Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/drzeus/mmc
[linux-2.6] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/tlb.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
60
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
63
64 #ifndef CONFIG_NEED_MULTIPLE_NODES
65 /* use the per-pgdat data instead for discontigmem - mbligh */
66 unsigned long max_mapnr;
67 struct page *mem_map;
68
69 EXPORT_SYMBOL(max_mapnr);
70 EXPORT_SYMBOL(mem_map);
71 #endif
72
73 unsigned long num_physpages;
74 /*
75  * A number of key systems in x86 including ioremap() rely on the assumption
76  * that high_memory defines the upper bound on direct map memory, then end
77  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
78  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
79  * and ZONE_HIGHMEM.
80  */
81 void * high_memory;
82
83 EXPORT_SYMBOL(num_physpages);
84 EXPORT_SYMBOL(high_memory);
85
86 /*
87  * Randomize the address space (stacks, mmaps, brk, etc.).
88  *
89  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90  *   as ancient (libc5 based) binaries can segfault. )
91  */
92 int randomize_va_space __read_mostly =
93 #ifdef CONFIG_COMPAT_BRK
94                                         1;
95 #else
96                                         2;
97 #endif
98
99 static int __init disable_randmaps(char *s)
100 {
101         randomize_va_space = 0;
102         return 1;
103 }
104 __setup("norandmaps", disable_randmaps);
105
106
107 /*
108  * If a p?d_bad entry is found while walking page tables, report
109  * the error, before resetting entry to p?d_none.  Usually (but
110  * very seldom) called out from the p?d_none_or_clear_bad macros.
111  */
112
113 void pgd_clear_bad(pgd_t *pgd)
114 {
115         pgd_ERROR(*pgd);
116         pgd_clear(pgd);
117 }
118
119 void pud_clear_bad(pud_t *pud)
120 {
121         pud_ERROR(*pud);
122         pud_clear(pud);
123 }
124
125 void pmd_clear_bad(pmd_t *pmd)
126 {
127         pmd_ERROR(*pmd);
128         pmd_clear(pmd);
129 }
130
131 /*
132  * Note: this doesn't free the actual pages themselves. That
133  * has been handled earlier when unmapping all the memory regions.
134  */
135 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
136 {
137         pgtable_t token = pmd_pgtable(*pmd);
138         pmd_clear(pmd);
139         pte_free_tlb(tlb, token);
140         tlb->mm->nr_ptes--;
141 }
142
143 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
144                                 unsigned long addr, unsigned long end,
145                                 unsigned long floor, unsigned long ceiling)
146 {
147         pmd_t *pmd;
148         unsigned long next;
149         unsigned long start;
150
151         start = addr;
152         pmd = pmd_offset(pud, addr);
153         do {
154                 next = pmd_addr_end(addr, end);
155                 if (pmd_none_or_clear_bad(pmd))
156                         continue;
157                 free_pte_range(tlb, pmd);
158         } while (pmd++, addr = next, addr != end);
159
160         start &= PUD_MASK;
161         if (start < floor)
162                 return;
163         if (ceiling) {
164                 ceiling &= PUD_MASK;
165                 if (!ceiling)
166                         return;
167         }
168         if (end - 1 > ceiling - 1)
169                 return;
170
171         pmd = pmd_offset(pud, start);
172         pud_clear(pud);
173         pmd_free_tlb(tlb, pmd);
174 }
175
176 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
177                                 unsigned long addr, unsigned long end,
178                                 unsigned long floor, unsigned long ceiling)
179 {
180         pud_t *pud;
181         unsigned long next;
182         unsigned long start;
183
184         start = addr;
185         pud = pud_offset(pgd, addr);
186         do {
187                 next = pud_addr_end(addr, end);
188                 if (pud_none_or_clear_bad(pud))
189                         continue;
190                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
191         } while (pud++, addr = next, addr != end);
192
193         start &= PGDIR_MASK;
194         if (start < floor)
195                 return;
196         if (ceiling) {
197                 ceiling &= PGDIR_MASK;
198                 if (!ceiling)
199                         return;
200         }
201         if (end - 1 > ceiling - 1)
202                 return;
203
204         pud = pud_offset(pgd, start);
205         pgd_clear(pgd);
206         pud_free_tlb(tlb, pud);
207 }
208
209 /*
210  * This function frees user-level page tables of a process.
211  *
212  * Must be called with pagetable lock held.
213  */
214 void free_pgd_range(struct mmu_gather **tlb,
215                         unsigned long addr, unsigned long end,
216                         unsigned long floor, unsigned long ceiling)
217 {
218         pgd_t *pgd;
219         unsigned long next;
220         unsigned long start;
221
222         /*
223          * The next few lines have given us lots of grief...
224          *
225          * Why are we testing PMD* at this top level?  Because often
226          * there will be no work to do at all, and we'd prefer not to
227          * go all the way down to the bottom just to discover that.
228          *
229          * Why all these "- 1"s?  Because 0 represents both the bottom
230          * of the address space and the top of it (using -1 for the
231          * top wouldn't help much: the masks would do the wrong thing).
232          * The rule is that addr 0 and floor 0 refer to the bottom of
233          * the address space, but end 0 and ceiling 0 refer to the top
234          * Comparisons need to use "end - 1" and "ceiling - 1" (though
235          * that end 0 case should be mythical).
236          *
237          * Wherever addr is brought up or ceiling brought down, we must
238          * be careful to reject "the opposite 0" before it confuses the
239          * subsequent tests.  But what about where end is brought down
240          * by PMD_SIZE below? no, end can't go down to 0 there.
241          *
242          * Whereas we round start (addr) and ceiling down, by different
243          * masks at different levels, in order to test whether a table
244          * now has no other vmas using it, so can be freed, we don't
245          * bother to round floor or end up - the tests don't need that.
246          */
247
248         addr &= PMD_MASK;
249         if (addr < floor) {
250                 addr += PMD_SIZE;
251                 if (!addr)
252                         return;
253         }
254         if (ceiling) {
255                 ceiling &= PMD_MASK;
256                 if (!ceiling)
257                         return;
258         }
259         if (end - 1 > ceiling - 1)
260                 end -= PMD_SIZE;
261         if (addr > end - 1)
262                 return;
263
264         start = addr;
265         pgd = pgd_offset((*tlb)->mm, addr);
266         do {
267                 next = pgd_addr_end(addr, end);
268                 if (pgd_none_or_clear_bad(pgd))
269                         continue;
270                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
271         } while (pgd++, addr = next, addr != end);
272 }
273
274 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
275                 unsigned long floor, unsigned long ceiling)
276 {
277         while (vma) {
278                 struct vm_area_struct *next = vma->vm_next;
279                 unsigned long addr = vma->vm_start;
280
281                 /*
282                  * Hide vma from rmap and vmtruncate before freeing pgtables
283                  */
284                 anon_vma_unlink(vma);
285                 unlink_file_vma(vma);
286
287                 if (is_vm_hugetlb_page(vma)) {
288                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
289                                 floor, next? next->vm_start: ceiling);
290                 } else {
291                         /*
292                          * Optimization: gather nearby vmas into one call down
293                          */
294                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
295                                && !is_vm_hugetlb_page(next)) {
296                                 vma = next;
297                                 next = vma->vm_next;
298                                 anon_vma_unlink(vma);
299                                 unlink_file_vma(vma);
300                         }
301                         free_pgd_range(tlb, addr, vma->vm_end,
302                                 floor, next? next->vm_start: ceiling);
303                 }
304                 vma = next;
305         }
306 }
307
308 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
309 {
310         pgtable_t new = pte_alloc_one(mm, address);
311         if (!new)
312                 return -ENOMEM;
313
314         spin_lock(&mm->page_table_lock);
315         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
316                 mm->nr_ptes++;
317                 pmd_populate(mm, pmd, new);
318                 new = NULL;
319         }
320         spin_unlock(&mm->page_table_lock);
321         if (new)
322                 pte_free(mm, new);
323         return 0;
324 }
325
326 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
327 {
328         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
329         if (!new)
330                 return -ENOMEM;
331
332         spin_lock(&init_mm.page_table_lock);
333         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
334                 pmd_populate_kernel(&init_mm, pmd, new);
335                 new = NULL;
336         }
337         spin_unlock(&init_mm.page_table_lock);
338         if (new)
339                 pte_free_kernel(&init_mm, new);
340         return 0;
341 }
342
343 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
344 {
345         if (file_rss)
346                 add_mm_counter(mm, file_rss, file_rss);
347         if (anon_rss)
348                 add_mm_counter(mm, anon_rss, anon_rss);
349 }
350
351 /*
352  * This function is called to print an error when a bad pte
353  * is found. For example, we might have a PFN-mapped pte in
354  * a region that doesn't allow it.
355  *
356  * The calling function must still handle the error.
357  */
358 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
359 {
360         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
361                         "vm_flags = %lx, vaddr = %lx\n",
362                 (long long)pte_val(pte),
363                 (vma->vm_mm == current->mm ? current->comm : "???"),
364                 vma->vm_flags, vaddr);
365         dump_stack();
366 }
367
368 static inline int is_cow_mapping(unsigned int flags)
369 {
370         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
371 }
372
373 /*
374  * This function gets the "struct page" associated with a pte.
375  *
376  * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
377  * will have each page table entry just pointing to a raw page frame
378  * number, and as far as the VM layer is concerned, those do not have
379  * pages associated with them - even if the PFN might point to memory
380  * that otherwise is perfectly fine and has a "struct page".
381  *
382  * The way we recognize those mappings is through the rules set up
383  * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
384  * and the vm_pgoff will point to the first PFN mapped: thus every
385  * page that is a raw mapping will always honor the rule
386  *
387  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
388  *
389  * and if that isn't true, the page has been COW'ed (in which case it
390  * _does_ have a "struct page" associated with it even if it is in a
391  * VM_PFNMAP range).
392  */
393 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
394 {
395         unsigned long pfn = pte_pfn(pte);
396
397         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
398                 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
399                 if (pfn == vma->vm_pgoff + off)
400                         return NULL;
401                 if (!is_cow_mapping(vma->vm_flags))
402                         return NULL;
403         }
404
405 #ifdef CONFIG_DEBUG_VM
406         /*
407          * Add some anal sanity checks for now. Eventually,
408          * we should just do "return pfn_to_page(pfn)", but
409          * in the meantime we check that we get a valid pfn,
410          * and that the resulting page looks ok.
411          */
412         if (unlikely(!pfn_valid(pfn))) {
413                 print_bad_pte(vma, pte, addr);
414                 return NULL;
415         }
416 #endif
417
418         /*
419          * NOTE! We still have PageReserved() pages in the page 
420          * tables. 
421          *
422          * The PAGE_ZERO() pages and various VDSO mappings can
423          * cause them to exist.
424          */
425         return pfn_to_page(pfn);
426 }
427
428 /*
429  * copy one vm_area from one task to the other. Assumes the page tables
430  * already present in the new task to be cleared in the whole range
431  * covered by this vma.
432  */
433
434 static inline void
435 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
436                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
437                 unsigned long addr, int *rss)
438 {
439         unsigned long vm_flags = vma->vm_flags;
440         pte_t pte = *src_pte;
441         struct page *page;
442
443         /* pte contains position in swap or file, so copy. */
444         if (unlikely(!pte_present(pte))) {
445                 if (!pte_file(pte)) {
446                         swp_entry_t entry = pte_to_swp_entry(pte);
447
448                         swap_duplicate(entry);
449                         /* make sure dst_mm is on swapoff's mmlist. */
450                         if (unlikely(list_empty(&dst_mm->mmlist))) {
451                                 spin_lock(&mmlist_lock);
452                                 if (list_empty(&dst_mm->mmlist))
453                                         list_add(&dst_mm->mmlist,
454                                                  &src_mm->mmlist);
455                                 spin_unlock(&mmlist_lock);
456                         }
457                         if (is_write_migration_entry(entry) &&
458                                         is_cow_mapping(vm_flags)) {
459                                 /*
460                                  * COW mappings require pages in both parent
461                                  * and child to be set to read.
462                                  */
463                                 make_migration_entry_read(&entry);
464                                 pte = swp_entry_to_pte(entry);
465                                 set_pte_at(src_mm, addr, src_pte, pte);
466                         }
467                 }
468                 goto out_set_pte;
469         }
470
471         /*
472          * If it's a COW mapping, write protect it both
473          * in the parent and the child
474          */
475         if (is_cow_mapping(vm_flags)) {
476                 ptep_set_wrprotect(src_mm, addr, src_pte);
477                 pte = pte_wrprotect(pte);
478         }
479
480         /*
481          * If it's a shared mapping, mark it clean in
482          * the child
483          */
484         if (vm_flags & VM_SHARED)
485                 pte = pte_mkclean(pte);
486         pte = pte_mkold(pte);
487
488         page = vm_normal_page(vma, addr, pte);
489         if (page) {
490                 get_page(page);
491                 page_dup_rmap(page, vma, addr);
492                 rss[!!PageAnon(page)]++;
493         }
494
495 out_set_pte:
496         set_pte_at(dst_mm, addr, dst_pte, pte);
497 }
498
499 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
500                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
501                 unsigned long addr, unsigned long end)
502 {
503         pte_t *src_pte, *dst_pte;
504         spinlock_t *src_ptl, *dst_ptl;
505         int progress = 0;
506         int rss[2];
507
508 again:
509         rss[1] = rss[0] = 0;
510         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
511         if (!dst_pte)
512                 return -ENOMEM;
513         src_pte = pte_offset_map_nested(src_pmd, addr);
514         src_ptl = pte_lockptr(src_mm, src_pmd);
515         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
516         arch_enter_lazy_mmu_mode();
517
518         do {
519                 /*
520                  * We are holding two locks at this point - either of them
521                  * could generate latencies in another task on another CPU.
522                  */
523                 if (progress >= 32) {
524                         progress = 0;
525                         if (need_resched() ||
526                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
527                                 break;
528                 }
529                 if (pte_none(*src_pte)) {
530                         progress++;
531                         continue;
532                 }
533                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
534                 progress += 8;
535         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
536
537         arch_leave_lazy_mmu_mode();
538         spin_unlock(src_ptl);
539         pte_unmap_nested(src_pte - 1);
540         add_mm_rss(dst_mm, rss[0], rss[1]);
541         pte_unmap_unlock(dst_pte - 1, dst_ptl);
542         cond_resched();
543         if (addr != end)
544                 goto again;
545         return 0;
546 }
547
548 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
549                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
550                 unsigned long addr, unsigned long end)
551 {
552         pmd_t *src_pmd, *dst_pmd;
553         unsigned long next;
554
555         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
556         if (!dst_pmd)
557                 return -ENOMEM;
558         src_pmd = pmd_offset(src_pud, addr);
559         do {
560                 next = pmd_addr_end(addr, end);
561                 if (pmd_none_or_clear_bad(src_pmd))
562                         continue;
563                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
564                                                 vma, addr, next))
565                         return -ENOMEM;
566         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
567         return 0;
568 }
569
570 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
571                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
572                 unsigned long addr, unsigned long end)
573 {
574         pud_t *src_pud, *dst_pud;
575         unsigned long next;
576
577         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
578         if (!dst_pud)
579                 return -ENOMEM;
580         src_pud = pud_offset(src_pgd, addr);
581         do {
582                 next = pud_addr_end(addr, end);
583                 if (pud_none_or_clear_bad(src_pud))
584                         continue;
585                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
586                                                 vma, addr, next))
587                         return -ENOMEM;
588         } while (dst_pud++, src_pud++, addr = next, addr != end);
589         return 0;
590 }
591
592 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
593                 struct vm_area_struct *vma)
594 {
595         pgd_t *src_pgd, *dst_pgd;
596         unsigned long next;
597         unsigned long addr = vma->vm_start;
598         unsigned long end = vma->vm_end;
599
600         /*
601          * Don't copy ptes where a page fault will fill them correctly.
602          * Fork becomes much lighter when there are big shared or private
603          * readonly mappings. The tradeoff is that copy_page_range is more
604          * efficient than faulting.
605          */
606         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
607                 if (!vma->anon_vma)
608                         return 0;
609         }
610
611         if (is_vm_hugetlb_page(vma))
612                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
613
614         dst_pgd = pgd_offset(dst_mm, addr);
615         src_pgd = pgd_offset(src_mm, addr);
616         do {
617                 next = pgd_addr_end(addr, end);
618                 if (pgd_none_or_clear_bad(src_pgd))
619                         continue;
620                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
621                                                 vma, addr, next))
622                         return -ENOMEM;
623         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
624         return 0;
625 }
626
627 static unsigned long zap_pte_range(struct mmu_gather *tlb,
628                                 struct vm_area_struct *vma, pmd_t *pmd,
629                                 unsigned long addr, unsigned long end,
630                                 long *zap_work, struct zap_details *details)
631 {
632         struct mm_struct *mm = tlb->mm;
633         pte_t *pte;
634         spinlock_t *ptl;
635         int file_rss = 0;
636         int anon_rss = 0;
637
638         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
639         arch_enter_lazy_mmu_mode();
640         do {
641                 pte_t ptent = *pte;
642                 if (pte_none(ptent)) {
643                         (*zap_work)--;
644                         continue;
645                 }
646
647                 (*zap_work) -= PAGE_SIZE;
648
649                 if (pte_present(ptent)) {
650                         struct page *page;
651
652                         page = vm_normal_page(vma, addr, ptent);
653                         if (unlikely(details) && page) {
654                                 /*
655                                  * unmap_shared_mapping_pages() wants to
656                                  * invalidate cache without truncating:
657                                  * unmap shared but keep private pages.
658                                  */
659                                 if (details->check_mapping &&
660                                     details->check_mapping != page->mapping)
661                                         continue;
662                                 /*
663                                  * Each page->index must be checked when
664                                  * invalidating or truncating nonlinear.
665                                  */
666                                 if (details->nonlinear_vma &&
667                                     (page->index < details->first_index ||
668                                      page->index > details->last_index))
669                                         continue;
670                         }
671                         ptent = ptep_get_and_clear_full(mm, addr, pte,
672                                                         tlb->fullmm);
673                         tlb_remove_tlb_entry(tlb, pte, addr);
674                         if (unlikely(!page))
675                                 continue;
676                         if (unlikely(details) && details->nonlinear_vma
677                             && linear_page_index(details->nonlinear_vma,
678                                                 addr) != page->index)
679                                 set_pte_at(mm, addr, pte,
680                                            pgoff_to_pte(page->index));
681                         if (PageAnon(page))
682                                 anon_rss--;
683                         else {
684                                 if (pte_dirty(ptent))
685                                         set_page_dirty(page);
686                                 if (pte_young(ptent))
687                                         SetPageReferenced(page);
688                                 file_rss--;
689                         }
690                         page_remove_rmap(page, vma);
691                         tlb_remove_page(tlb, page);
692                         continue;
693                 }
694                 /*
695                  * If details->check_mapping, we leave swap entries;
696                  * if details->nonlinear_vma, we leave file entries.
697                  */
698                 if (unlikely(details))
699                         continue;
700                 if (!pte_file(ptent))
701                         free_swap_and_cache(pte_to_swp_entry(ptent));
702                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
703         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
704
705         add_mm_rss(mm, file_rss, anon_rss);
706         arch_leave_lazy_mmu_mode();
707         pte_unmap_unlock(pte - 1, ptl);
708
709         return addr;
710 }
711
712 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
713                                 struct vm_area_struct *vma, pud_t *pud,
714                                 unsigned long addr, unsigned long end,
715                                 long *zap_work, struct zap_details *details)
716 {
717         pmd_t *pmd;
718         unsigned long next;
719
720         pmd = pmd_offset(pud, addr);
721         do {
722                 next = pmd_addr_end(addr, end);
723                 if (pmd_none_or_clear_bad(pmd)) {
724                         (*zap_work)--;
725                         continue;
726                 }
727                 next = zap_pte_range(tlb, vma, pmd, addr, next,
728                                                 zap_work, details);
729         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
730
731         return addr;
732 }
733
734 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
735                                 struct vm_area_struct *vma, pgd_t *pgd,
736                                 unsigned long addr, unsigned long end,
737                                 long *zap_work, struct zap_details *details)
738 {
739         pud_t *pud;
740         unsigned long next;
741
742         pud = pud_offset(pgd, addr);
743         do {
744                 next = pud_addr_end(addr, end);
745                 if (pud_none_or_clear_bad(pud)) {
746                         (*zap_work)--;
747                         continue;
748                 }
749                 next = zap_pmd_range(tlb, vma, pud, addr, next,
750                                                 zap_work, details);
751         } while (pud++, addr = next, (addr != end && *zap_work > 0));
752
753         return addr;
754 }
755
756 static unsigned long unmap_page_range(struct mmu_gather *tlb,
757                                 struct vm_area_struct *vma,
758                                 unsigned long addr, unsigned long end,
759                                 long *zap_work, struct zap_details *details)
760 {
761         pgd_t *pgd;
762         unsigned long next;
763
764         if (details && !details->check_mapping && !details->nonlinear_vma)
765                 details = NULL;
766
767         BUG_ON(addr >= end);
768         tlb_start_vma(tlb, vma);
769         pgd = pgd_offset(vma->vm_mm, addr);
770         do {
771                 next = pgd_addr_end(addr, end);
772                 if (pgd_none_or_clear_bad(pgd)) {
773                         (*zap_work)--;
774                         continue;
775                 }
776                 next = zap_pud_range(tlb, vma, pgd, addr, next,
777                                                 zap_work, details);
778         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
779         tlb_end_vma(tlb, vma);
780
781         return addr;
782 }
783
784 #ifdef CONFIG_PREEMPT
785 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
786 #else
787 /* No preempt: go for improved straight-line efficiency */
788 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
789 #endif
790
791 /**
792  * unmap_vmas - unmap a range of memory covered by a list of vma's
793  * @tlbp: address of the caller's struct mmu_gather
794  * @vma: the starting vma
795  * @start_addr: virtual address at which to start unmapping
796  * @end_addr: virtual address at which to end unmapping
797  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
798  * @details: details of nonlinear truncation or shared cache invalidation
799  *
800  * Returns the end address of the unmapping (restart addr if interrupted).
801  *
802  * Unmap all pages in the vma list.
803  *
804  * We aim to not hold locks for too long (for scheduling latency reasons).
805  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
806  * return the ending mmu_gather to the caller.
807  *
808  * Only addresses between `start' and `end' will be unmapped.
809  *
810  * The VMA list must be sorted in ascending virtual address order.
811  *
812  * unmap_vmas() assumes that the caller will flush the whole unmapped address
813  * range after unmap_vmas() returns.  So the only responsibility here is to
814  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
815  * drops the lock and schedules.
816  */
817 unsigned long unmap_vmas(struct mmu_gather **tlbp,
818                 struct vm_area_struct *vma, unsigned long start_addr,
819                 unsigned long end_addr, unsigned long *nr_accounted,
820                 struct zap_details *details)
821 {
822         long zap_work = ZAP_BLOCK_SIZE;
823         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
824         int tlb_start_valid = 0;
825         unsigned long start = start_addr;
826         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
827         int fullmm = (*tlbp)->fullmm;
828
829         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
830                 unsigned long end;
831
832                 start = max(vma->vm_start, start_addr);
833                 if (start >= vma->vm_end)
834                         continue;
835                 end = min(vma->vm_end, end_addr);
836                 if (end <= vma->vm_start)
837                         continue;
838
839                 if (vma->vm_flags & VM_ACCOUNT)
840                         *nr_accounted += (end - start) >> PAGE_SHIFT;
841
842                 while (start != end) {
843                         if (!tlb_start_valid) {
844                                 tlb_start = start;
845                                 tlb_start_valid = 1;
846                         }
847
848                         if (unlikely(is_vm_hugetlb_page(vma))) {
849                                 unmap_hugepage_range(vma, start, end);
850                                 zap_work -= (end - start) /
851                                                 (HPAGE_SIZE / PAGE_SIZE);
852                                 start = end;
853                         } else
854                                 start = unmap_page_range(*tlbp, vma,
855                                                 start, end, &zap_work, details);
856
857                         if (zap_work > 0) {
858                                 BUG_ON(start != end);
859                                 break;
860                         }
861
862                         tlb_finish_mmu(*tlbp, tlb_start, start);
863
864                         if (need_resched() ||
865                                 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
866                                 if (i_mmap_lock) {
867                                         *tlbp = NULL;
868                                         goto out;
869                                 }
870                                 cond_resched();
871                         }
872
873                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
874                         tlb_start_valid = 0;
875                         zap_work = ZAP_BLOCK_SIZE;
876                 }
877         }
878 out:
879         return start;   /* which is now the end (or restart) address */
880 }
881
882 /**
883  * zap_page_range - remove user pages in a given range
884  * @vma: vm_area_struct holding the applicable pages
885  * @address: starting address of pages to zap
886  * @size: number of bytes to zap
887  * @details: details of nonlinear truncation or shared cache invalidation
888  */
889 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
890                 unsigned long size, struct zap_details *details)
891 {
892         struct mm_struct *mm = vma->vm_mm;
893         struct mmu_gather *tlb;
894         unsigned long end = address + size;
895         unsigned long nr_accounted = 0;
896
897         lru_add_drain();
898         tlb = tlb_gather_mmu(mm, 0);
899         update_hiwater_rss(mm);
900         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
901         if (tlb)
902                 tlb_finish_mmu(tlb, address, end);
903         return end;
904 }
905
906 /*
907  * Do a quick page-table lookup for a single page.
908  */
909 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
910                         unsigned int flags)
911 {
912         pgd_t *pgd;
913         pud_t *pud;
914         pmd_t *pmd;
915         pte_t *ptep, pte;
916         spinlock_t *ptl;
917         struct page *page;
918         struct mm_struct *mm = vma->vm_mm;
919
920         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
921         if (!IS_ERR(page)) {
922                 BUG_ON(flags & FOLL_GET);
923                 goto out;
924         }
925
926         page = NULL;
927         pgd = pgd_offset(mm, address);
928         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
929                 goto no_page_table;
930
931         pud = pud_offset(pgd, address);
932         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
933                 goto no_page_table;
934         
935         pmd = pmd_offset(pud, address);
936         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
937                 goto no_page_table;
938
939         if (pmd_huge(*pmd)) {
940                 BUG_ON(flags & FOLL_GET);
941                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
942                 goto out;
943         }
944
945         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
946         if (!ptep)
947                 goto out;
948
949         pte = *ptep;
950         if (!pte_present(pte))
951                 goto unlock;
952         if ((flags & FOLL_WRITE) && !pte_write(pte))
953                 goto unlock;
954         page = vm_normal_page(vma, address, pte);
955         if (unlikely(!page))
956                 goto unlock;
957
958         if (flags & FOLL_GET)
959                 get_page(page);
960         if (flags & FOLL_TOUCH) {
961                 if ((flags & FOLL_WRITE) &&
962                     !pte_dirty(pte) && !PageDirty(page))
963                         set_page_dirty(page);
964                 mark_page_accessed(page);
965         }
966 unlock:
967         pte_unmap_unlock(ptep, ptl);
968 out:
969         return page;
970
971 no_page_table:
972         /*
973          * When core dumping an enormous anonymous area that nobody
974          * has touched so far, we don't want to allocate page tables.
975          */
976         if (flags & FOLL_ANON) {
977                 page = ZERO_PAGE(0);
978                 if (flags & FOLL_GET)
979                         get_page(page);
980                 BUG_ON(flags & FOLL_WRITE);
981         }
982         return page;
983 }
984
985 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
986                 unsigned long start, int len, int write, int force,
987                 struct page **pages, struct vm_area_struct **vmas)
988 {
989         int i;
990         unsigned int vm_flags;
991
992         /* 
993          * Require read or write permissions.
994          * If 'force' is set, we only require the "MAY" flags.
995          */
996         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
997         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
998         i = 0;
999
1000         do {
1001                 struct vm_area_struct *vma;
1002                 unsigned int foll_flags;
1003
1004                 vma = find_extend_vma(mm, start);
1005                 if (!vma && in_gate_area(tsk, start)) {
1006                         unsigned long pg = start & PAGE_MASK;
1007                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1008                         pgd_t *pgd;
1009                         pud_t *pud;
1010                         pmd_t *pmd;
1011                         pte_t *pte;
1012                         if (write) /* user gate pages are read-only */
1013                                 return i ? : -EFAULT;
1014                         if (pg > TASK_SIZE)
1015                                 pgd = pgd_offset_k(pg);
1016                         else
1017                                 pgd = pgd_offset_gate(mm, pg);
1018                         BUG_ON(pgd_none(*pgd));
1019                         pud = pud_offset(pgd, pg);
1020                         BUG_ON(pud_none(*pud));
1021                         pmd = pmd_offset(pud, pg);
1022                         if (pmd_none(*pmd))
1023                                 return i ? : -EFAULT;
1024                         pte = pte_offset_map(pmd, pg);
1025                         if (pte_none(*pte)) {
1026                                 pte_unmap(pte);
1027                                 return i ? : -EFAULT;
1028                         }
1029                         if (pages) {
1030                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1031                                 pages[i] = page;
1032                                 if (page)
1033                                         get_page(page);
1034                         }
1035                         pte_unmap(pte);
1036                         if (vmas)
1037                                 vmas[i] = gate_vma;
1038                         i++;
1039                         start += PAGE_SIZE;
1040                         len--;
1041                         continue;
1042                 }
1043
1044                 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1045                                 || !(vm_flags & vma->vm_flags))
1046                         return i ? : -EFAULT;
1047
1048                 if (is_vm_hugetlb_page(vma)) {
1049                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1050                                                 &start, &len, i, write);
1051                         continue;
1052                 }
1053
1054                 foll_flags = FOLL_TOUCH;
1055                 if (pages)
1056                         foll_flags |= FOLL_GET;
1057                 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1058                     (!vma->vm_ops || (!vma->vm_ops->nopage &&
1059                                         !vma->vm_ops->fault)))
1060                         foll_flags |= FOLL_ANON;
1061
1062                 do {
1063                         struct page *page;
1064
1065                         /*
1066                          * If tsk is ooming, cut off its access to large memory
1067                          * allocations. It has a pending SIGKILL, but it can't
1068                          * be processed until returning to user space.
1069                          */
1070                         if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1071                                 return -ENOMEM;
1072
1073                         if (write)
1074                                 foll_flags |= FOLL_WRITE;
1075
1076                         cond_resched();
1077                         while (!(page = follow_page(vma, start, foll_flags))) {
1078                                 int ret;
1079                                 ret = handle_mm_fault(mm, vma, start,
1080                                                 foll_flags & FOLL_WRITE);
1081                                 if (ret & VM_FAULT_ERROR) {
1082                                         if (ret & VM_FAULT_OOM)
1083                                                 return i ? i : -ENOMEM;
1084                                         else if (ret & VM_FAULT_SIGBUS)
1085                                                 return i ? i : -EFAULT;
1086                                         BUG();
1087                                 }
1088                                 if (ret & VM_FAULT_MAJOR)
1089                                         tsk->maj_flt++;
1090                                 else
1091                                         tsk->min_flt++;
1092
1093                                 /*
1094                                  * The VM_FAULT_WRITE bit tells us that
1095                                  * do_wp_page has broken COW when necessary,
1096                                  * even if maybe_mkwrite decided not to set
1097                                  * pte_write. We can thus safely do subsequent
1098                                  * page lookups as if they were reads.
1099                                  */
1100                                 if (ret & VM_FAULT_WRITE)
1101                                         foll_flags &= ~FOLL_WRITE;
1102
1103                                 cond_resched();
1104                         }
1105                         if (pages) {
1106                                 pages[i] = page;
1107
1108                                 flush_anon_page(vma, page, start);
1109                                 flush_dcache_page(page);
1110                         }
1111                         if (vmas)
1112                                 vmas[i] = vma;
1113                         i++;
1114                         start += PAGE_SIZE;
1115                         len--;
1116                 } while (len && start < vma->vm_end);
1117         } while (len);
1118         return i;
1119 }
1120 EXPORT_SYMBOL(get_user_pages);
1121
1122 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1123                         spinlock_t **ptl)
1124 {
1125         pgd_t * pgd = pgd_offset(mm, addr);
1126         pud_t * pud = pud_alloc(mm, pgd, addr);
1127         if (pud) {
1128                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1129                 if (pmd)
1130                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1131         }
1132         return NULL;
1133 }
1134
1135 /*
1136  * This is the old fallback for page remapping.
1137  *
1138  * For historical reasons, it only allows reserved pages. Only
1139  * old drivers should use this, and they needed to mark their
1140  * pages reserved for the old functions anyway.
1141  */
1142 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1143 {
1144         int retval;
1145         pte_t *pte;
1146         spinlock_t *ptl;
1147
1148         retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1149         if (retval)
1150                 goto out;
1151
1152         retval = -EINVAL;
1153         if (PageAnon(page))
1154                 goto out_uncharge;
1155         retval = -ENOMEM;
1156         flush_dcache_page(page);
1157         pte = get_locked_pte(mm, addr, &ptl);
1158         if (!pte)
1159                 goto out_uncharge;
1160         retval = -EBUSY;
1161         if (!pte_none(*pte))
1162                 goto out_unlock;
1163
1164         /* Ok, finally just insert the thing.. */
1165         get_page(page);
1166         inc_mm_counter(mm, file_rss);
1167         page_add_file_rmap(page);
1168         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1169
1170         retval = 0;
1171         pte_unmap_unlock(pte, ptl);
1172         return retval;
1173 out_unlock:
1174         pte_unmap_unlock(pte, ptl);
1175 out_uncharge:
1176         mem_cgroup_uncharge_page(page);
1177 out:
1178         return retval;
1179 }
1180
1181 /**
1182  * vm_insert_page - insert single page into user vma
1183  * @vma: user vma to map to
1184  * @addr: target user address of this page
1185  * @page: source kernel page
1186  *
1187  * This allows drivers to insert individual pages they've allocated
1188  * into a user vma.
1189  *
1190  * The page has to be a nice clean _individual_ kernel allocation.
1191  * If you allocate a compound page, you need to have marked it as
1192  * such (__GFP_COMP), or manually just split the page up yourself
1193  * (see split_page()).
1194  *
1195  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1196  * took an arbitrary page protection parameter. This doesn't allow
1197  * that. Your vma protection will have to be set up correctly, which
1198  * means that if you want a shared writable mapping, you'd better
1199  * ask for a shared writable mapping!
1200  *
1201  * The page does not need to be reserved.
1202  */
1203 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1204 {
1205         if (addr < vma->vm_start || addr >= vma->vm_end)
1206                 return -EFAULT;
1207         if (!page_count(page))
1208                 return -EINVAL;
1209         vma->vm_flags |= VM_INSERTPAGE;
1210         return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1211 }
1212 EXPORT_SYMBOL(vm_insert_page);
1213
1214 /**
1215  * vm_insert_pfn - insert single pfn into user vma
1216  * @vma: user vma to map to
1217  * @addr: target user address of this page
1218  * @pfn: source kernel pfn
1219  *
1220  * Similar to vm_inert_page, this allows drivers to insert individual pages
1221  * they've allocated into a user vma. Same comments apply.
1222  *
1223  * This function should only be called from a vm_ops->fault handler, and
1224  * in that case the handler should return NULL.
1225  */
1226 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1227                 unsigned long pfn)
1228 {
1229         struct mm_struct *mm = vma->vm_mm;
1230         int retval;
1231         pte_t *pte, entry;
1232         spinlock_t *ptl;
1233
1234         BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1235         BUG_ON(is_cow_mapping(vma->vm_flags));
1236
1237         retval = -ENOMEM;
1238         pte = get_locked_pte(mm, addr, &ptl);
1239         if (!pte)
1240                 goto out;
1241         retval = -EBUSY;
1242         if (!pte_none(*pte))
1243                 goto out_unlock;
1244
1245         /* Ok, finally just insert the thing.. */
1246         entry = pfn_pte(pfn, vma->vm_page_prot);
1247         set_pte_at(mm, addr, pte, entry);
1248         update_mmu_cache(vma, addr, entry);
1249
1250         retval = 0;
1251 out_unlock:
1252         pte_unmap_unlock(pte, ptl);
1253
1254 out:
1255         return retval;
1256 }
1257 EXPORT_SYMBOL(vm_insert_pfn);
1258
1259 /*
1260  * maps a range of physical memory into the requested pages. the old
1261  * mappings are removed. any references to nonexistent pages results
1262  * in null mappings (currently treated as "copy-on-access")
1263  */
1264 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1265                         unsigned long addr, unsigned long end,
1266                         unsigned long pfn, pgprot_t prot)
1267 {
1268         pte_t *pte;
1269         spinlock_t *ptl;
1270
1271         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1272         if (!pte)
1273                 return -ENOMEM;
1274         arch_enter_lazy_mmu_mode();
1275         do {
1276                 BUG_ON(!pte_none(*pte));
1277                 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1278                 pfn++;
1279         } while (pte++, addr += PAGE_SIZE, addr != end);
1280         arch_leave_lazy_mmu_mode();
1281         pte_unmap_unlock(pte - 1, ptl);
1282         return 0;
1283 }
1284
1285 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1286                         unsigned long addr, unsigned long end,
1287                         unsigned long pfn, pgprot_t prot)
1288 {
1289         pmd_t *pmd;
1290         unsigned long next;
1291
1292         pfn -= addr >> PAGE_SHIFT;
1293         pmd = pmd_alloc(mm, pud, addr);
1294         if (!pmd)
1295                 return -ENOMEM;
1296         do {
1297                 next = pmd_addr_end(addr, end);
1298                 if (remap_pte_range(mm, pmd, addr, next,
1299                                 pfn + (addr >> PAGE_SHIFT), prot))
1300                         return -ENOMEM;
1301         } while (pmd++, addr = next, addr != end);
1302         return 0;
1303 }
1304
1305 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1306                         unsigned long addr, unsigned long end,
1307                         unsigned long pfn, pgprot_t prot)
1308 {
1309         pud_t *pud;
1310         unsigned long next;
1311
1312         pfn -= addr >> PAGE_SHIFT;
1313         pud = pud_alloc(mm, pgd, addr);
1314         if (!pud)
1315                 return -ENOMEM;
1316         do {
1317                 next = pud_addr_end(addr, end);
1318                 if (remap_pmd_range(mm, pud, addr, next,
1319                                 pfn + (addr >> PAGE_SHIFT), prot))
1320                         return -ENOMEM;
1321         } while (pud++, addr = next, addr != end);
1322         return 0;
1323 }
1324
1325 /**
1326  * remap_pfn_range - remap kernel memory to userspace
1327  * @vma: user vma to map to
1328  * @addr: target user address to start at
1329  * @pfn: physical address of kernel memory
1330  * @size: size of map area
1331  * @prot: page protection flags for this mapping
1332  *
1333  *  Note: this is only safe if the mm semaphore is held when called.
1334  */
1335 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1336                     unsigned long pfn, unsigned long size, pgprot_t prot)
1337 {
1338         pgd_t *pgd;
1339         unsigned long next;
1340         unsigned long end = addr + PAGE_ALIGN(size);
1341         struct mm_struct *mm = vma->vm_mm;
1342         int err;
1343
1344         /*
1345          * Physically remapped pages are special. Tell the
1346          * rest of the world about it:
1347          *   VM_IO tells people not to look at these pages
1348          *      (accesses can have side effects).
1349          *   VM_RESERVED is specified all over the place, because
1350          *      in 2.4 it kept swapout's vma scan off this vma; but
1351          *      in 2.6 the LRU scan won't even find its pages, so this
1352          *      flag means no more than count its pages in reserved_vm,
1353          *      and omit it from core dump, even when VM_IO turned off.
1354          *   VM_PFNMAP tells the core MM that the base pages are just
1355          *      raw PFN mappings, and do not have a "struct page" associated
1356          *      with them.
1357          *
1358          * There's a horrible special case to handle copy-on-write
1359          * behaviour that some programs depend on. We mark the "original"
1360          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1361          */
1362         if (is_cow_mapping(vma->vm_flags)) {
1363                 if (addr != vma->vm_start || end != vma->vm_end)
1364                         return -EINVAL;
1365                 vma->vm_pgoff = pfn;
1366         }
1367
1368         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1369
1370         BUG_ON(addr >= end);
1371         pfn -= addr >> PAGE_SHIFT;
1372         pgd = pgd_offset(mm, addr);
1373         flush_cache_range(vma, addr, end);
1374         do {
1375                 next = pgd_addr_end(addr, end);
1376                 err = remap_pud_range(mm, pgd, addr, next,
1377                                 pfn + (addr >> PAGE_SHIFT), prot);
1378                 if (err)
1379                         break;
1380         } while (pgd++, addr = next, addr != end);
1381         return err;
1382 }
1383 EXPORT_SYMBOL(remap_pfn_range);
1384
1385 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1386                                      unsigned long addr, unsigned long end,
1387                                      pte_fn_t fn, void *data)
1388 {
1389         pte_t *pte;
1390         int err;
1391         pgtable_t token;
1392         spinlock_t *uninitialized_var(ptl);
1393
1394         pte = (mm == &init_mm) ?
1395                 pte_alloc_kernel(pmd, addr) :
1396                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1397         if (!pte)
1398                 return -ENOMEM;
1399
1400         BUG_ON(pmd_huge(*pmd));
1401
1402         token = pmd_pgtable(*pmd);
1403
1404         do {
1405                 err = fn(pte, token, addr, data);
1406                 if (err)
1407                         break;
1408         } while (pte++, addr += PAGE_SIZE, addr != end);
1409
1410         if (mm != &init_mm)
1411                 pte_unmap_unlock(pte-1, ptl);
1412         return err;
1413 }
1414
1415 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1416                                      unsigned long addr, unsigned long end,
1417                                      pte_fn_t fn, void *data)
1418 {
1419         pmd_t *pmd;
1420         unsigned long next;
1421         int err;
1422
1423         pmd = pmd_alloc(mm, pud, addr);
1424         if (!pmd)
1425                 return -ENOMEM;
1426         do {
1427                 next = pmd_addr_end(addr, end);
1428                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1429                 if (err)
1430                         break;
1431         } while (pmd++, addr = next, addr != end);
1432         return err;
1433 }
1434
1435 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1436                                      unsigned long addr, unsigned long end,
1437                                      pte_fn_t fn, void *data)
1438 {
1439         pud_t *pud;
1440         unsigned long next;
1441         int err;
1442
1443         pud = pud_alloc(mm, pgd, addr);
1444         if (!pud)
1445                 return -ENOMEM;
1446         do {
1447                 next = pud_addr_end(addr, end);
1448                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1449                 if (err)
1450                         break;
1451         } while (pud++, addr = next, addr != end);
1452         return err;
1453 }
1454
1455 /*
1456  * Scan a region of virtual memory, filling in page tables as necessary
1457  * and calling a provided function on each leaf page table.
1458  */
1459 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1460                         unsigned long size, pte_fn_t fn, void *data)
1461 {
1462         pgd_t *pgd;
1463         unsigned long next;
1464         unsigned long end = addr + size;
1465         int err;
1466
1467         BUG_ON(addr >= end);
1468         pgd = pgd_offset(mm, addr);
1469         do {
1470                 next = pgd_addr_end(addr, end);
1471                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1472                 if (err)
1473                         break;
1474         } while (pgd++, addr = next, addr != end);
1475         return err;
1476 }
1477 EXPORT_SYMBOL_GPL(apply_to_page_range);
1478
1479 /*
1480  * handle_pte_fault chooses page fault handler according to an entry
1481  * which was read non-atomically.  Before making any commitment, on
1482  * those architectures or configurations (e.g. i386 with PAE) which
1483  * might give a mix of unmatched parts, do_swap_page and do_file_page
1484  * must check under lock before unmapping the pte and proceeding
1485  * (but do_wp_page is only called after already making such a check;
1486  * and do_anonymous_page and do_no_page can safely check later on).
1487  */
1488 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1489                                 pte_t *page_table, pte_t orig_pte)
1490 {
1491         int same = 1;
1492 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1493         if (sizeof(pte_t) > sizeof(unsigned long)) {
1494                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1495                 spin_lock(ptl);
1496                 same = pte_same(*page_table, orig_pte);
1497                 spin_unlock(ptl);
1498         }
1499 #endif
1500         pte_unmap(page_table);
1501         return same;
1502 }
1503
1504 /*
1505  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1506  * servicing faults for write access.  In the normal case, do always want
1507  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1508  * that do not have writing enabled, when used by access_process_vm.
1509  */
1510 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1511 {
1512         if (likely(vma->vm_flags & VM_WRITE))
1513                 pte = pte_mkwrite(pte);
1514         return pte;
1515 }
1516
1517 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1518 {
1519         /*
1520          * If the source page was a PFN mapping, we don't have
1521          * a "struct page" for it. We do a best-effort copy by
1522          * just copying from the original user address. If that
1523          * fails, we just zero-fill it. Live with it.
1524          */
1525         if (unlikely(!src)) {
1526                 void *kaddr = kmap_atomic(dst, KM_USER0);
1527                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1528
1529                 /*
1530                  * This really shouldn't fail, because the page is there
1531                  * in the page tables. But it might just be unreadable,
1532                  * in which case we just give up and fill the result with
1533                  * zeroes.
1534                  */
1535                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1536                         memset(kaddr, 0, PAGE_SIZE);
1537                 kunmap_atomic(kaddr, KM_USER0);
1538                 flush_dcache_page(dst);
1539         } else
1540                 copy_user_highpage(dst, src, va, vma);
1541 }
1542
1543 /*
1544  * This routine handles present pages, when users try to write
1545  * to a shared page. It is done by copying the page to a new address
1546  * and decrementing the shared-page counter for the old page.
1547  *
1548  * Note that this routine assumes that the protection checks have been
1549  * done by the caller (the low-level page fault routine in most cases).
1550  * Thus we can safely just mark it writable once we've done any necessary
1551  * COW.
1552  *
1553  * We also mark the page dirty at this point even though the page will
1554  * change only once the write actually happens. This avoids a few races,
1555  * and potentially makes it more efficient.
1556  *
1557  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1558  * but allow concurrent faults), with pte both mapped and locked.
1559  * We return with mmap_sem still held, but pte unmapped and unlocked.
1560  */
1561 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1562                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1563                 spinlock_t *ptl, pte_t orig_pte)
1564 {
1565         struct page *old_page, *new_page;
1566         pte_t entry;
1567         int reuse = 0, ret = 0;
1568         int page_mkwrite = 0;
1569         struct page *dirty_page = NULL;
1570
1571         old_page = vm_normal_page(vma, address, orig_pte);
1572         if (!old_page)
1573                 goto gotten;
1574
1575         /*
1576          * Take out anonymous pages first, anonymous shared vmas are
1577          * not dirty accountable.
1578          */
1579         if (PageAnon(old_page)) {
1580                 if (!TestSetPageLocked(old_page)) {
1581                         reuse = can_share_swap_page(old_page);
1582                         unlock_page(old_page);
1583                 }
1584         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1585                                         (VM_WRITE|VM_SHARED))) {
1586                 /*
1587                  * Only catch write-faults on shared writable pages,
1588                  * read-only shared pages can get COWed by
1589                  * get_user_pages(.write=1, .force=1).
1590                  */
1591                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1592                         /*
1593                          * Notify the address space that the page is about to
1594                          * become writable so that it can prohibit this or wait
1595                          * for the page to get into an appropriate state.
1596                          *
1597                          * We do this without the lock held, so that it can
1598                          * sleep if it needs to.
1599                          */
1600                         page_cache_get(old_page);
1601                         pte_unmap_unlock(page_table, ptl);
1602
1603                         if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1604                                 goto unwritable_page;
1605
1606                         /*
1607                          * Since we dropped the lock we need to revalidate
1608                          * the PTE as someone else may have changed it.  If
1609                          * they did, we just return, as we can count on the
1610                          * MMU to tell us if they didn't also make it writable.
1611                          */
1612                         page_table = pte_offset_map_lock(mm, pmd, address,
1613                                                          &ptl);
1614                         page_cache_release(old_page);
1615                         if (!pte_same(*page_table, orig_pte))
1616                                 goto unlock;
1617
1618                         page_mkwrite = 1;
1619                 }
1620                 dirty_page = old_page;
1621                 get_page(dirty_page);
1622                 reuse = 1;
1623         }
1624
1625         if (reuse) {
1626                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1627                 entry = pte_mkyoung(orig_pte);
1628                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1629                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1630                         update_mmu_cache(vma, address, entry);
1631                 ret |= VM_FAULT_WRITE;
1632                 goto unlock;
1633         }
1634
1635         /*
1636          * Ok, we need to copy. Oh, well..
1637          */
1638         page_cache_get(old_page);
1639 gotten:
1640         pte_unmap_unlock(page_table, ptl);
1641
1642         if (unlikely(anon_vma_prepare(vma)))
1643                 goto oom;
1644         VM_BUG_ON(old_page == ZERO_PAGE(0));
1645         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1646         if (!new_page)
1647                 goto oom;
1648         cow_user_page(new_page, old_page, address, vma);
1649         __SetPageUptodate(new_page);
1650
1651         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1652                 goto oom_free_new;
1653
1654         /*
1655          * Re-check the pte - we dropped the lock
1656          */
1657         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1658         if (likely(pte_same(*page_table, orig_pte))) {
1659                 if (old_page) {
1660                         page_remove_rmap(old_page, vma);
1661                         if (!PageAnon(old_page)) {
1662                                 dec_mm_counter(mm, file_rss);
1663                                 inc_mm_counter(mm, anon_rss);
1664                         }
1665                 } else
1666                         inc_mm_counter(mm, anon_rss);
1667                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1668                 entry = mk_pte(new_page, vma->vm_page_prot);
1669                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1670                 /*
1671                  * Clear the pte entry and flush it first, before updating the
1672                  * pte with the new entry. This will avoid a race condition
1673                  * seen in the presence of one thread doing SMC and another
1674                  * thread doing COW.
1675                  */
1676                 ptep_clear_flush(vma, address, page_table);
1677                 set_pte_at(mm, address, page_table, entry);
1678                 update_mmu_cache(vma, address, entry);
1679                 lru_cache_add_active(new_page);
1680                 page_add_new_anon_rmap(new_page, vma, address);
1681
1682                 /* Free the old page.. */
1683                 new_page = old_page;
1684                 ret |= VM_FAULT_WRITE;
1685         } else
1686                 mem_cgroup_uncharge_page(new_page);
1687
1688         if (new_page)
1689                 page_cache_release(new_page);
1690         if (old_page)
1691                 page_cache_release(old_page);
1692 unlock:
1693         pte_unmap_unlock(page_table, ptl);
1694         if (dirty_page) {
1695                 if (vma->vm_file)
1696                         file_update_time(vma->vm_file);
1697
1698                 /*
1699                  * Yes, Virginia, this is actually required to prevent a race
1700                  * with clear_page_dirty_for_io() from clearing the page dirty
1701                  * bit after it clear all dirty ptes, but before a racing
1702                  * do_wp_page installs a dirty pte.
1703                  *
1704                  * do_no_page is protected similarly.
1705                  */
1706                 wait_on_page_locked(dirty_page);
1707                 set_page_dirty_balance(dirty_page, page_mkwrite);
1708                 put_page(dirty_page);
1709         }
1710         return ret;
1711 oom_free_new:
1712         __free_page(new_page);
1713 oom:
1714         if (old_page)
1715                 page_cache_release(old_page);
1716         return VM_FAULT_OOM;
1717
1718 unwritable_page:
1719         page_cache_release(old_page);
1720         return VM_FAULT_SIGBUS;
1721 }
1722
1723 /*
1724  * Helper functions for unmap_mapping_range().
1725  *
1726  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1727  *
1728  * We have to restart searching the prio_tree whenever we drop the lock,
1729  * since the iterator is only valid while the lock is held, and anyway
1730  * a later vma might be split and reinserted earlier while lock dropped.
1731  *
1732  * The list of nonlinear vmas could be handled more efficiently, using
1733  * a placeholder, but handle it in the same way until a need is shown.
1734  * It is important to search the prio_tree before nonlinear list: a vma
1735  * may become nonlinear and be shifted from prio_tree to nonlinear list
1736  * while the lock is dropped; but never shifted from list to prio_tree.
1737  *
1738  * In order to make forward progress despite restarting the search,
1739  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1740  * quickly skip it next time around.  Since the prio_tree search only
1741  * shows us those vmas affected by unmapping the range in question, we
1742  * can't efficiently keep all vmas in step with mapping->truncate_count:
1743  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1744  * mapping->truncate_count and vma->vm_truncate_count are protected by
1745  * i_mmap_lock.
1746  *
1747  * In order to make forward progress despite repeatedly restarting some
1748  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1749  * and restart from that address when we reach that vma again.  It might
1750  * have been split or merged, shrunk or extended, but never shifted: so
1751  * restart_addr remains valid so long as it remains in the vma's range.
1752  * unmap_mapping_range forces truncate_count to leap over page-aligned
1753  * values so we can save vma's restart_addr in its truncate_count field.
1754  */
1755 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1756
1757 static void reset_vma_truncate_counts(struct address_space *mapping)
1758 {
1759         struct vm_area_struct *vma;
1760         struct prio_tree_iter iter;
1761
1762         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1763                 vma->vm_truncate_count = 0;
1764         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1765                 vma->vm_truncate_count = 0;
1766 }
1767
1768 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1769                 unsigned long start_addr, unsigned long end_addr,
1770                 struct zap_details *details)
1771 {
1772         unsigned long restart_addr;
1773         int need_break;
1774
1775         /*
1776          * files that support invalidating or truncating portions of the
1777          * file from under mmaped areas must have their ->fault function
1778          * return a locked page (and set VM_FAULT_LOCKED in the return).
1779          * This provides synchronisation against concurrent unmapping here.
1780          */
1781
1782 again:
1783         restart_addr = vma->vm_truncate_count;
1784         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1785                 start_addr = restart_addr;
1786                 if (start_addr >= end_addr) {
1787                         /* Top of vma has been split off since last time */
1788                         vma->vm_truncate_count = details->truncate_count;
1789                         return 0;
1790                 }
1791         }
1792
1793         restart_addr = zap_page_range(vma, start_addr,
1794                                         end_addr - start_addr, details);
1795         need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1796
1797         if (restart_addr >= end_addr) {
1798                 /* We have now completed this vma: mark it so */
1799                 vma->vm_truncate_count = details->truncate_count;
1800                 if (!need_break)
1801                         return 0;
1802         } else {
1803                 /* Note restart_addr in vma's truncate_count field */
1804                 vma->vm_truncate_count = restart_addr;
1805                 if (!need_break)
1806                         goto again;
1807         }
1808
1809         spin_unlock(details->i_mmap_lock);
1810         cond_resched();
1811         spin_lock(details->i_mmap_lock);
1812         return -EINTR;
1813 }
1814
1815 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1816                                             struct zap_details *details)
1817 {
1818         struct vm_area_struct *vma;
1819         struct prio_tree_iter iter;
1820         pgoff_t vba, vea, zba, zea;
1821
1822 restart:
1823         vma_prio_tree_foreach(vma, &iter, root,
1824                         details->first_index, details->last_index) {
1825                 /* Skip quickly over those we have already dealt with */
1826                 if (vma->vm_truncate_count == details->truncate_count)
1827                         continue;
1828
1829                 vba = vma->vm_pgoff;
1830                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1831                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1832                 zba = details->first_index;
1833                 if (zba < vba)
1834                         zba = vba;
1835                 zea = details->last_index;
1836                 if (zea > vea)
1837                         zea = vea;
1838
1839                 if (unmap_mapping_range_vma(vma,
1840                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1841                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1842                                 details) < 0)
1843                         goto restart;
1844         }
1845 }
1846
1847 static inline void unmap_mapping_range_list(struct list_head *head,
1848                                             struct zap_details *details)
1849 {
1850         struct vm_area_struct *vma;
1851
1852         /*
1853          * In nonlinear VMAs there is no correspondence between virtual address
1854          * offset and file offset.  So we must perform an exhaustive search
1855          * across *all* the pages in each nonlinear VMA, not just the pages
1856          * whose virtual address lies outside the file truncation point.
1857          */
1858 restart:
1859         list_for_each_entry(vma, head, shared.vm_set.list) {
1860                 /* Skip quickly over those we have already dealt with */
1861                 if (vma->vm_truncate_count == details->truncate_count)
1862                         continue;
1863                 details->nonlinear_vma = vma;
1864                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1865                                         vma->vm_end, details) < 0)
1866                         goto restart;
1867         }
1868 }
1869
1870 /**
1871  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1872  * @mapping: the address space containing mmaps to be unmapped.
1873  * @holebegin: byte in first page to unmap, relative to the start of
1874  * the underlying file.  This will be rounded down to a PAGE_SIZE
1875  * boundary.  Note that this is different from vmtruncate(), which
1876  * must keep the partial page.  In contrast, we must get rid of
1877  * partial pages.
1878  * @holelen: size of prospective hole in bytes.  This will be rounded
1879  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1880  * end of the file.
1881  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1882  * but 0 when invalidating pagecache, don't throw away private data.
1883  */
1884 void unmap_mapping_range(struct address_space *mapping,
1885                 loff_t const holebegin, loff_t const holelen, int even_cows)
1886 {
1887         struct zap_details details;
1888         pgoff_t hba = holebegin >> PAGE_SHIFT;
1889         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1890
1891         /* Check for overflow. */
1892         if (sizeof(holelen) > sizeof(hlen)) {
1893                 long long holeend =
1894                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1895                 if (holeend & ~(long long)ULONG_MAX)
1896                         hlen = ULONG_MAX - hba + 1;
1897         }
1898
1899         details.check_mapping = even_cows? NULL: mapping;
1900         details.nonlinear_vma = NULL;
1901         details.first_index = hba;
1902         details.last_index = hba + hlen - 1;
1903         if (details.last_index < details.first_index)
1904                 details.last_index = ULONG_MAX;
1905         details.i_mmap_lock = &mapping->i_mmap_lock;
1906
1907         spin_lock(&mapping->i_mmap_lock);
1908
1909         /* Protect against endless unmapping loops */
1910         mapping->truncate_count++;
1911         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1912                 if (mapping->truncate_count == 0)
1913                         reset_vma_truncate_counts(mapping);
1914                 mapping->truncate_count++;
1915         }
1916         details.truncate_count = mapping->truncate_count;
1917
1918         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1919                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1920         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1921                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1922         spin_unlock(&mapping->i_mmap_lock);
1923 }
1924 EXPORT_SYMBOL(unmap_mapping_range);
1925
1926 /**
1927  * vmtruncate - unmap mappings "freed" by truncate() syscall
1928  * @inode: inode of the file used
1929  * @offset: file offset to start truncating
1930  *
1931  * NOTE! We have to be ready to update the memory sharing
1932  * between the file and the memory map for a potential last
1933  * incomplete page.  Ugly, but necessary.
1934  */
1935 int vmtruncate(struct inode * inode, loff_t offset)
1936 {
1937         if (inode->i_size < offset) {
1938                 unsigned long limit;
1939
1940                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1941                 if (limit != RLIM_INFINITY && offset > limit)
1942                         goto out_sig;
1943                 if (offset > inode->i_sb->s_maxbytes)
1944                         goto out_big;
1945                 i_size_write(inode, offset);
1946         } else {
1947                 struct address_space *mapping = inode->i_mapping;
1948
1949                 /*
1950                  * truncation of in-use swapfiles is disallowed - it would
1951                  * cause subsequent swapout to scribble on the now-freed
1952                  * blocks.
1953                  */
1954                 if (IS_SWAPFILE(inode))
1955                         return -ETXTBSY;
1956                 i_size_write(inode, offset);
1957
1958                 /*
1959                  * unmap_mapping_range is called twice, first simply for
1960                  * efficiency so that truncate_inode_pages does fewer
1961                  * single-page unmaps.  However after this first call, and
1962                  * before truncate_inode_pages finishes, it is possible for
1963                  * private pages to be COWed, which remain after
1964                  * truncate_inode_pages finishes, hence the second
1965                  * unmap_mapping_range call must be made for correctness.
1966                  */
1967                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1968                 truncate_inode_pages(mapping, offset);
1969                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1970         }
1971
1972         if (inode->i_op && inode->i_op->truncate)
1973                 inode->i_op->truncate(inode);
1974         return 0;
1975
1976 out_sig:
1977         send_sig(SIGXFSZ, current, 0);
1978 out_big:
1979         return -EFBIG;
1980 }
1981 EXPORT_SYMBOL(vmtruncate);
1982
1983 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1984 {
1985         struct address_space *mapping = inode->i_mapping;
1986
1987         /*
1988          * If the underlying filesystem is not going to provide
1989          * a way to truncate a range of blocks (punch a hole) -
1990          * we should return failure right now.
1991          */
1992         if (!inode->i_op || !inode->i_op->truncate_range)
1993                 return -ENOSYS;
1994
1995         mutex_lock(&inode->i_mutex);
1996         down_write(&inode->i_alloc_sem);
1997         unmap_mapping_range(mapping, offset, (end - offset), 1);
1998         truncate_inode_pages_range(mapping, offset, end);
1999         unmap_mapping_range(mapping, offset, (end - offset), 1);
2000         inode->i_op->truncate_range(inode, offset, end);
2001         up_write(&inode->i_alloc_sem);
2002         mutex_unlock(&inode->i_mutex);
2003
2004         return 0;
2005 }
2006
2007 /*
2008  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2009  * but allow concurrent faults), and pte mapped but not yet locked.
2010  * We return with mmap_sem still held, but pte unmapped and unlocked.
2011  */
2012 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2013                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2014                 int write_access, pte_t orig_pte)
2015 {
2016         spinlock_t *ptl;
2017         struct page *page;
2018         swp_entry_t entry;
2019         pte_t pte;
2020         int ret = 0;
2021
2022         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2023                 goto out;
2024
2025         entry = pte_to_swp_entry(orig_pte);
2026         if (is_migration_entry(entry)) {
2027                 migration_entry_wait(mm, pmd, address);
2028                 goto out;
2029         }
2030         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2031         page = lookup_swap_cache(entry);
2032         if (!page) {
2033                 grab_swap_token(); /* Contend for token _before_ read-in */
2034                 page = swapin_readahead(entry,
2035                                         GFP_HIGHUSER_MOVABLE, vma, address);
2036                 if (!page) {
2037                         /*
2038                          * Back out if somebody else faulted in this pte
2039                          * while we released the pte lock.
2040                          */
2041                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2042                         if (likely(pte_same(*page_table, orig_pte)))
2043                                 ret = VM_FAULT_OOM;
2044                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2045                         goto unlock;
2046                 }
2047
2048                 /* Had to read the page from swap area: Major fault */
2049                 ret = VM_FAULT_MAJOR;
2050                 count_vm_event(PGMAJFAULT);
2051         }
2052
2053         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2054                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2055                 ret = VM_FAULT_OOM;
2056                 goto out;
2057         }
2058
2059         mark_page_accessed(page);
2060         lock_page(page);
2061         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2062
2063         /*
2064          * Back out if somebody else already faulted in this pte.
2065          */
2066         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2067         if (unlikely(!pte_same(*page_table, orig_pte)))
2068                 goto out_nomap;
2069
2070         if (unlikely(!PageUptodate(page))) {
2071                 ret = VM_FAULT_SIGBUS;
2072                 goto out_nomap;
2073         }
2074
2075         /* The page isn't present yet, go ahead with the fault. */
2076
2077         inc_mm_counter(mm, anon_rss);
2078         pte = mk_pte(page, vma->vm_page_prot);
2079         if (write_access && can_share_swap_page(page)) {
2080                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2081                 write_access = 0;
2082         }
2083
2084         flush_icache_page(vma, page);
2085         set_pte_at(mm, address, page_table, pte);
2086         page_add_anon_rmap(page, vma, address);
2087
2088         swap_free(entry);
2089         if (vm_swap_full())
2090                 remove_exclusive_swap_page(page);
2091         unlock_page(page);
2092
2093         if (write_access) {
2094                 /* XXX: We could OR the do_wp_page code with this one? */
2095                 if (do_wp_page(mm, vma, address,
2096                                 page_table, pmd, ptl, pte) & VM_FAULT_OOM) {
2097                         mem_cgroup_uncharge_page(page);
2098                         ret = VM_FAULT_OOM;
2099                 }
2100                 goto out;
2101         }
2102
2103         /* No need to invalidate - it was non-present before */
2104         update_mmu_cache(vma, address, pte);
2105 unlock:
2106         pte_unmap_unlock(page_table, ptl);
2107 out:
2108         return ret;
2109 out_nomap:
2110         mem_cgroup_uncharge_page(page);
2111         pte_unmap_unlock(page_table, ptl);
2112         unlock_page(page);
2113         page_cache_release(page);
2114         return ret;
2115 }
2116
2117 /*
2118  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2119  * but allow concurrent faults), and pte mapped but not yet locked.
2120  * We return with mmap_sem still held, but pte unmapped and unlocked.
2121  */
2122 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2123                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2124                 int write_access)
2125 {
2126         struct page *page;
2127         spinlock_t *ptl;
2128         pte_t entry;
2129
2130         /* Allocate our own private page. */
2131         pte_unmap(page_table);
2132
2133         if (unlikely(anon_vma_prepare(vma)))
2134                 goto oom;
2135         page = alloc_zeroed_user_highpage_movable(vma, address);
2136         if (!page)
2137                 goto oom;
2138         __SetPageUptodate(page);
2139
2140         if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2141                 goto oom_free_page;
2142
2143         entry = mk_pte(page, vma->vm_page_prot);
2144         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2145
2146         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2147         if (!pte_none(*page_table))
2148                 goto release;
2149         inc_mm_counter(mm, anon_rss);
2150         lru_cache_add_active(page);
2151         page_add_new_anon_rmap(page, vma, address);
2152         set_pte_at(mm, address, page_table, entry);
2153
2154         /* No need to invalidate - it was non-present before */
2155         update_mmu_cache(vma, address, entry);
2156 unlock:
2157         pte_unmap_unlock(page_table, ptl);
2158         return 0;
2159 release:
2160         mem_cgroup_uncharge_page(page);
2161         page_cache_release(page);
2162         goto unlock;
2163 oom_free_page:
2164         __free_page(page);
2165 oom:
2166         return VM_FAULT_OOM;
2167 }
2168
2169 /*
2170  * __do_fault() tries to create a new page mapping. It aggressively
2171  * tries to share with existing pages, but makes a separate copy if
2172  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2173  * the next page fault.
2174  *
2175  * As this is called only for pages that do not currently exist, we
2176  * do not need to flush old virtual caches or the TLB.
2177  *
2178  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2179  * but allow concurrent faults), and pte neither mapped nor locked.
2180  * We return with mmap_sem still held, but pte unmapped and unlocked.
2181  */
2182 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2183                 unsigned long address, pmd_t *pmd,
2184                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2185 {
2186         pte_t *page_table;
2187         spinlock_t *ptl;
2188         struct page *page;
2189         pte_t entry;
2190         int anon = 0;
2191         struct page *dirty_page = NULL;
2192         struct vm_fault vmf;
2193         int ret;
2194         int page_mkwrite = 0;
2195
2196         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2197         vmf.pgoff = pgoff;
2198         vmf.flags = flags;
2199         vmf.page = NULL;
2200
2201         BUG_ON(vma->vm_flags & VM_PFNMAP);
2202
2203         if (likely(vma->vm_ops->fault)) {
2204                 ret = vma->vm_ops->fault(vma, &vmf);
2205                 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2206                         return ret;
2207         } else {
2208                 /* Legacy ->nopage path */
2209                 ret = 0;
2210                 vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2211                 /* no page was available -- either SIGBUS or OOM */
2212                 if (unlikely(vmf.page == NOPAGE_SIGBUS))
2213                         return VM_FAULT_SIGBUS;
2214                 else if (unlikely(vmf.page == NOPAGE_OOM))
2215                         return VM_FAULT_OOM;
2216         }
2217
2218         /*
2219          * For consistency in subsequent calls, make the faulted page always
2220          * locked.
2221          */
2222         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2223                 lock_page(vmf.page);
2224         else
2225                 VM_BUG_ON(!PageLocked(vmf.page));
2226
2227         /*
2228          * Should we do an early C-O-W break?
2229          */
2230         page = vmf.page;
2231         if (flags & FAULT_FLAG_WRITE) {
2232                 if (!(vma->vm_flags & VM_SHARED)) {
2233                         anon = 1;
2234                         if (unlikely(anon_vma_prepare(vma))) {
2235                                 ret = VM_FAULT_OOM;
2236                                 goto out;
2237                         }
2238                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2239                                                 vma, address);
2240                         if (!page) {
2241                                 ret = VM_FAULT_OOM;
2242                                 goto out;
2243                         }
2244                         copy_user_highpage(page, vmf.page, address, vma);
2245                         __SetPageUptodate(page);
2246                 } else {
2247                         /*
2248                          * If the page will be shareable, see if the backing
2249                          * address space wants to know that the page is about
2250                          * to become writable
2251                          */
2252                         if (vma->vm_ops->page_mkwrite) {
2253                                 unlock_page(page);
2254                                 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2255                                         ret = VM_FAULT_SIGBUS;
2256                                         anon = 1; /* no anon but release vmf.page */
2257                                         goto out_unlocked;
2258                                 }
2259                                 lock_page(page);
2260                                 /*
2261                                  * XXX: this is not quite right (racy vs
2262                                  * invalidate) to unlock and relock the page
2263                                  * like this, however a better fix requires
2264                                  * reworking page_mkwrite locking API, which
2265                                  * is better done later.
2266                                  */
2267                                 if (!page->mapping) {
2268                                         ret = 0;
2269                                         anon = 1; /* no anon but release vmf.page */
2270                                         goto out;
2271                                 }
2272                                 page_mkwrite = 1;
2273                         }
2274                 }
2275
2276         }
2277
2278         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2279                 ret = VM_FAULT_OOM;
2280                 goto out;
2281         }
2282
2283         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2284
2285         /*
2286          * This silly early PAGE_DIRTY setting removes a race
2287          * due to the bad i386 page protection. But it's valid
2288          * for other architectures too.
2289          *
2290          * Note that if write_access is true, we either now have
2291          * an exclusive copy of the page, or this is a shared mapping,
2292          * so we can make it writable and dirty to avoid having to
2293          * handle that later.
2294          */
2295         /* Only go through if we didn't race with anybody else... */
2296         if (likely(pte_same(*page_table, orig_pte))) {
2297                 flush_icache_page(vma, page);
2298                 entry = mk_pte(page, vma->vm_page_prot);
2299                 if (flags & FAULT_FLAG_WRITE)
2300                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2301                 set_pte_at(mm, address, page_table, entry);
2302                 if (anon) {
2303                         inc_mm_counter(mm, anon_rss);
2304                         lru_cache_add_active(page);
2305                         page_add_new_anon_rmap(page, vma, address);
2306                 } else {
2307                         inc_mm_counter(mm, file_rss);
2308                         page_add_file_rmap(page);
2309                         if (flags & FAULT_FLAG_WRITE) {
2310                                 dirty_page = page;
2311                                 get_page(dirty_page);
2312                         }
2313                 }
2314
2315                 /* no need to invalidate: a not-present page won't be cached */
2316                 update_mmu_cache(vma, address, entry);
2317         } else {
2318                 mem_cgroup_uncharge_page(page);
2319                 if (anon)
2320                         page_cache_release(page);
2321                 else
2322                         anon = 1; /* no anon but release faulted_page */
2323         }
2324
2325         pte_unmap_unlock(page_table, ptl);
2326
2327 out:
2328         unlock_page(vmf.page);
2329 out_unlocked:
2330         if (anon)
2331                 page_cache_release(vmf.page);
2332         else if (dirty_page) {
2333                 if (vma->vm_file)
2334                         file_update_time(vma->vm_file);
2335
2336                 set_page_dirty_balance(dirty_page, page_mkwrite);
2337                 put_page(dirty_page);
2338         }
2339
2340         return ret;
2341 }
2342
2343 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2344                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2345                 int write_access, pte_t orig_pte)
2346 {
2347         pgoff_t pgoff = (((address & PAGE_MASK)
2348                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2349         unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2350
2351         pte_unmap(page_table);
2352         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2353 }
2354
2355
2356 /*
2357  * do_no_pfn() tries to create a new page mapping for a page without
2358  * a struct_page backing it
2359  *
2360  * As this is called only for pages that do not currently exist, we
2361  * do not need to flush old virtual caches or the TLB.
2362  *
2363  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2364  * but allow concurrent faults), and pte mapped but not yet locked.
2365  * We return with mmap_sem still held, but pte unmapped and unlocked.
2366  *
2367  * It is expected that the ->nopfn handler always returns the same pfn
2368  * for a given virtual mapping.
2369  *
2370  * Mark this `noinline' to prevent it from bloating the main pagefault code.
2371  */
2372 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2373                      unsigned long address, pte_t *page_table, pmd_t *pmd,
2374                      int write_access)
2375 {
2376         spinlock_t *ptl;
2377         pte_t entry;
2378         unsigned long pfn;
2379
2380         pte_unmap(page_table);
2381         BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2382         BUG_ON(is_cow_mapping(vma->vm_flags));
2383
2384         pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2385         if (unlikely(pfn == NOPFN_OOM))
2386                 return VM_FAULT_OOM;
2387         else if (unlikely(pfn == NOPFN_SIGBUS))
2388                 return VM_FAULT_SIGBUS;
2389         else if (unlikely(pfn == NOPFN_REFAULT))
2390                 return 0;
2391
2392         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2393
2394         /* Only go through if we didn't race with anybody else... */
2395         if (pte_none(*page_table)) {
2396                 entry = pfn_pte(pfn, vma->vm_page_prot);
2397                 if (write_access)
2398                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2399                 set_pte_at(mm, address, page_table, entry);
2400         }
2401         pte_unmap_unlock(page_table, ptl);
2402         return 0;
2403 }
2404
2405 /*
2406  * Fault of a previously existing named mapping. Repopulate the pte
2407  * from the encoded file_pte if possible. This enables swappable
2408  * nonlinear vmas.
2409  *
2410  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2411  * but allow concurrent faults), and pte mapped but not yet locked.
2412  * We return with mmap_sem still held, but pte unmapped and unlocked.
2413  */
2414 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2415                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2416                 int write_access, pte_t orig_pte)
2417 {
2418         unsigned int flags = FAULT_FLAG_NONLINEAR |
2419                                 (write_access ? FAULT_FLAG_WRITE : 0);
2420         pgoff_t pgoff;
2421
2422         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2423                 return 0;
2424
2425         if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2426                         !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2427                 /*
2428                  * Page table corrupted: show pte and kill process.
2429                  */
2430                 print_bad_pte(vma, orig_pte, address);
2431                 return VM_FAULT_OOM;
2432         }
2433
2434         pgoff = pte_to_pgoff(orig_pte);
2435         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2436 }
2437
2438 /*
2439  * These routines also need to handle stuff like marking pages dirty
2440  * and/or accessed for architectures that don't do it in hardware (most
2441  * RISC architectures).  The early dirtying is also good on the i386.
2442  *
2443  * There is also a hook called "update_mmu_cache()" that architectures
2444  * with external mmu caches can use to update those (ie the Sparc or
2445  * PowerPC hashed page tables that act as extended TLBs).
2446  *
2447  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2448  * but allow concurrent faults), and pte mapped but not yet locked.
2449  * We return with mmap_sem still held, but pte unmapped and unlocked.
2450  */
2451 static inline int handle_pte_fault(struct mm_struct *mm,
2452                 struct vm_area_struct *vma, unsigned long address,
2453                 pte_t *pte, pmd_t *pmd, int write_access)
2454 {
2455         pte_t entry;
2456         spinlock_t *ptl;
2457
2458         entry = *pte;
2459         if (!pte_present(entry)) {
2460                 if (pte_none(entry)) {
2461                         if (vma->vm_ops) {
2462                                 if (vma->vm_ops->fault || vma->vm_ops->nopage)
2463                                         return do_linear_fault(mm, vma, address,
2464                                                 pte, pmd, write_access, entry);
2465                                 if (unlikely(vma->vm_ops->nopfn))
2466                                         return do_no_pfn(mm, vma, address, pte,
2467                                                          pmd, write_access);
2468                         }
2469                         return do_anonymous_page(mm, vma, address,
2470                                                  pte, pmd, write_access);
2471                 }
2472                 if (pte_file(entry))
2473                         return do_nonlinear_fault(mm, vma, address,
2474                                         pte, pmd, write_access, entry);
2475                 return do_swap_page(mm, vma, address,
2476                                         pte, pmd, write_access, entry);
2477         }
2478
2479         ptl = pte_lockptr(mm, pmd);
2480         spin_lock(ptl);
2481         if (unlikely(!pte_same(*pte, entry)))
2482                 goto unlock;
2483         if (write_access) {
2484                 if (!pte_write(entry))
2485                         return do_wp_page(mm, vma, address,
2486                                         pte, pmd, ptl, entry);
2487                 entry = pte_mkdirty(entry);
2488         }
2489         entry = pte_mkyoung(entry);
2490         if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2491                 update_mmu_cache(vma, address, entry);
2492         } else {
2493                 /*
2494                  * This is needed only for protection faults but the arch code
2495                  * is not yet telling us if this is a protection fault or not.
2496                  * This still avoids useless tlb flushes for .text page faults
2497                  * with threads.
2498                  */
2499                 if (write_access)
2500                         flush_tlb_page(vma, address);
2501         }
2502 unlock:
2503         pte_unmap_unlock(pte, ptl);
2504         return 0;
2505 }
2506
2507 /*
2508  * By the time we get here, we already hold the mm semaphore
2509  */
2510 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2511                 unsigned long address, int write_access)
2512 {
2513         pgd_t *pgd;
2514         pud_t *pud;
2515         pmd_t *pmd;
2516         pte_t *pte;
2517
2518         __set_current_state(TASK_RUNNING);
2519
2520         count_vm_event(PGFAULT);
2521
2522         if (unlikely(is_vm_hugetlb_page(vma)))
2523                 return hugetlb_fault(mm, vma, address, write_access);
2524
2525         pgd = pgd_offset(mm, address);
2526         pud = pud_alloc(mm, pgd, address);
2527         if (!pud)
2528                 return VM_FAULT_OOM;
2529         pmd = pmd_alloc(mm, pud, address);
2530         if (!pmd)
2531                 return VM_FAULT_OOM;
2532         pte = pte_alloc_map(mm, pmd, address);
2533         if (!pte)
2534                 return VM_FAULT_OOM;
2535
2536         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2537 }
2538
2539 #ifndef __PAGETABLE_PUD_FOLDED
2540 /*
2541  * Allocate page upper directory.
2542  * We've already handled the fast-path in-line.
2543  */
2544 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2545 {
2546         pud_t *new = pud_alloc_one(mm, address);
2547         if (!new)
2548                 return -ENOMEM;
2549
2550         spin_lock(&mm->page_table_lock);
2551         if (pgd_present(*pgd))          /* Another has populated it */
2552                 pud_free(mm, new);
2553         else
2554                 pgd_populate(mm, pgd, new);
2555         spin_unlock(&mm->page_table_lock);
2556         return 0;
2557 }
2558 #endif /* __PAGETABLE_PUD_FOLDED */
2559
2560 #ifndef __PAGETABLE_PMD_FOLDED
2561 /*
2562  * Allocate page middle directory.
2563  * We've already handled the fast-path in-line.
2564  */
2565 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2566 {
2567         pmd_t *new = pmd_alloc_one(mm, address);
2568         if (!new)
2569                 return -ENOMEM;
2570
2571         spin_lock(&mm->page_table_lock);
2572 #ifndef __ARCH_HAS_4LEVEL_HACK
2573         if (pud_present(*pud))          /* Another has populated it */
2574                 pmd_free(mm, new);
2575         else
2576                 pud_populate(mm, pud, new);
2577 #else
2578         if (pgd_present(*pud))          /* Another has populated it */
2579                 pmd_free(mm, new);
2580         else
2581                 pgd_populate(mm, pud, new);
2582 #endif /* __ARCH_HAS_4LEVEL_HACK */
2583         spin_unlock(&mm->page_table_lock);
2584         return 0;
2585 }
2586 #endif /* __PAGETABLE_PMD_FOLDED */
2587
2588 int make_pages_present(unsigned long addr, unsigned long end)
2589 {
2590         int ret, len, write;
2591         struct vm_area_struct * vma;
2592
2593         vma = find_vma(current->mm, addr);
2594         if (!vma)
2595                 return -1;
2596         write = (vma->vm_flags & VM_WRITE) != 0;
2597         BUG_ON(addr >= end);
2598         BUG_ON(end > vma->vm_end);
2599         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2600         ret = get_user_pages(current, current->mm, addr,
2601                         len, write, 0, NULL, NULL);
2602         if (ret < 0)
2603                 return ret;
2604         return ret == len ? 0 : -1;
2605 }
2606
2607 #if !defined(__HAVE_ARCH_GATE_AREA)
2608
2609 #if defined(AT_SYSINFO_EHDR)
2610 static struct vm_area_struct gate_vma;
2611
2612 static int __init gate_vma_init(void)
2613 {
2614         gate_vma.vm_mm = NULL;
2615         gate_vma.vm_start = FIXADDR_USER_START;
2616         gate_vma.vm_end = FIXADDR_USER_END;
2617         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2618         gate_vma.vm_page_prot = __P101;
2619         /*
2620          * Make sure the vDSO gets into every core dump.
2621          * Dumping its contents makes post-mortem fully interpretable later
2622          * without matching up the same kernel and hardware config to see
2623          * what PC values meant.
2624          */
2625         gate_vma.vm_flags |= VM_ALWAYSDUMP;
2626         return 0;
2627 }
2628 __initcall(gate_vma_init);
2629 #endif
2630
2631 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2632 {
2633 #ifdef AT_SYSINFO_EHDR
2634         return &gate_vma;
2635 #else
2636         return NULL;
2637 #endif
2638 }
2639
2640 int in_gate_area_no_task(unsigned long addr)
2641 {
2642 #ifdef AT_SYSINFO_EHDR
2643         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2644                 return 1;
2645 #endif
2646         return 0;
2647 }
2648
2649 #endif  /* __HAVE_ARCH_GATE_AREA */
2650
2651 /*
2652  * Access another process' address space.
2653  * Source/target buffer must be kernel space,
2654  * Do not walk the page table directly, use get_user_pages
2655  */
2656 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2657 {
2658         struct mm_struct *mm;
2659         struct vm_area_struct *vma;
2660         struct page *page;
2661         void *old_buf = buf;
2662
2663         mm = get_task_mm(tsk);
2664         if (!mm)
2665                 return 0;
2666
2667         down_read(&mm->mmap_sem);
2668         /* ignore errors, just check how much was successfully transferred */
2669         while (len) {
2670                 int bytes, ret, offset;
2671                 void *maddr;
2672
2673                 ret = get_user_pages(tsk, mm, addr, 1,
2674                                 write, 1, &page, &vma);
2675                 if (ret <= 0)
2676                         break;
2677
2678                 bytes = len;
2679                 offset = addr & (PAGE_SIZE-1);
2680                 if (bytes > PAGE_SIZE-offset)
2681                         bytes = PAGE_SIZE-offset;
2682
2683                 maddr = kmap(page);
2684                 if (write) {
2685                         copy_to_user_page(vma, page, addr,
2686                                           maddr + offset, buf, bytes);
2687                         set_page_dirty_lock(page);
2688                 } else {
2689                         copy_from_user_page(vma, page, addr,
2690                                             buf, maddr + offset, bytes);
2691                 }
2692                 kunmap(page);
2693                 page_cache_release(page);
2694                 len -= bytes;
2695                 buf += bytes;
2696                 addr += bytes;
2697         }
2698         up_read(&mm->mmap_sem);
2699         mmput(mm);
2700
2701         return buf - old_buf;
2702 }
2703
2704 /*
2705  * Print the name of a VMA.
2706  */
2707 void print_vma_addr(char *prefix, unsigned long ip)
2708 {
2709         struct mm_struct *mm = current->mm;
2710         struct vm_area_struct *vma;
2711
2712         down_read(&mm->mmap_sem);
2713         vma = find_vma(mm, ip);
2714         if (vma && vma->vm_file) {
2715                 struct file *f = vma->vm_file;
2716                 char *buf = (char *)__get_free_page(GFP_KERNEL);
2717                 if (buf) {
2718                         char *p, *s;
2719
2720                         p = d_path(f->f_dentry, f->f_vfsmnt, buf, PAGE_SIZE);
2721                         if (IS_ERR(p))
2722                                 p = "?";
2723                         s = strrchr(p, '/');
2724                         if (s)
2725                                 p = s+1;
2726                         printk("%s%s[%lx+%lx]", prefix, p,
2727                                         vma->vm_start,
2728                                         vma->vm_end - vma->vm_start);
2729                         free_page((unsigned long)buf);
2730                 }
2731         }
2732         up_read(&current->mm->mmap_sem);
2733 }