2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * This file is released under the GPL.
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
26 #include <linux/module.h>
27 #include <linux/init.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
53 #include <asm/uaccess.h>
54 #include <asm/div64.h>
55 #include <asm/pgtable.h>
57 /* This magic number is used in glibc for posix shared memory */
58 #define TMPFS_MAGIC 0x01021994
60 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
64 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70 #define SHMEM_PAGEIN VM_READ
71 #define SHMEM_TRUNCATE VM_WRITE
73 /* Definition to limit shmem_truncate's steps between cond_rescheds */
74 #define LATENCY_LIMIT 64
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
79 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
81 SGP_READ, /* don't exceed i_size, don't allocate page */
82 SGP_CACHE, /* don't exceed i_size, may allocate page */
83 SGP_WRITE, /* may exceed i_size, may allocate page */
86 static int shmem_getpage(struct inode *inode, unsigned long idx,
87 struct page **pagep, enum sgp_type sgp, int *type);
89 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
92 * The above definition of ENTRIES_PER_PAGE, and the use of
93 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
94 * might be reconsidered if it ever diverges from PAGE_SIZE.
96 * Mobility flags are masked out as swap vectors cannot move
98 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
99 PAGE_CACHE_SHIFT-PAGE_SHIFT);
102 static inline void shmem_dir_free(struct page *page)
104 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
107 static struct page **shmem_dir_map(struct page *page)
109 return (struct page **)kmap_atomic(page, KM_USER0);
112 static inline void shmem_dir_unmap(struct page **dir)
114 kunmap_atomic(dir, KM_USER0);
117 static swp_entry_t *shmem_swp_map(struct page *page)
119 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
122 static inline void shmem_swp_balance_unmap(void)
125 * When passing a pointer to an i_direct entry, to code which
126 * also handles indirect entries and so will shmem_swp_unmap,
127 * we must arrange for the preempt count to remain in balance.
128 * What kmap_atomic of a lowmem page does depends on config
129 * and architecture, so pretend to kmap_atomic some lowmem page.
131 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
134 static inline void shmem_swp_unmap(swp_entry_t *entry)
136 kunmap_atomic(entry, KM_USER1);
139 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
141 return sb->s_fs_info;
145 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
146 * for shared memory and for shared anonymous (/dev/zero) mappings
147 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
148 * consistent with the pre-accounting of private mappings ...
150 static inline int shmem_acct_size(unsigned long flags, loff_t size)
152 return (flags & VM_ACCOUNT)?
153 security_vm_enough_memory(VM_ACCT(size)): 0;
156 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
158 if (flags & VM_ACCOUNT)
159 vm_unacct_memory(VM_ACCT(size));
163 * ... whereas tmpfs objects are accounted incrementally as
164 * pages are allocated, in order to allow huge sparse files.
165 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
166 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168 static inline int shmem_acct_block(unsigned long flags)
170 return (flags & VM_ACCOUNT)?
171 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
174 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
176 if (!(flags & VM_ACCOUNT))
177 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
180 static const struct super_operations shmem_ops;
181 static const struct address_space_operations shmem_aops;
182 static const struct file_operations shmem_file_operations;
183 static const struct inode_operations shmem_inode_operations;
184 static const struct inode_operations shmem_dir_inode_operations;
185 static const struct inode_operations shmem_special_inode_operations;
186 static struct vm_operations_struct shmem_vm_ops;
188 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
189 .ra_pages = 0, /* No readahead */
190 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
191 .unplug_io_fn = default_unplug_io_fn,
194 static LIST_HEAD(shmem_swaplist);
195 static DEFINE_SPINLOCK(shmem_swaplist_lock);
197 static void shmem_free_blocks(struct inode *inode, long pages)
199 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
200 if (sbinfo->max_blocks) {
201 spin_lock(&sbinfo->stat_lock);
202 sbinfo->free_blocks += pages;
203 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
204 spin_unlock(&sbinfo->stat_lock);
208 static int shmem_reserve_inode(struct super_block *sb)
210 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
211 if (sbinfo->max_inodes) {
212 spin_lock(&sbinfo->stat_lock);
213 if (!sbinfo->free_inodes) {
214 spin_unlock(&sbinfo->stat_lock);
217 sbinfo->free_inodes--;
218 spin_unlock(&sbinfo->stat_lock);
223 static void shmem_free_inode(struct super_block *sb)
225 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
226 if (sbinfo->max_inodes) {
227 spin_lock(&sbinfo->stat_lock);
228 sbinfo->free_inodes++;
229 spin_unlock(&sbinfo->stat_lock);
234 * shmem_recalc_inode - recalculate the size of an inode
236 * @inode: inode to recalc
238 * We have to calculate the free blocks since the mm can drop
239 * undirtied hole pages behind our back.
241 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
242 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
244 * It has to be called with the spinlock held.
246 static void shmem_recalc_inode(struct inode *inode)
248 struct shmem_inode_info *info = SHMEM_I(inode);
251 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
253 info->alloced -= freed;
254 shmem_unacct_blocks(info->flags, freed);
255 shmem_free_blocks(inode, freed);
260 * shmem_swp_entry - find the swap vector position in the info structure
262 * @info: info structure for the inode
263 * @index: index of the page to find
264 * @page: optional page to add to the structure. Has to be preset to
267 * If there is no space allocated yet it will return NULL when
268 * page is NULL, else it will use the page for the needed block,
269 * setting it to NULL on return to indicate that it has been used.
271 * The swap vector is organized the following way:
273 * There are SHMEM_NR_DIRECT entries directly stored in the
274 * shmem_inode_info structure. So small files do not need an addional
277 * For pages with index > SHMEM_NR_DIRECT there is the pointer
278 * i_indirect which points to a page which holds in the first half
279 * doubly indirect blocks, in the second half triple indirect blocks:
281 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
282 * following layout (for SHMEM_NR_DIRECT == 16):
284 * i_indirect -> dir --> 16-19
297 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
299 unsigned long offset;
303 if (index < SHMEM_NR_DIRECT) {
304 shmem_swp_balance_unmap();
305 return info->i_direct+index;
307 if (!info->i_indirect) {
309 info->i_indirect = *page;
312 return NULL; /* need another page */
315 index -= SHMEM_NR_DIRECT;
316 offset = index % ENTRIES_PER_PAGE;
317 index /= ENTRIES_PER_PAGE;
318 dir = shmem_dir_map(info->i_indirect);
320 if (index >= ENTRIES_PER_PAGE/2) {
321 index -= ENTRIES_PER_PAGE/2;
322 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
323 index %= ENTRIES_PER_PAGE;
330 shmem_dir_unmap(dir);
331 return NULL; /* need another page */
333 shmem_dir_unmap(dir);
334 dir = shmem_dir_map(subdir);
340 if (!page || !(subdir = *page)) {
341 shmem_dir_unmap(dir);
342 return NULL; /* need a page */
347 shmem_dir_unmap(dir);
348 return shmem_swp_map(subdir) + offset;
351 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
353 long incdec = value? 1: -1;
356 info->swapped += incdec;
357 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
358 struct page *page = kmap_atomic_to_page(entry);
359 set_page_private(page, page_private(page) + incdec);
364 * shmem_swp_alloc - get the position of the swap entry for the page.
365 * If it does not exist allocate the entry.
367 * @info: info structure for the inode
368 * @index: index of the page to find
369 * @sgp: check and recheck i_size? skip allocation?
371 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
373 struct inode *inode = &info->vfs_inode;
374 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
375 struct page *page = NULL;
378 if (sgp != SGP_WRITE &&
379 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
380 return ERR_PTR(-EINVAL);
382 while (!(entry = shmem_swp_entry(info, index, &page))) {
384 return shmem_swp_map(ZERO_PAGE(0));
386 * Test free_blocks against 1 not 0, since we have 1 data
387 * page (and perhaps indirect index pages) yet to allocate:
388 * a waste to allocate index if we cannot allocate data.
390 if (sbinfo->max_blocks) {
391 spin_lock(&sbinfo->stat_lock);
392 if (sbinfo->free_blocks <= 1) {
393 spin_unlock(&sbinfo->stat_lock);
394 return ERR_PTR(-ENOSPC);
396 sbinfo->free_blocks--;
397 inode->i_blocks += BLOCKS_PER_PAGE;
398 spin_unlock(&sbinfo->stat_lock);
401 spin_unlock(&info->lock);
402 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
404 set_page_private(page, 0);
405 spin_lock(&info->lock);
408 shmem_free_blocks(inode, 1);
409 return ERR_PTR(-ENOMEM);
411 if (sgp != SGP_WRITE &&
412 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
413 entry = ERR_PTR(-EINVAL);
416 if (info->next_index <= index)
417 info->next_index = index + 1;
420 /* another task gave its page, or truncated the file */
421 shmem_free_blocks(inode, 1);
422 shmem_dir_free(page);
424 if (info->next_index <= index && !IS_ERR(entry))
425 info->next_index = index + 1;
430 * shmem_free_swp - free some swap entries in a directory
432 * @dir: pointer to the directory
433 * @edir: pointer after last entry of the directory
434 * @punch_lock: pointer to spinlock when needed for the holepunch case
436 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
437 spinlock_t *punch_lock)
439 spinlock_t *punch_unlock = NULL;
443 for (ptr = dir; ptr < edir; ptr++) {
445 if (unlikely(punch_lock)) {
446 punch_unlock = punch_lock;
448 spin_lock(punch_unlock);
452 free_swap_and_cache(*ptr);
453 *ptr = (swp_entry_t){0};
458 spin_unlock(punch_unlock);
462 static int shmem_map_and_free_swp(struct page *subdir, int offset,
463 int limit, struct page ***dir, spinlock_t *punch_lock)
468 ptr = shmem_swp_map(subdir);
469 for (; offset < limit; offset += LATENCY_LIMIT) {
470 int size = limit - offset;
471 if (size > LATENCY_LIMIT)
472 size = LATENCY_LIMIT;
473 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
475 if (need_resched()) {
476 shmem_swp_unmap(ptr);
478 shmem_dir_unmap(*dir);
482 ptr = shmem_swp_map(subdir);
485 shmem_swp_unmap(ptr);
489 static void shmem_free_pages(struct list_head *next)
495 page = container_of(next, struct page, lru);
497 shmem_dir_free(page);
499 if (freed >= LATENCY_LIMIT) {
506 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
508 struct shmem_inode_info *info = SHMEM_I(inode);
513 unsigned long diroff;
519 LIST_HEAD(pages_to_free);
520 long nr_pages_to_free = 0;
521 long nr_swaps_freed = 0;
525 spinlock_t *needs_lock;
526 spinlock_t *punch_lock;
527 unsigned long upper_limit;
529 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
530 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
531 if (idx >= info->next_index)
534 spin_lock(&info->lock);
535 info->flags |= SHMEM_TRUNCATE;
536 if (likely(end == (loff_t) -1)) {
537 limit = info->next_index;
538 upper_limit = SHMEM_MAX_INDEX;
539 info->next_index = idx;
543 if (end + 1 >= inode->i_size) { /* we may free a little more */
544 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
546 upper_limit = SHMEM_MAX_INDEX;
548 limit = (end + 1) >> PAGE_CACHE_SHIFT;
551 needs_lock = &info->lock;
555 topdir = info->i_indirect;
556 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
557 info->i_indirect = NULL;
559 list_add(&topdir->lru, &pages_to_free);
561 spin_unlock(&info->lock);
563 if (info->swapped && idx < SHMEM_NR_DIRECT) {
564 ptr = info->i_direct;
566 if (size > SHMEM_NR_DIRECT)
567 size = SHMEM_NR_DIRECT;
568 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
572 * If there are no indirect blocks or we are punching a hole
573 * below indirect blocks, nothing to be done.
575 if (!topdir || limit <= SHMEM_NR_DIRECT)
579 * The truncation case has already dropped info->lock, and we're safe
580 * because i_size and next_index have already been lowered, preventing
581 * access beyond. But in the punch_hole case, we still need to take
582 * the lock when updating the swap directory, because there might be
583 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
584 * shmem_writepage. However, whenever we find we can remove a whole
585 * directory page (not at the misaligned start or end of the range),
586 * we first NULLify its pointer in the level above, and then have no
587 * need to take the lock when updating its contents: needs_lock and
588 * punch_lock (either pointing to info->lock or NULL) manage this.
591 upper_limit -= SHMEM_NR_DIRECT;
592 limit -= SHMEM_NR_DIRECT;
593 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
594 offset = idx % ENTRIES_PER_PAGE;
597 dir = shmem_dir_map(topdir);
598 stage = ENTRIES_PER_PAGEPAGE/2;
599 if (idx < ENTRIES_PER_PAGEPAGE/2) {
601 diroff = idx/ENTRIES_PER_PAGE;
603 dir += ENTRIES_PER_PAGE/2;
604 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
606 stage += ENTRIES_PER_PAGEPAGE;
609 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
610 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
611 if (!diroff && !offset && upper_limit >= stage) {
613 spin_lock(needs_lock);
615 spin_unlock(needs_lock);
620 list_add(&middir->lru, &pages_to_free);
622 shmem_dir_unmap(dir);
623 dir = shmem_dir_map(middir);
631 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
632 if (unlikely(idx == stage)) {
633 shmem_dir_unmap(dir);
634 dir = shmem_dir_map(topdir) +
635 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
638 idx += ENTRIES_PER_PAGEPAGE;
642 stage = idx + ENTRIES_PER_PAGEPAGE;
645 needs_lock = &info->lock;
646 if (upper_limit >= stage) {
648 spin_lock(needs_lock);
650 spin_unlock(needs_lock);
655 list_add(&middir->lru, &pages_to_free);
657 shmem_dir_unmap(dir);
659 dir = shmem_dir_map(middir);
662 punch_lock = needs_lock;
663 subdir = dir[diroff];
664 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
666 spin_lock(needs_lock);
668 spin_unlock(needs_lock);
673 list_add(&subdir->lru, &pages_to_free);
675 if (subdir && page_private(subdir) /* has swap entries */) {
677 if (size > ENTRIES_PER_PAGE)
678 size = ENTRIES_PER_PAGE;
679 freed = shmem_map_and_free_swp(subdir,
680 offset, size, &dir, punch_lock);
682 dir = shmem_dir_map(middir);
683 nr_swaps_freed += freed;
684 if (offset || punch_lock) {
685 spin_lock(&info->lock);
686 set_page_private(subdir,
687 page_private(subdir) - freed);
688 spin_unlock(&info->lock);
690 BUG_ON(page_private(subdir) != freed);
695 shmem_dir_unmap(dir);
697 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
699 * Call truncate_inode_pages again: racing shmem_unuse_inode
700 * may have swizzled a page in from swap since vmtruncate or
701 * generic_delete_inode did it, before we lowered next_index.
702 * Also, though shmem_getpage checks i_size before adding to
703 * cache, no recheck after: so fix the narrow window there too.
705 * Recalling truncate_inode_pages_range and unmap_mapping_range
706 * every time for punch_hole (which never got a chance to clear
707 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
708 * yet hardly ever necessary: try to optimize them out later.
710 truncate_inode_pages_range(inode->i_mapping, start, end);
712 unmap_mapping_range(inode->i_mapping, start,
716 spin_lock(&info->lock);
717 info->flags &= ~SHMEM_TRUNCATE;
718 info->swapped -= nr_swaps_freed;
719 if (nr_pages_to_free)
720 shmem_free_blocks(inode, nr_pages_to_free);
721 shmem_recalc_inode(inode);
722 spin_unlock(&info->lock);
725 * Empty swap vector directory pages to be freed?
727 if (!list_empty(&pages_to_free)) {
728 pages_to_free.prev->next = NULL;
729 shmem_free_pages(pages_to_free.next);
733 static void shmem_truncate(struct inode *inode)
735 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
738 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
740 struct inode *inode = dentry->d_inode;
741 struct page *page = NULL;
744 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
745 if (attr->ia_size < inode->i_size) {
747 * If truncating down to a partial page, then
748 * if that page is already allocated, hold it
749 * in memory until the truncation is over, so
750 * truncate_partial_page cannnot miss it were
751 * it assigned to swap.
753 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
754 (void) shmem_getpage(inode,
755 attr->ia_size>>PAGE_CACHE_SHIFT,
756 &page, SGP_READ, NULL);
761 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
762 * detect if any pages might have been added to cache
763 * after truncate_inode_pages. But we needn't bother
764 * if it's being fully truncated to zero-length: the
765 * nrpages check is efficient enough in that case.
768 struct shmem_inode_info *info = SHMEM_I(inode);
769 spin_lock(&info->lock);
770 info->flags &= ~SHMEM_PAGEIN;
771 spin_unlock(&info->lock);
776 error = inode_change_ok(inode, attr);
778 error = inode_setattr(inode, attr);
779 #ifdef CONFIG_TMPFS_POSIX_ACL
780 if (!error && (attr->ia_valid & ATTR_MODE))
781 error = generic_acl_chmod(inode, &shmem_acl_ops);
784 page_cache_release(page);
788 static void shmem_delete_inode(struct inode *inode)
790 struct shmem_inode_info *info = SHMEM_I(inode);
792 if (inode->i_op->truncate == shmem_truncate) {
793 truncate_inode_pages(inode->i_mapping, 0);
794 shmem_unacct_size(info->flags, inode->i_size);
796 shmem_truncate(inode);
797 if (!list_empty(&info->swaplist)) {
798 spin_lock(&shmem_swaplist_lock);
799 list_del_init(&info->swaplist);
800 spin_unlock(&shmem_swaplist_lock);
803 BUG_ON(inode->i_blocks);
804 shmem_free_inode(inode->i_sb);
808 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
812 for (ptr = dir; ptr < edir; ptr++) {
813 if (ptr->val == entry.val)
819 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
832 ptr = info->i_direct;
833 spin_lock(&info->lock);
834 limit = info->next_index;
836 if (size > SHMEM_NR_DIRECT)
837 size = SHMEM_NR_DIRECT;
838 offset = shmem_find_swp(entry, ptr, ptr+size);
840 shmem_swp_balance_unmap();
843 if (!info->i_indirect)
846 dir = shmem_dir_map(info->i_indirect);
847 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
849 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
850 if (unlikely(idx == stage)) {
851 shmem_dir_unmap(dir-1);
852 dir = shmem_dir_map(info->i_indirect) +
853 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
856 idx += ENTRIES_PER_PAGEPAGE;
860 stage = idx + ENTRIES_PER_PAGEPAGE;
862 shmem_dir_unmap(dir);
863 dir = shmem_dir_map(subdir);
866 if (subdir && page_private(subdir)) {
867 ptr = shmem_swp_map(subdir);
869 if (size > ENTRIES_PER_PAGE)
870 size = ENTRIES_PER_PAGE;
871 offset = shmem_find_swp(entry, ptr, ptr+size);
873 shmem_dir_unmap(dir);
876 shmem_swp_unmap(ptr);
880 shmem_dir_unmap(dir-1);
882 spin_unlock(&info->lock);
886 inode = &info->vfs_inode;
887 if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
888 info->flags |= SHMEM_PAGEIN;
889 shmem_swp_set(info, ptr + offset, 0);
891 shmem_swp_unmap(ptr);
892 spin_unlock(&info->lock);
894 * Decrement swap count even when the entry is left behind:
895 * try_to_unuse will skip over mms, then reincrement count.
902 * shmem_unuse() search for an eventually swapped out shmem page.
904 int shmem_unuse(swp_entry_t entry, struct page *page)
906 struct list_head *p, *next;
907 struct shmem_inode_info *info;
910 spin_lock(&shmem_swaplist_lock);
911 list_for_each_safe(p, next, &shmem_swaplist) {
912 info = list_entry(p, struct shmem_inode_info, swaplist);
914 list_del_init(&info->swaplist);
915 else if (shmem_unuse_inode(info, entry, page)) {
916 /* move head to start search for next from here */
917 list_move_tail(&shmem_swaplist, &info->swaplist);
922 spin_unlock(&shmem_swaplist_lock);
927 * Move the page from the page cache to the swap cache.
929 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
931 struct shmem_inode_info *info;
932 swp_entry_t *entry, swap;
933 struct address_space *mapping;
937 BUG_ON(!PageLocked(page));
939 * shmem_backing_dev_info's capabilities prevent regular writeback or
940 * sync from ever calling shmem_writepage; but a stacking filesystem
941 * may use the ->writepage of its underlying filesystem, in which case
942 * we want to do nothing when that underlying filesystem is tmpfs
943 * (writing out to swap is useful as a response to memory pressure, but
944 * of no use to stabilize the data) - just redirty the page, unlock it
945 * and claim success in this case. AOP_WRITEPAGE_ACTIVATE, and the
946 * page_mapped check below, must be avoided unless we're in reclaim.
948 if (!wbc->for_reclaim) {
949 set_page_dirty(page);
953 BUG_ON(page_mapped(page));
955 mapping = page->mapping;
957 inode = mapping->host;
958 info = SHMEM_I(inode);
959 if (info->flags & VM_LOCKED)
961 swap = get_swap_page();
965 spin_lock(&info->lock);
966 shmem_recalc_inode(inode);
967 if (index >= info->next_index) {
968 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
971 entry = shmem_swp_entry(info, index, NULL);
975 if (move_to_swap_cache(page, swap) == 0) {
976 shmem_swp_set(info, entry, swap.val);
977 shmem_swp_unmap(entry);
978 spin_unlock(&info->lock);
979 if (list_empty(&info->swaplist)) {
980 spin_lock(&shmem_swaplist_lock);
981 /* move instead of add in case we're racing */
982 list_move_tail(&info->swaplist, &shmem_swaplist);
983 spin_unlock(&shmem_swaplist_lock);
989 shmem_swp_unmap(entry);
991 spin_unlock(&info->lock);
994 set_page_dirty(page);
995 return AOP_WRITEPAGE_ACTIVATE; /* Return with the page locked */
999 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1001 char *nodelist = strchr(value, ':');
1005 /* NUL-terminate policy string */
1007 if (nodelist_parse(nodelist, *policy_nodes))
1009 if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
1012 if (!strcmp(value, "default")) {
1013 *policy = MPOL_DEFAULT;
1014 /* Don't allow a nodelist */
1017 } else if (!strcmp(value, "prefer")) {
1018 *policy = MPOL_PREFERRED;
1019 /* Insist on a nodelist of one node only */
1021 char *rest = nodelist;
1022 while (isdigit(*rest))
1027 } else if (!strcmp(value, "bind")) {
1028 *policy = MPOL_BIND;
1029 /* Insist on a nodelist */
1032 } else if (!strcmp(value, "interleave")) {
1033 *policy = MPOL_INTERLEAVE;
1035 * Default to online nodes with memory if no nodelist
1038 *policy_nodes = node_states[N_HIGH_MEMORY];
1042 /* Restore string for error message */
1048 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1049 struct shmem_inode_info *info, unsigned long idx)
1051 struct vm_area_struct pvma;
1054 /* Create a pseudo vma that just contains the policy */
1056 pvma.vm_pgoff = idx;
1058 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1059 page = swapin_readahead(entry, gfp, &pvma, 0);
1060 mpol_free(pvma.vm_policy);
1064 static struct page *shmem_alloc_page(gfp_t gfp,
1065 struct shmem_inode_info *info, unsigned long idx)
1067 struct vm_area_struct pvma;
1070 /* Create a pseudo vma that just contains the policy */
1072 pvma.vm_pgoff = idx;
1074 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1075 page = alloc_page_vma(gfp, &pvma, 0);
1076 mpol_free(pvma.vm_policy);
1080 static inline int shmem_parse_mpol(char *value, int *policy,
1081 nodemask_t *policy_nodes)
1086 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1087 struct shmem_inode_info *info, unsigned long idx)
1089 return swapin_readahead(entry, gfp, NULL, 0);
1092 static inline struct page *shmem_alloc_page(gfp_t gfp,
1093 struct shmem_inode_info *info, unsigned long idx)
1095 return alloc_page(gfp);
1100 * shmem_getpage - either get the page from swap or allocate a new one
1102 * If we allocate a new one we do not mark it dirty. That's up to the
1103 * vm. If we swap it in we mark it dirty since we also free the swap
1104 * entry since a page cannot live in both the swap and page cache
1106 static int shmem_getpage(struct inode *inode, unsigned long idx,
1107 struct page **pagep, enum sgp_type sgp, int *type)
1109 struct address_space *mapping = inode->i_mapping;
1110 struct shmem_inode_info *info = SHMEM_I(inode);
1111 struct shmem_sb_info *sbinfo;
1112 struct page *filepage = *pagep;
1113 struct page *swappage;
1119 if (idx >= SHMEM_MAX_INDEX)
1126 * Normally, filepage is NULL on entry, and either found
1127 * uptodate immediately, or allocated and zeroed, or read
1128 * in under swappage, which is then assigned to filepage.
1129 * But shmem_readpage (required for splice) passes in a locked
1130 * filepage, which may be found not uptodate by other callers
1131 * too, and may need to be copied from the swappage read in.
1135 filepage = find_lock_page(mapping, idx);
1136 if (filepage && PageUptodate(filepage))
1139 gfp = mapping_gfp_mask(mapping);
1141 spin_lock(&info->lock);
1142 shmem_recalc_inode(inode);
1143 entry = shmem_swp_alloc(info, idx, sgp);
1144 if (IS_ERR(entry)) {
1145 spin_unlock(&info->lock);
1146 error = PTR_ERR(entry);
1152 /* Look it up and read it in.. */
1153 swappage = lookup_swap_cache(swap);
1155 shmem_swp_unmap(entry);
1156 /* here we actually do the io */
1157 if (type && !(*type & VM_FAULT_MAJOR)) {
1158 __count_vm_event(PGMAJFAULT);
1159 *type |= VM_FAULT_MAJOR;
1161 spin_unlock(&info->lock);
1162 swappage = shmem_swapin(swap, gfp, info, idx);
1164 spin_lock(&info->lock);
1165 entry = shmem_swp_alloc(info, idx, sgp);
1167 error = PTR_ERR(entry);
1169 if (entry->val == swap.val)
1171 shmem_swp_unmap(entry);
1173 spin_unlock(&info->lock);
1178 wait_on_page_locked(swappage);
1179 page_cache_release(swappage);
1183 /* We have to do this with page locked to prevent races */
1184 if (TestSetPageLocked(swappage)) {
1185 shmem_swp_unmap(entry);
1186 spin_unlock(&info->lock);
1187 wait_on_page_locked(swappage);
1188 page_cache_release(swappage);
1191 if (PageWriteback(swappage)) {
1192 shmem_swp_unmap(entry);
1193 spin_unlock(&info->lock);
1194 wait_on_page_writeback(swappage);
1195 unlock_page(swappage);
1196 page_cache_release(swappage);
1199 if (!PageUptodate(swappage)) {
1200 shmem_swp_unmap(entry);
1201 spin_unlock(&info->lock);
1202 unlock_page(swappage);
1203 page_cache_release(swappage);
1209 shmem_swp_set(info, entry, 0);
1210 shmem_swp_unmap(entry);
1211 delete_from_swap_cache(swappage);
1212 spin_unlock(&info->lock);
1213 copy_highpage(filepage, swappage);
1214 unlock_page(swappage);
1215 page_cache_release(swappage);
1216 flush_dcache_page(filepage);
1217 SetPageUptodate(filepage);
1218 set_page_dirty(filepage);
1220 } else if (!(error = move_from_swap_cache(
1221 swappage, idx, mapping))) {
1222 info->flags |= SHMEM_PAGEIN;
1223 shmem_swp_set(info, entry, 0);
1224 shmem_swp_unmap(entry);
1225 spin_unlock(&info->lock);
1226 filepage = swappage;
1229 shmem_swp_unmap(entry);
1230 spin_unlock(&info->lock);
1231 unlock_page(swappage);
1232 page_cache_release(swappage);
1233 if (error == -ENOMEM) {
1234 /* let kswapd refresh zone for GFP_ATOMICs */
1235 congestion_wait(WRITE, HZ/50);
1239 } else if (sgp == SGP_READ && !filepage) {
1240 shmem_swp_unmap(entry);
1241 filepage = find_get_page(mapping, idx);
1243 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1244 spin_unlock(&info->lock);
1245 wait_on_page_locked(filepage);
1246 page_cache_release(filepage);
1250 spin_unlock(&info->lock);
1252 shmem_swp_unmap(entry);
1253 sbinfo = SHMEM_SB(inode->i_sb);
1254 if (sbinfo->max_blocks) {
1255 spin_lock(&sbinfo->stat_lock);
1256 if (sbinfo->free_blocks == 0 ||
1257 shmem_acct_block(info->flags)) {
1258 spin_unlock(&sbinfo->stat_lock);
1259 spin_unlock(&info->lock);
1263 sbinfo->free_blocks--;
1264 inode->i_blocks += BLOCKS_PER_PAGE;
1265 spin_unlock(&sbinfo->stat_lock);
1266 } else if (shmem_acct_block(info->flags)) {
1267 spin_unlock(&info->lock);
1273 spin_unlock(&info->lock);
1274 filepage = shmem_alloc_page(gfp, info, idx);
1276 shmem_unacct_blocks(info->flags, 1);
1277 shmem_free_blocks(inode, 1);
1282 spin_lock(&info->lock);
1283 entry = shmem_swp_alloc(info, idx, sgp);
1285 error = PTR_ERR(entry);
1288 shmem_swp_unmap(entry);
1290 if (error || swap.val || 0 != add_to_page_cache_lru(
1291 filepage, mapping, idx, GFP_ATOMIC)) {
1292 spin_unlock(&info->lock);
1293 page_cache_release(filepage);
1294 shmem_unacct_blocks(info->flags, 1);
1295 shmem_free_blocks(inode, 1);
1301 info->flags |= SHMEM_PAGEIN;
1305 spin_unlock(&info->lock);
1306 clear_highpage(filepage);
1307 flush_dcache_page(filepage);
1308 SetPageUptodate(filepage);
1315 if (*pagep != filepage) {
1316 unlock_page(filepage);
1317 page_cache_release(filepage);
1322 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1324 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1328 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1329 return VM_FAULT_SIGBUS;
1331 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1333 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1335 mark_page_accessed(vmf->page);
1336 return ret | VM_FAULT_LOCKED;
1340 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1342 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1343 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1346 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1349 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1352 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1353 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1357 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1359 struct inode *inode = file->f_path.dentry->d_inode;
1360 struct shmem_inode_info *info = SHMEM_I(inode);
1361 int retval = -ENOMEM;
1363 spin_lock(&info->lock);
1364 if (lock && !(info->flags & VM_LOCKED)) {
1365 if (!user_shm_lock(inode->i_size, user))
1367 info->flags |= VM_LOCKED;
1369 if (!lock && (info->flags & VM_LOCKED) && user) {
1370 user_shm_unlock(inode->i_size, user);
1371 info->flags &= ~VM_LOCKED;
1375 spin_unlock(&info->lock);
1379 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1381 file_accessed(file);
1382 vma->vm_ops = &shmem_vm_ops;
1383 vma->vm_flags |= VM_CAN_NONLINEAR;
1387 static struct inode *
1388 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1390 struct inode *inode;
1391 struct shmem_inode_info *info;
1392 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1394 if (shmem_reserve_inode(sb))
1397 inode = new_inode(sb);
1399 inode->i_mode = mode;
1400 inode->i_uid = current->fsuid;
1401 inode->i_gid = current->fsgid;
1402 inode->i_blocks = 0;
1403 inode->i_mapping->a_ops = &shmem_aops;
1404 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1405 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1406 inode->i_generation = get_seconds();
1407 info = SHMEM_I(inode);
1408 memset(info, 0, (char *)inode - (char *)info);
1409 spin_lock_init(&info->lock);
1410 INIT_LIST_HEAD(&info->swaplist);
1412 switch (mode & S_IFMT) {
1414 inode->i_op = &shmem_special_inode_operations;
1415 init_special_inode(inode, mode, dev);
1418 inode->i_op = &shmem_inode_operations;
1419 inode->i_fop = &shmem_file_operations;
1420 mpol_shared_policy_init(&info->policy, sbinfo->policy,
1421 &sbinfo->policy_nodes);
1425 /* Some things misbehave if size == 0 on a directory */
1426 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1427 inode->i_op = &shmem_dir_inode_operations;
1428 inode->i_fop = &simple_dir_operations;
1432 * Must not load anything in the rbtree,
1433 * mpol_free_shared_policy will not be called.
1435 mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1440 shmem_free_inode(sb);
1445 static const struct inode_operations shmem_symlink_inode_operations;
1446 static const struct inode_operations shmem_symlink_inline_operations;
1449 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1450 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1451 * below the loop driver, in the generic fashion that many filesystems support.
1453 static int shmem_readpage(struct file *file, struct page *page)
1455 struct inode *inode = page->mapping->host;
1456 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1462 shmem_write_begin(struct file *file, struct address_space *mapping,
1463 loff_t pos, unsigned len, unsigned flags,
1464 struct page **pagep, void **fsdata)
1466 struct inode *inode = mapping->host;
1467 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1469 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1473 shmem_write_end(struct file *file, struct address_space *mapping,
1474 loff_t pos, unsigned len, unsigned copied,
1475 struct page *page, void *fsdata)
1477 struct inode *inode = mapping->host;
1479 if (pos + copied > inode->i_size)
1480 i_size_write(inode, pos + copied);
1483 set_page_dirty(page);
1484 page_cache_release(page);
1489 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1491 struct inode *inode = filp->f_path.dentry->d_inode;
1492 struct address_space *mapping = inode->i_mapping;
1493 unsigned long index, offset;
1495 index = *ppos >> PAGE_CACHE_SHIFT;
1496 offset = *ppos & ~PAGE_CACHE_MASK;
1499 struct page *page = NULL;
1500 unsigned long end_index, nr, ret;
1501 loff_t i_size = i_size_read(inode);
1503 end_index = i_size >> PAGE_CACHE_SHIFT;
1504 if (index > end_index)
1506 if (index == end_index) {
1507 nr = i_size & ~PAGE_CACHE_MASK;
1512 desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1514 if (desc->error == -EINVAL)
1522 * We must evaluate after, since reads (unlike writes)
1523 * are called without i_mutex protection against truncate
1525 nr = PAGE_CACHE_SIZE;
1526 i_size = i_size_read(inode);
1527 end_index = i_size >> PAGE_CACHE_SHIFT;
1528 if (index == end_index) {
1529 nr = i_size & ~PAGE_CACHE_MASK;
1532 page_cache_release(page);
1540 * If users can be writing to this page using arbitrary
1541 * virtual addresses, take care about potential aliasing
1542 * before reading the page on the kernel side.
1544 if (mapping_writably_mapped(mapping))
1545 flush_dcache_page(page);
1547 * Mark the page accessed if we read the beginning.
1550 mark_page_accessed(page);
1552 page = ZERO_PAGE(0);
1553 page_cache_get(page);
1557 * Ok, we have the page, and it's up-to-date, so
1558 * now we can copy it to user space...
1560 * The actor routine returns how many bytes were actually used..
1561 * NOTE! This may not be the same as how much of a user buffer
1562 * we filled up (we may be padding etc), so we can only update
1563 * "pos" here (the actor routine has to update the user buffer
1564 * pointers and the remaining count).
1566 ret = actor(desc, page, offset, nr);
1568 index += offset >> PAGE_CACHE_SHIFT;
1569 offset &= ~PAGE_CACHE_MASK;
1571 page_cache_release(page);
1572 if (ret != nr || !desc->count)
1578 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1579 file_accessed(filp);
1582 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1584 read_descriptor_t desc;
1586 if ((ssize_t) count < 0)
1588 if (!access_ok(VERIFY_WRITE, buf, count))
1598 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1600 return desc.written;
1604 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1606 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1608 buf->f_type = TMPFS_MAGIC;
1609 buf->f_bsize = PAGE_CACHE_SIZE;
1610 buf->f_namelen = NAME_MAX;
1611 spin_lock(&sbinfo->stat_lock);
1612 if (sbinfo->max_blocks) {
1613 buf->f_blocks = sbinfo->max_blocks;
1614 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1616 if (sbinfo->max_inodes) {
1617 buf->f_files = sbinfo->max_inodes;
1618 buf->f_ffree = sbinfo->free_inodes;
1620 /* else leave those fields 0 like simple_statfs */
1621 spin_unlock(&sbinfo->stat_lock);
1626 * File creation. Allocate an inode, and we're done..
1629 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1631 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1632 int error = -ENOSPC;
1635 error = security_inode_init_security(inode, dir, NULL, NULL,
1638 if (error != -EOPNOTSUPP) {
1643 error = shmem_acl_init(inode, dir);
1648 if (dir->i_mode & S_ISGID) {
1649 inode->i_gid = dir->i_gid;
1651 inode->i_mode |= S_ISGID;
1653 dir->i_size += BOGO_DIRENT_SIZE;
1654 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1655 d_instantiate(dentry, inode);
1656 dget(dentry); /* Extra count - pin the dentry in core */
1661 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1665 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1671 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1672 struct nameidata *nd)
1674 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1680 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1682 struct inode *inode = old_dentry->d_inode;
1686 * No ordinary (disk based) filesystem counts links as inodes;
1687 * but each new link needs a new dentry, pinning lowmem, and
1688 * tmpfs dentries cannot be pruned until they are unlinked.
1690 ret = shmem_reserve_inode(inode->i_sb);
1694 dir->i_size += BOGO_DIRENT_SIZE;
1695 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1697 atomic_inc(&inode->i_count); /* New dentry reference */
1698 dget(dentry); /* Extra pinning count for the created dentry */
1699 d_instantiate(dentry, inode);
1704 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1706 struct inode *inode = dentry->d_inode;
1708 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1709 shmem_free_inode(inode->i_sb);
1711 dir->i_size -= BOGO_DIRENT_SIZE;
1712 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1714 dput(dentry); /* Undo the count from "create" - this does all the work */
1718 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1720 if (!simple_empty(dentry))
1723 drop_nlink(dentry->d_inode);
1725 return shmem_unlink(dir, dentry);
1729 * The VFS layer already does all the dentry stuff for rename,
1730 * we just have to decrement the usage count for the target if
1731 * it exists so that the VFS layer correctly free's it when it
1734 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1736 struct inode *inode = old_dentry->d_inode;
1737 int they_are_dirs = S_ISDIR(inode->i_mode);
1739 if (!simple_empty(new_dentry))
1742 if (new_dentry->d_inode) {
1743 (void) shmem_unlink(new_dir, new_dentry);
1745 drop_nlink(old_dir);
1746 } else if (they_are_dirs) {
1747 drop_nlink(old_dir);
1751 old_dir->i_size -= BOGO_DIRENT_SIZE;
1752 new_dir->i_size += BOGO_DIRENT_SIZE;
1753 old_dir->i_ctime = old_dir->i_mtime =
1754 new_dir->i_ctime = new_dir->i_mtime =
1755 inode->i_ctime = CURRENT_TIME;
1759 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1763 struct inode *inode;
1764 struct page *page = NULL;
1766 struct shmem_inode_info *info;
1768 len = strlen(symname) + 1;
1769 if (len > PAGE_CACHE_SIZE)
1770 return -ENAMETOOLONG;
1772 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1776 error = security_inode_init_security(inode, dir, NULL, NULL,
1779 if (error != -EOPNOTSUPP) {
1786 info = SHMEM_I(inode);
1787 inode->i_size = len-1;
1788 if (len <= (char *)inode - (char *)info) {
1790 memcpy(info, symname, len);
1791 inode->i_op = &shmem_symlink_inline_operations;
1793 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1799 inode->i_op = &shmem_symlink_inode_operations;
1800 kaddr = kmap_atomic(page, KM_USER0);
1801 memcpy(kaddr, symname, len);
1802 kunmap_atomic(kaddr, KM_USER0);
1803 set_page_dirty(page);
1804 page_cache_release(page);
1806 if (dir->i_mode & S_ISGID)
1807 inode->i_gid = dir->i_gid;
1808 dir->i_size += BOGO_DIRENT_SIZE;
1809 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1810 d_instantiate(dentry, inode);
1815 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1817 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1821 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1823 struct page *page = NULL;
1824 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1825 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1831 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1833 if (!IS_ERR(nd_get_link(nd))) {
1834 struct page *page = cookie;
1836 mark_page_accessed(page);
1837 page_cache_release(page);
1841 static const struct inode_operations shmem_symlink_inline_operations = {
1842 .readlink = generic_readlink,
1843 .follow_link = shmem_follow_link_inline,
1846 static const struct inode_operations shmem_symlink_inode_operations = {
1847 .truncate = shmem_truncate,
1848 .readlink = generic_readlink,
1849 .follow_link = shmem_follow_link,
1850 .put_link = shmem_put_link,
1853 #ifdef CONFIG_TMPFS_POSIX_ACL
1855 * Superblocks without xattr inode operations will get security.* xattr
1856 * support from the VFS "for free". As soon as we have any other xattrs
1857 * like ACLs, we also need to implement the security.* handlers at
1858 * filesystem level, though.
1861 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1862 size_t list_len, const char *name,
1865 return security_inode_listsecurity(inode, list, list_len);
1868 static int shmem_xattr_security_get(struct inode *inode, const char *name,
1869 void *buffer, size_t size)
1871 if (strcmp(name, "") == 0)
1873 return security_inode_getsecurity(inode, name, buffer, size,
1877 static int shmem_xattr_security_set(struct inode *inode, const char *name,
1878 const void *value, size_t size, int flags)
1880 if (strcmp(name, "") == 0)
1882 return security_inode_setsecurity(inode, name, value, size, flags);
1885 static struct xattr_handler shmem_xattr_security_handler = {
1886 .prefix = XATTR_SECURITY_PREFIX,
1887 .list = shmem_xattr_security_list,
1888 .get = shmem_xattr_security_get,
1889 .set = shmem_xattr_security_set,
1892 static struct xattr_handler *shmem_xattr_handlers[] = {
1893 &shmem_xattr_acl_access_handler,
1894 &shmem_xattr_acl_default_handler,
1895 &shmem_xattr_security_handler,
1900 static struct dentry *shmem_get_parent(struct dentry *child)
1902 return ERR_PTR(-ESTALE);
1905 static int shmem_match(struct inode *ino, void *vfh)
1909 inum = (inum << 32) | fh[1];
1910 return ino->i_ino == inum && fh[0] == ino->i_generation;
1913 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1914 struct fid *fid, int fh_len, int fh_type)
1916 struct inode *inode;
1917 struct dentry *dentry = NULL;
1918 u64 inum = fid->raw[2];
1919 inum = (inum << 32) | fid->raw[1];
1924 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1925 shmem_match, fid->raw);
1927 dentry = d_find_alias(inode);
1934 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1937 struct inode *inode = dentry->d_inode;
1942 if (hlist_unhashed(&inode->i_hash)) {
1943 /* Unfortunately insert_inode_hash is not idempotent,
1944 * so as we hash inodes here rather than at creation
1945 * time, we need a lock to ensure we only try
1948 static DEFINE_SPINLOCK(lock);
1950 if (hlist_unhashed(&inode->i_hash))
1951 __insert_inode_hash(inode,
1952 inode->i_ino + inode->i_generation);
1956 fh[0] = inode->i_generation;
1957 fh[1] = inode->i_ino;
1958 fh[2] = ((__u64)inode->i_ino) >> 32;
1964 static const struct export_operations shmem_export_ops = {
1965 .get_parent = shmem_get_parent,
1966 .encode_fh = shmem_encode_fh,
1967 .fh_to_dentry = shmem_fh_to_dentry,
1970 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
1971 gid_t *gid, unsigned long *blocks, unsigned long *inodes,
1972 int *policy, nodemask_t *policy_nodes)
1974 char *this_char, *value, *rest;
1976 while (options != NULL) {
1977 this_char = options;
1980 * NUL-terminate this option: unfortunately,
1981 * mount options form a comma-separated list,
1982 * but mpol's nodelist may also contain commas.
1984 options = strchr(options, ',');
1985 if (options == NULL)
1988 if (!isdigit(*options)) {
1995 if ((value = strchr(this_char,'=')) != NULL) {
1999 "tmpfs: No value for mount option '%s'\n",
2004 if (!strcmp(this_char,"size")) {
2005 unsigned long long size;
2006 size = memparse(value,&rest);
2008 size <<= PAGE_SHIFT;
2009 size *= totalram_pages;
2015 *blocks = size >> PAGE_CACHE_SHIFT;
2016 } else if (!strcmp(this_char,"nr_blocks")) {
2017 *blocks = memparse(value,&rest);
2020 } else if (!strcmp(this_char,"nr_inodes")) {
2021 *inodes = memparse(value,&rest);
2024 } else if (!strcmp(this_char,"mode")) {
2027 *mode = simple_strtoul(value,&rest,8);
2030 } else if (!strcmp(this_char,"uid")) {
2033 *uid = simple_strtoul(value,&rest,0);
2036 } else if (!strcmp(this_char,"gid")) {
2039 *gid = simple_strtoul(value,&rest,0);
2042 } else if (!strcmp(this_char,"mpol")) {
2043 if (shmem_parse_mpol(value,policy,policy_nodes))
2046 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2054 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2060 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2062 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2063 unsigned long max_blocks = sbinfo->max_blocks;
2064 unsigned long max_inodes = sbinfo->max_inodes;
2065 int policy = sbinfo->policy;
2066 nodemask_t policy_nodes = sbinfo->policy_nodes;
2067 unsigned long blocks;
2068 unsigned long inodes;
2069 int error = -EINVAL;
2071 if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2072 &max_inodes, &policy, &policy_nodes))
2075 spin_lock(&sbinfo->stat_lock);
2076 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2077 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2078 if (max_blocks < blocks)
2080 if (max_inodes < inodes)
2083 * Those tests also disallow limited->unlimited while any are in
2084 * use, so i_blocks will always be zero when max_blocks is zero;
2085 * but we must separately disallow unlimited->limited, because
2086 * in that case we have no record of how much is already in use.
2088 if (max_blocks && !sbinfo->max_blocks)
2090 if (max_inodes && !sbinfo->max_inodes)
2094 sbinfo->max_blocks = max_blocks;
2095 sbinfo->free_blocks = max_blocks - blocks;
2096 sbinfo->max_inodes = max_inodes;
2097 sbinfo->free_inodes = max_inodes - inodes;
2098 sbinfo->policy = policy;
2099 sbinfo->policy_nodes = policy_nodes;
2101 spin_unlock(&sbinfo->stat_lock);
2106 static void shmem_put_super(struct super_block *sb)
2108 kfree(sb->s_fs_info);
2109 sb->s_fs_info = NULL;
2112 static int shmem_fill_super(struct super_block *sb,
2113 void *data, int silent)
2115 struct inode *inode;
2116 struct dentry *root;
2117 int mode = S_IRWXUGO | S_ISVTX;
2118 uid_t uid = current->fsuid;
2119 gid_t gid = current->fsgid;
2121 struct shmem_sb_info *sbinfo;
2122 unsigned long blocks = 0;
2123 unsigned long inodes = 0;
2124 int policy = MPOL_DEFAULT;
2125 nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
2129 * Per default we only allow half of the physical ram per
2130 * tmpfs instance, limiting inodes to one per page of lowmem;
2131 * but the internal instance is left unlimited.
2133 if (!(sb->s_flags & MS_NOUSER)) {
2134 blocks = totalram_pages / 2;
2135 inodes = totalram_pages - totalhigh_pages;
2136 if (inodes > blocks)
2138 if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2139 &inodes, &policy, &policy_nodes))
2142 sb->s_export_op = &shmem_export_ops;
2144 sb->s_flags |= MS_NOUSER;
2147 /* Round up to L1_CACHE_BYTES to resist false sharing */
2148 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2149 L1_CACHE_BYTES), GFP_KERNEL);
2153 spin_lock_init(&sbinfo->stat_lock);
2154 sbinfo->max_blocks = blocks;
2155 sbinfo->free_blocks = blocks;
2156 sbinfo->max_inodes = inodes;
2157 sbinfo->free_inodes = inodes;
2158 sbinfo->policy = policy;
2159 sbinfo->policy_nodes = policy_nodes;
2161 sb->s_fs_info = sbinfo;
2162 sb->s_maxbytes = SHMEM_MAX_BYTES;
2163 sb->s_blocksize = PAGE_CACHE_SIZE;
2164 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2165 sb->s_magic = TMPFS_MAGIC;
2166 sb->s_op = &shmem_ops;
2167 sb->s_time_gran = 1;
2168 #ifdef CONFIG_TMPFS_POSIX_ACL
2169 sb->s_xattr = shmem_xattr_handlers;
2170 sb->s_flags |= MS_POSIXACL;
2173 inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2178 root = d_alloc_root(inode);
2187 shmem_put_super(sb);
2191 static struct kmem_cache *shmem_inode_cachep;
2193 static struct inode *shmem_alloc_inode(struct super_block *sb)
2195 struct shmem_inode_info *p;
2196 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2199 return &p->vfs_inode;
2202 static void shmem_destroy_inode(struct inode *inode)
2204 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2205 /* only struct inode is valid if it's an inline symlink */
2206 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2208 shmem_acl_destroy_inode(inode);
2209 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2212 static void init_once(struct kmem_cache *cachep, void *foo)
2214 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2216 inode_init_once(&p->vfs_inode);
2217 #ifdef CONFIG_TMPFS_POSIX_ACL
2219 p->i_default_acl = NULL;
2223 static int init_inodecache(void)
2225 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2226 sizeof(struct shmem_inode_info),
2227 0, SLAB_PANIC, init_once);
2231 static void destroy_inodecache(void)
2233 kmem_cache_destroy(shmem_inode_cachep);
2236 static const struct address_space_operations shmem_aops = {
2237 .writepage = shmem_writepage,
2238 .set_page_dirty = __set_page_dirty_no_writeback,
2240 .readpage = shmem_readpage,
2241 .write_begin = shmem_write_begin,
2242 .write_end = shmem_write_end,
2244 .migratepage = migrate_page,
2247 static const struct file_operations shmem_file_operations = {
2250 .llseek = generic_file_llseek,
2251 .read = shmem_file_read,
2252 .write = do_sync_write,
2253 .aio_write = generic_file_aio_write,
2254 .fsync = simple_sync_file,
2255 .splice_read = generic_file_splice_read,
2256 .splice_write = generic_file_splice_write,
2260 static const struct inode_operations shmem_inode_operations = {
2261 .truncate = shmem_truncate,
2262 .setattr = shmem_notify_change,
2263 .truncate_range = shmem_truncate_range,
2264 #ifdef CONFIG_TMPFS_POSIX_ACL
2265 .setxattr = generic_setxattr,
2266 .getxattr = generic_getxattr,
2267 .listxattr = generic_listxattr,
2268 .removexattr = generic_removexattr,
2269 .permission = shmem_permission,
2274 static const struct inode_operations shmem_dir_inode_operations = {
2276 .create = shmem_create,
2277 .lookup = simple_lookup,
2279 .unlink = shmem_unlink,
2280 .symlink = shmem_symlink,
2281 .mkdir = shmem_mkdir,
2282 .rmdir = shmem_rmdir,
2283 .mknod = shmem_mknod,
2284 .rename = shmem_rename,
2286 #ifdef CONFIG_TMPFS_POSIX_ACL
2287 .setattr = shmem_notify_change,
2288 .setxattr = generic_setxattr,
2289 .getxattr = generic_getxattr,
2290 .listxattr = generic_listxattr,
2291 .removexattr = generic_removexattr,
2292 .permission = shmem_permission,
2296 static const struct inode_operations shmem_special_inode_operations = {
2297 #ifdef CONFIG_TMPFS_POSIX_ACL
2298 .setattr = shmem_notify_change,
2299 .setxattr = generic_setxattr,
2300 .getxattr = generic_getxattr,
2301 .listxattr = generic_listxattr,
2302 .removexattr = generic_removexattr,
2303 .permission = shmem_permission,
2307 static const struct super_operations shmem_ops = {
2308 .alloc_inode = shmem_alloc_inode,
2309 .destroy_inode = shmem_destroy_inode,
2311 .statfs = shmem_statfs,
2312 .remount_fs = shmem_remount_fs,
2314 .delete_inode = shmem_delete_inode,
2315 .drop_inode = generic_delete_inode,
2316 .put_super = shmem_put_super,
2319 static struct vm_operations_struct shmem_vm_ops = {
2320 .fault = shmem_fault,
2322 .set_policy = shmem_set_policy,
2323 .get_policy = shmem_get_policy,
2328 static int shmem_get_sb(struct file_system_type *fs_type,
2329 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2331 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2334 static struct file_system_type tmpfs_fs_type = {
2335 .owner = THIS_MODULE,
2337 .get_sb = shmem_get_sb,
2338 .kill_sb = kill_litter_super,
2340 static struct vfsmount *shm_mnt;
2342 static int __init init_tmpfs(void)
2346 error = bdi_init(&shmem_backing_dev_info);
2350 error = init_inodecache();
2354 error = register_filesystem(&tmpfs_fs_type);
2356 printk(KERN_ERR "Could not register tmpfs\n");
2360 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2361 tmpfs_fs_type.name, NULL);
2362 if (IS_ERR(shm_mnt)) {
2363 error = PTR_ERR(shm_mnt);
2364 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2370 unregister_filesystem(&tmpfs_fs_type);
2372 destroy_inodecache();
2374 bdi_destroy(&shmem_backing_dev_info);
2376 shm_mnt = ERR_PTR(error);
2379 module_init(init_tmpfs)
2382 * shmem_file_setup - get an unlinked file living in tmpfs
2384 * @name: name for dentry (to be seen in /proc/<pid>/maps
2385 * @size: size to be set for the file
2388 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2392 struct inode *inode;
2393 struct dentry *dentry, *root;
2396 if (IS_ERR(shm_mnt))
2397 return (void *)shm_mnt;
2399 if (size < 0 || size > SHMEM_MAX_BYTES)
2400 return ERR_PTR(-EINVAL);
2402 if (shmem_acct_size(flags, size))
2403 return ERR_PTR(-ENOMEM);
2407 this.len = strlen(name);
2408 this.hash = 0; /* will go */
2409 root = shm_mnt->mnt_root;
2410 dentry = d_alloc(root, &this);
2415 file = get_empty_filp();
2420 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2424 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2425 d_instantiate(dentry, inode);
2426 inode->i_size = size;
2427 inode->i_nlink = 0; /* It is unlinked */
2428 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2429 &shmem_file_operations);
2437 shmem_unacct_size(flags, size);
2438 return ERR_PTR(error);
2442 * shmem_zero_setup - setup a shared anonymous mapping
2444 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2446 int shmem_zero_setup(struct vm_area_struct *vma)
2449 loff_t size = vma->vm_end - vma->vm_start;
2451 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2453 return PTR_ERR(file);
2457 vma->vm_file = file;
2458 vma->vm_ops = &shmem_vm_ops;