2 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
4 * This file contains the lowest level x86-specific interrupt
5 * entry, irq-stacks and irq statistics code. All the remaining
6 * irq logic is done by the generic kernel/irq/ code and
7 * by the x86-specific irq controller code. (e.g. i8259.c and
11 #include <linux/module.h>
12 #include <linux/seq_file.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/notifier.h>
16 #include <linux/cpu.h>
17 #include <linux/delay.h>
20 #include <asm/uaccess.h>
22 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
23 EXPORT_PER_CPU_SYMBOL(irq_stat);
25 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
26 EXPORT_PER_CPU_SYMBOL(irq_regs);
29 * 'what should we do if we get a hw irq event on an illegal vector'.
30 * each architecture has to answer this themselves.
32 void ack_bad_irq(unsigned int irq)
34 printk(KERN_ERR "unexpected IRQ trap at vector %02x\n", irq);
36 #ifdef CONFIG_X86_LOCAL_APIC
38 * Currently unexpected vectors happen only on SMP and APIC.
39 * We _must_ ack these because every local APIC has only N
40 * irq slots per priority level, and a 'hanging, unacked' IRQ
41 * holds up an irq slot - in excessive cases (when multiple
42 * unexpected vectors occur) that might lock up the APIC
44 * But only ack when the APIC is enabled -AK
51 #ifdef CONFIG_DEBUG_STACKOVERFLOW
52 /* Debugging check for stack overflow: is there less than 1KB free? */
53 static int check_stack_overflow(void)
57 __asm__ __volatile__("andl %%esp,%0" :
58 "=r" (sp) : "0" (THREAD_SIZE - 1));
60 return sp < (sizeof(struct thread_info) + STACK_WARN);
63 static void print_stack_overflow(void)
65 printk(KERN_WARNING "low stack detected by irq handler\n");
70 static inline int check_stack_overflow(void) { return 0; }
71 static inline void print_stack_overflow(void) { }
74 #ifdef CONFIG_4KSTACKS
76 * per-CPU IRQ handling contexts (thread information and stack)
79 struct thread_info tinfo;
80 u32 stack[THREAD_SIZE/sizeof(u32)];
83 static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly;
84 static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly;
86 static char softirq_stack[NR_CPUS * THREAD_SIZE]
87 __attribute__((__section__(".bss.page_aligned")));
89 static char hardirq_stack[NR_CPUS * THREAD_SIZE]
90 __attribute__((__section__(".bss.page_aligned")));
92 static void call_on_stack(void *func, void *stack)
94 asm volatile("xchgl %%ebx,%%esp \n"
100 : "memory", "cc", "edx", "ecx", "eax");
104 execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq)
106 union irq_ctx *curctx, *irqctx;
107 u32 *isp, arg1, arg2;
109 curctx = (union irq_ctx *) current_thread_info();
110 irqctx = hardirq_ctx[smp_processor_id()];
113 * this is where we switch to the IRQ stack. However, if we are
114 * already using the IRQ stack (because we interrupted a hardirq
115 * handler) we can't do that and just have to keep using the
116 * current stack (which is the irq stack already after all)
118 if (unlikely(curctx == irqctx))
121 /* build the stack frame on the IRQ stack */
122 isp = (u32 *) ((char*)irqctx + sizeof(*irqctx));
123 irqctx->tinfo.task = curctx->tinfo.task;
124 irqctx->tinfo.previous_esp = current_stack_pointer;
127 * Copy the softirq bits in preempt_count so that the
128 * softirq checks work in the hardirq context.
130 irqctx->tinfo.preempt_count =
131 (irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) |
132 (curctx->tinfo.preempt_count & SOFTIRQ_MASK);
134 if (unlikely(overflow))
135 call_on_stack(print_stack_overflow, isp);
137 asm volatile("xchgl %%ebx,%%esp \n"
139 "movl %%ebx,%%esp \n"
140 : "=a" (arg1), "=d" (arg2), "=b" (isp)
141 : "0" (irq), "1" (desc), "2" (isp),
142 "D" (desc->handle_irq)
143 : "memory", "cc", "ecx");
148 * allocate per-cpu stacks for hardirq and for softirq processing
150 void __cpuinit irq_ctx_init(int cpu)
152 union irq_ctx *irqctx;
154 if (hardirq_ctx[cpu])
157 irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE];
158 irqctx->tinfo.task = NULL;
159 irqctx->tinfo.exec_domain = NULL;
160 irqctx->tinfo.cpu = cpu;
161 irqctx->tinfo.preempt_count = HARDIRQ_OFFSET;
162 irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
164 hardirq_ctx[cpu] = irqctx;
166 irqctx = (union irq_ctx*) &softirq_stack[cpu*THREAD_SIZE];
167 irqctx->tinfo.task = NULL;
168 irqctx->tinfo.exec_domain = NULL;
169 irqctx->tinfo.cpu = cpu;
170 irqctx->tinfo.preempt_count = 0;
171 irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
173 softirq_ctx[cpu] = irqctx;
175 printk(KERN_DEBUG "CPU %u irqstacks, hard=%p soft=%p\n",
176 cpu,hardirq_ctx[cpu],softirq_ctx[cpu]);
179 void irq_ctx_exit(int cpu)
181 hardirq_ctx[cpu] = NULL;
184 asmlinkage void do_softirq(void)
187 struct thread_info *curctx;
188 union irq_ctx *irqctx;
194 local_irq_save(flags);
196 if (local_softirq_pending()) {
197 curctx = current_thread_info();
198 irqctx = softirq_ctx[smp_processor_id()];
199 irqctx->tinfo.task = curctx->task;
200 irqctx->tinfo.previous_esp = current_stack_pointer;
202 /* build the stack frame on the softirq stack */
203 isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
205 call_on_stack(__do_softirq, isp);
207 * Shouldnt happen, we returned above if in_interrupt():
209 WARN_ON_ONCE(softirq_count());
212 local_irq_restore(flags);
217 execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq) { return 0; }
221 * do_IRQ handles all normal device IRQ's (the special
222 * SMP cross-CPU interrupts have their own specific
225 unsigned int do_IRQ(struct pt_regs *regs)
227 struct pt_regs *old_regs;
228 /* high bit used in ret_from_ code */
229 int overflow, irq = ~regs->orig_ax;
230 struct irq_desc *desc = irq_desc + irq;
232 if (unlikely((unsigned)irq >= NR_IRQS)) {
233 printk(KERN_EMERG "%s: cannot handle IRQ %d\n",
238 old_regs = set_irq_regs(regs);
241 overflow = check_stack_overflow();
243 if (!execute_on_irq_stack(overflow, desc, irq)) {
244 if (unlikely(overflow))
245 print_stack_overflow();
246 desc->handle_irq(irq, desc);
250 set_irq_regs(old_regs);
255 * Interrupt statistics:
258 atomic_t irq_err_count;
261 * /proc/interrupts printing:
264 int show_interrupts(struct seq_file *p, void *v)
266 int i = *(loff_t *) v, j;
267 struct irqaction * action;
272 for_each_online_cpu(j)
273 seq_printf(p, "CPU%-8d",j);
278 unsigned any_count = 0;
280 spin_lock_irqsave(&irq_desc[i].lock, flags);
282 any_count = kstat_irqs(i);
284 for_each_online_cpu(j)
285 any_count |= kstat_cpu(j).irqs[i];
287 action = irq_desc[i].action;
288 if (!action && !any_count)
290 seq_printf(p, "%3d: ",i);
292 seq_printf(p, "%10u ", kstat_irqs(i));
294 for_each_online_cpu(j)
295 seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
297 seq_printf(p, " %8s", irq_desc[i].chip->name);
298 seq_printf(p, "-%-8s", irq_desc[i].name);
301 seq_printf(p, " %s", action->name);
302 while ((action = action->next) != NULL)
303 seq_printf(p, ", %s", action->name);
308 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
309 } else if (i == NR_IRQS) {
310 seq_printf(p, "NMI: ");
311 for_each_online_cpu(j)
312 seq_printf(p, "%10u ", nmi_count(j));
313 seq_printf(p, " Non-maskable interrupts\n");
314 #ifdef CONFIG_X86_LOCAL_APIC
315 seq_printf(p, "LOC: ");
316 for_each_online_cpu(j)
317 seq_printf(p, "%10u ",
318 per_cpu(irq_stat,j).apic_timer_irqs);
319 seq_printf(p, " Local timer interrupts\n");
322 seq_printf(p, "RES: ");
323 for_each_online_cpu(j)
324 seq_printf(p, "%10u ",
325 per_cpu(irq_stat,j).irq_resched_count);
326 seq_printf(p, " Rescheduling interrupts\n");
327 seq_printf(p, "CAL: ");
328 for_each_online_cpu(j)
329 seq_printf(p, "%10u ",
330 per_cpu(irq_stat,j).irq_call_count);
331 seq_printf(p, " function call interrupts\n");
332 seq_printf(p, "TLB: ");
333 for_each_online_cpu(j)
334 seq_printf(p, "%10u ",
335 per_cpu(irq_stat,j).irq_tlb_count);
336 seq_printf(p, " TLB shootdowns\n");
338 #ifdef CONFIG_X86_MCE
339 seq_printf(p, "TRM: ");
340 for_each_online_cpu(j)
341 seq_printf(p, "%10u ",
342 per_cpu(irq_stat,j).irq_thermal_count);
343 seq_printf(p, " Thermal event interrupts\n");
345 #ifdef CONFIG_X86_LOCAL_APIC
346 seq_printf(p, "SPU: ");
347 for_each_online_cpu(j)
348 seq_printf(p, "%10u ",
349 per_cpu(irq_stat,j).irq_spurious_count);
350 seq_printf(p, " Spurious interrupts\n");
352 seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
353 #if defined(CONFIG_X86_IO_APIC)
354 seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count));
363 u64 arch_irq_stat_cpu(unsigned int cpu)
365 u64 sum = nmi_count(cpu);
367 #ifdef CONFIG_X86_LOCAL_APIC
368 sum += per_cpu(irq_stat, cpu).apic_timer_irqs;
371 sum += per_cpu(irq_stat, cpu).irq_resched_count;
372 sum += per_cpu(irq_stat, cpu).irq_call_count;
373 sum += per_cpu(irq_stat, cpu).irq_tlb_count;
375 #ifdef CONFIG_X86_MCE
376 sum += per_cpu(irq_stat, cpu).irq_thermal_count;
378 #ifdef CONFIG_X86_LOCAL_APIC
379 sum += per_cpu(irq_stat, cpu).irq_spurious_count;
384 u64 arch_irq_stat(void)
386 u64 sum = atomic_read(&irq_err_count);
388 #ifdef CONFIG_X86_IO_APIC
389 sum += atomic_read(&irq_mis_count);
394 #ifdef CONFIG_HOTPLUG_CPU
395 #include <mach_apic.h>
397 void fixup_irqs(cpumask_t map)
402 for (irq = 0; irq < NR_IRQS; irq++) {
407 cpus_and(mask, irq_desc[irq].affinity, map);
408 if (any_online_cpu(mask) == NR_CPUS) {
409 printk("Breaking affinity for irq %i\n", irq);
412 if (irq_desc[irq].chip->set_affinity)
413 irq_desc[irq].chip->set_affinity(irq, mask);
414 else if (irq_desc[irq].action && !(warned++))
415 printk("Cannot set affinity for irq %i\n", irq);
420 /* Ingo Molnar says: "after the IO-APIC masks have been redirected
421 [note the nop - the interrupt-enable boundary on x86 is two
422 instructions from sti] - to flush out pending hardirqs and
423 IPIs. After this point nothing is supposed to reach this CPU." */
424 __asm__ __volatile__("sti; nop; cli");
427 /* That doesn't seem sufficient. Give it 1ms. */