Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / drivers / net / enc28j60.c
1 /*
2  * Microchip ENC28J60 ethernet driver (MAC + PHY)
3  *
4  * Copyright (C) 2007 Eurek srl
5  * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com>
6  * based on enc28j60.c written by David Anders for 2.4 kernel version
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * $Id: enc28j60.c,v 1.22 2007/12/20 10:47:01 claudio Exp $
14  */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/ethtool.h>
28 #include <linux/tcp.h>
29 #include <linux/skbuff.h>
30 #include <linux/delay.h>
31 #include <linux/spi/spi.h>
32
33 #include "enc28j60_hw.h"
34
35 #define DRV_NAME        "enc28j60"
36 #define DRV_VERSION     "1.01"
37
38 #define SPI_OPLEN       1
39
40 #define ENC28J60_MSG_DEFAULT    \
41         (NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_LINK)
42
43 /* Buffer size required for the largest SPI transfer (i.e., reading a
44  * frame). */
45 #define SPI_TRANSFER_BUF_LEN    (4 + MAX_FRAMELEN)
46
47 #define TX_TIMEOUT      (4 * HZ)
48
49 /* Max TX retries in case of collision as suggested by errata datasheet */
50 #define MAX_TX_RETRYCOUNT       16
51
52 enum {
53         RXFILTER_NORMAL,
54         RXFILTER_MULTI,
55         RXFILTER_PROMISC
56 };
57
58 /* Driver local data */
59 struct enc28j60_net {
60         struct net_device *netdev;
61         struct spi_device *spi;
62         struct mutex lock;
63         struct sk_buff *tx_skb;
64         struct work_struct tx_work;
65         struct work_struct irq_work;
66         struct work_struct setrx_work;
67         struct work_struct restart_work;
68         u8 bank;                /* current register bank selected */
69         u16 next_pk_ptr;        /* next packet pointer within FIFO */
70         u16 max_pk_counter;     /* statistics: max packet counter */
71         u16 tx_retry_count;
72         bool hw_enable;
73         bool full_duplex;
74         int rxfilter;
75         u32 msg_enable;
76         u8 spi_transfer_buf[SPI_TRANSFER_BUF_LEN];
77 };
78
79 /* use ethtool to change the level for any given device */
80 static struct {
81         u32 msg_enable;
82 } debug = { -1 };
83
84 /*
85  * SPI read buffer
86  * wait for the SPI transfer and copy received data to destination
87  */
88 static int
89 spi_read_buf(struct enc28j60_net *priv, int len, u8 *data)
90 {
91         u8 *rx_buf = priv->spi_transfer_buf + 4;
92         u8 *tx_buf = priv->spi_transfer_buf;
93         struct spi_transfer t = {
94                 .tx_buf = tx_buf,
95                 .rx_buf = rx_buf,
96                 .len = SPI_OPLEN + len,
97         };
98         struct spi_message msg;
99         int ret;
100
101         tx_buf[0] = ENC28J60_READ_BUF_MEM;
102         tx_buf[1] = tx_buf[2] = tx_buf[3] = 0;  /* don't care */
103
104         spi_message_init(&msg);
105         spi_message_add_tail(&t, &msg);
106         ret = spi_sync(priv->spi, &msg);
107         if (ret == 0) {
108                 memcpy(data, &rx_buf[SPI_OPLEN], len);
109                 ret = msg.status;
110         }
111         if (ret && netif_msg_drv(priv))
112                 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
113                         __func__, ret);
114
115         return ret;
116 }
117
118 /*
119  * SPI write buffer
120  */
121 static int spi_write_buf(struct enc28j60_net *priv, int len,
122                          const u8 *data)
123 {
124         int ret;
125
126         if (len > SPI_TRANSFER_BUF_LEN - 1 || len <= 0)
127                 ret = -EINVAL;
128         else {
129                 priv->spi_transfer_buf[0] = ENC28J60_WRITE_BUF_MEM;
130                 memcpy(&priv->spi_transfer_buf[1], data, len);
131                 ret = spi_write(priv->spi, priv->spi_transfer_buf, len + 1);
132                 if (ret && netif_msg_drv(priv))
133                         printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
134                                 __func__, ret);
135         }
136         return ret;
137 }
138
139 /*
140  * basic SPI read operation
141  */
142 static u8 spi_read_op(struct enc28j60_net *priv, u8 op,
143                            u8 addr)
144 {
145         u8 tx_buf[2];
146         u8 rx_buf[4];
147         u8 val = 0;
148         int ret;
149         int slen = SPI_OPLEN;
150
151         /* do dummy read if needed */
152         if (addr & SPRD_MASK)
153                 slen++;
154
155         tx_buf[0] = op | (addr & ADDR_MASK);
156         ret = spi_write_then_read(priv->spi, tx_buf, 1, rx_buf, slen);
157         if (ret)
158                 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
159                         __func__, ret);
160         else
161                 val = rx_buf[slen - 1];
162
163         return val;
164 }
165
166 /*
167  * basic SPI write operation
168  */
169 static int spi_write_op(struct enc28j60_net *priv, u8 op,
170                         u8 addr, u8 val)
171 {
172         int ret;
173
174         priv->spi_transfer_buf[0] = op | (addr & ADDR_MASK);
175         priv->spi_transfer_buf[1] = val;
176         ret = spi_write(priv->spi, priv->spi_transfer_buf, 2);
177         if (ret && netif_msg_drv(priv))
178                 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
179                         __func__, ret);
180         return ret;
181 }
182
183 static void enc28j60_soft_reset(struct enc28j60_net *priv)
184 {
185         if (netif_msg_hw(priv))
186                 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
187
188         spi_write_op(priv, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
189         /* Errata workaround #1, CLKRDY check is unreliable,
190          * delay at least 1 mS instead */
191         udelay(2000);
192 }
193
194 /*
195  * select the current register bank if necessary
196  */
197 static void enc28j60_set_bank(struct enc28j60_net *priv, u8 addr)
198 {
199         if ((addr & BANK_MASK) != priv->bank) {
200                 u8 b = (addr & BANK_MASK) >> 5;
201
202                 if (b != (ECON1_BSEL1 | ECON1_BSEL0))
203                         spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1,
204                                      ECON1_BSEL1 | ECON1_BSEL0);
205                 if (b != 0)
206                         spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1, b);
207                 priv->bank = (addr & BANK_MASK);
208         }
209 }
210
211 /*
212  * Register access routines through the SPI bus.
213  * Every register access comes in two flavours:
214  * - nolock_xxx: caller needs to invoke mutex_lock, usually to access
215  *   atomically more than one register
216  * - locked_xxx: caller doesn't need to invoke mutex_lock, single access
217  *
218  * Some registers can be accessed through the bit field clear and
219  * bit field set to avoid a read modify write cycle.
220  */
221
222 /*
223  * Register bit field Set
224  */
225 static void nolock_reg_bfset(struct enc28j60_net *priv,
226                                       u8 addr, u8 mask)
227 {
228         enc28j60_set_bank(priv, addr);
229         spi_write_op(priv, ENC28J60_BIT_FIELD_SET, addr, mask);
230 }
231
232 static void locked_reg_bfset(struct enc28j60_net *priv,
233                                       u8 addr, u8 mask)
234 {
235         mutex_lock(&priv->lock);
236         nolock_reg_bfset(priv, addr, mask);
237         mutex_unlock(&priv->lock);
238 }
239
240 /*
241  * Register bit field Clear
242  */
243 static void nolock_reg_bfclr(struct enc28j60_net *priv,
244                                       u8 addr, u8 mask)
245 {
246         enc28j60_set_bank(priv, addr);
247         spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, addr, mask);
248 }
249
250 static void locked_reg_bfclr(struct enc28j60_net *priv,
251                                       u8 addr, u8 mask)
252 {
253         mutex_lock(&priv->lock);
254         nolock_reg_bfclr(priv, addr, mask);
255         mutex_unlock(&priv->lock);
256 }
257
258 /*
259  * Register byte read
260  */
261 static int nolock_regb_read(struct enc28j60_net *priv,
262                                      u8 address)
263 {
264         enc28j60_set_bank(priv, address);
265         return spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
266 }
267
268 static int locked_regb_read(struct enc28j60_net *priv,
269                                      u8 address)
270 {
271         int ret;
272
273         mutex_lock(&priv->lock);
274         ret = nolock_regb_read(priv, address);
275         mutex_unlock(&priv->lock);
276
277         return ret;
278 }
279
280 /*
281  * Register word read
282  */
283 static int nolock_regw_read(struct enc28j60_net *priv,
284                                      u8 address)
285 {
286         int rl, rh;
287
288         enc28j60_set_bank(priv, address);
289         rl = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
290         rh = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address + 1);
291
292         return (rh << 8) | rl;
293 }
294
295 static int locked_regw_read(struct enc28j60_net *priv,
296                                      u8 address)
297 {
298         int ret;
299
300         mutex_lock(&priv->lock);
301         ret = nolock_regw_read(priv, address);
302         mutex_unlock(&priv->lock);
303
304         return ret;
305 }
306
307 /*
308  * Register byte write
309  */
310 static void nolock_regb_write(struct enc28j60_net *priv,
311                                        u8 address, u8 data)
312 {
313         enc28j60_set_bank(priv, address);
314         spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, data);
315 }
316
317 static void locked_regb_write(struct enc28j60_net *priv,
318                                        u8 address, u8 data)
319 {
320         mutex_lock(&priv->lock);
321         nolock_regb_write(priv, address, data);
322         mutex_unlock(&priv->lock);
323 }
324
325 /*
326  * Register word write
327  */
328 static void nolock_regw_write(struct enc28j60_net *priv,
329                                        u8 address, u16 data)
330 {
331         enc28j60_set_bank(priv, address);
332         spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, (u8) data);
333         spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address + 1,
334                      (u8) (data >> 8));
335 }
336
337 static void locked_regw_write(struct enc28j60_net *priv,
338                                        u8 address, u16 data)
339 {
340         mutex_lock(&priv->lock);
341         nolock_regw_write(priv, address, data);
342         mutex_unlock(&priv->lock);
343 }
344
345 /*
346  * Buffer memory read
347  * Select the starting address and execute a SPI buffer read
348  */
349 static void enc28j60_mem_read(struct enc28j60_net *priv,
350                                      u16 addr, int len, u8 *data)
351 {
352         mutex_lock(&priv->lock);
353         nolock_regw_write(priv, ERDPTL, addr);
354 #ifdef CONFIG_ENC28J60_WRITEVERIFY
355         if (netif_msg_drv(priv)) {
356                 u16 reg;
357                 reg = nolock_regw_read(priv, ERDPTL);
358                 if (reg != addr)
359                         printk(KERN_DEBUG DRV_NAME ": %s() error writing ERDPT "
360                                 "(0x%04x - 0x%04x)\n", __func__, reg, addr);
361         }
362 #endif
363         spi_read_buf(priv, len, data);
364         mutex_unlock(&priv->lock);
365 }
366
367 /*
368  * Write packet to enc28j60 TX buffer memory
369  */
370 static void
371 enc28j60_packet_write(struct enc28j60_net *priv, int len, const u8 *data)
372 {
373         mutex_lock(&priv->lock);
374         /* Set the write pointer to start of transmit buffer area */
375         nolock_regw_write(priv, EWRPTL, TXSTART_INIT);
376 #ifdef CONFIG_ENC28J60_WRITEVERIFY
377         if (netif_msg_drv(priv)) {
378                 u16 reg;
379                 reg = nolock_regw_read(priv, EWRPTL);
380                 if (reg != TXSTART_INIT)
381                         printk(KERN_DEBUG DRV_NAME
382                                 ": %s() ERWPT:0x%04x != 0x%04x\n",
383                                 __func__, reg, TXSTART_INIT);
384         }
385 #endif
386         /* Set the TXND pointer to correspond to the packet size given */
387         nolock_regw_write(priv, ETXNDL, TXSTART_INIT + len);
388         /* write per-packet control byte */
389         spi_write_op(priv, ENC28J60_WRITE_BUF_MEM, 0, 0x00);
390         if (netif_msg_hw(priv))
391                 printk(KERN_DEBUG DRV_NAME
392                         ": %s() after control byte ERWPT:0x%04x\n",
393                         __func__, nolock_regw_read(priv, EWRPTL));
394         /* copy the packet into the transmit buffer */
395         spi_write_buf(priv, len, data);
396         if (netif_msg_hw(priv))
397                 printk(KERN_DEBUG DRV_NAME
398                          ": %s() after write packet ERWPT:0x%04x, len=%d\n",
399                          __func__, nolock_regw_read(priv, EWRPTL), len);
400         mutex_unlock(&priv->lock);
401 }
402
403 static unsigned long msec20_to_jiffies;
404
405 static int poll_ready(struct enc28j60_net *priv, u8 reg, u8 mask, u8 val)
406 {
407         unsigned long timeout = jiffies + msec20_to_jiffies;
408
409         /* 20 msec timeout read */
410         while ((nolock_regb_read(priv, reg) & mask) != val) {
411                 if (time_after(jiffies, timeout)) {
412                         if (netif_msg_drv(priv))
413                                 dev_dbg(&priv->spi->dev,
414                                         "reg %02x ready timeout!\n", reg);
415                         return -ETIMEDOUT;
416                 }
417                 cpu_relax();
418         }
419         return 0;
420 }
421
422 /*
423  * Wait until the PHY operation is complete.
424  */
425 static int wait_phy_ready(struct enc28j60_net *priv)
426 {
427         return poll_ready(priv, MISTAT, MISTAT_BUSY, 0) ? 0 : 1;
428 }
429
430 /*
431  * PHY register read
432  * PHY registers are not accessed directly, but through the MII
433  */
434 static u16 enc28j60_phy_read(struct enc28j60_net *priv, u8 address)
435 {
436         u16 ret;
437
438         mutex_lock(&priv->lock);
439         /* set the PHY register address */
440         nolock_regb_write(priv, MIREGADR, address);
441         /* start the register read operation */
442         nolock_regb_write(priv, MICMD, MICMD_MIIRD);
443         /* wait until the PHY read completes */
444         wait_phy_ready(priv);
445         /* quit reading */
446         nolock_regb_write(priv, MICMD, 0x00);
447         /* return the data */
448         ret  = nolock_regw_read(priv, MIRDL);
449         mutex_unlock(&priv->lock);
450
451         return ret;
452 }
453
454 static int enc28j60_phy_write(struct enc28j60_net *priv, u8 address, u16 data)
455 {
456         int ret;
457
458         mutex_lock(&priv->lock);
459         /* set the PHY register address */
460         nolock_regb_write(priv, MIREGADR, address);
461         /* write the PHY data */
462         nolock_regw_write(priv, MIWRL, data);
463         /* wait until the PHY write completes and return */
464         ret = wait_phy_ready(priv);
465         mutex_unlock(&priv->lock);
466
467         return ret;
468 }
469
470 /*
471  * Program the hardware MAC address from dev->dev_addr.
472  */
473 static int enc28j60_set_hw_macaddr(struct net_device *ndev)
474 {
475         int ret;
476         struct enc28j60_net *priv = netdev_priv(ndev);
477
478         mutex_lock(&priv->lock);
479         if (!priv->hw_enable) {
480                 if (netif_msg_drv(priv))
481                         printk(KERN_INFO DRV_NAME
482                                 ": %s: Setting MAC address to %pM\n",
483                                 ndev->name, ndev->dev_addr);
484                 /* NOTE: MAC address in ENC28J60 is byte-backward */
485                 nolock_regb_write(priv, MAADR5, ndev->dev_addr[0]);
486                 nolock_regb_write(priv, MAADR4, ndev->dev_addr[1]);
487                 nolock_regb_write(priv, MAADR3, ndev->dev_addr[2]);
488                 nolock_regb_write(priv, MAADR2, ndev->dev_addr[3]);
489                 nolock_regb_write(priv, MAADR1, ndev->dev_addr[4]);
490                 nolock_regb_write(priv, MAADR0, ndev->dev_addr[5]);
491                 ret = 0;
492         } else {
493                 if (netif_msg_drv(priv))
494                         printk(KERN_DEBUG DRV_NAME
495                                 ": %s() Hardware must be disabled to set "
496                                 "Mac address\n", __func__);
497                 ret = -EBUSY;
498         }
499         mutex_unlock(&priv->lock);
500         return ret;
501 }
502
503 /*
504  * Store the new hardware address in dev->dev_addr, and update the MAC.
505  */
506 static int enc28j60_set_mac_address(struct net_device *dev, void *addr)
507 {
508         struct sockaddr *address = addr;
509
510         if (netif_running(dev))
511                 return -EBUSY;
512         if (!is_valid_ether_addr(address->sa_data))
513                 return -EADDRNOTAVAIL;
514
515         memcpy(dev->dev_addr, address->sa_data, dev->addr_len);
516         return enc28j60_set_hw_macaddr(dev);
517 }
518
519 /*
520  * Debug routine to dump useful register contents
521  */
522 static void enc28j60_dump_regs(struct enc28j60_net *priv, const char *msg)
523 {
524         mutex_lock(&priv->lock);
525         printk(KERN_DEBUG DRV_NAME " %s\n"
526                 "HwRevID: 0x%02x\n"
527                 "Cntrl: ECON1 ECON2 ESTAT  EIR  EIE\n"
528                 "       0x%02x  0x%02x  0x%02x  0x%02x  0x%02x\n"
529                 "MAC  : MACON1 MACON3 MACON4\n"
530                 "       0x%02x   0x%02x   0x%02x\n"
531                 "Rx   : ERXST  ERXND  ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n"
532                 "       0x%04x 0x%04x 0x%04x  0x%04x  "
533                 "0x%02x    0x%02x    0x%04x\n"
534                 "Tx   : ETXST  ETXND  MACLCON1 MACLCON2 MAPHSUP\n"
535                 "       0x%04x 0x%04x 0x%02x     0x%02x     0x%02x\n",
536                 msg, nolock_regb_read(priv, EREVID),
537                 nolock_regb_read(priv, ECON1), nolock_regb_read(priv, ECON2),
538                 nolock_regb_read(priv, ESTAT), nolock_regb_read(priv, EIR),
539                 nolock_regb_read(priv, EIE), nolock_regb_read(priv, MACON1),
540                 nolock_regb_read(priv, MACON3), nolock_regb_read(priv, MACON4),
541                 nolock_regw_read(priv, ERXSTL), nolock_regw_read(priv, ERXNDL),
542                 nolock_regw_read(priv, ERXWRPTL),
543                 nolock_regw_read(priv, ERXRDPTL),
544                 nolock_regb_read(priv, ERXFCON),
545                 nolock_regb_read(priv, EPKTCNT),
546                 nolock_regw_read(priv, MAMXFLL), nolock_regw_read(priv, ETXSTL),
547                 nolock_regw_read(priv, ETXNDL),
548                 nolock_regb_read(priv, MACLCON1),
549                 nolock_regb_read(priv, MACLCON2),
550                 nolock_regb_read(priv, MAPHSUP));
551         mutex_unlock(&priv->lock);
552 }
553
554 /*
555  * ERXRDPT need to be set always at odd addresses, refer to errata datasheet
556  */
557 static u16 erxrdpt_workaround(u16 next_packet_ptr, u16 start, u16 end)
558 {
559         u16 erxrdpt;
560
561         if ((next_packet_ptr - 1 < start) || (next_packet_ptr - 1 > end))
562                 erxrdpt = end;
563         else
564                 erxrdpt = next_packet_ptr - 1;
565
566         return erxrdpt;
567 }
568
569 static void nolock_rxfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
570 {
571         u16 erxrdpt;
572
573         if (start > 0x1FFF || end > 0x1FFF || start > end) {
574                 if (netif_msg_drv(priv))
575                         printk(KERN_ERR DRV_NAME ": %s(%d, %d) RXFIFO "
576                                 "bad parameters!\n", __func__, start, end);
577                 return;
578         }
579         /* set receive buffer start + end */
580         priv->next_pk_ptr = start;
581         nolock_regw_write(priv, ERXSTL, start);
582         erxrdpt = erxrdpt_workaround(priv->next_pk_ptr, start, end);
583         nolock_regw_write(priv, ERXRDPTL, erxrdpt);
584         nolock_regw_write(priv, ERXNDL, end);
585 }
586
587 static void nolock_txfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
588 {
589         if (start > 0x1FFF || end > 0x1FFF || start > end) {
590                 if (netif_msg_drv(priv))
591                         printk(KERN_ERR DRV_NAME ": %s(%d, %d) TXFIFO "
592                                 "bad parameters!\n", __func__, start, end);
593                 return;
594         }
595         /* set transmit buffer start + end */
596         nolock_regw_write(priv, ETXSTL, start);
597         nolock_regw_write(priv, ETXNDL, end);
598 }
599
600 /*
601  * Low power mode shrinks power consumption about 100x, so we'd like
602  * the chip to be in that mode whenever it's inactive.  (However, we
603  * can't stay in lowpower mode during suspend with WOL active.)
604  */
605 static void enc28j60_lowpower(struct enc28j60_net *priv, bool is_low)
606 {
607         if (netif_msg_drv(priv))
608                 dev_dbg(&priv->spi->dev, "%s power...\n",
609                                 is_low ? "low" : "high");
610
611         mutex_lock(&priv->lock);
612         if (is_low) {
613                 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
614                 poll_ready(priv, ESTAT, ESTAT_RXBUSY, 0);
615                 poll_ready(priv, ECON1, ECON1_TXRTS, 0);
616                 /* ECON2_VRPS was set during initialization */
617                 nolock_reg_bfset(priv, ECON2, ECON2_PWRSV);
618         } else {
619                 nolock_reg_bfclr(priv, ECON2, ECON2_PWRSV);
620                 poll_ready(priv, ESTAT, ESTAT_CLKRDY, ESTAT_CLKRDY);
621                 /* caller sets ECON1_RXEN */
622         }
623         mutex_unlock(&priv->lock);
624 }
625
626 static int enc28j60_hw_init(struct enc28j60_net *priv)
627 {
628         u8 reg;
629
630         if (netif_msg_drv(priv))
631                 printk(KERN_DEBUG DRV_NAME ": %s() - %s\n", __func__,
632                         priv->full_duplex ? "FullDuplex" : "HalfDuplex");
633
634         mutex_lock(&priv->lock);
635         /* first reset the chip */
636         enc28j60_soft_reset(priv);
637         /* Clear ECON1 */
638         spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, ECON1, 0x00);
639         priv->bank = 0;
640         priv->hw_enable = false;
641         priv->tx_retry_count = 0;
642         priv->max_pk_counter = 0;
643         priv->rxfilter = RXFILTER_NORMAL;
644         /* enable address auto increment and voltage regulator powersave */
645         nolock_regb_write(priv, ECON2, ECON2_AUTOINC | ECON2_VRPS);
646
647         nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
648         nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
649         mutex_unlock(&priv->lock);
650
651         /*
652          * Check the RevID.
653          * If it's 0x00 or 0xFF probably the enc28j60 is not mounted or
654          * damaged
655          */
656         reg = locked_regb_read(priv, EREVID);
657         if (netif_msg_drv(priv))
658                 printk(KERN_INFO DRV_NAME ": chip RevID: 0x%02x\n", reg);
659         if (reg == 0x00 || reg == 0xff) {
660                 if (netif_msg_drv(priv))
661                         printk(KERN_DEBUG DRV_NAME ": %s() Invalid RevId %d\n",
662                                 __func__, reg);
663                 return 0;
664         }
665
666         /* default filter mode: (unicast OR broadcast) AND crc valid */
667         locked_regb_write(priv, ERXFCON,
668                             ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN);
669
670         /* enable MAC receive */
671         locked_regb_write(priv, MACON1,
672                             MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS);
673         /* enable automatic padding and CRC operations */
674         if (priv->full_duplex) {
675                 locked_regb_write(priv, MACON3,
676                                     MACON3_PADCFG0 | MACON3_TXCRCEN |
677                                     MACON3_FRMLNEN | MACON3_FULDPX);
678                 /* set inter-frame gap (non-back-to-back) */
679                 locked_regb_write(priv, MAIPGL, 0x12);
680                 /* set inter-frame gap (back-to-back) */
681                 locked_regb_write(priv, MABBIPG, 0x15);
682         } else {
683                 locked_regb_write(priv, MACON3,
684                                     MACON3_PADCFG0 | MACON3_TXCRCEN |
685                                     MACON3_FRMLNEN);
686                 locked_regb_write(priv, MACON4, 1 << 6);        /* DEFER bit */
687                 /* set inter-frame gap (non-back-to-back) */
688                 locked_regw_write(priv, MAIPGL, 0x0C12);
689                 /* set inter-frame gap (back-to-back) */
690                 locked_regb_write(priv, MABBIPG, 0x12);
691         }
692         /*
693          * MACLCON1 (default)
694          * MACLCON2 (default)
695          * Set the maximum packet size which the controller will accept
696          */
697         locked_regw_write(priv, MAMXFLL, MAX_FRAMELEN);
698
699         /* Configure LEDs */
700         if (!enc28j60_phy_write(priv, PHLCON, ENC28J60_LAMPS_MODE))
701                 return 0;
702
703         if (priv->full_duplex) {
704                 if (!enc28j60_phy_write(priv, PHCON1, PHCON1_PDPXMD))
705                         return 0;
706                 if (!enc28j60_phy_write(priv, PHCON2, 0x00))
707                         return 0;
708         } else {
709                 if (!enc28j60_phy_write(priv, PHCON1, 0x00))
710                         return 0;
711                 if (!enc28j60_phy_write(priv, PHCON2, PHCON2_HDLDIS))
712                         return 0;
713         }
714         if (netif_msg_hw(priv))
715                 enc28j60_dump_regs(priv, "Hw initialized.");
716
717         return 1;
718 }
719
720 static void enc28j60_hw_enable(struct enc28j60_net *priv)
721 {
722         /* enable interrupts */
723         if (netif_msg_hw(priv))
724                 printk(KERN_DEBUG DRV_NAME ": %s() enabling interrupts.\n",
725                         __func__);
726
727         enc28j60_phy_write(priv, PHIE, PHIE_PGEIE | PHIE_PLNKIE);
728
729         mutex_lock(&priv->lock);
730         nolock_reg_bfclr(priv, EIR, EIR_DMAIF | EIR_LINKIF |
731                          EIR_TXIF | EIR_TXERIF | EIR_RXERIF | EIR_PKTIF);
732         nolock_regb_write(priv, EIE, EIE_INTIE | EIE_PKTIE | EIE_LINKIE |
733                           EIE_TXIE | EIE_TXERIE | EIE_RXERIE);
734
735         /* enable receive logic */
736         nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
737         priv->hw_enable = true;
738         mutex_unlock(&priv->lock);
739 }
740
741 static void enc28j60_hw_disable(struct enc28j60_net *priv)
742 {
743         mutex_lock(&priv->lock);
744         /* disable interrutps and packet reception */
745         nolock_regb_write(priv, EIE, 0x00);
746         nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
747         priv->hw_enable = false;
748         mutex_unlock(&priv->lock);
749 }
750
751 static int
752 enc28j60_setlink(struct net_device *ndev, u8 autoneg, u16 speed, u8 duplex)
753 {
754         struct enc28j60_net *priv = netdev_priv(ndev);
755         int ret = 0;
756
757         if (!priv->hw_enable) {
758                 /* link is in low power mode now; duplex setting
759                  * will take effect on next enc28j60_hw_init().
760                  */
761                 if (autoneg == AUTONEG_DISABLE && speed == SPEED_10)
762                         priv->full_duplex = (duplex == DUPLEX_FULL);
763                 else {
764                         if (netif_msg_link(priv))
765                                 dev_warn(&ndev->dev,
766                                         "unsupported link setting\n");
767                         ret = -EOPNOTSUPP;
768                 }
769         } else {
770                 if (netif_msg_link(priv))
771                         dev_warn(&ndev->dev, "Warning: hw must be disabled "
772                                 "to set link mode\n");
773                 ret = -EBUSY;
774         }
775         return ret;
776 }
777
778 /*
779  * Read the Transmit Status Vector
780  */
781 static void enc28j60_read_tsv(struct enc28j60_net *priv, u8 tsv[TSV_SIZE])
782 {
783         int endptr;
784
785         endptr = locked_regw_read(priv, ETXNDL);
786         if (netif_msg_hw(priv))
787                 printk(KERN_DEBUG DRV_NAME ": reading TSV at addr:0x%04x\n",
788                          endptr + 1);
789         enc28j60_mem_read(priv, endptr + 1, sizeof(tsv), tsv);
790 }
791
792 static void enc28j60_dump_tsv(struct enc28j60_net *priv, const char *msg,
793                                 u8 tsv[TSV_SIZE])
794 {
795         u16 tmp1, tmp2;
796
797         printk(KERN_DEBUG DRV_NAME ": %s - TSV:\n", msg);
798         tmp1 = tsv[1];
799         tmp1 <<= 8;
800         tmp1 |= tsv[0];
801
802         tmp2 = tsv[5];
803         tmp2 <<= 8;
804         tmp2 |= tsv[4];
805
806         printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, CollisionCount: %d,"
807                 " TotByteOnWire: %d\n", tmp1, tsv[2] & 0x0f, tmp2);
808         printk(KERN_DEBUG DRV_NAME ": TxDone: %d, CRCErr:%d, LenChkErr: %d,"
809                 " LenOutOfRange: %d\n", TSV_GETBIT(tsv, TSV_TXDONE),
810                 TSV_GETBIT(tsv, TSV_TXCRCERROR),
811                 TSV_GETBIT(tsv, TSV_TXLENCHKERROR),
812                 TSV_GETBIT(tsv, TSV_TXLENOUTOFRANGE));
813         printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, "
814                 "PacketDefer: %d, ExDefer: %d\n",
815                 TSV_GETBIT(tsv, TSV_TXMULTICAST),
816                 TSV_GETBIT(tsv, TSV_TXBROADCAST),
817                 TSV_GETBIT(tsv, TSV_TXPACKETDEFER),
818                 TSV_GETBIT(tsv, TSV_TXEXDEFER));
819         printk(KERN_DEBUG DRV_NAME ": ExCollision: %d, LateCollision: %d, "
820                  "Giant: %d, Underrun: %d\n",
821                  TSV_GETBIT(tsv, TSV_TXEXCOLLISION),
822                  TSV_GETBIT(tsv, TSV_TXLATECOLLISION),
823                  TSV_GETBIT(tsv, TSV_TXGIANT), TSV_GETBIT(tsv, TSV_TXUNDERRUN));
824         printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d, "
825                  "BackPressApp: %d, VLanTagFrame: %d\n",
826                  TSV_GETBIT(tsv, TSV_TXCONTROLFRAME),
827                  TSV_GETBIT(tsv, TSV_TXPAUSEFRAME),
828                  TSV_GETBIT(tsv, TSV_BACKPRESSUREAPP),
829                  TSV_GETBIT(tsv, TSV_TXVLANTAGFRAME));
830 }
831
832 /*
833  * Receive Status vector
834  */
835 static void enc28j60_dump_rsv(struct enc28j60_net *priv, const char *msg,
836                               u16 pk_ptr, int len, u16 sts)
837 {
838         printk(KERN_DEBUG DRV_NAME ": %s - NextPk: 0x%04x - RSV:\n",
839                 msg, pk_ptr);
840         printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, DribbleNibble: %d\n", len,
841                  RSV_GETBIT(sts, RSV_DRIBBLENIBBLE));
842         printk(KERN_DEBUG DRV_NAME ": RxOK: %d, CRCErr:%d, LenChkErr: %d,"
843                  " LenOutOfRange: %d\n", RSV_GETBIT(sts, RSV_RXOK),
844                  RSV_GETBIT(sts, RSV_CRCERROR),
845                  RSV_GETBIT(sts, RSV_LENCHECKERR),
846                  RSV_GETBIT(sts, RSV_LENOUTOFRANGE));
847         printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, "
848                  "LongDropEvent: %d, CarrierEvent: %d\n",
849                  RSV_GETBIT(sts, RSV_RXMULTICAST),
850                  RSV_GETBIT(sts, RSV_RXBROADCAST),
851                  RSV_GETBIT(sts, RSV_RXLONGEVDROPEV),
852                  RSV_GETBIT(sts, RSV_CARRIEREV));
853         printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d,"
854                  " UnknownOp: %d, VLanTagFrame: %d\n",
855                  RSV_GETBIT(sts, RSV_RXCONTROLFRAME),
856                  RSV_GETBIT(sts, RSV_RXPAUSEFRAME),
857                  RSV_GETBIT(sts, RSV_RXUNKNOWNOPCODE),
858                  RSV_GETBIT(sts, RSV_RXTYPEVLAN));
859 }
860
861 static void dump_packet(const char *msg, int len, const char *data)
862 {
863         printk(KERN_DEBUG DRV_NAME ": %s - packet len:%d\n", msg, len);
864         print_hex_dump(KERN_DEBUG, "pk data: ", DUMP_PREFIX_OFFSET, 16, 1,
865                         data, len, true);
866 }
867
868 /*
869  * Hardware receive function.
870  * Read the buffer memory, update the FIFO pointer to free the buffer,
871  * check the status vector and decrement the packet counter.
872  */
873 static void enc28j60_hw_rx(struct net_device *ndev)
874 {
875         struct enc28j60_net *priv = netdev_priv(ndev);
876         struct sk_buff *skb = NULL;
877         u16 erxrdpt, next_packet, rxstat;
878         u8 rsv[RSV_SIZE];
879         int len;
880
881         if (netif_msg_rx_status(priv))
882                 printk(KERN_DEBUG DRV_NAME ": RX pk_addr:0x%04x\n",
883                         priv->next_pk_ptr);
884
885         if (unlikely(priv->next_pk_ptr > RXEND_INIT)) {
886                 if (netif_msg_rx_err(priv))
887                         dev_err(&ndev->dev,
888                                 "%s() Invalid packet address!! 0x%04x\n",
889                                 __func__, priv->next_pk_ptr);
890                 /* packet address corrupted: reset RX logic */
891                 mutex_lock(&priv->lock);
892                 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
893                 nolock_reg_bfset(priv, ECON1, ECON1_RXRST);
894                 nolock_reg_bfclr(priv, ECON1, ECON1_RXRST);
895                 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
896                 nolock_reg_bfclr(priv, EIR, EIR_RXERIF);
897                 nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
898                 mutex_unlock(&priv->lock);
899                 ndev->stats.rx_errors++;
900                 return;
901         }
902         /* Read next packet pointer and rx status vector */
903         enc28j60_mem_read(priv, priv->next_pk_ptr, sizeof(rsv), rsv);
904
905         next_packet = rsv[1];
906         next_packet <<= 8;
907         next_packet |= rsv[0];
908
909         len = rsv[3];
910         len <<= 8;
911         len |= rsv[2];
912
913         rxstat = rsv[5];
914         rxstat <<= 8;
915         rxstat |= rsv[4];
916
917         if (netif_msg_rx_status(priv))
918                 enc28j60_dump_rsv(priv, __func__, next_packet, len, rxstat);
919
920         if (!RSV_GETBIT(rxstat, RSV_RXOK)) {
921                 if (netif_msg_rx_err(priv))
922                         dev_err(&ndev->dev, "Rx Error (%04x)\n", rxstat);
923                 ndev->stats.rx_errors++;
924                 if (RSV_GETBIT(rxstat, RSV_CRCERROR))
925                         ndev->stats.rx_crc_errors++;
926                 if (RSV_GETBIT(rxstat, RSV_LENCHECKERR))
927                         ndev->stats.rx_frame_errors++;
928         } else {
929                 skb = dev_alloc_skb(len + NET_IP_ALIGN);
930                 if (!skb) {
931                         if (netif_msg_rx_err(priv))
932                                 dev_err(&ndev->dev,
933                                         "out of memory for Rx'd frame\n");
934                         ndev->stats.rx_dropped++;
935                 } else {
936                         skb->dev = ndev;
937                         skb_reserve(skb, NET_IP_ALIGN);
938                         /* copy the packet from the receive buffer */
939                         enc28j60_mem_read(priv, priv->next_pk_ptr + sizeof(rsv),
940                                         len, skb_put(skb, len));
941                         if (netif_msg_pktdata(priv))
942                                 dump_packet(__func__, skb->len, skb->data);
943                         skb->protocol = eth_type_trans(skb, ndev);
944                         /* update statistics */
945                         ndev->stats.rx_packets++;
946                         ndev->stats.rx_bytes += len;
947                         netif_rx(skb);
948                 }
949         }
950         /*
951          * Move the RX read pointer to the start of the next
952          * received packet.
953          * This frees the memory we just read out
954          */
955         erxrdpt = erxrdpt_workaround(next_packet, RXSTART_INIT, RXEND_INIT);
956         if (netif_msg_hw(priv))
957                 printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT:0x%04x\n",
958                         __func__, erxrdpt);
959
960         mutex_lock(&priv->lock);
961         nolock_regw_write(priv, ERXRDPTL, erxrdpt);
962 #ifdef CONFIG_ENC28J60_WRITEVERIFY
963         if (netif_msg_drv(priv)) {
964                 u16 reg;
965                 reg = nolock_regw_read(priv, ERXRDPTL);
966                 if (reg != erxrdpt)
967                         printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT verify "
968                                 "error (0x%04x - 0x%04x)\n", __func__,
969                                 reg, erxrdpt);
970         }
971 #endif
972         priv->next_pk_ptr = next_packet;
973         /* we are done with this packet, decrement the packet counter */
974         nolock_reg_bfset(priv, ECON2, ECON2_PKTDEC);
975         mutex_unlock(&priv->lock);
976 }
977
978 /*
979  * Calculate free space in RxFIFO
980  */
981 static int enc28j60_get_free_rxfifo(struct enc28j60_net *priv)
982 {
983         int epkcnt, erxst, erxnd, erxwr, erxrd;
984         int free_space;
985
986         mutex_lock(&priv->lock);
987         epkcnt = nolock_regb_read(priv, EPKTCNT);
988         if (epkcnt >= 255)
989                 free_space = -1;
990         else {
991                 erxst = nolock_regw_read(priv, ERXSTL);
992                 erxnd = nolock_regw_read(priv, ERXNDL);
993                 erxwr = nolock_regw_read(priv, ERXWRPTL);
994                 erxrd = nolock_regw_read(priv, ERXRDPTL);
995
996                 if (erxwr > erxrd)
997                         free_space = (erxnd - erxst) - (erxwr - erxrd);
998                 else if (erxwr == erxrd)
999                         free_space = (erxnd - erxst);
1000                 else
1001                         free_space = erxrd - erxwr - 1;
1002         }
1003         mutex_unlock(&priv->lock);
1004         if (netif_msg_rx_status(priv))
1005                 printk(KERN_DEBUG DRV_NAME ": %s() free_space = %d\n",
1006                         __func__, free_space);
1007         return free_space;
1008 }
1009
1010 /*
1011  * Access the PHY to determine link status
1012  */
1013 static void enc28j60_check_link_status(struct net_device *ndev)
1014 {
1015         struct enc28j60_net *priv = netdev_priv(ndev);
1016         u16 reg;
1017         int duplex;
1018
1019         reg = enc28j60_phy_read(priv, PHSTAT2);
1020         if (netif_msg_hw(priv))
1021                 printk(KERN_DEBUG DRV_NAME ": %s() PHSTAT1: %04x, "
1022                         "PHSTAT2: %04x\n", __func__,
1023                         enc28j60_phy_read(priv, PHSTAT1), reg);
1024         duplex = reg & PHSTAT2_DPXSTAT;
1025
1026         if (reg & PHSTAT2_LSTAT) {
1027                 netif_carrier_on(ndev);
1028                 if (netif_msg_ifup(priv))
1029                         dev_info(&ndev->dev, "link up - %s\n",
1030                                 duplex ? "Full duplex" : "Half duplex");
1031         } else {
1032                 if (netif_msg_ifdown(priv))
1033                         dev_info(&ndev->dev, "link down\n");
1034                 netif_carrier_off(ndev);
1035         }
1036 }
1037
1038 static void enc28j60_tx_clear(struct net_device *ndev, bool err)
1039 {
1040         struct enc28j60_net *priv = netdev_priv(ndev);
1041
1042         if (err)
1043                 ndev->stats.tx_errors++;
1044         else
1045                 ndev->stats.tx_packets++;
1046
1047         if (priv->tx_skb) {
1048                 if (!err)
1049                         ndev->stats.tx_bytes += priv->tx_skb->len;
1050                 dev_kfree_skb(priv->tx_skb);
1051                 priv->tx_skb = NULL;
1052         }
1053         locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
1054         netif_wake_queue(ndev);
1055 }
1056
1057 /*
1058  * RX handler
1059  * ignore PKTIF because is unreliable! (look at the errata datasheet)
1060  * check EPKTCNT is the suggested workaround.
1061  * We don't need to clear interrupt flag, automatically done when
1062  * enc28j60_hw_rx() decrements the packet counter.
1063  * Returns how many packet processed.
1064  */
1065 static int enc28j60_rx_interrupt(struct net_device *ndev)
1066 {
1067         struct enc28j60_net *priv = netdev_priv(ndev);
1068         int pk_counter, ret;
1069
1070         pk_counter = locked_regb_read(priv, EPKTCNT);
1071         if (pk_counter && netif_msg_intr(priv))
1072                 printk(KERN_DEBUG DRV_NAME ": intRX, pk_cnt: %d\n", pk_counter);
1073         if (pk_counter > priv->max_pk_counter) {
1074                 /* update statistics */
1075                 priv->max_pk_counter = pk_counter;
1076                 if (netif_msg_rx_status(priv) && priv->max_pk_counter > 1)
1077                         printk(KERN_DEBUG DRV_NAME ": RX max_pk_cnt: %d\n",
1078                                 priv->max_pk_counter);
1079         }
1080         ret = pk_counter;
1081         while (pk_counter-- > 0)
1082                 enc28j60_hw_rx(ndev);
1083
1084         return ret;
1085 }
1086
1087 static void enc28j60_irq_work_handler(struct work_struct *work)
1088 {
1089         struct enc28j60_net *priv =
1090                 container_of(work, struct enc28j60_net, irq_work);
1091         struct net_device *ndev = priv->netdev;
1092         int intflags, loop;
1093
1094         if (netif_msg_intr(priv))
1095                 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
1096         /* disable further interrupts */
1097         locked_reg_bfclr(priv, EIE, EIE_INTIE);
1098
1099         do {
1100                 loop = 0;
1101                 intflags = locked_regb_read(priv, EIR);
1102                 /* DMA interrupt handler (not currently used) */
1103                 if ((intflags & EIR_DMAIF) != 0) {
1104                         loop++;
1105                         if (netif_msg_intr(priv))
1106                                 printk(KERN_DEBUG DRV_NAME
1107                                         ": intDMA(%d)\n", loop);
1108                         locked_reg_bfclr(priv, EIR, EIR_DMAIF);
1109                 }
1110                 /* LINK changed handler */
1111                 if ((intflags & EIR_LINKIF) != 0) {
1112                         loop++;
1113                         if (netif_msg_intr(priv))
1114                                 printk(KERN_DEBUG DRV_NAME
1115                                         ": intLINK(%d)\n", loop);
1116                         enc28j60_check_link_status(ndev);
1117                         /* read PHIR to clear the flag */
1118                         enc28j60_phy_read(priv, PHIR);
1119                 }
1120                 /* TX complete handler */
1121                 if ((intflags & EIR_TXIF) != 0) {
1122                         bool err = false;
1123                         loop++;
1124                         if (netif_msg_intr(priv))
1125                                 printk(KERN_DEBUG DRV_NAME
1126                                         ": intTX(%d)\n", loop);
1127                         priv->tx_retry_count = 0;
1128                         if (locked_regb_read(priv, ESTAT) & ESTAT_TXABRT) {
1129                                 if (netif_msg_tx_err(priv))
1130                                         dev_err(&ndev->dev,
1131                                                 "Tx Error (aborted)\n");
1132                                 err = true;
1133                         }
1134                         if (netif_msg_tx_done(priv)) {
1135                                 u8 tsv[TSV_SIZE];
1136                                 enc28j60_read_tsv(priv, tsv);
1137                                 enc28j60_dump_tsv(priv, "Tx Done", tsv);
1138                         }
1139                         enc28j60_tx_clear(ndev, err);
1140                         locked_reg_bfclr(priv, EIR, EIR_TXIF);
1141                 }
1142                 /* TX Error handler */
1143                 if ((intflags & EIR_TXERIF) != 0) {
1144                         u8 tsv[TSV_SIZE];
1145
1146                         loop++;
1147                         if (netif_msg_intr(priv))
1148                                 printk(KERN_DEBUG DRV_NAME
1149                                         ": intTXErr(%d)\n", loop);
1150                         locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
1151                         enc28j60_read_tsv(priv, tsv);
1152                         if (netif_msg_tx_err(priv))
1153                                 enc28j60_dump_tsv(priv, "Tx Error", tsv);
1154                         /* Reset TX logic */
1155                         mutex_lock(&priv->lock);
1156                         nolock_reg_bfset(priv, ECON1, ECON1_TXRST);
1157                         nolock_reg_bfclr(priv, ECON1, ECON1_TXRST);
1158                         nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
1159                         mutex_unlock(&priv->lock);
1160                         /* Transmit Late collision check for retransmit */
1161                         if (TSV_GETBIT(tsv, TSV_TXLATECOLLISION)) {
1162                                 if (netif_msg_tx_err(priv))
1163                                         printk(KERN_DEBUG DRV_NAME
1164                                                 ": LateCollision TXErr (%d)\n",
1165                                                 priv->tx_retry_count);
1166                                 if (priv->tx_retry_count++ < MAX_TX_RETRYCOUNT)
1167                                         locked_reg_bfset(priv, ECON1,
1168                                                            ECON1_TXRTS);
1169                                 else
1170                                         enc28j60_tx_clear(ndev, true);
1171                         } else
1172                                 enc28j60_tx_clear(ndev, true);
1173                         locked_reg_bfclr(priv, EIR, EIR_TXERIF);
1174                 }
1175                 /* RX Error handler */
1176                 if ((intflags & EIR_RXERIF) != 0) {
1177                         loop++;
1178                         if (netif_msg_intr(priv))
1179                                 printk(KERN_DEBUG DRV_NAME
1180                                         ": intRXErr(%d)\n", loop);
1181                         /* Check free FIFO space to flag RX overrun */
1182                         if (enc28j60_get_free_rxfifo(priv) <= 0) {
1183                                 if (netif_msg_rx_err(priv))
1184                                         printk(KERN_DEBUG DRV_NAME
1185                                                 ": RX Overrun\n");
1186                                 ndev->stats.rx_dropped++;
1187                         }
1188                         locked_reg_bfclr(priv, EIR, EIR_RXERIF);
1189                 }
1190                 /* RX handler */
1191                 if (enc28j60_rx_interrupt(ndev))
1192                         loop++;
1193         } while (loop);
1194
1195         /* re-enable interrupts */
1196         locked_reg_bfset(priv, EIE, EIE_INTIE);
1197         if (netif_msg_intr(priv))
1198                 printk(KERN_DEBUG DRV_NAME ": %s() exit\n", __func__);
1199 }
1200
1201 /*
1202  * Hardware transmit function.
1203  * Fill the buffer memory and send the contents of the transmit buffer
1204  * onto the network
1205  */
1206 static void enc28j60_hw_tx(struct enc28j60_net *priv)
1207 {
1208         if (netif_msg_tx_queued(priv))
1209                 printk(KERN_DEBUG DRV_NAME
1210                         ": Tx Packet Len:%d\n", priv->tx_skb->len);
1211
1212         if (netif_msg_pktdata(priv))
1213                 dump_packet(__func__,
1214                             priv->tx_skb->len, priv->tx_skb->data);
1215         enc28j60_packet_write(priv, priv->tx_skb->len, priv->tx_skb->data);
1216
1217 #ifdef CONFIG_ENC28J60_WRITEVERIFY
1218         /* readback and verify written data */
1219         if (netif_msg_drv(priv)) {
1220                 int test_len, k;
1221                 u8 test_buf[64]; /* limit the test to the first 64 bytes */
1222                 int okflag;
1223
1224                 test_len = priv->tx_skb->len;
1225                 if (test_len > sizeof(test_buf))
1226                         test_len = sizeof(test_buf);
1227
1228                 /* + 1 to skip control byte */
1229                 enc28j60_mem_read(priv, TXSTART_INIT + 1, test_len, test_buf);
1230                 okflag = 1;
1231                 for (k = 0; k < test_len; k++) {
1232                         if (priv->tx_skb->data[k] != test_buf[k]) {
1233                                 printk(KERN_DEBUG DRV_NAME
1234                                          ": Error, %d location differ: "
1235                                          "0x%02x-0x%02x\n", k,
1236                                          priv->tx_skb->data[k], test_buf[k]);
1237                                 okflag = 0;
1238                         }
1239                 }
1240                 if (!okflag)
1241                         printk(KERN_DEBUG DRV_NAME ": Tx write buffer, "
1242                                 "verify ERROR!\n");
1243         }
1244 #endif
1245         /* set TX request flag */
1246         locked_reg_bfset(priv, ECON1, ECON1_TXRTS);
1247 }
1248
1249 static int enc28j60_send_packet(struct sk_buff *skb, struct net_device *dev)
1250 {
1251         struct enc28j60_net *priv = netdev_priv(dev);
1252
1253         if (netif_msg_tx_queued(priv))
1254                 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
1255
1256         /* If some error occurs while trying to transmit this
1257          * packet, you should return '1' from this function.
1258          * In such a case you _may not_ do anything to the
1259          * SKB, it is still owned by the network queueing
1260          * layer when an error is returned.  This means you
1261          * may not modify any SKB fields, you may not free
1262          * the SKB, etc.
1263          */
1264         netif_stop_queue(dev);
1265
1266         /* save the timestamp */
1267         priv->netdev->trans_start = jiffies;
1268         /* Remember the skb for deferred processing */
1269         priv->tx_skb = skb;
1270         schedule_work(&priv->tx_work);
1271
1272         return 0;
1273 }
1274
1275 static void enc28j60_tx_work_handler(struct work_struct *work)
1276 {
1277         struct enc28j60_net *priv =
1278                 container_of(work, struct enc28j60_net, tx_work);
1279
1280         /* actual delivery of data */
1281         enc28j60_hw_tx(priv);
1282 }
1283
1284 static irqreturn_t enc28j60_irq(int irq, void *dev_id)
1285 {
1286         struct enc28j60_net *priv = dev_id;
1287
1288         /*
1289          * Can't do anything in interrupt context because we need to
1290          * block (spi_sync() is blocking) so fire of the interrupt
1291          * handling workqueue.
1292          * Remember that we access enc28j60 registers through SPI bus
1293          * via spi_sync() call.
1294          */
1295         schedule_work(&priv->irq_work);
1296
1297         return IRQ_HANDLED;
1298 }
1299
1300 static void enc28j60_tx_timeout(struct net_device *ndev)
1301 {
1302         struct enc28j60_net *priv = netdev_priv(ndev);
1303
1304         if (netif_msg_timer(priv))
1305                 dev_err(&ndev->dev, DRV_NAME " tx timeout\n");
1306
1307         ndev->stats.tx_errors++;
1308         /* can't restart safely under softirq */
1309         schedule_work(&priv->restart_work);
1310 }
1311
1312 /*
1313  * Open/initialize the board. This is called (in the current kernel)
1314  * sometime after booting when the 'ifconfig' program is run.
1315  *
1316  * This routine should set everything up anew at each open, even
1317  * registers that "should" only need to be set once at boot, so that
1318  * there is non-reboot way to recover if something goes wrong.
1319  */
1320 static int enc28j60_net_open(struct net_device *dev)
1321 {
1322         struct enc28j60_net *priv = netdev_priv(dev);
1323
1324         if (netif_msg_drv(priv))
1325                 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
1326
1327         if (!is_valid_ether_addr(dev->dev_addr)) {
1328                 if (netif_msg_ifup(priv))
1329                         dev_err(&dev->dev, "invalid MAC address %pM\n",
1330                                 dev->dev_addr);
1331                 return -EADDRNOTAVAIL;
1332         }
1333         /* Reset the hardware here (and take it out of low power mode) */
1334         enc28j60_lowpower(priv, false);
1335         enc28j60_hw_disable(priv);
1336         if (!enc28j60_hw_init(priv)) {
1337                 if (netif_msg_ifup(priv))
1338                         dev_err(&dev->dev, "hw_reset() failed\n");
1339                 return -EINVAL;
1340         }
1341         /* Update the MAC address (in case user has changed it) */
1342         enc28j60_set_hw_macaddr(dev);
1343         /* Enable interrupts */
1344         enc28j60_hw_enable(priv);
1345         /* check link status */
1346         enc28j60_check_link_status(dev);
1347         /* We are now ready to accept transmit requests from
1348          * the queueing layer of the networking.
1349          */
1350         netif_start_queue(dev);
1351
1352         return 0;
1353 }
1354
1355 /* The inverse routine to net_open(). */
1356 static int enc28j60_net_close(struct net_device *dev)
1357 {
1358         struct enc28j60_net *priv = netdev_priv(dev);
1359
1360         if (netif_msg_drv(priv))
1361                 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
1362
1363         enc28j60_hw_disable(priv);
1364         enc28j60_lowpower(priv, true);
1365         netif_stop_queue(dev);
1366
1367         return 0;
1368 }
1369
1370 /*
1371  * Set or clear the multicast filter for this adapter
1372  * num_addrs == -1      Promiscuous mode, receive all packets
1373  * num_addrs == 0       Normal mode, filter out multicast packets
1374  * num_addrs > 0        Multicast mode, receive normal and MC packets
1375  */
1376 static void enc28j60_set_multicast_list(struct net_device *dev)
1377 {
1378         struct enc28j60_net *priv = netdev_priv(dev);
1379         int oldfilter = priv->rxfilter;
1380
1381         if (dev->flags & IFF_PROMISC) {
1382                 if (netif_msg_link(priv))
1383                         dev_info(&dev->dev, "promiscuous mode\n");
1384                 priv->rxfilter = RXFILTER_PROMISC;
1385         } else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count) {
1386                 if (netif_msg_link(priv))
1387                         dev_info(&dev->dev, "%smulticast mode\n",
1388                                 (dev->flags & IFF_ALLMULTI) ? "all-" : "");
1389                 priv->rxfilter = RXFILTER_MULTI;
1390         } else {
1391                 if (netif_msg_link(priv))
1392                         dev_info(&dev->dev, "normal mode\n");
1393                 priv->rxfilter = RXFILTER_NORMAL;
1394         }
1395
1396         if (oldfilter != priv->rxfilter)
1397                 schedule_work(&priv->setrx_work);
1398 }
1399
1400 static void enc28j60_setrx_work_handler(struct work_struct *work)
1401 {
1402         struct enc28j60_net *priv =
1403                 container_of(work, struct enc28j60_net, setrx_work);
1404
1405         if (priv->rxfilter == RXFILTER_PROMISC) {
1406                 if (netif_msg_drv(priv))
1407                         printk(KERN_DEBUG DRV_NAME ": promiscuous mode\n");
1408                 locked_regb_write(priv, ERXFCON, 0x00);
1409         } else if (priv->rxfilter == RXFILTER_MULTI) {
1410                 if (netif_msg_drv(priv))
1411                         printk(KERN_DEBUG DRV_NAME ": multicast mode\n");
1412                 locked_regb_write(priv, ERXFCON,
1413                                         ERXFCON_UCEN | ERXFCON_CRCEN |
1414                                         ERXFCON_BCEN | ERXFCON_MCEN);
1415         } else {
1416                 if (netif_msg_drv(priv))
1417                         printk(KERN_DEBUG DRV_NAME ": normal mode\n");
1418                 locked_regb_write(priv, ERXFCON,
1419                                         ERXFCON_UCEN | ERXFCON_CRCEN |
1420                                         ERXFCON_BCEN);
1421         }
1422 }
1423
1424 static void enc28j60_restart_work_handler(struct work_struct *work)
1425 {
1426         struct enc28j60_net *priv =
1427                         container_of(work, struct enc28j60_net, restart_work);
1428         struct net_device *ndev = priv->netdev;
1429         int ret;
1430
1431         rtnl_lock();
1432         if (netif_running(ndev)) {
1433                 enc28j60_net_close(ndev);
1434                 ret = enc28j60_net_open(ndev);
1435                 if (unlikely(ret)) {
1436                         dev_info(&ndev->dev, " could not restart %d\n", ret);
1437                         dev_close(ndev);
1438                 }
1439         }
1440         rtnl_unlock();
1441 }
1442
1443 /* ......................... ETHTOOL SUPPORT ........................... */
1444
1445 static void
1446 enc28j60_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1447 {
1448         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1449         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1450         strlcpy(info->bus_info,
1451                 dev_name(dev->dev.parent), sizeof(info->bus_info));
1452 }
1453
1454 static int
1455 enc28j60_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1456 {
1457         struct enc28j60_net *priv = netdev_priv(dev);
1458
1459         cmd->transceiver = XCVR_INTERNAL;
1460         cmd->supported  = SUPPORTED_10baseT_Half
1461                         | SUPPORTED_10baseT_Full
1462                         | SUPPORTED_TP;
1463         cmd->speed      = SPEED_10;
1464         cmd->duplex     = priv->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1465         cmd->port       = PORT_TP;
1466         cmd->autoneg    = AUTONEG_DISABLE;
1467
1468         return 0;
1469 }
1470
1471 static int
1472 enc28j60_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1473 {
1474         return enc28j60_setlink(dev, cmd->autoneg, cmd->speed, cmd->duplex);
1475 }
1476
1477 static u32 enc28j60_get_msglevel(struct net_device *dev)
1478 {
1479         struct enc28j60_net *priv = netdev_priv(dev);
1480         return priv->msg_enable;
1481 }
1482
1483 static void enc28j60_set_msglevel(struct net_device *dev, u32 val)
1484 {
1485         struct enc28j60_net *priv = netdev_priv(dev);
1486         priv->msg_enable = val;
1487 }
1488
1489 static const struct ethtool_ops enc28j60_ethtool_ops = {
1490         .get_settings   = enc28j60_get_settings,
1491         .set_settings   = enc28j60_set_settings,
1492         .get_drvinfo    = enc28j60_get_drvinfo,
1493         .get_msglevel   = enc28j60_get_msglevel,
1494         .set_msglevel   = enc28j60_set_msglevel,
1495 };
1496
1497 static int enc28j60_chipset_init(struct net_device *dev)
1498 {
1499         struct enc28j60_net *priv = netdev_priv(dev);
1500
1501         return enc28j60_hw_init(priv);
1502 }
1503
1504 static int __devinit enc28j60_probe(struct spi_device *spi)
1505 {
1506         struct net_device *dev;
1507         struct enc28j60_net *priv;
1508         int ret = 0;
1509
1510         if (netif_msg_drv(&debug))
1511                 dev_info(&spi->dev, DRV_NAME " Ethernet driver %s loaded\n",
1512                         DRV_VERSION);
1513
1514         dev = alloc_etherdev(sizeof(struct enc28j60_net));
1515         if (!dev) {
1516                 if (netif_msg_drv(&debug))
1517                         dev_err(&spi->dev, DRV_NAME
1518                                 ": unable to alloc new ethernet\n");
1519                 ret = -ENOMEM;
1520                 goto error_alloc;
1521         }
1522         priv = netdev_priv(dev);
1523
1524         priv->netdev = dev;     /* priv to netdev reference */
1525         priv->spi = spi;        /* priv to spi reference */
1526         priv->msg_enable = netif_msg_init(debug.msg_enable,
1527                                                 ENC28J60_MSG_DEFAULT);
1528         mutex_init(&priv->lock);
1529         INIT_WORK(&priv->tx_work, enc28j60_tx_work_handler);
1530         INIT_WORK(&priv->setrx_work, enc28j60_setrx_work_handler);
1531         INIT_WORK(&priv->irq_work, enc28j60_irq_work_handler);
1532         INIT_WORK(&priv->restart_work, enc28j60_restart_work_handler);
1533         dev_set_drvdata(&spi->dev, priv);       /* spi to priv reference */
1534         SET_NETDEV_DEV(dev, &spi->dev);
1535
1536         if (!enc28j60_chipset_init(dev)) {
1537                 if (netif_msg_probe(priv))
1538                         dev_info(&spi->dev, DRV_NAME " chip not found\n");
1539                 ret = -EIO;
1540                 goto error_irq;
1541         }
1542         random_ether_addr(dev->dev_addr);
1543         enc28j60_set_hw_macaddr(dev);
1544
1545         /* Board setup must set the relevant edge trigger type;
1546          * level triggers won't currently work.
1547          */
1548         ret = request_irq(spi->irq, enc28j60_irq, 0, DRV_NAME, priv);
1549         if (ret < 0) {
1550                 if (netif_msg_probe(priv))
1551                         dev_err(&spi->dev, DRV_NAME ": request irq %d failed "
1552                                 "(ret = %d)\n", spi->irq, ret);
1553                 goto error_irq;
1554         }
1555
1556         dev->if_port = IF_PORT_10BASET;
1557         dev->irq = spi->irq;
1558         dev->open = enc28j60_net_open;
1559         dev->stop = enc28j60_net_close;
1560         dev->hard_start_xmit = enc28j60_send_packet;
1561         dev->set_multicast_list = &enc28j60_set_multicast_list;
1562         dev->set_mac_address = enc28j60_set_mac_address;
1563         dev->tx_timeout = &enc28j60_tx_timeout;
1564         dev->watchdog_timeo = TX_TIMEOUT;
1565         SET_ETHTOOL_OPS(dev, &enc28j60_ethtool_ops);
1566
1567         enc28j60_lowpower(priv, true);
1568
1569         ret = register_netdev(dev);
1570         if (ret) {
1571                 if (netif_msg_probe(priv))
1572                         dev_err(&spi->dev, "register netdev " DRV_NAME
1573                                 " failed (ret = %d)\n", ret);
1574                 goto error_register;
1575         }
1576         dev_info(&dev->dev, DRV_NAME " driver registered\n");
1577
1578         return 0;
1579
1580 error_register:
1581         free_irq(spi->irq, priv);
1582 error_irq:
1583         free_netdev(dev);
1584 error_alloc:
1585         return ret;
1586 }
1587
1588 static int __devexit enc28j60_remove(struct spi_device *spi)
1589 {
1590         struct enc28j60_net *priv = dev_get_drvdata(&spi->dev);
1591
1592         if (netif_msg_drv(priv))
1593                 printk(KERN_DEBUG DRV_NAME ": remove\n");
1594
1595         unregister_netdev(priv->netdev);
1596         free_irq(spi->irq, priv);
1597         free_netdev(priv->netdev);
1598
1599         return 0;
1600 }
1601
1602 static struct spi_driver enc28j60_driver = {
1603         .driver = {
1604                    .name = DRV_NAME,
1605                    .owner = THIS_MODULE,
1606          },
1607         .probe = enc28j60_probe,
1608         .remove = __devexit_p(enc28j60_remove),
1609 };
1610
1611 static int __init enc28j60_init(void)
1612 {
1613         msec20_to_jiffies = msecs_to_jiffies(20);
1614
1615         return spi_register_driver(&enc28j60_driver);
1616 }
1617
1618 module_init(enc28j60_init);
1619
1620 static void __exit enc28j60_exit(void)
1621 {
1622         spi_unregister_driver(&enc28j60_driver);
1623 }
1624
1625 module_exit(enc28j60_exit);
1626
1627 MODULE_DESCRIPTION(DRV_NAME " ethernet driver");
1628 MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>");
1629 MODULE_LICENSE("GPL");
1630 module_param_named(debug, debug.msg_enable, int, 0);
1631 MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., ffff=all)");