Merge master.kernel.org:/pub/scm/linux/kernel/git/lethal/sh-2.6
[linux-2.6] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern int e1000_up(struct e1000_adapter *adapter);
36 extern void e1000_down(struct e1000_adapter *adapter);
37 extern void e1000_reinit_locked(struct e1000_adapter *adapter);
38 extern void e1000_reset(struct e1000_adapter *adapter);
39 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
40 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
41 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
42 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
43 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_update_stats(struct e1000_adapter *adapter);
45
46
47 struct e1000_stats {
48         char stat_string[ETH_GSTRING_LEN];
49         int sizeof_stat;
50         int stat_offset;
51 };
52
53 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
54                       offsetof(struct e1000_adapter, m)
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56         { "rx_packets", E1000_STAT(stats.gprc) },
57         { "tx_packets", E1000_STAT(stats.gptc) },
58         { "rx_bytes", E1000_STAT(stats.gorcl) },
59         { "tx_bytes", E1000_STAT(stats.gotcl) },
60         { "rx_broadcast", E1000_STAT(stats.bprc) },
61         { "tx_broadcast", E1000_STAT(stats.bptc) },
62         { "rx_multicast", E1000_STAT(stats.mprc) },
63         { "tx_multicast", E1000_STAT(stats.mptc) },
64         { "rx_errors", E1000_STAT(stats.rxerrc) },
65         { "tx_errors", E1000_STAT(stats.txerrc) },
66         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
67         { "multicast", E1000_STAT(stats.mprc) },
68         { "collisions", E1000_STAT(stats.colc) },
69         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
70         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
71         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
72         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
73         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
74         { "rx_missed_errors", E1000_STAT(stats.mpc) },
75         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
76         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
77         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
78         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
79         { "tx_window_errors", E1000_STAT(stats.latecol) },
80         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
81         { "tx_deferred_ok", E1000_STAT(stats.dc) },
82         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
83         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
84         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
85         { "tx_restart_queue", E1000_STAT(restart_queue) },
86         { "rx_long_length_errors", E1000_STAT(stats.roc) },
87         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
88         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
89         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
90         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
91         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
92         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
93         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
94         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
95         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
96         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
97         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
98         { "rx_header_split", E1000_STAT(rx_hdr_split) },
99         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
100         { "tx_smbus", E1000_STAT(stats.mgptc) },
101         { "rx_smbus", E1000_STAT(stats.mgprc) },
102         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
103 };
104
105 #define E1000_QUEUE_STATS_LEN 0
106 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
107 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
108 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
109         "Register test  (offline)", "Eeprom test    (offline)",
110         "Interrupt test (offline)", "Loopback test  (offline)",
111         "Link test   (on/offline)"
112 };
113 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
114
115 static int
116 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
117 {
118         struct e1000_adapter *adapter = netdev_priv(netdev);
119         struct e1000_hw *hw = &adapter->hw;
120
121         if (hw->media_type == e1000_media_type_copper) {
122
123                 ecmd->supported = (SUPPORTED_10baseT_Half |
124                                    SUPPORTED_10baseT_Full |
125                                    SUPPORTED_100baseT_Half |
126                                    SUPPORTED_100baseT_Full |
127                                    SUPPORTED_1000baseT_Full|
128                                    SUPPORTED_Autoneg |
129                                    SUPPORTED_TP);
130                 if (hw->phy_type == e1000_phy_ife)
131                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
132                 ecmd->advertising = ADVERTISED_TP;
133
134                 if (hw->autoneg == 1) {
135                         ecmd->advertising |= ADVERTISED_Autoneg;
136                         /* the e1000 autoneg seems to match ethtool nicely */
137                         ecmd->advertising |= hw->autoneg_advertised;
138                 }
139
140                 ecmd->port = PORT_TP;
141                 ecmd->phy_address = hw->phy_addr;
142
143                 if (hw->mac_type == e1000_82543)
144                         ecmd->transceiver = XCVR_EXTERNAL;
145                 else
146                         ecmd->transceiver = XCVR_INTERNAL;
147
148         } else {
149                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
150                                      SUPPORTED_FIBRE |
151                                      SUPPORTED_Autoneg);
152
153                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
154                                      ADVERTISED_FIBRE |
155                                      ADVERTISED_Autoneg);
156
157                 ecmd->port = PORT_FIBRE;
158
159                 if (hw->mac_type >= e1000_82545)
160                         ecmd->transceiver = XCVR_INTERNAL;
161                 else
162                         ecmd->transceiver = XCVR_EXTERNAL;
163         }
164
165         if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
166
167                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
168                                                    &adapter->link_duplex);
169                 ecmd->speed = adapter->link_speed;
170
171                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
172                  *          and HALF_DUPLEX != DUPLEX_HALF */
173
174                 if (adapter->link_duplex == FULL_DUPLEX)
175                         ecmd->duplex = DUPLEX_FULL;
176                 else
177                         ecmd->duplex = DUPLEX_HALF;
178         } else {
179                 ecmd->speed = -1;
180                 ecmd->duplex = -1;
181         }
182
183         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
184                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
185         return 0;
186 }
187
188 static int
189 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
190 {
191         struct e1000_adapter *adapter = netdev_priv(netdev);
192         struct e1000_hw *hw = &adapter->hw;
193
194         /* When SoL/IDER sessions are active, autoneg/speed/duplex
195          * cannot be changed */
196         if (e1000_check_phy_reset_block(hw)) {
197                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
198                         "when SoL/IDER is active.\n");
199                 return -EINVAL;
200         }
201
202         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
203                 msleep(1);
204
205         if (ecmd->autoneg == AUTONEG_ENABLE) {
206                 hw->autoneg = 1;
207                 if (hw->media_type == e1000_media_type_fiber)
208                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
209                                      ADVERTISED_FIBRE |
210                                      ADVERTISED_Autoneg;
211                 else
212                         hw->autoneg_advertised = ecmd->advertising |
213                                                  ADVERTISED_TP |
214                                                  ADVERTISED_Autoneg;
215                 ecmd->advertising = hw->autoneg_advertised;
216         } else
217                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
218                         clear_bit(__E1000_RESETTING, &adapter->flags);
219                         return -EINVAL;
220                 }
221
222         /* reset the link */
223
224         if (netif_running(adapter->netdev)) {
225                 e1000_down(adapter);
226                 e1000_up(adapter);
227         } else
228                 e1000_reset(adapter);
229
230         clear_bit(__E1000_RESETTING, &adapter->flags);
231         return 0;
232 }
233
234 static void
235 e1000_get_pauseparam(struct net_device *netdev,
236                      struct ethtool_pauseparam *pause)
237 {
238         struct e1000_adapter *adapter = netdev_priv(netdev);
239         struct e1000_hw *hw = &adapter->hw;
240
241         pause->autoneg =
242                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
243
244         if (hw->fc == E1000_FC_RX_PAUSE)
245                 pause->rx_pause = 1;
246         else if (hw->fc == E1000_FC_TX_PAUSE)
247                 pause->tx_pause = 1;
248         else if (hw->fc == E1000_FC_FULL) {
249                 pause->rx_pause = 1;
250                 pause->tx_pause = 1;
251         }
252 }
253
254 static int
255 e1000_set_pauseparam(struct net_device *netdev,
256                      struct ethtool_pauseparam *pause)
257 {
258         struct e1000_adapter *adapter = netdev_priv(netdev);
259         struct e1000_hw *hw = &adapter->hw;
260         int retval = 0;
261
262         adapter->fc_autoneg = pause->autoneg;
263
264         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
265                 msleep(1);
266
267         if (pause->rx_pause && pause->tx_pause)
268                 hw->fc = E1000_FC_FULL;
269         else if (pause->rx_pause && !pause->tx_pause)
270                 hw->fc = E1000_FC_RX_PAUSE;
271         else if (!pause->rx_pause && pause->tx_pause)
272                 hw->fc = E1000_FC_TX_PAUSE;
273         else if (!pause->rx_pause && !pause->tx_pause)
274                 hw->fc = E1000_FC_NONE;
275
276         hw->original_fc = hw->fc;
277
278         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
279                 if (netif_running(adapter->netdev)) {
280                         e1000_down(adapter);
281                         e1000_up(adapter);
282                 } else
283                         e1000_reset(adapter);
284         } else
285                 retval = ((hw->media_type == e1000_media_type_fiber) ?
286                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
287
288         clear_bit(__E1000_RESETTING, &adapter->flags);
289         return retval;
290 }
291
292 static uint32_t
293 e1000_get_rx_csum(struct net_device *netdev)
294 {
295         struct e1000_adapter *adapter = netdev_priv(netdev);
296         return adapter->rx_csum;
297 }
298
299 static int
300 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
301 {
302         struct e1000_adapter *adapter = netdev_priv(netdev);
303         adapter->rx_csum = data;
304
305         if (netif_running(netdev))
306                 e1000_reinit_locked(adapter);
307         else
308                 e1000_reset(adapter);
309         return 0;
310 }
311
312 static uint32_t
313 e1000_get_tx_csum(struct net_device *netdev)
314 {
315         return (netdev->features & NETIF_F_HW_CSUM) != 0;
316 }
317
318 static int
319 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
320 {
321         struct e1000_adapter *adapter = netdev_priv(netdev);
322
323         if (adapter->hw.mac_type < e1000_82543) {
324                 if (!data)
325                         return -EINVAL;
326                 return 0;
327         }
328
329         if (data)
330                 netdev->features |= NETIF_F_HW_CSUM;
331         else
332                 netdev->features &= ~NETIF_F_HW_CSUM;
333
334         return 0;
335 }
336
337 static int
338 e1000_set_tso(struct net_device *netdev, uint32_t data)
339 {
340         struct e1000_adapter *adapter = netdev_priv(netdev);
341         if ((adapter->hw.mac_type < e1000_82544) ||
342             (adapter->hw.mac_type == e1000_82547))
343                 return data ? -EINVAL : 0;
344
345         if (data)
346                 netdev->features |= NETIF_F_TSO;
347         else
348                 netdev->features &= ~NETIF_F_TSO;
349
350         if (data)
351                 netdev->features |= NETIF_F_TSO6;
352         else
353                 netdev->features &= ~NETIF_F_TSO6;
354
355         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
356         adapter->tso_force = TRUE;
357         return 0;
358 }
359
360 static uint32_t
361 e1000_get_msglevel(struct net_device *netdev)
362 {
363         struct e1000_adapter *adapter = netdev_priv(netdev);
364         return adapter->msg_enable;
365 }
366
367 static void
368 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
369 {
370         struct e1000_adapter *adapter = netdev_priv(netdev);
371         adapter->msg_enable = data;
372 }
373
374 static int
375 e1000_get_regs_len(struct net_device *netdev)
376 {
377 #define E1000_REGS_LEN 32
378         return E1000_REGS_LEN * sizeof(uint32_t);
379 }
380
381 static void
382 e1000_get_regs(struct net_device *netdev,
383                struct ethtool_regs *regs, void *p)
384 {
385         struct e1000_adapter *adapter = netdev_priv(netdev);
386         struct e1000_hw *hw = &adapter->hw;
387         uint32_t *regs_buff = p;
388         uint16_t phy_data;
389
390         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
391
392         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
393
394         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
395         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
396
397         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
398         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
399         regs_buff[4]  = E1000_READ_REG(hw, RDH);
400         regs_buff[5]  = E1000_READ_REG(hw, RDT);
401         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
402
403         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
404         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
405         regs_buff[9]  = E1000_READ_REG(hw, TDH);
406         regs_buff[10] = E1000_READ_REG(hw, TDT);
407         regs_buff[11] = E1000_READ_REG(hw, TIDV);
408
409         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
410         if (hw->phy_type == e1000_phy_igp) {
411                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
412                                     IGP01E1000_PHY_AGC_A);
413                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
414                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
415                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
416                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
417                                     IGP01E1000_PHY_AGC_B);
418                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
419                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
420                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
421                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
422                                     IGP01E1000_PHY_AGC_C);
423                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
424                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
425                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
426                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
427                                     IGP01E1000_PHY_AGC_D);
428                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
429                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
430                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
431                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
432                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
433                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
434                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
435                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
436                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
437                                     IGP01E1000_PHY_PCS_INIT_REG);
438                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
439                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
440                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
441                 regs_buff[20] = 0; /* polarity correction enabled (always) */
442                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
443                 regs_buff[23] = regs_buff[18]; /* mdix mode */
444                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
445         } else {
446                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
447                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
448                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
449                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
450                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
451                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
452                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
453                 regs_buff[18] = regs_buff[13]; /* cable polarity */
454                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
455                 regs_buff[20] = regs_buff[17]; /* polarity correction */
456                 /* phy receive errors */
457                 regs_buff[22] = adapter->phy_stats.receive_errors;
458                 regs_buff[23] = regs_buff[13]; /* mdix mode */
459         }
460         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
461         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
462         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
463         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
464         if (hw->mac_type >= e1000_82540 &&
465             hw->mac_type < e1000_82571 &&
466             hw->media_type == e1000_media_type_copper) {
467                 regs_buff[26] = E1000_READ_REG(hw, MANC);
468         }
469 }
470
471 static int
472 e1000_get_eeprom_len(struct net_device *netdev)
473 {
474         struct e1000_adapter *adapter = netdev_priv(netdev);
475         return adapter->hw.eeprom.word_size * 2;
476 }
477
478 static int
479 e1000_get_eeprom(struct net_device *netdev,
480                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
481 {
482         struct e1000_adapter *adapter = netdev_priv(netdev);
483         struct e1000_hw *hw = &adapter->hw;
484         uint16_t *eeprom_buff;
485         int first_word, last_word;
486         int ret_val = 0;
487         uint16_t i;
488
489         if (eeprom->len == 0)
490                 return -EINVAL;
491
492         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
493
494         first_word = eeprom->offset >> 1;
495         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
496
497         eeprom_buff = kmalloc(sizeof(uint16_t) *
498                         (last_word - first_word + 1), GFP_KERNEL);
499         if (!eeprom_buff)
500                 return -ENOMEM;
501
502         if (hw->eeprom.type == e1000_eeprom_spi)
503                 ret_val = e1000_read_eeprom(hw, first_word,
504                                             last_word - first_word + 1,
505                                             eeprom_buff);
506         else {
507                 for (i = 0; i < last_word - first_word + 1; i++)
508                         if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
509                                                         &eeprom_buff[i])))
510                                 break;
511         }
512
513         /* Device's eeprom is always little-endian, word addressable */
514         for (i = 0; i < last_word - first_word + 1; i++)
515                 le16_to_cpus(&eeprom_buff[i]);
516
517         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
518                         eeprom->len);
519         kfree(eeprom_buff);
520
521         return ret_val;
522 }
523
524 static int
525 e1000_set_eeprom(struct net_device *netdev,
526                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
527 {
528         struct e1000_adapter *adapter = netdev_priv(netdev);
529         struct e1000_hw *hw = &adapter->hw;
530         uint16_t *eeprom_buff;
531         void *ptr;
532         int max_len, first_word, last_word, ret_val = 0;
533         uint16_t i;
534
535         if (eeprom->len == 0)
536                 return -EOPNOTSUPP;
537
538         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
539                 return -EFAULT;
540
541         max_len = hw->eeprom.word_size * 2;
542
543         first_word = eeprom->offset >> 1;
544         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
545         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
546         if (!eeprom_buff)
547                 return -ENOMEM;
548
549         ptr = (void *)eeprom_buff;
550
551         if (eeprom->offset & 1) {
552                 /* need read/modify/write of first changed EEPROM word */
553                 /* only the second byte of the word is being modified */
554                 ret_val = e1000_read_eeprom(hw, first_word, 1,
555                                             &eeprom_buff[0]);
556                 ptr++;
557         }
558         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
559                 /* need read/modify/write of last changed EEPROM word */
560                 /* only the first byte of the word is being modified */
561                 ret_val = e1000_read_eeprom(hw, last_word, 1,
562                                   &eeprom_buff[last_word - first_word]);
563         }
564
565         /* Device's eeprom is always little-endian, word addressable */
566         for (i = 0; i < last_word - first_word + 1; i++)
567                 le16_to_cpus(&eeprom_buff[i]);
568
569         memcpy(ptr, bytes, eeprom->len);
570
571         for (i = 0; i < last_word - first_word + 1; i++)
572                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
573
574         ret_val = e1000_write_eeprom(hw, first_word,
575                                      last_word - first_word + 1, eeprom_buff);
576
577         /* Update the checksum over the first part of the EEPROM if needed
578          * and flush shadow RAM for 82573 conrollers */
579         if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
580                                 (hw->mac_type == e1000_82573)))
581                 e1000_update_eeprom_checksum(hw);
582
583         kfree(eeprom_buff);
584         return ret_val;
585 }
586
587 static void
588 e1000_get_drvinfo(struct net_device *netdev,
589                        struct ethtool_drvinfo *drvinfo)
590 {
591         struct e1000_adapter *adapter = netdev_priv(netdev);
592         char firmware_version[32];
593         uint16_t eeprom_data;
594
595         strncpy(drvinfo->driver,  e1000_driver_name, 32);
596         strncpy(drvinfo->version, e1000_driver_version, 32);
597
598         /* EEPROM image version # is reported as firmware version # for
599          * 8257{1|2|3} controllers */
600         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
601         switch (adapter->hw.mac_type) {
602         case e1000_82571:
603         case e1000_82572:
604         case e1000_82573:
605         case e1000_80003es2lan:
606         case e1000_ich8lan:
607                 sprintf(firmware_version, "%d.%d-%d",
608                         (eeprom_data & 0xF000) >> 12,
609                         (eeprom_data & 0x0FF0) >> 4,
610                         eeprom_data & 0x000F);
611                 break;
612         default:
613                 sprintf(firmware_version, "N/A");
614         }
615
616         strncpy(drvinfo->fw_version, firmware_version, 32);
617         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
618         drvinfo->regdump_len = e1000_get_regs_len(netdev);
619         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
620 }
621
622 static void
623 e1000_get_ringparam(struct net_device *netdev,
624                     struct ethtool_ringparam *ring)
625 {
626         struct e1000_adapter *adapter = netdev_priv(netdev);
627         e1000_mac_type mac_type = adapter->hw.mac_type;
628         struct e1000_tx_ring *txdr = adapter->tx_ring;
629         struct e1000_rx_ring *rxdr = adapter->rx_ring;
630
631         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
632                 E1000_MAX_82544_RXD;
633         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
634                 E1000_MAX_82544_TXD;
635         ring->rx_mini_max_pending = 0;
636         ring->rx_jumbo_max_pending = 0;
637         ring->rx_pending = rxdr->count;
638         ring->tx_pending = txdr->count;
639         ring->rx_mini_pending = 0;
640         ring->rx_jumbo_pending = 0;
641 }
642
643 static int
644 e1000_set_ringparam(struct net_device *netdev,
645                     struct ethtool_ringparam *ring)
646 {
647         struct e1000_adapter *adapter = netdev_priv(netdev);
648         e1000_mac_type mac_type = adapter->hw.mac_type;
649         struct e1000_tx_ring *txdr, *tx_old;
650         struct e1000_rx_ring *rxdr, *rx_old;
651         int i, err;
652
653         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
654                 return -EINVAL;
655
656         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
657                 msleep(1);
658
659         if (netif_running(adapter->netdev))
660                 e1000_down(adapter);
661
662         tx_old = adapter->tx_ring;
663         rx_old = adapter->rx_ring;
664
665         err = -ENOMEM;
666         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
667         if (!txdr)
668                 goto err_alloc_tx;
669
670         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
671         if (!rxdr)
672                 goto err_alloc_rx;
673
674         adapter->tx_ring = txdr;
675         adapter->rx_ring = rxdr;
676
677         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
678         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
679                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
680         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
681
682         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
683         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
684                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
685         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
686
687         for (i = 0; i < adapter->num_tx_queues; i++)
688                 txdr[i].count = txdr->count;
689         for (i = 0; i < adapter->num_rx_queues; i++)
690                 rxdr[i].count = rxdr->count;
691
692         if (netif_running(adapter->netdev)) {
693                 /* Try to get new resources before deleting old */
694                 if ((err = e1000_setup_all_rx_resources(adapter)))
695                         goto err_setup_rx;
696                 if ((err = e1000_setup_all_tx_resources(adapter)))
697                         goto err_setup_tx;
698
699                 /* save the new, restore the old in order to free it,
700                  * then restore the new back again */
701
702                 adapter->rx_ring = rx_old;
703                 adapter->tx_ring = tx_old;
704                 e1000_free_all_rx_resources(adapter);
705                 e1000_free_all_tx_resources(adapter);
706                 kfree(tx_old);
707                 kfree(rx_old);
708                 adapter->rx_ring = rxdr;
709                 adapter->tx_ring = txdr;
710                 if ((err = e1000_up(adapter)))
711                         goto err_setup;
712         }
713
714         clear_bit(__E1000_RESETTING, &adapter->flags);
715         return 0;
716 err_setup_tx:
717         e1000_free_all_rx_resources(adapter);
718 err_setup_rx:
719         adapter->rx_ring = rx_old;
720         adapter->tx_ring = tx_old;
721         kfree(rxdr);
722 err_alloc_rx:
723         kfree(txdr);
724 err_alloc_tx:
725         e1000_up(adapter);
726 err_setup:
727         clear_bit(__E1000_RESETTING, &adapter->flags);
728         return err;
729 }
730
731 #define REG_PATTERN_TEST(R, M, W)                                              \
732 {                                                                              \
733         uint32_t pat, val;                                                     \
734         const uint32_t test[] =                                                \
735                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
736         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {                         \
737                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
738                 val = E1000_READ_REG(&adapter->hw, R);                         \
739                 if (val != (test[pat] & W & M)) {                              \
740                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
741                                 "0x%08X expected 0x%08X\n",                    \
742                                 E1000_##R, val, (test[pat] & W & M));          \
743                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
744                                 E1000_82542_##R : E1000_##R;                   \
745                         return 1;                                              \
746                 }                                                              \
747         }                                                                      \
748 }
749
750 #define REG_SET_AND_CHECK(R, M, W)                                             \
751 {                                                                              \
752         uint32_t val;                                                          \
753         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
754         val = E1000_READ_REG(&adapter->hw, R);                                 \
755         if ((W & M) != (val & M)) {                                            \
756                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
757                         "expected 0x%08X\n", E1000_##R, (val & M), (W & M));   \
758                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
759                         E1000_82542_##R : E1000_##R;                           \
760                 return 1;                                                      \
761         }                                                                      \
762 }
763
764 static int
765 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
766 {
767         uint32_t value, before, after;
768         uint32_t i, toggle;
769
770         /* The status register is Read Only, so a write should fail.
771          * Some bits that get toggled are ignored.
772          */
773         switch (adapter->hw.mac_type) {
774         /* there are several bits on newer hardware that are r/w */
775         case e1000_82571:
776         case e1000_82572:
777         case e1000_80003es2lan:
778                 toggle = 0x7FFFF3FF;
779                 break;
780         case e1000_82573:
781         case e1000_ich8lan:
782                 toggle = 0x7FFFF033;
783                 break;
784         default:
785                 toggle = 0xFFFFF833;
786                 break;
787         }
788
789         before = E1000_READ_REG(&adapter->hw, STATUS);
790         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
791         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
792         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
793         if (value != after) {
794                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
795                         "0x%08X expected: 0x%08X\n", after, value);
796                 *data = 1;
797                 return 1;
798         }
799         /* restore previous status */
800         E1000_WRITE_REG(&adapter->hw, STATUS, before);
801
802         if (adapter->hw.mac_type != e1000_ich8lan) {
803                 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
804                 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
805                 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
806                 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
807         }
808
809         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
810         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
811         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
812         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
813         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
814         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
815         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
816         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
817         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
818         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
819
820         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
821
822         before = (adapter->hw.mac_type == e1000_ich8lan ?
823                   0x06C3B33E : 0x06DFB3FE);
824         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
825         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
826
827         if (adapter->hw.mac_type >= e1000_82543) {
828
829                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
830                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
831                 if (adapter->hw.mac_type != e1000_ich8lan)
832                         REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
833                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
834                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
835                 value = (adapter->hw.mac_type == e1000_ich8lan ?
836                          E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
837                 for (i = 0; i < value; i++) {
838                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
839                                          0xFFFFFFFF);
840                 }
841
842         } else {
843
844                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
845                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
846                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
847                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
848
849         }
850
851         value = (adapter->hw.mac_type == e1000_ich8lan ?
852                         E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
853         for (i = 0; i < value; i++)
854                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
855
856         *data = 0;
857         return 0;
858 }
859
860 static int
861 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
862 {
863         uint16_t temp;
864         uint16_t checksum = 0;
865         uint16_t i;
866
867         *data = 0;
868         /* Read and add up the contents of the EEPROM */
869         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
870                 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
871                         *data = 1;
872                         break;
873                 }
874                 checksum += temp;
875         }
876
877         /* If Checksum is not Correct return error else test passed */
878         if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
879                 *data = 2;
880
881         return *data;
882 }
883
884 static irqreturn_t
885 e1000_test_intr(int irq, void *data)
886 {
887         struct net_device *netdev = (struct net_device *) data;
888         struct e1000_adapter *adapter = netdev_priv(netdev);
889
890         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
891
892         return IRQ_HANDLED;
893 }
894
895 static int
896 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
897 {
898         struct net_device *netdev = adapter->netdev;
899         uint32_t mask, i=0, shared_int = TRUE;
900         uint32_t irq = adapter->pdev->irq;
901
902         *data = 0;
903
904         /* NOTE: we don't test MSI interrupts here, yet */
905         /* Hook up test interrupt handler just for this test */
906         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
907                          netdev))
908                 shared_int = FALSE;
909         else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
910                  netdev->name, netdev)) {
911                 *data = 1;
912                 return -1;
913         }
914         DPRINTK(HW, INFO, "testing %s interrupt\n",
915                 (shared_int ? "shared" : "unshared"));
916
917         /* Disable all the interrupts */
918         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
919         msleep(10);
920
921         /* Test each interrupt */
922         for (; i < 10; i++) {
923
924                 if (adapter->hw.mac_type == e1000_ich8lan && i == 8)
925                         continue;
926
927                 /* Interrupt to test */
928                 mask = 1 << i;
929
930                 if (!shared_int) {
931                         /* Disable the interrupt to be reported in
932                          * the cause register and then force the same
933                          * interrupt and see if one gets posted.  If
934                          * an interrupt was posted to the bus, the
935                          * test failed.
936                          */
937                         adapter->test_icr = 0;
938                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
939                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
940                         msleep(10);
941
942                         if (adapter->test_icr & mask) {
943                                 *data = 3;
944                                 break;
945                         }
946                 }
947
948                 /* Enable the interrupt to be reported in
949                  * the cause register and then force the same
950                  * interrupt and see if one gets posted.  If
951                  * an interrupt was not posted to the bus, the
952                  * test failed.
953                  */
954                 adapter->test_icr = 0;
955                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
956                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
957                 msleep(10);
958
959                 if (!(adapter->test_icr & mask)) {
960                         *data = 4;
961                         break;
962                 }
963
964                 if (!shared_int) {
965                         /* Disable the other interrupts to be reported in
966                          * the cause register and then force the other
967                          * interrupts and see if any get posted.  If
968                          * an interrupt was posted to the bus, the
969                          * test failed.
970                          */
971                         adapter->test_icr = 0;
972                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
973                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
974                         msleep(10);
975
976                         if (adapter->test_icr) {
977                                 *data = 5;
978                                 break;
979                         }
980                 }
981         }
982
983         /* Disable all the interrupts */
984         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
985         msleep(10);
986
987         /* Unhook test interrupt handler */
988         free_irq(irq, netdev);
989
990         return *data;
991 }
992
993 static void
994 e1000_free_desc_rings(struct e1000_adapter *adapter)
995 {
996         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
997         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
998         struct pci_dev *pdev = adapter->pdev;
999         int i;
1000
1001         if (txdr->desc && txdr->buffer_info) {
1002                 for (i = 0; i < txdr->count; i++) {
1003                         if (txdr->buffer_info[i].dma)
1004                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
1005                                                  txdr->buffer_info[i].length,
1006                                                  PCI_DMA_TODEVICE);
1007                         if (txdr->buffer_info[i].skb)
1008                                 dev_kfree_skb(txdr->buffer_info[i].skb);
1009                 }
1010         }
1011
1012         if (rxdr->desc && rxdr->buffer_info) {
1013                 for (i = 0; i < rxdr->count; i++) {
1014                         if (rxdr->buffer_info[i].dma)
1015                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
1016                                                  rxdr->buffer_info[i].length,
1017                                                  PCI_DMA_FROMDEVICE);
1018                         if (rxdr->buffer_info[i].skb)
1019                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
1020                 }
1021         }
1022
1023         if (txdr->desc) {
1024                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
1025                 txdr->desc = NULL;
1026         }
1027         if (rxdr->desc) {
1028                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1029                 rxdr->desc = NULL;
1030         }
1031
1032         kfree(txdr->buffer_info);
1033         txdr->buffer_info = NULL;
1034         kfree(rxdr->buffer_info);
1035         rxdr->buffer_info = NULL;
1036
1037         return;
1038 }
1039
1040 static int
1041 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1042 {
1043         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1044         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1045         struct pci_dev *pdev = adapter->pdev;
1046         uint32_t rctl;
1047         int i, ret_val;
1048
1049         /* Setup Tx descriptor ring and Tx buffers */
1050
1051         if (!txdr->count)
1052                 txdr->count = E1000_DEFAULT_TXD;
1053
1054         if (!(txdr->buffer_info = kcalloc(txdr->count,
1055                                           sizeof(struct e1000_buffer),
1056                                           GFP_KERNEL))) {
1057                 ret_val = 1;
1058                 goto err_nomem;
1059         }
1060
1061         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1062         txdr->size = ALIGN(txdr->size, 4096);
1063         if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size,
1064                                                 &txdr->dma))) {
1065                 ret_val = 2;
1066                 goto err_nomem;
1067         }
1068         memset(txdr->desc, 0, txdr->size);
1069         txdr->next_to_use = txdr->next_to_clean = 0;
1070
1071         E1000_WRITE_REG(&adapter->hw, TDBAL,
1072                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1073         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1074         E1000_WRITE_REG(&adapter->hw, TDLEN,
1075                         txdr->count * sizeof(struct e1000_tx_desc));
1076         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1077         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1078         E1000_WRITE_REG(&adapter->hw, TCTL,
1079                         E1000_TCTL_PSP | E1000_TCTL_EN |
1080                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1081                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1082
1083         for (i = 0; i < txdr->count; i++) {
1084                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1085                 struct sk_buff *skb;
1086                 unsigned int size = 1024;
1087
1088                 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1089                         ret_val = 3;
1090                         goto err_nomem;
1091                 }
1092                 skb_put(skb, size);
1093                 txdr->buffer_info[i].skb = skb;
1094                 txdr->buffer_info[i].length = skb->len;
1095                 txdr->buffer_info[i].dma =
1096                         pci_map_single(pdev, skb->data, skb->len,
1097                                        PCI_DMA_TODEVICE);
1098                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1099                 tx_desc->lower.data = cpu_to_le32(skb->len);
1100                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1101                                                    E1000_TXD_CMD_IFCS |
1102                                                    E1000_TXD_CMD_RPS);
1103                 tx_desc->upper.data = 0;
1104         }
1105
1106         /* Setup Rx descriptor ring and Rx buffers */
1107
1108         if (!rxdr->count)
1109                 rxdr->count = E1000_DEFAULT_RXD;
1110
1111         if (!(rxdr->buffer_info = kcalloc(rxdr->count,
1112                                           sizeof(struct e1000_buffer),
1113                                           GFP_KERNEL))) {
1114                 ret_val = 4;
1115                 goto err_nomem;
1116         }
1117
1118         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1119         if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1120                 ret_val = 5;
1121                 goto err_nomem;
1122         }
1123         memset(rxdr->desc, 0, rxdr->size);
1124         rxdr->next_to_use = rxdr->next_to_clean = 0;
1125
1126         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1127         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1128         E1000_WRITE_REG(&adapter->hw, RDBAL,
1129                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1130         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1131         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1132         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1133         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1134         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1135                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1136                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1137         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1138
1139         for (i = 0; i < rxdr->count; i++) {
1140                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1141                 struct sk_buff *skb;
1142
1143                 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1144                                 GFP_KERNEL))) {
1145                         ret_val = 6;
1146                         goto err_nomem;
1147                 }
1148                 skb_reserve(skb, NET_IP_ALIGN);
1149                 rxdr->buffer_info[i].skb = skb;
1150                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1151                 rxdr->buffer_info[i].dma =
1152                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1153                                        PCI_DMA_FROMDEVICE);
1154                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1155                 memset(skb->data, 0x00, skb->len);
1156         }
1157
1158         return 0;
1159
1160 err_nomem:
1161         e1000_free_desc_rings(adapter);
1162         return ret_val;
1163 }
1164
1165 static void
1166 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1167 {
1168         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1169         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1170         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1171         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1172         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1173 }
1174
1175 static void
1176 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1177 {
1178         uint16_t phy_reg;
1179
1180         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1181          * Extended PHY Specific Control Register to 25MHz clock.  This
1182          * value defaults back to a 2.5MHz clock when the PHY is reset.
1183          */
1184         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1185         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1186         e1000_write_phy_reg(&adapter->hw,
1187                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1188
1189         /* In addition, because of the s/w reset above, we need to enable
1190          * CRS on TX.  This must be set for both full and half duplex
1191          * operation.
1192          */
1193         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1194         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1195         e1000_write_phy_reg(&adapter->hw,
1196                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1197 }
1198
1199 static int
1200 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1201 {
1202         uint32_t ctrl_reg;
1203         uint16_t phy_reg;
1204
1205         /* Setup the Device Control Register for PHY loopback test. */
1206
1207         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1208         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1209                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1210                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1211                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1212                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1213
1214         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1215
1216         /* Read the PHY Specific Control Register (0x10) */
1217         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1218
1219         /* Clear Auto-Crossover bits in PHY Specific Control Register
1220          * (bits 6:5).
1221          */
1222         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1223         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1224
1225         /* Perform software reset on the PHY */
1226         e1000_phy_reset(&adapter->hw);
1227
1228         /* Have to setup TX_CLK and TX_CRS after software reset */
1229         e1000_phy_reset_clk_and_crs(adapter);
1230
1231         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1232
1233         /* Wait for reset to complete. */
1234         udelay(500);
1235
1236         /* Have to setup TX_CLK and TX_CRS after software reset */
1237         e1000_phy_reset_clk_and_crs(adapter);
1238
1239         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1240         e1000_phy_disable_receiver(adapter);
1241
1242         /* Set the loopback bit in the PHY control register. */
1243         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1244         phy_reg |= MII_CR_LOOPBACK;
1245         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1246
1247         /* Setup TX_CLK and TX_CRS one more time. */
1248         e1000_phy_reset_clk_and_crs(adapter);
1249
1250         /* Check Phy Configuration */
1251         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1252         if (phy_reg != 0x4100)
1253                  return 9;
1254
1255         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1256         if (phy_reg != 0x0070)
1257                 return 10;
1258
1259         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1260         if (phy_reg != 0x001A)
1261                 return 11;
1262
1263         return 0;
1264 }
1265
1266 static int
1267 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1268 {
1269         uint32_t ctrl_reg = 0;
1270         uint32_t stat_reg = 0;
1271
1272         adapter->hw.autoneg = FALSE;
1273
1274         if (adapter->hw.phy_type == e1000_phy_m88) {
1275                 /* Auto-MDI/MDIX Off */
1276                 e1000_write_phy_reg(&adapter->hw,
1277                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1278                 /* reset to update Auto-MDI/MDIX */
1279                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1280                 /* autoneg off */
1281                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1282         } else if (adapter->hw.phy_type == e1000_phy_gg82563)
1283                 e1000_write_phy_reg(&adapter->hw,
1284                                     GG82563_PHY_KMRN_MODE_CTRL,
1285                                     0x1CC);
1286
1287         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1288
1289         if (adapter->hw.phy_type == e1000_phy_ife) {
1290                 /* force 100, set loopback */
1291                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100);
1292
1293                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1294                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1295                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1296                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1297                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1298                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1299         } else {
1300                 /* force 1000, set loopback */
1301                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1302
1303                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1304                 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1305                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1306                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1307                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1308                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1309                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1310         }
1311
1312         if (adapter->hw.media_type == e1000_media_type_copper &&
1313            adapter->hw.phy_type == e1000_phy_m88)
1314                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1315         else {
1316                 /* Set the ILOS bit on the fiber Nic is half
1317                  * duplex link is detected. */
1318                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1319                 if ((stat_reg & E1000_STATUS_FD) == 0)
1320                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1321         }
1322
1323         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1324
1325         /* Disable the receiver on the PHY so when a cable is plugged in, the
1326          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1327          */
1328         if (adapter->hw.phy_type == e1000_phy_m88)
1329                 e1000_phy_disable_receiver(adapter);
1330
1331         udelay(500);
1332
1333         return 0;
1334 }
1335
1336 static int
1337 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1338 {
1339         uint16_t phy_reg = 0;
1340         uint16_t count = 0;
1341
1342         switch (adapter->hw.mac_type) {
1343         case e1000_82543:
1344                 if (adapter->hw.media_type == e1000_media_type_copper) {
1345                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1346                          * Some PHY registers get corrupted at random, so
1347                          * attempt this 10 times.
1348                          */
1349                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1350                               count++ < 10);
1351                         if (count < 11)
1352                                 return 0;
1353                 }
1354                 break;
1355
1356         case e1000_82544:
1357         case e1000_82540:
1358         case e1000_82545:
1359         case e1000_82545_rev_3:
1360         case e1000_82546:
1361         case e1000_82546_rev_3:
1362         case e1000_82541:
1363         case e1000_82541_rev_2:
1364         case e1000_82547:
1365         case e1000_82547_rev_2:
1366         case e1000_82571:
1367         case e1000_82572:
1368         case e1000_82573:
1369         case e1000_80003es2lan:
1370         case e1000_ich8lan:
1371                 return e1000_integrated_phy_loopback(adapter);
1372                 break;
1373
1374         default:
1375                 /* Default PHY loopback work is to read the MII
1376                  * control register and assert bit 14 (loopback mode).
1377                  */
1378                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1379                 phy_reg |= MII_CR_LOOPBACK;
1380                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1381                 return 0;
1382                 break;
1383         }
1384
1385         return 8;
1386 }
1387
1388 static int
1389 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1390 {
1391         struct e1000_hw *hw = &adapter->hw;
1392         uint32_t rctl;
1393
1394         if (hw->media_type == e1000_media_type_fiber ||
1395             hw->media_type == e1000_media_type_internal_serdes) {
1396                 switch (hw->mac_type) {
1397                 case e1000_82545:
1398                 case e1000_82546:
1399                 case e1000_82545_rev_3:
1400                 case e1000_82546_rev_3:
1401                         return e1000_set_phy_loopback(adapter);
1402                         break;
1403                 case e1000_82571:
1404                 case e1000_82572:
1405 #define E1000_SERDES_LB_ON 0x410
1406                         e1000_set_phy_loopback(adapter);
1407                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1408                         msleep(10);
1409                         return 0;
1410                         break;
1411                 default:
1412                         rctl = E1000_READ_REG(hw, RCTL);
1413                         rctl |= E1000_RCTL_LBM_TCVR;
1414                         E1000_WRITE_REG(hw, RCTL, rctl);
1415                         return 0;
1416                 }
1417         } else if (hw->media_type == e1000_media_type_copper)
1418                 return e1000_set_phy_loopback(adapter);
1419
1420         return 7;
1421 }
1422
1423 static void
1424 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1425 {
1426         struct e1000_hw *hw = &adapter->hw;
1427         uint32_t rctl;
1428         uint16_t phy_reg;
1429
1430         rctl = E1000_READ_REG(hw, RCTL);
1431         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1432         E1000_WRITE_REG(hw, RCTL, rctl);
1433
1434         switch (hw->mac_type) {
1435         case e1000_82571:
1436         case e1000_82572:
1437                 if (hw->media_type == e1000_media_type_fiber ||
1438                     hw->media_type == e1000_media_type_internal_serdes) {
1439 #define E1000_SERDES_LB_OFF 0x400
1440                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1441                         msleep(10);
1442                         break;
1443                 }
1444                 /* Fall Through */
1445         case e1000_82545:
1446         case e1000_82546:
1447         case e1000_82545_rev_3:
1448         case e1000_82546_rev_3:
1449         default:
1450                 hw->autoneg = TRUE;
1451                 if (hw->phy_type == e1000_phy_gg82563)
1452                         e1000_write_phy_reg(hw,
1453                                             GG82563_PHY_KMRN_MODE_CTRL,
1454                                             0x180);
1455                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1456                 if (phy_reg & MII_CR_LOOPBACK) {
1457                         phy_reg &= ~MII_CR_LOOPBACK;
1458                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1459                         e1000_phy_reset(hw);
1460                 }
1461                 break;
1462         }
1463 }
1464
1465 static void
1466 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1467 {
1468         memset(skb->data, 0xFF, frame_size);
1469         frame_size &= ~1;
1470         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1471         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1472         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1473 }
1474
1475 static int
1476 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1477 {
1478         frame_size &= ~1;
1479         if (*(skb->data + 3) == 0xFF) {
1480                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1481                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1482                         return 0;
1483                 }
1484         }
1485         return 13;
1486 }
1487
1488 static int
1489 e1000_run_loopback_test(struct e1000_adapter *adapter)
1490 {
1491         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1492         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1493         struct pci_dev *pdev = adapter->pdev;
1494         int i, j, k, l, lc, good_cnt, ret_val=0;
1495         unsigned long time;
1496
1497         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1498
1499         /* Calculate the loop count based on the largest descriptor ring
1500          * The idea is to wrap the largest ring a number of times using 64
1501          * send/receive pairs during each loop
1502          */
1503
1504         if (rxdr->count <= txdr->count)
1505                 lc = ((txdr->count / 64) * 2) + 1;
1506         else
1507                 lc = ((rxdr->count / 64) * 2) + 1;
1508
1509         k = l = 0;
1510         for (j = 0; j <= lc; j++) { /* loop count loop */
1511                 for (i = 0; i < 64; i++) { /* send the packets */
1512                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1513                                         1024);
1514                         pci_dma_sync_single_for_device(pdev,
1515                                         txdr->buffer_info[k].dma,
1516                                         txdr->buffer_info[k].length,
1517                                         PCI_DMA_TODEVICE);
1518                         if (unlikely(++k == txdr->count)) k = 0;
1519                 }
1520                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1521                 msleep(200);
1522                 time = jiffies; /* set the start time for the receive */
1523                 good_cnt = 0;
1524                 do { /* receive the sent packets */
1525                         pci_dma_sync_single_for_cpu(pdev,
1526                                         rxdr->buffer_info[l].dma,
1527                                         rxdr->buffer_info[l].length,
1528                                         PCI_DMA_FROMDEVICE);
1529
1530                         ret_val = e1000_check_lbtest_frame(
1531                                         rxdr->buffer_info[l].skb,
1532                                         1024);
1533                         if (!ret_val)
1534                                 good_cnt++;
1535                         if (unlikely(++l == rxdr->count)) l = 0;
1536                         /* time + 20 msecs (200 msecs on 2.4) is more than
1537                          * enough time to complete the receives, if it's
1538                          * exceeded, break and error off
1539                          */
1540                 } while (good_cnt < 64 && jiffies < (time + 20));
1541                 if (good_cnt != 64) {
1542                         ret_val = 13; /* ret_val is the same as mis-compare */
1543                         break;
1544                 }
1545                 if (jiffies >= (time + 2)) {
1546                         ret_val = 14; /* error code for time out error */
1547                         break;
1548                 }
1549         } /* end loop count loop */
1550         return ret_val;
1551 }
1552
1553 static int
1554 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1555 {
1556         /* PHY loopback cannot be performed if SoL/IDER
1557          * sessions are active */
1558         if (e1000_check_phy_reset_block(&adapter->hw)) {
1559                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1560                         "when SoL/IDER is active.\n");
1561                 *data = 0;
1562                 goto out;
1563         }
1564
1565         if ((*data = e1000_setup_desc_rings(adapter)))
1566                 goto out;
1567         if ((*data = e1000_setup_loopback_test(adapter)))
1568                 goto err_loopback;
1569         *data = e1000_run_loopback_test(adapter);
1570         e1000_loopback_cleanup(adapter);
1571
1572 err_loopback:
1573         e1000_free_desc_rings(adapter);
1574 out:
1575         return *data;
1576 }
1577
1578 static int
1579 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1580 {
1581         *data = 0;
1582         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1583                 int i = 0;
1584                 adapter->hw.serdes_link_down = TRUE;
1585
1586                 /* On some blade server designs, link establishment
1587                  * could take as long as 2-3 minutes */
1588                 do {
1589                         e1000_check_for_link(&adapter->hw);
1590                         if (adapter->hw.serdes_link_down == FALSE)
1591                                 return *data;
1592                         msleep(20);
1593                 } while (i++ < 3750);
1594
1595                 *data = 1;
1596         } else {
1597                 e1000_check_for_link(&adapter->hw);
1598                 if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1599                         msleep(4000);
1600
1601                 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1602                         *data = 1;
1603                 }
1604         }
1605         return *data;
1606 }
1607
1608 static int
1609 e1000_get_sset_count(struct net_device *netdev, int sset)
1610 {
1611         switch (sset) {
1612         case ETH_SS_TEST:
1613                 return E1000_TEST_LEN;
1614         case ETH_SS_STATS:
1615                 return E1000_STATS_LEN;
1616         default:
1617                 return -EOPNOTSUPP;
1618         }
1619 }
1620
1621 static void
1622 e1000_diag_test(struct net_device *netdev,
1623                    struct ethtool_test *eth_test, uint64_t *data)
1624 {
1625         struct e1000_adapter *adapter = netdev_priv(netdev);
1626         boolean_t if_running = netif_running(netdev);
1627
1628         set_bit(__E1000_TESTING, &adapter->flags);
1629         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1630                 /* Offline tests */
1631
1632                 /* save speed, duplex, autoneg settings */
1633                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1634                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1635                 uint8_t autoneg = adapter->hw.autoneg;
1636
1637                 DPRINTK(HW, INFO, "offline testing starting\n");
1638
1639                 /* Link test performed before hardware reset so autoneg doesn't
1640                  * interfere with test result */
1641                 if (e1000_link_test(adapter, &data[4]))
1642                         eth_test->flags |= ETH_TEST_FL_FAILED;
1643
1644                 if (if_running)
1645                         /* indicate we're in test mode */
1646                         dev_close(netdev);
1647                 else
1648                         e1000_reset(adapter);
1649
1650                 if (e1000_reg_test(adapter, &data[0]))
1651                         eth_test->flags |= ETH_TEST_FL_FAILED;
1652
1653                 e1000_reset(adapter);
1654                 if (e1000_eeprom_test(adapter, &data[1]))
1655                         eth_test->flags |= ETH_TEST_FL_FAILED;
1656
1657                 e1000_reset(adapter);
1658                 if (e1000_intr_test(adapter, &data[2]))
1659                         eth_test->flags |= ETH_TEST_FL_FAILED;
1660
1661                 e1000_reset(adapter);
1662                 /* make sure the phy is powered up */
1663                 e1000_power_up_phy(adapter);
1664                 if (e1000_loopback_test(adapter, &data[3]))
1665                         eth_test->flags |= ETH_TEST_FL_FAILED;
1666
1667                 /* restore speed, duplex, autoneg settings */
1668                 adapter->hw.autoneg_advertised = autoneg_advertised;
1669                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1670                 adapter->hw.autoneg = autoneg;
1671
1672                 e1000_reset(adapter);
1673                 clear_bit(__E1000_TESTING, &adapter->flags);
1674                 if (if_running)
1675                         dev_open(netdev);
1676         } else {
1677                 DPRINTK(HW, INFO, "online testing starting\n");
1678                 /* Online tests */
1679                 if (e1000_link_test(adapter, &data[4]))
1680                         eth_test->flags |= ETH_TEST_FL_FAILED;
1681
1682                 /* Online tests aren't run; pass by default */
1683                 data[0] = 0;
1684                 data[1] = 0;
1685                 data[2] = 0;
1686                 data[3] = 0;
1687
1688                 clear_bit(__E1000_TESTING, &adapter->flags);
1689         }
1690         msleep_interruptible(4 * 1000);
1691 }
1692
1693 static int e1000_wol_exclusion(struct e1000_adapter *adapter, struct ethtool_wolinfo *wol)
1694 {
1695         struct e1000_hw *hw = &adapter->hw;
1696         int retval = 1; /* fail by default */
1697
1698         switch (hw->device_id) {
1699         case E1000_DEV_ID_82542:
1700         case E1000_DEV_ID_82543GC_FIBER:
1701         case E1000_DEV_ID_82543GC_COPPER:
1702         case E1000_DEV_ID_82544EI_FIBER:
1703         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1704         case E1000_DEV_ID_82545EM_FIBER:
1705         case E1000_DEV_ID_82545EM_COPPER:
1706         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1707         case E1000_DEV_ID_82546GB_PCIE:
1708         case E1000_DEV_ID_82571EB_SERDES_QUAD:
1709                 /* these don't support WoL at all */
1710                 wol->supported = 0;
1711                 break;
1712         case E1000_DEV_ID_82546EB_FIBER:
1713         case E1000_DEV_ID_82546GB_FIBER:
1714         case E1000_DEV_ID_82571EB_FIBER:
1715         case E1000_DEV_ID_82571EB_SERDES:
1716         case E1000_DEV_ID_82571EB_COPPER:
1717                 /* Wake events not supported on port B */
1718                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1719                         wol->supported = 0;
1720                         break;
1721                 }
1722                 /* return success for non excluded adapter ports */
1723                 retval = 0;
1724                 break;
1725         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1726         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1727         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1728         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1729         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1730                 /* quad port adapters only support WoL on port A */
1731                 if (!adapter->quad_port_a) {
1732                         wol->supported = 0;
1733                         break;
1734                 }
1735                 /* return success for non excluded adapter ports */
1736                 retval = 0;
1737                 break;
1738         default:
1739                 /* dual port cards only support WoL on port A from now on
1740                  * unless it was enabled in the eeprom for port B
1741                  * so exclude FUNC_1 ports from having WoL enabled */
1742                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1 &&
1743                     !adapter->eeprom_wol) {
1744                         wol->supported = 0;
1745                         break;
1746                 }
1747
1748                 retval = 0;
1749         }
1750
1751         return retval;
1752 }
1753
1754 static void
1755 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1756 {
1757         struct e1000_adapter *adapter = netdev_priv(netdev);
1758
1759         wol->supported = WAKE_UCAST | WAKE_MCAST |
1760                          WAKE_BCAST | WAKE_MAGIC;
1761         wol->wolopts = 0;
1762
1763         /* this function will set ->supported = 0 and return 1 if wol is not
1764          * supported by this hardware */
1765         if (e1000_wol_exclusion(adapter, wol))
1766                 return;
1767
1768         /* apply any specific unsupported masks here */
1769         switch (adapter->hw.device_id) {
1770         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1771                 /* KSP3 does not suppport UCAST wake-ups */
1772                 wol->supported &= ~WAKE_UCAST;
1773
1774                 if (adapter->wol & E1000_WUFC_EX)
1775                         DPRINTK(DRV, ERR, "Interface does not support "
1776                         "directed (unicast) frame wake-up packets\n");
1777                 break;
1778         default:
1779                 break;
1780         }
1781
1782         if (adapter->wol & E1000_WUFC_EX)
1783                 wol->wolopts |= WAKE_UCAST;
1784         if (adapter->wol & E1000_WUFC_MC)
1785                 wol->wolopts |= WAKE_MCAST;
1786         if (adapter->wol & E1000_WUFC_BC)
1787                 wol->wolopts |= WAKE_BCAST;
1788         if (adapter->wol & E1000_WUFC_MAG)
1789                 wol->wolopts |= WAKE_MAGIC;
1790
1791         return;
1792 }
1793
1794 static int
1795 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1796 {
1797         struct e1000_adapter *adapter = netdev_priv(netdev);
1798         struct e1000_hw *hw = &adapter->hw;
1799
1800         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1801                 return -EOPNOTSUPP;
1802
1803         if (e1000_wol_exclusion(adapter, wol))
1804                 return wol->wolopts ? -EOPNOTSUPP : 0;
1805
1806         switch (hw->device_id) {
1807         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1808                 if (wol->wolopts & WAKE_UCAST) {
1809                         DPRINTK(DRV, ERR, "Interface does not support "
1810                         "directed (unicast) frame wake-up packets\n");
1811                         return -EOPNOTSUPP;
1812                 }
1813                 break;
1814         default:
1815                 break;
1816         }
1817
1818         /* these settings will always override what we currently have */
1819         adapter->wol = 0;
1820
1821         if (wol->wolopts & WAKE_UCAST)
1822                 adapter->wol |= E1000_WUFC_EX;
1823         if (wol->wolopts & WAKE_MCAST)
1824                 adapter->wol |= E1000_WUFC_MC;
1825         if (wol->wolopts & WAKE_BCAST)
1826                 adapter->wol |= E1000_WUFC_BC;
1827         if (wol->wolopts & WAKE_MAGIC)
1828                 adapter->wol |= E1000_WUFC_MAG;
1829
1830         return 0;
1831 }
1832
1833 /* toggle LED 4 times per second = 2 "blinks" per second */
1834 #define E1000_ID_INTERVAL       (HZ/4)
1835
1836 /* bit defines for adapter->led_status */
1837 #define E1000_LED_ON            0
1838
1839 static void
1840 e1000_led_blink_callback(unsigned long data)
1841 {
1842         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1843
1844         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1845                 e1000_led_off(&adapter->hw);
1846         else
1847                 e1000_led_on(&adapter->hw);
1848
1849         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1850 }
1851
1852 static int
1853 e1000_phys_id(struct net_device *netdev, uint32_t data)
1854 {
1855         struct e1000_adapter *adapter = netdev_priv(netdev);
1856
1857         if (!data)
1858                 data = INT_MAX;
1859
1860         if (adapter->hw.mac_type < e1000_82571) {
1861                 if (!adapter->blink_timer.function) {
1862                         init_timer(&adapter->blink_timer);
1863                         adapter->blink_timer.function = e1000_led_blink_callback;
1864                         adapter->blink_timer.data = (unsigned long) adapter;
1865                 }
1866                 e1000_setup_led(&adapter->hw);
1867                 mod_timer(&adapter->blink_timer, jiffies);
1868                 msleep_interruptible(data * 1000);
1869                 del_timer_sync(&adapter->blink_timer);
1870         } else if (adapter->hw.phy_type == e1000_phy_ife) {
1871                 if (!adapter->blink_timer.function) {
1872                         init_timer(&adapter->blink_timer);
1873                         adapter->blink_timer.function = e1000_led_blink_callback;
1874                         adapter->blink_timer.data = (unsigned long) adapter;
1875                 }
1876                 mod_timer(&adapter->blink_timer, jiffies);
1877                 msleep_interruptible(data * 1000);
1878                 del_timer_sync(&adapter->blink_timer);
1879                 e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
1880         } else {
1881                 e1000_blink_led_start(&adapter->hw);
1882                 msleep_interruptible(data * 1000);
1883         }
1884
1885         e1000_led_off(&adapter->hw);
1886         clear_bit(E1000_LED_ON, &adapter->led_status);
1887         e1000_cleanup_led(&adapter->hw);
1888
1889         return 0;
1890 }
1891
1892 static int
1893 e1000_nway_reset(struct net_device *netdev)
1894 {
1895         struct e1000_adapter *adapter = netdev_priv(netdev);
1896         if (netif_running(netdev))
1897                 e1000_reinit_locked(adapter);
1898         return 0;
1899 }
1900
1901 static void
1902 e1000_get_ethtool_stats(struct net_device *netdev,
1903                 struct ethtool_stats *stats, uint64_t *data)
1904 {
1905         struct e1000_adapter *adapter = netdev_priv(netdev);
1906         int i;
1907
1908         e1000_update_stats(adapter);
1909         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1910                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1911                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1912                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1913         }
1914 /*      BUG_ON(i != E1000_STATS_LEN); */
1915 }
1916
1917 static void
1918 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1919 {
1920         uint8_t *p = data;
1921         int i;
1922
1923         switch (stringset) {
1924         case ETH_SS_TEST:
1925                 memcpy(data, *e1000_gstrings_test,
1926                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1927                 break;
1928         case ETH_SS_STATS:
1929                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1930                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1931                                ETH_GSTRING_LEN);
1932                         p += ETH_GSTRING_LEN;
1933                 }
1934 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1935                 break;
1936         }
1937 }
1938
1939 static const struct ethtool_ops e1000_ethtool_ops = {
1940         .get_settings           = e1000_get_settings,
1941         .set_settings           = e1000_set_settings,
1942         .get_drvinfo            = e1000_get_drvinfo,
1943         .get_regs_len           = e1000_get_regs_len,
1944         .get_regs               = e1000_get_regs,
1945         .get_wol                = e1000_get_wol,
1946         .set_wol                = e1000_set_wol,
1947         .get_msglevel           = e1000_get_msglevel,
1948         .set_msglevel           = e1000_set_msglevel,
1949         .nway_reset             = e1000_nway_reset,
1950         .get_link               = ethtool_op_get_link,
1951         .get_eeprom_len         = e1000_get_eeprom_len,
1952         .get_eeprom             = e1000_get_eeprom,
1953         .set_eeprom             = e1000_set_eeprom,
1954         .get_ringparam          = e1000_get_ringparam,
1955         .set_ringparam          = e1000_set_ringparam,
1956         .get_pauseparam         = e1000_get_pauseparam,
1957         .set_pauseparam         = e1000_set_pauseparam,
1958         .get_rx_csum            = e1000_get_rx_csum,
1959         .set_rx_csum            = e1000_set_rx_csum,
1960         .get_tx_csum            = e1000_get_tx_csum,
1961         .set_tx_csum            = e1000_set_tx_csum,
1962         .set_sg                 = ethtool_op_set_sg,
1963         .set_tso                = e1000_set_tso,
1964         .self_test              = e1000_diag_test,
1965         .get_strings            = e1000_get_strings,
1966         .phys_id                = e1000_phys_id,
1967         .get_ethtool_stats      = e1000_get_ethtool_stats,
1968         .get_sset_count         = e1000_get_sset_count,
1969 };
1970
1971 void e1000_set_ethtool_ops(struct net_device *netdev)
1972 {
1973         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1974 }