Merge branches 'timers/clockevents', 'timers/hpet', 'timers/hrtimers' and 'timers...
[linux-2.6] / arch / mips / cavium-octeon / executive / cvmx-bootmem.c
1 /***********************license start***************
2  * Author: Cavium Networks
3  *
4  * Contact: support@caviumnetworks.com
5  * This file is part of the OCTEON SDK
6  *
7  * Copyright (c) 2003-2008 Cavium Networks
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more
17  * details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this file; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22  * or visit http://www.gnu.org/licenses/.
23  *
24  * This file may also be available under a different license from Cavium.
25  * Contact Cavium Networks for more information
26  ***********************license end**************************************/
27
28 /*
29  * Simple allocate only memory allocator.  Used to allocate memory at
30  * application start time.
31  */
32
33 #include <linux/kernel.h>
34
35 #include <asm/octeon/cvmx.h>
36 #include <asm/octeon/cvmx-spinlock.h>
37 #include <asm/octeon/cvmx-bootmem.h>
38
39 /*#define DEBUG */
40
41
42 static struct cvmx_bootmem_desc *cvmx_bootmem_desc;
43
44 /* See header file for descriptions of functions */
45
46 /*
47  * Wrapper functions are provided for reading/writing the size and
48  * next block values as these may not be directly addressible (in 32
49  * bit applications, for instance.)  Offsets of data elements in
50  * bootmem list, must match cvmx_bootmem_block_header_t.
51  */
52 #define NEXT_OFFSET 0
53 #define SIZE_OFFSET 8
54
55 static void cvmx_bootmem_phy_set_size(uint64_t addr, uint64_t size)
56 {
57         cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
58 }
59
60 static void cvmx_bootmem_phy_set_next(uint64_t addr, uint64_t next)
61 {
62         cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
63 }
64
65 static uint64_t cvmx_bootmem_phy_get_size(uint64_t addr)
66 {
67         return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63));
68 }
69
70 static uint64_t cvmx_bootmem_phy_get_next(uint64_t addr)
71 {
72         return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63));
73 }
74
75 void *cvmx_bootmem_alloc_range(uint64_t size, uint64_t alignment,
76                                uint64_t min_addr, uint64_t max_addr)
77 {
78         int64_t address;
79         address =
80             cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0);
81
82         if (address > 0)
83                 return cvmx_phys_to_ptr(address);
84         else
85                 return NULL;
86 }
87
88 void *cvmx_bootmem_alloc_address(uint64_t size, uint64_t address,
89                                  uint64_t alignment)
90 {
91         return cvmx_bootmem_alloc_range(size, alignment, address,
92                                         address + size);
93 }
94
95 void *cvmx_bootmem_alloc(uint64_t size, uint64_t alignment)
96 {
97         return cvmx_bootmem_alloc_range(size, alignment, 0, 0);
98 }
99
100 int cvmx_bootmem_free_named(char *name)
101 {
102         return cvmx_bootmem_phy_named_block_free(name, 0);
103 }
104
105 struct cvmx_bootmem_named_block_desc *cvmx_bootmem_find_named_block(char *name)
106 {
107         return cvmx_bootmem_phy_named_block_find(name, 0);
108 }
109
110 void cvmx_bootmem_lock(void)
111 {
112         cvmx_spinlock_lock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock));
113 }
114
115 void cvmx_bootmem_unlock(void)
116 {
117         cvmx_spinlock_unlock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock));
118 }
119
120 int cvmx_bootmem_init(void *mem_desc_ptr)
121 {
122         /* Here we set the global pointer to the bootmem descriptor
123          * block.  This pointer will be used directly, so we will set
124          * it up to be directly usable by the application.  It is set
125          * up as follows for the various runtime/ABI combinations:
126          *
127          * Linux 64 bit: Set XKPHYS bit
128          * Linux 32 bit: use mmap to create mapping, use virtual address
129          * CVMX 64 bit:  use physical address directly
130          * CVMX 32 bit:  use physical address directly
131          *
132          * Note that the CVMX environment assumes the use of 1-1 TLB
133          * mappings so that the physical addresses can be used
134          * directly
135          */
136         if (!cvmx_bootmem_desc) {
137 #if   defined(CVMX_ABI_64)
138                 /* Set XKPHYS bit */
139                 cvmx_bootmem_desc = cvmx_phys_to_ptr(CAST64(mem_desc_ptr));
140 #else
141                 cvmx_bootmem_desc = (struct cvmx_bootmem_desc *) mem_desc_ptr;
142 #endif
143         }
144
145         return 0;
146 }
147
148 /*
149  * The cvmx_bootmem_phy* functions below return 64 bit physical
150  * addresses, and expose more features that the cvmx_bootmem_functions
151  * above.  These are required for full memory space access in 32 bit
152  * applications, as well as for using some advance features.  Most
153  * applications should not need to use these.
154  */
155
156 int64_t cvmx_bootmem_phy_alloc(uint64_t req_size, uint64_t address_min,
157                                uint64_t address_max, uint64_t alignment,
158                                uint32_t flags)
159 {
160
161         uint64_t head_addr;
162         uint64_t ent_addr;
163         /* points to previous list entry, NULL current entry is head of list */
164         uint64_t prev_addr = 0;
165         uint64_t new_ent_addr = 0;
166         uint64_t desired_min_addr;
167
168 #ifdef DEBUG
169         cvmx_dprintf("cvmx_bootmem_phy_alloc: req_size: 0x%llx, "
170                      "min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
171                      (unsigned long long)req_size,
172                      (unsigned long long)address_min,
173                      (unsigned long long)address_max,
174                      (unsigned long long)alignment);
175 #endif
176
177         if (cvmx_bootmem_desc->major_version > 3) {
178                 cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
179                              "version: %d.%d at addr: %p\n",
180                              (int)cvmx_bootmem_desc->major_version,
181                              (int)cvmx_bootmem_desc->minor_version,
182                              cvmx_bootmem_desc);
183                 goto error_out;
184         }
185
186         /*
187          * Do a variety of checks to validate the arguments.  The
188          * allocator code will later assume that these checks have
189          * been made.  We validate that the requested constraints are
190          * not self-contradictory before we look through the list of
191          * available memory.
192          */
193
194         /* 0 is not a valid req_size for this allocator */
195         if (!req_size)
196                 goto error_out;
197
198         /* Round req_size up to mult of minimum alignment bytes */
199         req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
200                 ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
201
202         /*
203          * Convert !0 address_min and 0 address_max to special case of
204          * range that specifies an exact memory block to allocate.  Do
205          * this before other checks and adjustments so that this
206          * tranformation will be validated.
207          */
208         if (address_min && !address_max)
209                 address_max = address_min + req_size;
210         else if (!address_min && !address_max)
211                 address_max = ~0ull;  /* If no limits given, use max limits */
212
213
214         /*
215          * Enforce minimum alignment (this also keeps the minimum free block
216          * req_size the same as the alignment req_size.
217          */
218         if (alignment < CVMX_BOOTMEM_ALIGNMENT_SIZE)
219                 alignment = CVMX_BOOTMEM_ALIGNMENT_SIZE;
220
221         /*
222          * Adjust address minimum based on requested alignment (round
223          * up to meet alignment).  Do this here so we can reject
224          * impossible requests up front. (NOP for address_min == 0)
225          */
226         if (alignment)
227                 address_min = __ALIGN_MASK(address_min, (alignment - 1));
228
229         /*
230          * Reject inconsistent args.  We have adjusted these, so this
231          * may fail due to our internal changes even if this check
232          * would pass for the values the user supplied.
233          */
234         if (req_size > address_max - address_min)
235                 goto error_out;
236
237         /* Walk through the list entries - first fit found is returned */
238
239         if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
240                 cvmx_bootmem_lock();
241         head_addr = cvmx_bootmem_desc->head_addr;
242         ent_addr = head_addr;
243         for (; ent_addr;
244              prev_addr = ent_addr,
245              ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) {
246                 uint64_t usable_base, usable_max;
247                 uint64_t ent_size = cvmx_bootmem_phy_get_size(ent_addr);
248
249                 if (cvmx_bootmem_phy_get_next(ent_addr)
250                     && ent_addr > cvmx_bootmem_phy_get_next(ent_addr)) {
251                         cvmx_dprintf("Internal bootmem_alloc() error: ent: "
252                                 "0x%llx, next: 0x%llx\n",
253                                 (unsigned long long)ent_addr,
254                                 (unsigned long long)
255                                 cvmx_bootmem_phy_get_next(ent_addr));
256                         goto error_out;
257                 }
258
259                 /*
260                  * Determine if this is an entry that can satisify the
261                  * request Check to make sure entry is large enough to
262                  * satisfy request.
263                  */
264                 usable_base =
265                     __ALIGN_MASK(max(address_min, ent_addr), alignment - 1);
266                 usable_max = min(address_max, ent_addr + ent_size);
267                 /*
268                  * We should be able to allocate block at address
269                  * usable_base.
270                  */
271
272                 desired_min_addr = usable_base;
273                 /*
274                  * Determine if request can be satisfied from the
275                  * current entry.
276                  */
277                 if (!((ent_addr + ent_size) > usable_base
278                                 && ent_addr < address_max
279                                 && req_size <= usable_max - usable_base))
280                         continue;
281                 /*
282                  * We have found an entry that has room to satisfy the
283                  * request, so allocate it from this entry.  If end
284                  * CVMX_BOOTMEM_FLAG_END_ALLOC set, then allocate from
285                  * the end of this block rather than the beginning.
286                  */
287                 if (flags & CVMX_BOOTMEM_FLAG_END_ALLOC) {
288                         desired_min_addr = usable_max - req_size;
289                         /*
290                          * Align desired address down to required
291                          * alignment.
292                          */
293                         desired_min_addr &= ~(alignment - 1);
294                 }
295
296                 /* Match at start of entry */
297                 if (desired_min_addr == ent_addr) {
298                         if (req_size < ent_size) {
299                                 /*
300                                  * big enough to create a new block
301                                  * from top portion of block.
302                                  */
303                                 new_ent_addr = ent_addr + req_size;
304                                 cvmx_bootmem_phy_set_next(new_ent_addr,
305                                         cvmx_bootmem_phy_get_next(ent_addr));
306                                 cvmx_bootmem_phy_set_size(new_ent_addr,
307                                                         ent_size -
308                                                         req_size);
309
310                                 /*
311                                  * Adjust next pointer as following
312                                  * code uses this.
313                                  */
314                                 cvmx_bootmem_phy_set_next(ent_addr,
315                                                         new_ent_addr);
316                         }
317
318                         /*
319                          * adjust prev ptr or head to remove this
320                          * entry from list.
321                          */
322                         if (prev_addr)
323                                 cvmx_bootmem_phy_set_next(prev_addr,
324                                         cvmx_bootmem_phy_get_next(ent_addr));
325                         else
326                                 /*
327                                  * head of list being returned, so
328                                  * update head ptr.
329                                  */
330                                 cvmx_bootmem_desc->head_addr =
331                                         cvmx_bootmem_phy_get_next(ent_addr);
332
333                         if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
334                                 cvmx_bootmem_unlock();
335                         return desired_min_addr;
336                 }
337                 /*
338                  * block returned doesn't start at beginning of entry,
339                  * so we know that we will be splitting a block off
340                  * the front of this one.  Create a new block from the
341                  * beginning, add to list, and go to top of loop
342                  * again.
343                  *
344                  * create new block from high portion of
345                  * block, so that top block starts at desired
346                  * addr.
347                  */
348                 new_ent_addr = desired_min_addr;
349                 cvmx_bootmem_phy_set_next(new_ent_addr,
350                                         cvmx_bootmem_phy_get_next
351                                         (ent_addr));
352                 cvmx_bootmem_phy_set_size(new_ent_addr,
353                                         cvmx_bootmem_phy_get_size
354                                         (ent_addr) -
355                                         (desired_min_addr -
356                                                 ent_addr));
357                 cvmx_bootmem_phy_set_size(ent_addr,
358                                         desired_min_addr - ent_addr);
359                 cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
360                 /* Loop again to handle actual alloc from new block */
361         }
362 error_out:
363         /* We didn't find anything, so return error */
364         if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
365                 cvmx_bootmem_unlock();
366         return -1;
367 }
368
369 int __cvmx_bootmem_phy_free(uint64_t phy_addr, uint64_t size, uint32_t flags)
370 {
371         uint64_t cur_addr;
372         uint64_t prev_addr = 0; /* zero is invalid */
373         int retval = 0;
374
375 #ifdef DEBUG
376         cvmx_dprintf("__cvmx_bootmem_phy_free addr: 0x%llx, size: 0x%llx\n",
377                      (unsigned long long)phy_addr, (unsigned long long)size);
378 #endif
379         if (cvmx_bootmem_desc->major_version > 3) {
380                 cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
381                              "version: %d.%d at addr: %p\n",
382                              (int)cvmx_bootmem_desc->major_version,
383                              (int)cvmx_bootmem_desc->minor_version,
384                              cvmx_bootmem_desc);
385                 return 0;
386         }
387
388         /* 0 is not a valid size for this allocator */
389         if (!size)
390                 return 0;
391
392         if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
393                 cvmx_bootmem_lock();
394         cur_addr = cvmx_bootmem_desc->head_addr;
395         if (cur_addr == 0 || phy_addr < cur_addr) {
396                 /* add at front of list - special case with changing head ptr */
397                 if (cur_addr && phy_addr + size > cur_addr)
398                         goto bootmem_free_done; /* error, overlapping section */
399                 else if (phy_addr + size == cur_addr) {
400                         /* Add to front of existing first block */
401                         cvmx_bootmem_phy_set_next(phy_addr,
402                                                   cvmx_bootmem_phy_get_next
403                                                   (cur_addr));
404                         cvmx_bootmem_phy_set_size(phy_addr,
405                                                   cvmx_bootmem_phy_get_size
406                                                   (cur_addr) + size);
407                         cvmx_bootmem_desc->head_addr = phy_addr;
408
409                 } else {
410                         /* New block before first block.  OK if cur_addr is 0 */
411                         cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
412                         cvmx_bootmem_phy_set_size(phy_addr, size);
413                         cvmx_bootmem_desc->head_addr = phy_addr;
414                 }
415                 retval = 1;
416                 goto bootmem_free_done;
417         }
418
419         /* Find place in list to add block */
420         while (cur_addr && phy_addr > cur_addr) {
421                 prev_addr = cur_addr;
422                 cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
423         }
424
425         if (!cur_addr) {
426                 /*
427                  * We have reached the end of the list, add on to end,
428                  * checking to see if we need to combine with last
429                  * block
430                  */
431                 if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) ==
432                     phy_addr) {
433                         cvmx_bootmem_phy_set_size(prev_addr,
434                                                   cvmx_bootmem_phy_get_size
435                                                   (prev_addr) + size);
436                 } else {
437                         cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
438                         cvmx_bootmem_phy_set_size(phy_addr, size);
439                         cvmx_bootmem_phy_set_next(phy_addr, 0);
440                 }
441                 retval = 1;
442                 goto bootmem_free_done;
443         } else {
444                 /*
445                  * insert between prev and cur nodes, checking for
446                  * merge with either/both.
447                  */
448                 if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) ==
449                     phy_addr) {
450                         /* Merge with previous */
451                         cvmx_bootmem_phy_set_size(prev_addr,
452                                                   cvmx_bootmem_phy_get_size
453                                                   (prev_addr) + size);
454                         if (phy_addr + size == cur_addr) {
455                                 /* Also merge with current */
456                                 cvmx_bootmem_phy_set_size(prev_addr,
457                                         cvmx_bootmem_phy_get_size(cur_addr) +
458                                         cvmx_bootmem_phy_get_size(prev_addr));
459                                 cvmx_bootmem_phy_set_next(prev_addr,
460                                         cvmx_bootmem_phy_get_next(cur_addr));
461                         }
462                         retval = 1;
463                         goto bootmem_free_done;
464                 } else if (phy_addr + size == cur_addr) {
465                         /* Merge with current */
466                         cvmx_bootmem_phy_set_size(phy_addr,
467                                                   cvmx_bootmem_phy_get_size
468                                                   (cur_addr) + size);
469                         cvmx_bootmem_phy_set_next(phy_addr,
470                                                   cvmx_bootmem_phy_get_next
471                                                   (cur_addr));
472                         cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
473                         retval = 1;
474                         goto bootmem_free_done;
475                 }
476
477                 /* It is a standalone block, add in between prev and cur */
478                 cvmx_bootmem_phy_set_size(phy_addr, size);
479                 cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
480                 cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
481
482         }
483         retval = 1;
484
485 bootmem_free_done:
486         if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
487                 cvmx_bootmem_unlock();
488         return retval;
489
490 }
491
492 struct cvmx_bootmem_named_block_desc *
493         cvmx_bootmem_phy_named_block_find(char *name, uint32_t flags)
494 {
495         unsigned int i;
496         struct cvmx_bootmem_named_block_desc *named_block_array_ptr;
497
498 #ifdef DEBUG
499         cvmx_dprintf("cvmx_bootmem_phy_named_block_find: %s\n", name);
500 #endif
501         /*
502          * Lock the structure to make sure that it is not being
503          * changed while we are examining it.
504          */
505         if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
506                 cvmx_bootmem_lock();
507
508         /* Use XKPHYS for 64 bit linux */
509         named_block_array_ptr = (struct cvmx_bootmem_named_block_desc *)
510             cvmx_phys_to_ptr(cvmx_bootmem_desc->named_block_array_addr);
511
512 #ifdef DEBUG
513         cvmx_dprintf
514             ("cvmx_bootmem_phy_named_block_find: named_block_array_ptr: %p\n",
515              named_block_array_ptr);
516 #endif
517         if (cvmx_bootmem_desc->major_version == 3) {
518                 for (i = 0;
519                      i < cvmx_bootmem_desc->named_block_num_blocks; i++) {
520                         if ((name && named_block_array_ptr[i].size
521                              && !strncmp(name, named_block_array_ptr[i].name,
522                                          cvmx_bootmem_desc->named_block_name_len
523                                          - 1))
524                             || (!name && !named_block_array_ptr[i].size)) {
525                                 if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
526                                         cvmx_bootmem_unlock();
527
528                                 return &(named_block_array_ptr[i]);
529                         }
530                 }
531         } else {
532                 cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
533                              "version: %d.%d at addr: %p\n",
534                              (int)cvmx_bootmem_desc->major_version,
535                              (int)cvmx_bootmem_desc->minor_version,
536                              cvmx_bootmem_desc);
537         }
538         if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
539                 cvmx_bootmem_unlock();
540
541         return NULL;
542 }
543
544 int cvmx_bootmem_phy_named_block_free(char *name, uint32_t flags)
545 {
546         struct cvmx_bootmem_named_block_desc *named_block_ptr;
547
548         if (cvmx_bootmem_desc->major_version != 3) {
549                 cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: "
550                              "%d.%d at addr: %p\n",
551                              (int)cvmx_bootmem_desc->major_version,
552                              (int)cvmx_bootmem_desc->minor_version,
553                              cvmx_bootmem_desc);
554                 return 0;
555         }
556 #ifdef DEBUG
557         cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s\n", name);
558 #endif
559
560         /*
561          * Take lock here, as name lookup/block free/name free need to
562          * be atomic.
563          */
564         cvmx_bootmem_lock();
565
566         named_block_ptr =
567             cvmx_bootmem_phy_named_block_find(name,
568                                               CVMX_BOOTMEM_FLAG_NO_LOCKING);
569         if (named_block_ptr) {
570 #ifdef DEBUG
571                 cvmx_dprintf("cvmx_bootmem_phy_named_block_free: "
572                              "%s, base: 0x%llx, size: 0x%llx\n",
573                              name,
574                              (unsigned long long)named_block_ptr->base_addr,
575                              (unsigned long long)named_block_ptr->size);
576 #endif
577                 __cvmx_bootmem_phy_free(named_block_ptr->base_addr,
578                                         named_block_ptr->size,
579                                         CVMX_BOOTMEM_FLAG_NO_LOCKING);
580                 named_block_ptr->size = 0;
581                 /* Set size to zero to indicate block not used. */
582         }
583
584         cvmx_bootmem_unlock();
585         return named_block_ptr != NULL; /* 0 on failure, 1 on success */
586 }