4 * (C) 1997 Linus Torvalds
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
27 * This is needed for the following functions:
29 * - invalidate_inode_buffers
32 * FIXME: remove all knowledge of the buffer layer from this file
34 #include <linux/buffer_head.h>
37 * New inode.c implementation.
39 * This implementation has the basic premise of trying
40 * to be extremely low-overhead and SMP-safe, yet be
41 * simple enough to be "obviously correct".
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
52 * Inode lookup is no longer as critical as it used to be:
53 * most of the lookups are going to be through the dcache.
55 #define I_HASHBITS i_hash_shift
56 #define I_HASHMASK i_hash_mask
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
62 * Each inode can be on two separate lists. One is
63 * the hash list of the inode, used for lookups. The
64 * other linked list is the "type" list:
65 * "in_use" - valid inode, i_count > 0, i_nlink > 0
66 * "dirty" - as "in_use" but also dirty
67 * "unused" - valid inode, i_count = 0
69 * A "dirty" list is maintained for each super block,
70 * allowing for low-overhead inode sync() operations.
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable __read_mostly;
78 * A simple spinlock to protect the list manipulations.
80 * NOTE! You also have to own the lock if you change
81 * the i_state of an inode while it is in use..
83 DEFINE_SPINLOCK(inode_lock);
86 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87 * icache shrinking path, and the umount path. Without this exclusion,
88 * by the time prune_icache calls iput for the inode whose pages it has
89 * been invalidating, or by the time it calls clear_inode & destroy_inode
90 * from its final dispose_list, the struct super_block they refer to
91 * (for inode->i_sb->s_op) may already have been freed and reused.
93 static DEFINE_MUTEX(iprune_mutex);
96 * Statistics gathering..
98 struct inodes_stat_t inodes_stat;
100 static struct kmem_cache * inode_cachep __read_mostly;
102 static struct inode *alloc_inode(struct super_block *sb)
104 static const struct address_space_operations empty_aops;
105 static struct inode_operations empty_iops;
106 static const struct file_operations empty_fops;
109 if (sb->s_op->alloc_inode)
110 inode = sb->s_op->alloc_inode(sb);
112 inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL);
115 struct address_space * const mapping = &inode->i_data;
118 inode->i_blkbits = sb->s_blocksize_bits;
120 atomic_set(&inode->i_count, 1);
121 inode->i_op = &empty_iops;
122 inode->i_fop = &empty_fops;
124 atomic_set(&inode->i_writecount, 0);
128 inode->i_generation = 0;
130 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
132 inode->i_pipe = NULL;
133 inode->i_bdev = NULL;
134 inode->i_cdev = NULL;
136 inode->dirtied_when = 0;
137 if (security_inode_alloc(inode)) {
138 if (inode->i_sb->s_op->destroy_inode)
139 inode->i_sb->s_op->destroy_inode(inode);
141 kmem_cache_free(inode_cachep, (inode));
145 mapping->a_ops = &empty_aops;
146 mapping->host = inode;
148 mapping_set_gfp_mask(mapping, GFP_HIGHUSER);
149 mapping->assoc_mapping = NULL;
150 mapping->backing_dev_info = &default_backing_dev_info;
153 * If the block_device provides a backing_dev_info for client
154 * inodes then use that. Otherwise the inode share the bdev's
158 struct backing_dev_info *bdi;
160 bdi = sb->s_bdev->bd_inode_backing_dev_info;
162 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
163 mapping->backing_dev_info = bdi;
165 inode->i_private = NULL;
166 inode->i_mapping = mapping;
171 void destroy_inode(struct inode *inode)
173 BUG_ON(inode_has_buffers(inode));
174 security_inode_free(inode);
175 if (inode->i_sb->s_op->destroy_inode)
176 inode->i_sb->s_op->destroy_inode(inode);
178 kmem_cache_free(inode_cachep, (inode));
183 * These are initializations that only need to be done
184 * once, because the fields are idempotent across use
185 * of the inode, so let the slab aware of that.
187 void inode_init_once(struct inode *inode)
189 memset(inode, 0, sizeof(*inode));
190 INIT_HLIST_NODE(&inode->i_hash);
191 INIT_LIST_HEAD(&inode->i_dentry);
192 INIT_LIST_HEAD(&inode->i_devices);
193 mutex_init(&inode->i_mutex);
194 init_rwsem(&inode->i_alloc_sem);
195 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
196 rwlock_init(&inode->i_data.tree_lock);
197 spin_lock_init(&inode->i_data.i_mmap_lock);
198 INIT_LIST_HEAD(&inode->i_data.private_list);
199 spin_lock_init(&inode->i_data.private_lock);
200 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
201 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
202 spin_lock_init(&inode->i_lock);
203 i_size_ordered_init(inode);
204 #ifdef CONFIG_INOTIFY
205 INIT_LIST_HEAD(&inode->inotify_watches);
206 mutex_init(&inode->inotify_mutex);
210 EXPORT_SYMBOL(inode_init_once);
212 static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags)
214 struct inode * inode = (struct inode *) foo;
216 if (flags & SLAB_CTOR_CONSTRUCTOR)
217 inode_init_once(inode);
221 * inode_lock must be held
223 void __iget(struct inode * inode)
225 if (atomic_read(&inode->i_count)) {
226 atomic_inc(&inode->i_count);
229 atomic_inc(&inode->i_count);
230 if (!(inode->i_state & (I_DIRTY|I_LOCK)))
231 list_move(&inode->i_list, &inode_in_use);
232 inodes_stat.nr_unused--;
236 * clear_inode - clear an inode
237 * @inode: inode to clear
239 * This is called by the filesystem to tell us
240 * that the inode is no longer useful. We just
241 * terminate it with extreme prejudice.
243 void clear_inode(struct inode *inode)
246 invalidate_inode_buffers(inode);
248 BUG_ON(inode->i_data.nrpages);
249 BUG_ON(!(inode->i_state & I_FREEING));
250 BUG_ON(inode->i_state & I_CLEAR);
251 wait_on_inode(inode);
253 if (inode->i_sb && inode->i_sb->s_op->clear_inode)
254 inode->i_sb->s_op->clear_inode(inode);
255 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
257 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
259 inode->i_state = I_CLEAR;
262 EXPORT_SYMBOL(clear_inode);
265 * dispose_list - dispose of the contents of a local list
266 * @head: the head of the list to free
268 * Dispose-list gets a local list with local inodes in it, so it doesn't
269 * need to worry about list corruption and SMP locks.
271 static void dispose_list(struct list_head *head)
275 while (!list_empty(head)) {
278 inode = list_entry(head->next, struct inode, i_list);
279 list_del(&inode->i_list);
281 if (inode->i_data.nrpages)
282 truncate_inode_pages(&inode->i_data, 0);
285 spin_lock(&inode_lock);
286 hlist_del_init(&inode->i_hash);
287 list_del_init(&inode->i_sb_list);
288 spin_unlock(&inode_lock);
290 wake_up_inode(inode);
291 destroy_inode(inode);
294 spin_lock(&inode_lock);
295 inodes_stat.nr_inodes -= nr_disposed;
296 spin_unlock(&inode_lock);
300 * Invalidate all inodes for a device.
302 static int invalidate_list(struct list_head *head, struct list_head *dispose)
304 struct list_head *next;
305 int busy = 0, count = 0;
309 struct list_head * tmp = next;
310 struct inode * inode;
313 * We can reschedule here without worrying about the list's
314 * consistency because the per-sb list of inodes must not
315 * change during umount anymore, and because iprune_mutex keeps
316 * shrink_icache_memory() away.
318 cond_resched_lock(&inode_lock);
323 inode = list_entry(tmp, struct inode, i_sb_list);
324 invalidate_inode_buffers(inode);
325 if (!atomic_read(&inode->i_count)) {
326 list_move(&inode->i_list, dispose);
327 inode->i_state |= I_FREEING;
333 /* only unused inodes may be cached with i_count zero */
334 inodes_stat.nr_unused -= count;
339 * invalidate_inodes - discard the inodes on a device
342 * Discard all of the inodes for a given superblock. If the discard
343 * fails because there are busy inodes then a non zero value is returned.
344 * If the discard is successful all the inodes have been discarded.
346 int invalidate_inodes(struct super_block * sb)
349 LIST_HEAD(throw_away);
351 mutex_lock(&iprune_mutex);
352 spin_lock(&inode_lock);
353 inotify_unmount_inodes(&sb->s_inodes);
354 busy = invalidate_list(&sb->s_inodes, &throw_away);
355 spin_unlock(&inode_lock);
357 dispose_list(&throw_away);
358 mutex_unlock(&iprune_mutex);
363 EXPORT_SYMBOL(invalidate_inodes);
365 static int can_unuse(struct inode *inode)
369 if (inode_has_buffers(inode))
371 if (atomic_read(&inode->i_count))
373 if (inode->i_data.nrpages)
379 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
380 * a temporary list and then are freed outside inode_lock by dispose_list().
382 * Any inodes which are pinned purely because of attached pagecache have their
383 * pagecache removed. We expect the final iput() on that inode to add it to
384 * the front of the inode_unused list. So look for it there and if the
385 * inode is still freeable, proceed. The right inode is found 99.9% of the
386 * time in testing on a 4-way.
388 * If the inode has metadata buffers attached to mapping->private_list then
389 * try to remove them.
391 static void prune_icache(int nr_to_scan)
396 unsigned long reap = 0;
398 mutex_lock(&iprune_mutex);
399 spin_lock(&inode_lock);
400 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
403 if (list_empty(&inode_unused))
406 inode = list_entry(inode_unused.prev, struct inode, i_list);
408 if (inode->i_state || atomic_read(&inode->i_count)) {
409 list_move(&inode->i_list, &inode_unused);
412 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
414 spin_unlock(&inode_lock);
415 if (remove_inode_buffers(inode))
416 reap += invalidate_mapping_pages(&inode->i_data,
419 spin_lock(&inode_lock);
421 if (inode != list_entry(inode_unused.next,
422 struct inode, i_list))
423 continue; /* wrong inode or list_empty */
424 if (!can_unuse(inode))
427 list_move(&inode->i_list, &freeable);
428 inode->i_state |= I_FREEING;
431 inodes_stat.nr_unused -= nr_pruned;
432 if (current_is_kswapd())
433 __count_vm_events(KSWAPD_INODESTEAL, reap);
435 __count_vm_events(PGINODESTEAL, reap);
436 spin_unlock(&inode_lock);
438 dispose_list(&freeable);
439 mutex_unlock(&iprune_mutex);
443 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
444 * "unused" means that no dentries are referring to the inodes: the files are
445 * not open and the dcache references to those inodes have already been
448 * This function is passed the number of inodes to scan, and it returns the
449 * total number of remaining possibly-reclaimable inodes.
451 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
455 * Nasty deadlock avoidance. We may hold various FS locks,
456 * and we don't want to recurse into the FS that called us
457 * in clear_inode() and friends..
459 if (!(gfp_mask & __GFP_FS))
463 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
466 static void __wait_on_freeing_inode(struct inode *inode);
468 * Called with the inode lock held.
469 * NOTE: we are not increasing the inode-refcount, you must call __iget()
470 * by hand after calling find_inode now! This simplifies iunique and won't
471 * add any additional branch in the common code.
473 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
475 struct hlist_node *node;
476 struct inode * inode = NULL;
479 hlist_for_each (node, head) {
480 inode = hlist_entry(node, struct inode, i_hash);
481 if (inode->i_sb != sb)
483 if (!test(inode, data))
485 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
486 __wait_on_freeing_inode(inode);
491 return node ? inode : NULL;
495 * find_inode_fast is the fast path version of find_inode, see the comment at
496 * iget_locked for details.
498 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
500 struct hlist_node *node;
501 struct inode * inode = NULL;
504 hlist_for_each (node, head) {
505 inode = hlist_entry(node, struct inode, i_hash);
506 if (inode->i_ino != ino)
508 if (inode->i_sb != sb)
510 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
511 __wait_on_freeing_inode(inode);
516 return node ? inode : NULL;
520 * new_inode - obtain an inode
523 * Allocates a new inode for given superblock.
525 struct inode *new_inode(struct super_block *sb)
527 static unsigned long last_ino;
528 struct inode * inode;
530 spin_lock_prefetch(&inode_lock);
532 inode = alloc_inode(sb);
534 spin_lock(&inode_lock);
535 inodes_stat.nr_inodes++;
536 list_add(&inode->i_list, &inode_in_use);
537 list_add(&inode->i_sb_list, &sb->s_inodes);
538 inode->i_ino = ++last_ino;
540 spin_unlock(&inode_lock);
545 EXPORT_SYMBOL(new_inode);
547 void unlock_new_inode(struct inode *inode)
550 * This is special! We do not need the spinlock
551 * when clearing I_LOCK, because we're guaranteed
552 * that nobody else tries to do anything about the
553 * state of the inode when it is locked, as we
554 * just created it (so there can be no old holders
555 * that haven't tested I_LOCK).
557 inode->i_state &= ~(I_LOCK|I_NEW);
558 wake_up_inode(inode);
561 EXPORT_SYMBOL(unlock_new_inode);
564 * This is called without the inode lock held.. Be careful.
566 * We no longer cache the sb_flags in i_flags - see fs.h
567 * -- rmk@arm.uk.linux.org
569 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
571 struct inode * inode;
573 inode = alloc_inode(sb);
577 spin_lock(&inode_lock);
578 /* We released the lock, so.. */
579 old = find_inode(sb, head, test, data);
581 if (set(inode, data))
584 inodes_stat.nr_inodes++;
585 list_add(&inode->i_list, &inode_in_use);
586 list_add(&inode->i_sb_list, &sb->s_inodes);
587 hlist_add_head(&inode->i_hash, head);
588 inode->i_state = I_LOCK|I_NEW;
589 spin_unlock(&inode_lock);
591 /* Return the locked inode with I_NEW set, the
592 * caller is responsible for filling in the contents
598 * Uhhuh, somebody else created the same inode under
599 * us. Use the old inode instead of the one we just
603 spin_unlock(&inode_lock);
604 destroy_inode(inode);
606 wait_on_inode(inode);
611 spin_unlock(&inode_lock);
612 destroy_inode(inode);
617 * get_new_inode_fast is the fast path version of get_new_inode, see the
618 * comment at iget_locked for details.
620 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
622 struct inode * inode;
624 inode = alloc_inode(sb);
628 spin_lock(&inode_lock);
629 /* We released the lock, so.. */
630 old = find_inode_fast(sb, head, ino);
633 inodes_stat.nr_inodes++;
634 list_add(&inode->i_list, &inode_in_use);
635 list_add(&inode->i_sb_list, &sb->s_inodes);
636 hlist_add_head(&inode->i_hash, head);
637 inode->i_state = I_LOCK|I_NEW;
638 spin_unlock(&inode_lock);
640 /* Return the locked inode with I_NEW set, the
641 * caller is responsible for filling in the contents
647 * Uhhuh, somebody else created the same inode under
648 * us. Use the old inode instead of the one we just
652 spin_unlock(&inode_lock);
653 destroy_inode(inode);
655 wait_on_inode(inode);
660 static unsigned long hash(struct super_block *sb, unsigned long hashval)
664 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
666 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
667 return tmp & I_HASHMASK;
671 * iunique - get a unique inode number
673 * @max_reserved: highest reserved inode number
675 * Obtain an inode number that is unique on the system for a given
676 * superblock. This is used by file systems that have no natural
677 * permanent inode numbering system. An inode number is returned that
678 * is higher than the reserved limit but unique.
681 * With a large number of inodes live on the file system this function
682 * currently becomes quite slow.
684 ino_t iunique(struct super_block *sb, ino_t max_reserved)
686 static ino_t counter;
688 struct hlist_head * head;
690 spin_lock(&inode_lock);
692 if (counter > max_reserved) {
693 head = inode_hashtable + hash(sb,counter);
695 inode = find_inode_fast(sb, head, res);
697 spin_unlock(&inode_lock);
701 counter = max_reserved + 1;
707 EXPORT_SYMBOL(iunique);
709 struct inode *igrab(struct inode *inode)
711 spin_lock(&inode_lock);
712 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
716 * Handle the case where s_op->clear_inode is not been
717 * called yet, and somebody is calling igrab
718 * while the inode is getting freed.
721 spin_unlock(&inode_lock);
725 EXPORT_SYMBOL(igrab);
728 * ifind - internal function, you want ilookup5() or iget5().
729 * @sb: super block of file system to search
730 * @head: the head of the list to search
731 * @test: callback used for comparisons between inodes
732 * @data: opaque data pointer to pass to @test
733 * @wait: if true wait for the inode to be unlocked, if false do not
735 * ifind() searches for the inode specified by @data in the inode
736 * cache. This is a generalized version of ifind_fast() for file systems where
737 * the inode number is not sufficient for unique identification of an inode.
739 * If the inode is in the cache, the inode is returned with an incremented
742 * Otherwise NULL is returned.
744 * Note, @test is called with the inode_lock held, so can't sleep.
746 static struct inode *ifind(struct super_block *sb,
747 struct hlist_head *head, int (*test)(struct inode *, void *),
748 void *data, const int wait)
752 spin_lock(&inode_lock);
753 inode = find_inode(sb, head, test, data);
756 spin_unlock(&inode_lock);
758 wait_on_inode(inode);
761 spin_unlock(&inode_lock);
766 * ifind_fast - internal function, you want ilookup() or iget().
767 * @sb: super block of file system to search
768 * @head: head of the list to search
769 * @ino: inode number to search for
771 * ifind_fast() searches for the inode @ino in the inode cache. This is for
772 * file systems where the inode number is sufficient for unique identification
775 * If the inode is in the cache, the inode is returned with an incremented
778 * Otherwise NULL is returned.
780 static struct inode *ifind_fast(struct super_block *sb,
781 struct hlist_head *head, unsigned long ino)
785 spin_lock(&inode_lock);
786 inode = find_inode_fast(sb, head, ino);
789 spin_unlock(&inode_lock);
790 wait_on_inode(inode);
793 spin_unlock(&inode_lock);
798 * ilookup5_nowait - search for an inode in the inode cache
799 * @sb: super block of file system to search
800 * @hashval: hash value (usually inode number) to search for
801 * @test: callback used for comparisons between inodes
802 * @data: opaque data pointer to pass to @test
804 * ilookup5() uses ifind() to search for the inode specified by @hashval and
805 * @data in the inode cache. This is a generalized version of ilookup() for
806 * file systems where the inode number is not sufficient for unique
807 * identification of an inode.
809 * If the inode is in the cache, the inode is returned with an incremented
810 * reference count. Note, the inode lock is not waited upon so you have to be
811 * very careful what you do with the returned inode. You probably should be
812 * using ilookup5() instead.
814 * Otherwise NULL is returned.
816 * Note, @test is called with the inode_lock held, so can't sleep.
818 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
819 int (*test)(struct inode *, void *), void *data)
821 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
823 return ifind(sb, head, test, data, 0);
826 EXPORT_SYMBOL(ilookup5_nowait);
829 * ilookup5 - search for an inode in the inode cache
830 * @sb: super block of file system to search
831 * @hashval: hash value (usually inode number) to search for
832 * @test: callback used for comparisons between inodes
833 * @data: opaque data pointer to pass to @test
835 * ilookup5() uses ifind() to search for the inode specified by @hashval and
836 * @data in the inode cache. This is a generalized version of ilookup() for
837 * file systems where the inode number is not sufficient for unique
838 * identification of an inode.
840 * If the inode is in the cache, the inode lock is waited upon and the inode is
841 * returned with an incremented reference count.
843 * Otherwise NULL is returned.
845 * Note, @test is called with the inode_lock held, so can't sleep.
847 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
848 int (*test)(struct inode *, void *), void *data)
850 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
852 return ifind(sb, head, test, data, 1);
855 EXPORT_SYMBOL(ilookup5);
858 * ilookup - search for an inode in the inode cache
859 * @sb: super block of file system to search
860 * @ino: inode number to search for
862 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
863 * This is for file systems where the inode number is sufficient for unique
864 * identification of an inode.
866 * If the inode is in the cache, the inode is returned with an incremented
869 * Otherwise NULL is returned.
871 struct inode *ilookup(struct super_block *sb, unsigned long ino)
873 struct hlist_head *head = inode_hashtable + hash(sb, ino);
875 return ifind_fast(sb, head, ino);
878 EXPORT_SYMBOL(ilookup);
881 * iget5_locked - obtain an inode from a mounted file system
882 * @sb: super block of file system
883 * @hashval: hash value (usually inode number) to get
884 * @test: callback used for comparisons between inodes
885 * @set: callback used to initialize a new struct inode
886 * @data: opaque data pointer to pass to @test and @set
888 * This is iget() without the read_inode() portion of get_new_inode().
890 * iget5_locked() uses ifind() to search for the inode specified by @hashval
891 * and @data in the inode cache and if present it is returned with an increased
892 * reference count. This is a generalized version of iget_locked() for file
893 * systems where the inode number is not sufficient for unique identification
896 * If the inode is not in cache, get_new_inode() is called to allocate a new
897 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
898 * file system gets to fill it in before unlocking it via unlock_new_inode().
900 * Note both @test and @set are called with the inode_lock held, so can't sleep.
902 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
903 int (*test)(struct inode *, void *),
904 int (*set)(struct inode *, void *), void *data)
906 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
909 inode = ifind(sb, head, test, data, 1);
913 * get_new_inode() will do the right thing, re-trying the search
914 * in case it had to block at any point.
916 return get_new_inode(sb, head, test, set, data);
919 EXPORT_SYMBOL(iget5_locked);
922 * iget_locked - obtain an inode from a mounted file system
923 * @sb: super block of file system
924 * @ino: inode number to get
926 * This is iget() without the read_inode() portion of get_new_inode_fast().
928 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
929 * the inode cache and if present it is returned with an increased reference
930 * count. This is for file systems where the inode number is sufficient for
931 * unique identification of an inode.
933 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
934 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
935 * The file system gets to fill it in before unlocking it via
936 * unlock_new_inode().
938 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
940 struct hlist_head *head = inode_hashtable + hash(sb, ino);
943 inode = ifind_fast(sb, head, ino);
947 * get_new_inode_fast() will do the right thing, re-trying the search
948 * in case it had to block at any point.
950 return get_new_inode_fast(sb, head, ino);
953 EXPORT_SYMBOL(iget_locked);
956 * __insert_inode_hash - hash an inode
957 * @inode: unhashed inode
958 * @hashval: unsigned long value used to locate this object in the
961 * Add an inode to the inode hash for this superblock.
963 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
965 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
966 spin_lock(&inode_lock);
967 hlist_add_head(&inode->i_hash, head);
968 spin_unlock(&inode_lock);
971 EXPORT_SYMBOL(__insert_inode_hash);
974 * remove_inode_hash - remove an inode from the hash
975 * @inode: inode to unhash
977 * Remove an inode from the superblock.
979 void remove_inode_hash(struct inode *inode)
981 spin_lock(&inode_lock);
982 hlist_del_init(&inode->i_hash);
983 spin_unlock(&inode_lock);
986 EXPORT_SYMBOL(remove_inode_hash);
989 * Tell the filesystem that this inode is no longer of any interest and should
990 * be completely destroyed.
992 * We leave the inode in the inode hash table until *after* the filesystem's
993 * ->delete_inode completes. This ensures that an iget (such as nfsd might
994 * instigate) will always find up-to-date information either in the hash or on
997 * I_FREEING is set so that no-one will take a new reference to the inode while
998 * it is being deleted.
1000 void generic_delete_inode(struct inode *inode)
1002 const struct super_operations *op = inode->i_sb->s_op;
1004 list_del_init(&inode->i_list);
1005 list_del_init(&inode->i_sb_list);
1006 inode->i_state |= I_FREEING;
1007 inodes_stat.nr_inodes--;
1008 spin_unlock(&inode_lock);
1010 security_inode_delete(inode);
1012 if (op->delete_inode) {
1013 void (*delete)(struct inode *) = op->delete_inode;
1014 if (!is_bad_inode(inode))
1016 /* Filesystems implementing their own
1017 * s_op->delete_inode are required to call
1018 * truncate_inode_pages and clear_inode()
1022 truncate_inode_pages(&inode->i_data, 0);
1025 spin_lock(&inode_lock);
1026 hlist_del_init(&inode->i_hash);
1027 spin_unlock(&inode_lock);
1028 wake_up_inode(inode);
1029 BUG_ON(inode->i_state != I_CLEAR);
1030 destroy_inode(inode);
1033 EXPORT_SYMBOL(generic_delete_inode);
1035 static void generic_forget_inode(struct inode *inode)
1037 struct super_block *sb = inode->i_sb;
1039 if (!hlist_unhashed(&inode->i_hash)) {
1040 if (!(inode->i_state & (I_DIRTY|I_LOCK)))
1041 list_move(&inode->i_list, &inode_unused);
1042 inodes_stat.nr_unused++;
1043 if (!sb || (sb->s_flags & MS_ACTIVE)) {
1044 spin_unlock(&inode_lock);
1047 inode->i_state |= I_WILL_FREE;
1048 spin_unlock(&inode_lock);
1049 write_inode_now(inode, 1);
1050 spin_lock(&inode_lock);
1051 inode->i_state &= ~I_WILL_FREE;
1052 inodes_stat.nr_unused--;
1053 hlist_del_init(&inode->i_hash);
1055 list_del_init(&inode->i_list);
1056 list_del_init(&inode->i_sb_list);
1057 inode->i_state |= I_FREEING;
1058 inodes_stat.nr_inodes--;
1059 spin_unlock(&inode_lock);
1060 if (inode->i_data.nrpages)
1061 truncate_inode_pages(&inode->i_data, 0);
1063 wake_up_inode(inode);
1064 destroy_inode(inode);
1068 * Normal UNIX filesystem behaviour: delete the
1069 * inode when the usage count drops to zero, and
1072 void generic_drop_inode(struct inode *inode)
1074 if (!inode->i_nlink)
1075 generic_delete_inode(inode);
1077 generic_forget_inode(inode);
1080 EXPORT_SYMBOL_GPL(generic_drop_inode);
1083 * Called when we're dropping the last reference
1086 * Call the FS "drop()" function, defaulting to
1087 * the legacy UNIX filesystem behaviour..
1089 * NOTE! NOTE! NOTE! We're called with the inode lock
1090 * held, and the drop function is supposed to release
1093 static inline void iput_final(struct inode *inode)
1095 const struct super_operations *op = inode->i_sb->s_op;
1096 void (*drop)(struct inode *) = generic_drop_inode;
1098 if (op && op->drop_inode)
1099 drop = op->drop_inode;
1104 * iput - put an inode
1105 * @inode: inode to put
1107 * Puts an inode, dropping its usage count. If the inode use count hits
1108 * zero, the inode is then freed and may also be destroyed.
1110 * Consequently, iput() can sleep.
1112 void iput(struct inode *inode)
1115 const struct super_operations *op = inode->i_sb->s_op;
1117 BUG_ON(inode->i_state == I_CLEAR);
1119 if (op && op->put_inode)
1120 op->put_inode(inode);
1122 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1127 EXPORT_SYMBOL(iput);
1130 * bmap - find a block number in a file
1131 * @inode: inode of file
1132 * @block: block to find
1134 * Returns the block number on the device holding the inode that
1135 * is the disk block number for the block of the file requested.
1136 * That is, asked for block 4 of inode 1 the function will return the
1137 * disk block relative to the disk start that holds that block of the
1140 sector_t bmap(struct inode * inode, sector_t block)
1143 if (inode->i_mapping->a_ops->bmap)
1144 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1147 EXPORT_SYMBOL(bmap);
1150 * touch_atime - update the access time
1151 * @mnt: mount the inode is accessed on
1152 * @dentry: dentry accessed
1154 * Update the accessed time on an inode and mark it for writeback.
1155 * This function automatically handles read only file systems and media,
1156 * as well as the "noatime" flag and inode specific "noatime" markers.
1158 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1160 struct inode *inode = dentry->d_inode;
1161 struct timespec now;
1163 if (inode->i_flags & S_NOATIME)
1165 if (IS_NOATIME(inode))
1167 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1171 * We may have a NULL vfsmount when coming from NFSD
1174 if (mnt->mnt_flags & MNT_NOATIME)
1176 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1179 if (mnt->mnt_flags & MNT_RELATIME) {
1181 * With relative atime, only update atime if the
1182 * previous atime is earlier than either the ctime or
1185 if (timespec_compare(&inode->i_mtime,
1186 &inode->i_atime) < 0 &&
1187 timespec_compare(&inode->i_ctime,
1188 &inode->i_atime) < 0)
1193 now = current_fs_time(inode->i_sb);
1194 if (timespec_equal(&inode->i_atime, &now))
1197 inode->i_atime = now;
1198 mark_inode_dirty_sync(inode);
1200 EXPORT_SYMBOL(touch_atime);
1203 * file_update_time - update mtime and ctime time
1204 * @file: file accessed
1206 * Update the mtime and ctime members of an inode and mark the inode
1207 * for writeback. Note that this function is meant exclusively for
1208 * usage in the file write path of filesystems, and filesystems may
1209 * choose to explicitly ignore update via this function with the
1210 * S_NOCTIME inode flag, e.g. for network filesystem where these
1211 * timestamps are handled by the server.
1214 void file_update_time(struct file *file)
1216 struct inode *inode = file->f_path.dentry->d_inode;
1217 struct timespec now;
1220 if (IS_NOCMTIME(inode))
1222 if (IS_RDONLY(inode))
1225 now = current_fs_time(inode->i_sb);
1226 if (!timespec_equal(&inode->i_mtime, &now)) {
1227 inode->i_mtime = now;
1231 if (!timespec_equal(&inode->i_ctime, &now)) {
1232 inode->i_ctime = now;
1237 mark_inode_dirty_sync(inode);
1240 EXPORT_SYMBOL(file_update_time);
1242 int inode_needs_sync(struct inode *inode)
1246 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1251 EXPORT_SYMBOL(inode_needs_sync);
1253 int inode_wait(void *word)
1260 * If we try to find an inode in the inode hash while it is being
1261 * deleted, we have to wait until the filesystem completes its
1262 * deletion before reporting that it isn't found. This function waits
1263 * until the deletion _might_ have completed. Callers are responsible
1264 * to recheck inode state.
1266 * It doesn't matter if I_LOCK is not set initially, a call to
1267 * wake_up_inode() after removing from the hash list will DTRT.
1269 * This is called with inode_lock held.
1271 static void __wait_on_freeing_inode(struct inode *inode)
1273 wait_queue_head_t *wq;
1274 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1275 wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1276 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1277 spin_unlock(&inode_lock);
1279 finish_wait(wq, &wait.wait);
1280 spin_lock(&inode_lock);
1283 void wake_up_inode(struct inode *inode)
1286 * Prevent speculative execution through spin_unlock(&inode_lock);
1289 wake_up_bit(&inode->i_state, __I_LOCK);
1293 * We rarely want to lock two inodes that do not have a parent/child
1294 * relationship (such as directory, child inode) simultaneously. The
1295 * vast majority of file systems should be able to get along fine
1296 * without this. Do not use these functions except as a last resort.
1298 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1300 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1302 mutex_lock(&inode1->i_mutex);
1304 mutex_lock(&inode2->i_mutex);
1308 if (inode1 < inode2) {
1309 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1310 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1312 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1313 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1316 EXPORT_SYMBOL(inode_double_lock);
1318 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1321 mutex_unlock(&inode1->i_mutex);
1323 if (inode2 && inode2 != inode1)
1324 mutex_unlock(&inode2->i_mutex);
1326 EXPORT_SYMBOL(inode_double_unlock);
1328 static __initdata unsigned long ihash_entries;
1329 static int __init set_ihash_entries(char *str)
1333 ihash_entries = simple_strtoul(str, &str, 0);
1336 __setup("ihash_entries=", set_ihash_entries);
1339 * Initialize the waitqueues and inode hash table.
1341 void __init inode_init_early(void)
1345 /* If hashes are distributed across NUMA nodes, defer
1346 * hash allocation until vmalloc space is available.
1352 alloc_large_system_hash("Inode-cache",
1353 sizeof(struct hlist_head),
1361 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1362 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1365 void __init inode_init(unsigned long mempages)
1369 /* inode slab cache */
1370 inode_cachep = kmem_cache_create("inode_cache",
1371 sizeof(struct inode),
1373 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1377 set_shrinker(DEFAULT_SEEKS, shrink_icache_memory);
1379 /* Hash may have been set up in inode_init_early */
1384 alloc_large_system_hash("Inode-cache",
1385 sizeof(struct hlist_head),
1393 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1394 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1397 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1399 inode->i_mode = mode;
1400 if (S_ISCHR(mode)) {
1401 inode->i_fop = &def_chr_fops;
1402 inode->i_rdev = rdev;
1403 } else if (S_ISBLK(mode)) {
1404 inode->i_fop = &def_blk_fops;
1405 inode->i_rdev = rdev;
1406 } else if (S_ISFIFO(mode))
1407 inode->i_fop = &def_fifo_fops;
1408 else if (S_ISSOCK(mode))
1409 inode->i_fop = &bad_sock_fops;
1411 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1414 EXPORT_SYMBOL(init_special_inode);