2 * linux/fs/nfs/direct.c
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 * High-performance uncached I/O for the Linux NFS client
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
48 #include <linux/nfs_fs.h>
49 #include <linux/nfs_page.h>
50 #include <linux/sunrpc/clnt.h>
52 #include <asm/system.h>
53 #include <asm/uaccess.h>
54 #include <asm/atomic.h>
59 #define NFSDBG_FACILITY NFSDBG_VFS
61 static struct kmem_cache *nfs_direct_cachep;
64 * This represents a set of asynchronous requests that we're waiting on
66 struct nfs_direct_req {
67 struct kref kref; /* release manager */
70 struct nfs_open_context *ctx; /* file open context info */
71 struct kiocb * iocb; /* controlling i/o request */
72 struct inode * inode; /* target file of i/o */
74 /* completion state */
75 atomic_t io_count; /* i/os we're waiting for */
76 spinlock_t lock; /* protect completion state */
77 ssize_t count, /* bytes actually processed */
78 error; /* any reported error */
79 struct completion completion; /* wait for i/o completion */
82 struct list_head rewrite_list; /* saved nfs_write_data structs */
83 struct nfs_write_data * commit_data; /* special write_data for commits */
85 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
86 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
87 struct nfs_writeverf verf; /* unstable write verifier */
90 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
91 static const struct rpc_call_ops nfs_write_direct_ops;
93 static inline void get_dreq(struct nfs_direct_req *dreq)
95 atomic_inc(&dreq->io_count);
98 static inline int put_dreq(struct nfs_direct_req *dreq)
100 return atomic_dec_and_test(&dreq->io_count);
104 * nfs_direct_IO - NFS address space operation for direct I/O
105 * @rw: direction (read or write)
106 * @iocb: target I/O control block
107 * @iov: array of vectors that define I/O buffer
108 * @pos: offset in file to begin the operation
109 * @nr_segs: size of iovec array
111 * The presence of this routine in the address space ops vector means
112 * the NFS client supports direct I/O. However, we shunt off direct
113 * read and write requests before the VFS gets them, so this method
114 * should never be called.
116 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
118 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
119 iocb->ki_filp->f_path.dentry->d_name.name,
120 (long long) pos, nr_segs);
125 static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
132 pages += (pgbase >> PAGE_SHIFT);
133 npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
134 for (i = 0; i < npages; i++) {
135 struct page *page = pages[i];
136 if (!PageCompound(page))
137 set_page_dirty(page);
141 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
144 for (i = 0; i < npages; i++)
145 page_cache_release(pages[i]);
148 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
150 struct nfs_direct_req *dreq;
152 dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
156 kref_init(&dreq->kref);
157 kref_get(&dreq->kref);
158 init_completion(&dreq->completion);
159 INIT_LIST_HEAD(&dreq->rewrite_list);
162 spin_lock_init(&dreq->lock);
163 atomic_set(&dreq->io_count, 0);
171 static void nfs_direct_req_free(struct kref *kref)
173 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
175 if (dreq->ctx != NULL)
176 put_nfs_open_context(dreq->ctx);
177 kmem_cache_free(nfs_direct_cachep, dreq);
180 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
182 kref_put(&dreq->kref, nfs_direct_req_free);
186 * Collects and returns the final error value/byte-count.
188 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
190 ssize_t result = -EIOCBQUEUED;
191 struct rpc_clnt *clnt;
194 /* Async requests don't wait here */
198 clnt = NFS_CLIENT(dreq->inode);
199 rpc_clnt_sigmask(clnt, &oldset);
200 result = wait_for_completion_interruptible(&dreq->completion);
201 rpc_clnt_sigunmask(clnt, &oldset);
204 result = dreq->error;
206 result = dreq->count;
209 return (ssize_t) result;
213 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
214 * the iocb is still valid here if this is a synchronous request.
216 static void nfs_direct_complete(struct nfs_direct_req *dreq)
219 long res = (long) dreq->error;
221 res = (long) dreq->count;
222 aio_complete(dreq->iocb, res, 0);
224 complete_all(&dreq->completion);
226 nfs_direct_req_release(dreq);
230 * We must hold a reference to all the pages in this direct read request
231 * until the RPCs complete. This could be long *after* we are woken up in
232 * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
234 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
236 struct nfs_read_data *data = calldata;
237 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
239 if (nfs_readpage_result(task, data) != 0)
242 spin_lock(&dreq->lock);
243 if (unlikely(task->tk_status < 0)) {
244 dreq->error = task->tk_status;
245 spin_unlock(&dreq->lock);
247 dreq->count += data->res.count;
248 spin_unlock(&dreq->lock);
249 nfs_direct_dirty_pages(data->pagevec,
253 nfs_direct_release_pages(data->pagevec, data->npages);
256 nfs_direct_complete(dreq);
259 static const struct rpc_call_ops nfs_read_direct_ops = {
260 .rpc_call_done = nfs_direct_read_result,
261 .rpc_release = nfs_readdata_release,
265 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
266 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
267 * bail and stop sending more reads. Read length accounting is
268 * handled automatically by nfs_direct_read_result(). Otherwise, if
269 * no requests have been sent, just return an error.
271 static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
272 const struct iovec *iov,
275 struct nfs_open_context *ctx = dreq->ctx;
276 struct inode *inode = ctx->path.dentry->d_inode;
277 unsigned long user_addr = (unsigned long)iov->iov_base;
278 size_t count = iov->iov_len;
279 size_t rsize = NFS_SERVER(inode)->rsize;
280 struct rpc_task *task;
281 struct rpc_message msg = {
282 .rpc_cred = ctx->cred,
284 struct rpc_task_setup task_setup_data = {
285 .rpc_client = NFS_CLIENT(inode),
287 .callback_ops = &nfs_read_direct_ops,
288 .flags = RPC_TASK_ASYNC,
295 struct nfs_read_data *data;
298 pgbase = user_addr & ~PAGE_MASK;
299 bytes = min(rsize,count);
302 data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
306 down_read(¤t->mm->mmap_sem);
307 result = get_user_pages(current, current->mm, user_addr,
308 data->npages, 1, 0, data->pagevec, NULL);
309 up_read(¤t->mm->mmap_sem);
311 nfs_readdata_release(data);
314 if ((unsigned)result < data->npages) {
315 bytes = result * PAGE_SIZE;
316 if (bytes <= pgbase) {
317 nfs_direct_release_pages(data->pagevec, result);
318 nfs_readdata_release(data);
322 data->npages = result;
327 data->req = (struct nfs_page *) dreq;
329 data->cred = msg.rpc_cred;
330 data->args.fh = NFS_FH(inode);
331 data->args.context = ctx;
332 data->args.offset = pos;
333 data->args.pgbase = pgbase;
334 data->args.pages = data->pagevec;
335 data->args.count = bytes;
336 data->res.fattr = &data->fattr;
338 data->res.count = bytes;
339 msg.rpc_argp = &data->args;
340 msg.rpc_resp = &data->res;
342 task_setup_data.task = &data->task;
343 task_setup_data.callback_data = data;
344 NFS_PROTO(inode)->read_setup(data, &msg);
346 task = rpc_run_task(&task_setup_data);
350 dprintk("NFS: %5u initiated direct read call "
351 "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
354 (long long)NFS_FILEID(inode),
356 (unsigned long long)data->args.offset);
361 /* FIXME: Remove this unnecessary math from final patch */
363 pgbase &= ~PAGE_MASK;
364 BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
367 } while (count != 0);
371 return result < 0 ? (ssize_t) result : -EFAULT;
374 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
375 const struct iovec *iov,
376 unsigned long nr_segs,
379 ssize_t result = -EINVAL;
380 size_t requested_bytes = 0;
385 for (seg = 0; seg < nr_segs; seg++) {
386 const struct iovec *vec = &iov[seg];
387 result = nfs_direct_read_schedule_segment(dreq, vec, pos);
390 requested_bytes += result;
391 if ((size_t)result < vec->iov_len)
397 nfs_direct_complete(dreq);
399 if (requested_bytes != 0)
407 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
408 unsigned long nr_segs, loff_t pos)
411 struct inode *inode = iocb->ki_filp->f_mapping->host;
412 struct nfs_direct_req *dreq;
414 dreq = nfs_direct_req_alloc();
419 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
420 if (!is_sync_kiocb(iocb))
423 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
425 result = nfs_direct_wait(dreq);
426 nfs_direct_req_release(dreq);
431 static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
433 while (!list_empty(&dreq->rewrite_list)) {
434 struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
435 list_del(&data->pages);
436 nfs_direct_release_pages(data->pagevec, data->npages);
437 nfs_writedata_release(data);
441 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
442 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
444 struct inode *inode = dreq->inode;
446 struct nfs_write_data *data;
447 struct rpc_task *task;
448 struct rpc_message msg = {
449 .rpc_cred = dreq->ctx->cred,
451 struct rpc_task_setup task_setup_data = {
452 .rpc_client = NFS_CLIENT(inode),
453 .callback_ops = &nfs_write_direct_ops,
454 .flags = RPC_TASK_ASYNC,
460 list_for_each(p, &dreq->rewrite_list) {
461 data = list_entry(p, struct nfs_write_data, pages);
465 /* Use stable writes */
466 data->args.stable = NFS_FILE_SYNC;
471 nfs_fattr_init(&data->fattr);
472 data->res.count = data->args.count;
473 memset(&data->verf, 0, sizeof(data->verf));
476 * Reuse data->task; data->args should not have changed
477 * since the original request was sent.
479 task_setup_data.task = &data->task;
480 task_setup_data.callback_data = data;
481 msg.rpc_argp = &data->args;
482 msg.rpc_resp = &data->res;
483 NFS_PROTO(inode)->write_setup(data, &msg);
486 * We're called via an RPC callback, so BKL is already held.
488 task = rpc_run_task(&task_setup_data);
492 dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
495 (long long)NFS_FILEID(inode),
497 (unsigned long long)data->args.offset);
501 nfs_direct_write_complete(dreq, inode);
504 static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
506 struct nfs_write_data *data = calldata;
507 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
509 /* Call the NFS version-specific code */
510 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
512 if (unlikely(task->tk_status < 0)) {
513 dprintk("NFS: %5u commit failed with error %d.\n",
514 task->tk_pid, task->tk_status);
515 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
516 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
517 dprintk("NFS: %5u commit verify failed\n", task->tk_pid);
518 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
521 dprintk("NFS: %5u commit returned %d\n", task->tk_pid, task->tk_status);
522 nfs_direct_write_complete(dreq, data->inode);
525 static const struct rpc_call_ops nfs_commit_direct_ops = {
526 .rpc_call_done = nfs_direct_commit_result,
527 .rpc_release = nfs_commit_release,
530 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
532 struct nfs_write_data *data = dreq->commit_data;
533 struct rpc_task *task;
534 struct rpc_message msg = {
535 .rpc_argp = &data->args,
536 .rpc_resp = &data->res,
537 .rpc_cred = dreq->ctx->cred,
539 struct rpc_task_setup task_setup_data = {
541 .rpc_client = NFS_CLIENT(dreq->inode),
543 .callback_ops = &nfs_commit_direct_ops,
544 .callback_data = data,
545 .flags = RPC_TASK_ASYNC,
548 data->inode = dreq->inode;
549 data->cred = msg.rpc_cred;
551 data->args.fh = NFS_FH(data->inode);
552 data->args.offset = 0;
553 data->args.count = 0;
555 data->res.fattr = &data->fattr;
556 data->res.verf = &data->verf;
558 NFS_PROTO(data->inode)->commit_setup(data, &msg);
560 /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
561 dreq->commit_data = NULL;
563 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
565 task = rpc_run_task(&task_setup_data);
570 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
572 int flags = dreq->flags;
576 case NFS_ODIRECT_DO_COMMIT:
577 nfs_direct_commit_schedule(dreq);
579 case NFS_ODIRECT_RESCHED_WRITES:
580 nfs_direct_write_reschedule(dreq);
583 if (dreq->commit_data != NULL)
584 nfs_commit_free(dreq->commit_data);
585 nfs_direct_free_writedata(dreq);
586 nfs_zap_mapping(inode, inode->i_mapping);
587 nfs_direct_complete(dreq);
591 static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
593 dreq->commit_data = nfs_commit_alloc();
594 if (dreq->commit_data != NULL)
595 dreq->commit_data->req = (struct nfs_page *) dreq;
598 static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
600 dreq->commit_data = NULL;
603 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
605 nfs_direct_free_writedata(dreq);
606 nfs_zap_mapping(inode, inode->i_mapping);
607 nfs_direct_complete(dreq);
611 static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
613 struct nfs_write_data *data = calldata;
614 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
615 int status = task->tk_status;
617 if (nfs_writeback_done(task, data) != 0)
620 spin_lock(&dreq->lock);
622 if (unlikely(status < 0)) {
623 /* An error has occurred, so we should not commit */
625 dreq->error = status;
627 if (unlikely(dreq->error != 0))
630 dreq->count += data->res.count;
632 if (data->res.verf->committed != NFS_FILE_SYNC) {
633 switch (dreq->flags) {
635 memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
636 dreq->flags = NFS_ODIRECT_DO_COMMIT;
638 case NFS_ODIRECT_DO_COMMIT:
639 if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
640 dprintk("NFS: %5u write verify failed\n", task->tk_pid);
641 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
646 spin_unlock(&dreq->lock);
650 * NB: Return the value of the first error return code. Subsequent
651 * errors after the first one are ignored.
653 static void nfs_direct_write_release(void *calldata)
655 struct nfs_write_data *data = calldata;
656 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
659 nfs_direct_write_complete(dreq, data->inode);
662 static const struct rpc_call_ops nfs_write_direct_ops = {
663 .rpc_call_done = nfs_direct_write_result,
664 .rpc_release = nfs_direct_write_release,
668 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
669 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
670 * bail and stop sending more writes. Write length accounting is
671 * handled automatically by nfs_direct_write_result(). Otherwise, if
672 * no requests have been sent, just return an error.
674 static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
675 const struct iovec *iov,
676 loff_t pos, int sync)
678 struct nfs_open_context *ctx = dreq->ctx;
679 struct inode *inode = ctx->path.dentry->d_inode;
680 unsigned long user_addr = (unsigned long)iov->iov_base;
681 size_t count = iov->iov_len;
682 struct rpc_task *task;
683 struct rpc_message msg = {
684 .rpc_cred = ctx->cred,
686 struct rpc_task_setup task_setup_data = {
687 .rpc_client = NFS_CLIENT(inode),
689 .callback_ops = &nfs_write_direct_ops,
690 .flags = RPC_TASK_ASYNC,
692 size_t wsize = NFS_SERVER(inode)->wsize;
698 struct nfs_write_data *data;
701 pgbase = user_addr & ~PAGE_MASK;
702 bytes = min(wsize,count);
705 data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
709 down_read(¤t->mm->mmap_sem);
710 result = get_user_pages(current, current->mm, user_addr,
711 data->npages, 0, 0, data->pagevec, NULL);
712 up_read(¤t->mm->mmap_sem);
714 nfs_writedata_release(data);
717 if ((unsigned)result < data->npages) {
718 bytes = result * PAGE_SIZE;
719 if (bytes <= pgbase) {
720 nfs_direct_release_pages(data->pagevec, result);
721 nfs_writedata_release(data);
725 data->npages = result;
730 list_move_tail(&data->pages, &dreq->rewrite_list);
732 data->req = (struct nfs_page *) dreq;
734 data->cred = msg.rpc_cred;
735 data->args.fh = NFS_FH(inode);
736 data->args.context = ctx;
737 data->args.offset = pos;
738 data->args.pgbase = pgbase;
739 data->args.pages = data->pagevec;
740 data->args.count = bytes;
741 data->args.stable = sync;
742 data->res.fattr = &data->fattr;
743 data->res.count = bytes;
744 data->res.verf = &data->verf;
746 task_setup_data.task = &data->task;
747 task_setup_data.callback_data = data;
748 msg.rpc_argp = &data->args;
749 msg.rpc_resp = &data->res;
750 NFS_PROTO(inode)->write_setup(data, &msg);
752 task = rpc_run_task(&task_setup_data);
756 dprintk("NFS: %5u initiated direct write call "
757 "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
760 (long long)NFS_FILEID(inode),
762 (unsigned long long)data->args.offset);
768 /* FIXME: Remove this useless math from the final patch */
770 pgbase &= ~PAGE_MASK;
771 BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
774 } while (count != 0);
778 return result < 0 ? (ssize_t) result : -EFAULT;
781 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
782 const struct iovec *iov,
783 unsigned long nr_segs,
784 loff_t pos, int sync)
787 size_t requested_bytes = 0;
792 for (seg = 0; seg < nr_segs; seg++) {
793 const struct iovec *vec = &iov[seg];
794 result = nfs_direct_write_schedule_segment(dreq, vec,
798 requested_bytes += result;
799 if ((size_t)result < vec->iov_len)
805 nfs_direct_write_complete(dreq, dreq->inode);
807 if (requested_bytes != 0)
815 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
816 unsigned long nr_segs, loff_t pos,
820 struct inode *inode = iocb->ki_filp->f_mapping->host;
821 struct nfs_direct_req *dreq;
822 size_t wsize = NFS_SERVER(inode)->wsize;
823 int sync = NFS_UNSTABLE;
825 dreq = nfs_direct_req_alloc();
828 nfs_alloc_commit_data(dreq);
830 if (dreq->commit_data == NULL || count < wsize)
831 sync = NFS_FILE_SYNC;
834 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
835 if (!is_sync_kiocb(iocb))
838 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
840 result = nfs_direct_wait(dreq);
841 nfs_direct_req_release(dreq);
847 * nfs_file_direct_read - file direct read operation for NFS files
848 * @iocb: target I/O control block
849 * @iov: vector of user buffers into which to read data
850 * @nr_segs: size of iov vector
851 * @pos: byte offset in file where reading starts
853 * We use this function for direct reads instead of calling
854 * generic_file_aio_read() in order to avoid gfar's check to see if
855 * the request starts before the end of the file. For that check
856 * to work, we must generate a GETATTR before each direct read, and
857 * even then there is a window between the GETATTR and the subsequent
858 * READ where the file size could change. Our preference is simply
859 * to do all reads the application wants, and the server will take
860 * care of managing the end of file boundary.
862 * This function also eliminates unnecessarily updating the file's
863 * atime locally, as the NFS server sets the file's atime, and this
864 * client must read the updated atime from the server back into its
867 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
868 unsigned long nr_segs, loff_t pos)
870 ssize_t retval = -EINVAL;
871 struct file *file = iocb->ki_filp;
872 struct address_space *mapping = file->f_mapping;
875 count = iov_length(iov, nr_segs);
876 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
878 dprintk("nfs: direct read(%s/%s, %zd@%Ld)\n",
879 file->f_path.dentry->d_parent->d_name.name,
880 file->f_path.dentry->d_name.name,
881 count, (long long) pos);
887 retval = nfs_sync_mapping(mapping);
891 retval = nfs_direct_read(iocb, iov, nr_segs, pos);
893 iocb->ki_pos = pos + retval;
900 * nfs_file_direct_write - file direct write operation for NFS files
901 * @iocb: target I/O control block
902 * @iov: vector of user buffers from which to write data
903 * @nr_segs: size of iov vector
904 * @pos: byte offset in file where writing starts
906 * We use this function for direct writes instead of calling
907 * generic_file_aio_write() in order to avoid taking the inode
908 * semaphore and updating the i_size. The NFS server will set
909 * the new i_size and this client must read the updated size
910 * back into its cache. We let the server do generic write
911 * parameter checking and report problems.
913 * We also avoid an unnecessary invocation of generic_osync_inode(),
914 * as it is fairly meaningless to sync the metadata of an NFS file.
916 * We eliminate local atime updates, see direct read above.
918 * We avoid unnecessary page cache invalidations for normal cached
919 * readers of this file.
921 * Note that O_APPEND is not supported for NFS direct writes, as there
922 * is no atomic O_APPEND write facility in the NFS protocol.
924 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
925 unsigned long nr_segs, loff_t pos)
927 ssize_t retval = -EINVAL;
928 struct file *file = iocb->ki_filp;
929 struct address_space *mapping = file->f_mapping;
932 count = iov_length(iov, nr_segs);
933 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
935 dfprintk(VFS, "nfs: direct write(%s/%s, %zd@%Ld)\n",
936 file->f_path.dentry->d_parent->d_name.name,
937 file->f_path.dentry->d_name.name,
938 count, (long long) pos);
940 retval = generic_write_checks(file, &pos, &count, 0);
945 if ((ssize_t) count < 0)
951 retval = nfs_sync_mapping(mapping);
955 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
958 iocb->ki_pos = pos + retval;
965 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
968 int __init nfs_init_directcache(void)
970 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
971 sizeof(struct nfs_direct_req),
972 0, (SLAB_RECLAIM_ACCOUNT|
975 if (nfs_direct_cachep == NULL)
982 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
985 void nfs_destroy_directcache(void)
987 kmem_cache_destroy(nfs_direct_cachep);