bit_stuck()) {
1076                 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1077                 goto err_out;
1078         }
1079
1080         dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1081                 pol->cpu, targfreq, pol->min, pol->max, relation);
1082
1083         if (query_current_values_with_pending_wait(data))
1084                 goto err_out;
1085
1086         if (cpu_family != CPU_HW_PSTATE) {
1087                 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1088                 data->currfid, data->currvid);
1089
1090                 if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
1091                         printk(KERN_INFO PFX
1092                                 "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
1093                                 checkfid, data->currfid, checkvid, data->currvid);
1094                 }
1095         }
1096
1097         if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
1098                 goto err_out;
1099
1100         mutex_lock(&fidvid_mutex);
1101
1102         powernow_k8_acpi_pst_values(data, newstate);
1103
1104         if (cpu_family == CPU_HW_PSTATE)
1105                 ret = transition_frequency_pstate(data, newstate);
1106         else
1107                 ret = transition_frequency_fidvid(data, newstate);
1108         if (ret) {
1109                 printk(KERN_ERR PFX "transition frequency failed\n");
1110                 ret = 1;
1111                 mutex_unlock(&fidvid_mutex);
1112                 goto err_out;
1113         }
1114         mutex_unlock(&fidvid_mutex);
1115
1116         if (cpu_family == CPU_HW_PSTATE)
1117                 pol->cur = find_khz_freq_from_pstate(data->powernow_table, newstate);
1118         else
1119                 pol->cur = find_khz_freq_from_fid(data->currfid);
1120         ret = 0;
1121
1122 err_out:
1123         set_cpus_allowed_ptr(current, &oldmask);
1124         return ret;
1125 }
1126
1127 /* Driver entry point to verify the policy and range of frequencies */
1128 static int powernowk8_verify(struct cpufreq_policy *pol)
1129 {
1130         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1131
1132         if (!data)
1133                 return -EINVAL;
1134
1135         return cpufreq_frequency_table_verify(pol, data->powernow_table);
1136 }
1137
1138 /* per CPU init entry point to the driver */
1139 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1140 {
1141         struct powernow_k8_data *data;
1142         cpumask_t oldmask;
1143         int rc;
1144
1145         if (!cpu_online(pol->cpu))
1146                 return -ENODEV;
1147
1148         if (!check_supported_cpu(pol->cpu))
1149                 return -ENODEV;
1150
1151         data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1152         if (!data) {
1153                 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1154                 return -ENOMEM;
1155         }
1156
1157         data->cpu = pol->cpu;
1158         data->currpstate = HW_PSTATE_INVALID;
1159
1160         if (powernow_k8_cpu_init_acpi(data)) {
1161                 /*
1162                  * Use the PSB BIOS structure. This is only availabe on
1163                  * an UP version, and is deprecated by AMD.
1164                  */
1165                 if (num_online_cpus() != 1) {
1166 #ifndef CONFIG_ACPI_PROCESSOR
1167                         printk(KERN_ERR PFX "ACPI Processor support is required "
1168                                "for SMP systems but is absent. Please load the "
1169                                "ACPI Processor module before starting this "
1170                                "driver.\n");
1171 #else
1172                         printk(KERN_ERR FW_BUG PFX "Your BIOS does not provide"
1173                                " ACPI _PSS objects in a way that Linux "
1174                                "understands. Please report this to the Linux "
1175                                "ACPI maintainers and complain to your BIOS "
1176                                "vendor.\n");
1177 #endif
1178                         kfree(data);
1179                         return -ENODEV;
1180                 }
1181                 if (pol->cpu != 0) {
1182                         printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1183                                "CPU other than CPU0. Complain to your BIOS "
1184                                "vendor.\n");
1185                         kfree(data);
1186                         return -ENODEV;
1187                 }
1188                 rc = find_psb_table(data);
1189                 if (rc) {
1190                         kfree(data);
1191                         return -ENODEV;
1192                 }
1193                 /* Take a crude guess here.
1194                  * That guess was in microseconds, so multiply with 1000 */
1195                 pol->cpuinfo.transition_latency = (
1196                          ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1197                          ((1 << data->irt) * 30)) * 1000;
1198         } else /* ACPI _PSS objects available */
1199                 pol->cpuinfo.transition_latency = get_transition_latency(data);
1200
1201         /* only run on specific CPU from here on */
1202         oldmask = current->cpus_allowed;
1203         set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1204
1205         if (smp_processor_id() != pol->cpu) {
1206                 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1207                 goto err_out;
1208         }
1209
1210         if (pending_bit_stuck()) {
1211                 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1212                 goto err_out;
1213         }
1214
1215         if (query_current_values_with_pending_wait(data))
1216                 goto err_out;
1217
1218         if (cpu_family == CPU_OPTERON)
1219                 fidvid_msr_init();
1220
1221         /* run on any CPU again */
1222         set_cpus_allowed_ptr(current, &oldmask);
1223
1224         if (cpu_family == CPU_HW_PSTATE)
1225                 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1226         else
1227                 cpumask_copy(pol->cpus, &per_cpu(cpu_core_map, pol->cpu));
1228         data->available_cores = pol->cpus;
1229
1230         if (cpu_family == CPU_HW_PSTATE)
1231                 pol->cur = find_khz_freq_from_pstate(data->powernow_table, data->currpstate);
1232         else
1233                 pol->cur = find_khz_freq_from_fid(data->currfid);
1234         dprintk("policy current frequency %d kHz\n", pol->cur);
1235
1236         /* min/max the cpu is capable of */
1237         if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1238                 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1239                 powernow_k8_cpu_exit_acpi(data);
1240                 kfree(data->powernow_table);
1241                 kfree(data);
1242                 return -EINVAL;
1243         }
1244
1245         cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1246
1247         if (cpu_family == CPU_HW_PSTATE)
1248                 dprintk("cpu_init done, current pstate 0x%x\n", data->currpstate);
1249         else
1250                 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1251                         data->currfid, data->currvid);
1252
1253         per_cpu(powernow_data, pol->cpu) = data;
1254
1255         return 0;
1256
1257 err_out:
1258         set_cpus_allowed_ptr(current, &oldmask);
1259         powernow_k8_cpu_exit_acpi(data);
1260
1261         kfree(data);
1262         return -ENODEV;
1263 }
1264
1265 static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol)
1266 {
1267         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1268
1269         if (!data)
1270                 return -EINVAL;
1271
1272         powernow_k8_cpu_exit_acpi(data);
1273
1274         cpufreq_frequency_table_put_attr(pol->cpu);
1275
1276         kfree(data->powernow_table);
1277         kfree(data);
1278
1279         return 0;
1280 }
1281
1282 static unsigned int powernowk8_get (unsigned int cpu)
1283 {
1284         struct powernow_k8_data *data;
1285         cpumask_t oldmask = current->cpus_allowed;
1286         unsigned int khz = 0;
1287         unsigned int first;
1288
1289         first = first_cpu(per_cpu(cpu_core_map, cpu));
1290         data = per_cpu(powernow_data, first);
1291
1292         if (!data)
1293                 return -EINVAL;
1294
1295         set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
1296         if (smp_processor_id() != cpu) {
1297                 printk(KERN_ERR PFX
1298                         "limiting to CPU %d failed in powernowk8_get\n", cpu);
1299                 set_cpus_allowed_ptr(current, &oldmask);
1300                 return 0;
1301         }
1302
1303         if (query_current_values_with_pending_wait(data))
1304                 goto out;
1305
1306         if (cpu_family == CPU_HW_PSTATE)
1307                 khz = find_khz_freq_from_pstate(data->powernow_table,
1308                                                 data->currpstate);
1309         else
1310                 khz = find_khz_freq_from_fid(data->currfid);
1311
1312
1313 out:
1314         set_cpus_allowed_ptr(current, &oldmask);
1315         return khz;
1316 }
1317
1318 static struct freq_attr* powernow_k8_attr[] = {
1319         &cpufreq_freq_attr_scaling_available_freqs,
1320         NULL,
1321 };
1322
1323 static struct cpufreq_driver cpufreq_amd64_driver = {
1324         .verify = powernowk8_verify,
1325         .target = powernowk8_target,
1326         .init = powernowk8_cpu_init,
1327         .exit = __devexit_p(powernowk8_cpu_exit),
1328         .get = powernowk8_get,
1329         .name = "powernow-k8",
1330         .owner = THIS_MODULE,
1331         .attr = powernow_k8_attr,
1332 };
1333
1334 /* driver entry point for init */
1335 static int __cpuinit powernowk8_init(void)
1336 {
1337         unsigned int i, supported_cpus = 0;
1338
1339         for_each_online_cpu(i) {
1340                 if (check_supported_cpu(i))
1341                         supported_cpus++;
1342         }
1343
1344         if (supported_cpus == num_online_cpus()) {
1345                 printk(KERN_INFO PFX "Found %d %s "
1346                         "processors (%d cpu cores) (" VERSION ")\n",
1347                         num_online_nodes(),
1348                         boot_cpu_data.x86_model_id, supported_cpus);
1349                 return cpufreq_register_driver(&cpufreq_amd64_driver);
1350         }
1351
1352         return -ENODEV;
1353 }
1354
1355 /* driver entry point for term */
1356 static void __exit powernowk8_exit(void)
1357 {
1358         dprintk("exit\n");
1359
1360         cpufreq_unregister_driver(&cpufreq_amd64_driver);
1361 }
1362
1363 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>");
1364 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1365 MODULE_LICENSE("GPL");
1366
1367 late_initcall(powernowk8_init);
1368 module_exit(powernowk8_exit);