2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat <alan@redhat.com>
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
26 #include <asm/byteorder.h>
28 #include <asm/uaccess.h>
32 * Conventional PIO operations for ATA devices
35 static u8 ide_inb (unsigned long port)
37 return (u8) inb(port);
40 static u16 ide_inw (unsigned long port)
42 return (u16) inw(port);
45 static void ide_insw (unsigned long port, void *addr, u32 count)
47 insw(port, addr, count);
50 static void ide_insl (unsigned long port, void *addr, u32 count)
52 insl(port, addr, count);
55 static void ide_outb (u8 val, unsigned long port)
60 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
65 static void ide_outw (u16 val, unsigned long port)
70 static void ide_outsw (unsigned long port, void *addr, u32 count)
72 outsw(port, addr, count);
75 static void ide_outsl (unsigned long port, void *addr, u32 count)
77 outsl(port, addr, count);
80 void default_hwif_iops (ide_hwif_t *hwif)
82 hwif->OUTB = ide_outb;
83 hwif->OUTBSYNC = ide_outbsync;
84 hwif->OUTW = ide_outw;
85 hwif->OUTSW = ide_outsw;
86 hwif->OUTSL = ide_outsl;
89 hwif->INSW = ide_insw;
90 hwif->INSL = ide_insl;
94 * MMIO operations, typically used for SATA controllers
97 static u8 ide_mm_inb (unsigned long port)
99 return (u8) readb((void __iomem *) port);
102 static u16 ide_mm_inw (unsigned long port)
104 return (u16) readw((void __iomem *) port);
107 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
109 __ide_mm_insw((void __iomem *) port, addr, count);
112 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
114 __ide_mm_insl((void __iomem *) port, addr, count);
117 static void ide_mm_outb (u8 value, unsigned long port)
119 writeb(value, (void __iomem *) port);
122 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
124 writeb(value, (void __iomem *) port);
127 static void ide_mm_outw (u16 value, unsigned long port)
129 writew(value, (void __iomem *) port);
132 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
134 __ide_mm_outsw((void __iomem *) port, addr, count);
137 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
139 __ide_mm_outsl((void __iomem *) port, addr, count);
142 void default_hwif_mmiops (ide_hwif_t *hwif)
144 hwif->OUTB = ide_mm_outb;
145 /* Most systems will need to override OUTBSYNC, alas however
146 this one is controller specific! */
147 hwif->OUTBSYNC = ide_mm_outbsync;
148 hwif->OUTW = ide_mm_outw;
149 hwif->OUTSW = ide_mm_outsw;
150 hwif->OUTSL = ide_mm_outsl;
151 hwif->INB = ide_mm_inb;
152 hwif->INW = ide_mm_inw;
153 hwif->INSW = ide_mm_insw;
154 hwif->INSL = ide_mm_insl;
157 EXPORT_SYMBOL(default_hwif_mmiops);
159 void SELECT_DRIVE (ide_drive_t *drive)
161 ide_hwif_t *hwif = drive->hwif;
163 if (hwif->selectproc)
164 hwif->selectproc(drive);
166 hwif->OUTB(drive->select.all, hwif->io_ports[IDE_SELECT_OFFSET]);
169 void SELECT_MASK (ide_drive_t *drive, int mask)
171 if (HWIF(drive)->maskproc)
172 HWIF(drive)->maskproc(drive, mask);
176 * Some localbus EIDE interfaces require a special access sequence
177 * when using 32-bit I/O instructions to transfer data. We call this
178 * the "vlb_sync" sequence, which consists of three successive reads
179 * of the sector count register location, with interrupts disabled
180 * to ensure that the reads all happen together.
182 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
184 (void) HWIF(drive)->INB(port);
185 (void) HWIF(drive)->INB(port);
186 (void) HWIF(drive)->INB(port);
190 * This is used for most PIO data transfers *from* the IDE interface
192 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
194 ide_hwif_t *hwif = HWIF(drive);
195 u8 io_32bit = drive->io_32bit;
201 local_irq_save(flags);
202 ata_vlb_sync(drive, hwif->io_ports[IDE_NSECTOR_OFFSET]);
203 hwif->INSL(hwif->io_ports[IDE_DATA_OFFSET], buffer,
205 local_irq_restore(flags);
207 hwif->INSL(hwif->io_ports[IDE_DATA_OFFSET], buffer,
210 hwif->INSW(hwif->io_ports[IDE_DATA_OFFSET], buffer,
215 * This is used for most PIO data transfers *to* the IDE interface
217 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
219 ide_hwif_t *hwif = HWIF(drive);
220 u8 io_32bit = drive->io_32bit;
226 local_irq_save(flags);
227 ata_vlb_sync(drive, hwif->io_ports[IDE_NSECTOR_OFFSET]);
228 hwif->OUTSL(hwif->io_ports[IDE_DATA_OFFSET], buffer,
230 local_irq_restore(flags);
232 hwif->OUTSL(hwif->io_ports[IDE_DATA_OFFSET], buffer,
235 hwif->OUTSW(hwif->io_ports[IDE_DATA_OFFSET], buffer,
240 * The following routines are mainly used by the ATAPI drivers.
242 * These routines will round up any request for an odd number of bytes,
243 * so if an odd bytecount is specified, be sure that there's at least one
244 * extra byte allocated for the buffer.
247 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
249 ide_hwif_t *hwif = HWIF(drive);
252 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
253 if (MACH_IS_ATARI || MACH_IS_Q40) {
254 /* Atari has a byte-swapped IDE interface */
255 insw_swapw(hwif->io_ports[IDE_DATA_OFFSET], buffer,
259 #endif /* CONFIG_ATARI || CONFIG_Q40 */
260 hwif->ata_input_data(drive, buffer, bytecount / 4);
261 if ((bytecount & 0x03) >= 2)
262 hwif->INSW(hwif->io_ports[IDE_DATA_OFFSET],
263 (u8 *)buffer + (bytecount & ~0x03), 1);
266 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
268 ide_hwif_t *hwif = HWIF(drive);
271 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
272 if (MACH_IS_ATARI || MACH_IS_Q40) {
273 /* Atari has a byte-swapped IDE interface */
274 outsw_swapw(hwif->io_ports[IDE_DATA_OFFSET], buffer,
278 #endif /* CONFIG_ATARI || CONFIG_Q40 */
279 hwif->ata_output_data(drive, buffer, bytecount / 4);
280 if ((bytecount & 0x03) >= 2)
281 hwif->OUTSW(hwif->io_ports[IDE_DATA_OFFSET],
282 (u8 *)buffer + (bytecount & ~0x03), 1);
285 void default_hwif_transport(ide_hwif_t *hwif)
287 hwif->ata_input_data = ata_input_data;
288 hwif->ata_output_data = ata_output_data;
289 hwif->atapi_input_bytes = atapi_input_bytes;
290 hwif->atapi_output_bytes = atapi_output_bytes;
293 void ide_fix_driveid (struct hd_driveid *id)
295 #ifndef __LITTLE_ENDIAN
300 id->config = __le16_to_cpu(id->config);
301 id->cyls = __le16_to_cpu(id->cyls);
302 id->reserved2 = __le16_to_cpu(id->reserved2);
303 id->heads = __le16_to_cpu(id->heads);
304 id->track_bytes = __le16_to_cpu(id->track_bytes);
305 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
306 id->sectors = __le16_to_cpu(id->sectors);
307 id->vendor0 = __le16_to_cpu(id->vendor0);
308 id->vendor1 = __le16_to_cpu(id->vendor1);
309 id->vendor2 = __le16_to_cpu(id->vendor2);
310 stringcast = (u16 *)&id->serial_no[0];
311 for (i = 0; i < (20/2); i++)
312 stringcast[i] = __le16_to_cpu(stringcast[i]);
313 id->buf_type = __le16_to_cpu(id->buf_type);
314 id->buf_size = __le16_to_cpu(id->buf_size);
315 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
316 stringcast = (u16 *)&id->fw_rev[0];
317 for (i = 0; i < (8/2); i++)
318 stringcast[i] = __le16_to_cpu(stringcast[i]);
319 stringcast = (u16 *)&id->model[0];
320 for (i = 0; i < (40/2); i++)
321 stringcast[i] = __le16_to_cpu(stringcast[i]);
322 id->dword_io = __le16_to_cpu(id->dword_io);
323 id->reserved50 = __le16_to_cpu(id->reserved50);
324 id->field_valid = __le16_to_cpu(id->field_valid);
325 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
326 id->cur_heads = __le16_to_cpu(id->cur_heads);
327 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
328 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
329 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
330 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
331 id->dma_1word = __le16_to_cpu(id->dma_1word);
332 id->dma_mword = __le16_to_cpu(id->dma_mword);
333 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
334 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
335 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
336 id->eide_pio = __le16_to_cpu(id->eide_pio);
337 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
338 for (i = 0; i < 2; ++i)
339 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
340 for (i = 0; i < 4; ++i)
341 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
342 id->queue_depth = __le16_to_cpu(id->queue_depth);
343 for (i = 0; i < 4; ++i)
344 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
345 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
346 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
347 id->command_set_1 = __le16_to_cpu(id->command_set_1);
348 id->command_set_2 = __le16_to_cpu(id->command_set_2);
349 id->cfsse = __le16_to_cpu(id->cfsse);
350 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
351 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
352 id->csf_default = __le16_to_cpu(id->csf_default);
353 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
354 id->trseuc = __le16_to_cpu(id->trseuc);
355 id->trsEuc = __le16_to_cpu(id->trsEuc);
356 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
357 id->mprc = __le16_to_cpu(id->mprc);
358 id->hw_config = __le16_to_cpu(id->hw_config);
359 id->acoustic = __le16_to_cpu(id->acoustic);
360 id->msrqs = __le16_to_cpu(id->msrqs);
361 id->sxfert = __le16_to_cpu(id->sxfert);
362 id->sal = __le16_to_cpu(id->sal);
363 id->spg = __le32_to_cpu(id->spg);
364 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
365 for (i = 0; i < 22; i++)
366 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
367 id->last_lun = __le16_to_cpu(id->last_lun);
368 id->word127 = __le16_to_cpu(id->word127);
369 id->dlf = __le16_to_cpu(id->dlf);
370 id->csfo = __le16_to_cpu(id->csfo);
371 for (i = 0; i < 26; i++)
372 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
373 id->word156 = __le16_to_cpu(id->word156);
374 for (i = 0; i < 3; i++)
375 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
376 id->cfa_power = __le16_to_cpu(id->cfa_power);
377 for (i = 0; i < 14; i++)
378 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
379 for (i = 0; i < 31; i++)
380 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
381 for (i = 0; i < 48; i++)
382 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
383 id->integrity_word = __le16_to_cpu(id->integrity_word);
385 # error "Please fix <asm/byteorder.h>"
391 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
392 * removing leading/trailing blanks and compressing internal blanks.
393 * It is primarily used to tidy up the model name/number fields as
394 * returned by the WIN_[P]IDENTIFY commands.
397 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
399 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
402 /* convert from big-endian to host byte order */
403 for (p = end ; p != s;) {
404 unsigned short *pp = (unsigned short *) (p -= 2);
408 /* strip leading blanks */
409 while (s != end && *s == ' ')
411 /* compress internal blanks and strip trailing blanks */
412 while (s != end && *s) {
413 if (*s++ != ' ' || (s != end && *s && *s != ' '))
416 /* wipe out trailing garbage */
421 EXPORT_SYMBOL(ide_fixstring);
424 * Needed for PCI irq sharing
426 int drive_is_ready (ide_drive_t *drive)
428 ide_hwif_t *hwif = HWIF(drive);
431 if (drive->waiting_for_dma)
432 return hwif->ide_dma_test_irq(drive);
435 /* need to guarantee 400ns since last command was issued */
440 * We do a passive status test under shared PCI interrupts on
441 * cards that truly share the ATA side interrupt, but may also share
442 * an interrupt with another pci card/device. We make no assumptions
443 * about possible isa-pnp and pci-pnp issues yet.
445 if (hwif->io_ports[IDE_CONTROL_OFFSET])
446 stat = ide_read_altstatus(drive);
448 /* Note: this may clear a pending IRQ!! */
449 stat = ide_read_status(drive);
451 if (stat & BUSY_STAT)
452 /* drive busy: definitely not interrupting */
455 /* drive ready: *might* be interrupting */
459 EXPORT_SYMBOL(drive_is_ready);
462 * This routine busy-waits for the drive status to be not "busy".
463 * It then checks the status for all of the "good" bits and none
464 * of the "bad" bits, and if all is okay it returns 0. All other
465 * cases return error -- caller may then invoke ide_error().
467 * This routine should get fixed to not hog the cpu during extra long waits..
468 * That could be done by busy-waiting for the first jiffy or two, and then
469 * setting a timer to wake up at half second intervals thereafter,
470 * until timeout is achieved, before timing out.
472 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
478 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
479 stat = ide_read_status(drive);
481 if (stat & BUSY_STAT) {
482 local_irq_set(flags);
484 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
485 if (time_after(jiffies, timeout)) {
487 * One last read after the timeout in case
488 * heavy interrupt load made us not make any
489 * progress during the timeout..
491 stat = ide_read_status(drive);
492 if (!(stat & BUSY_STAT))
495 local_irq_restore(flags);
500 local_irq_restore(flags);
503 * Allow status to settle, then read it again.
504 * A few rare drives vastly violate the 400ns spec here,
505 * so we'll wait up to 10usec for a "good" status
506 * rather than expensively fail things immediately.
507 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
509 for (i = 0; i < 10; i++) {
511 stat = ide_read_status(drive);
513 if (OK_STAT(stat, good, bad)) {
523 * In case of error returns error value after doing "*startstop = ide_error()".
524 * The caller should return the updated value of "startstop" in this case,
525 * "startstop" is unchanged when the function returns 0.
527 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
532 /* bail early if we've exceeded max_failures */
533 if (drive->max_failures && (drive->failures > drive->max_failures)) {
534 *startstop = ide_stopped;
538 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
541 char *s = (err == -EBUSY) ? "status timeout" : "status error";
542 *startstop = ide_error(drive, s, stat);
548 EXPORT_SYMBOL(ide_wait_stat);
551 * ide_in_drive_list - look for drive in black/white list
552 * @id: drive identifier
553 * @drive_table: list to inspect
555 * Look for a drive in the blacklist and the whitelist tables
556 * Returns 1 if the drive is found in the table.
559 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
561 for ( ; drive_table->id_model; drive_table++)
562 if ((!strcmp(drive_table->id_model, id->model)) &&
563 (!drive_table->id_firmware ||
564 strstr(id->fw_rev, drive_table->id_firmware)))
569 EXPORT_SYMBOL_GPL(ide_in_drive_list);
572 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
573 * We list them here and depend on the device side cable detection for them.
575 * Some optical devices with the buggy firmwares have the same problem.
577 static const struct drive_list_entry ivb_list[] = {
578 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
579 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
580 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
581 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
582 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
587 * All hosts that use the 80c ribbon must use!
588 * The name is derived from upper byte of word 93 and the 80c ribbon.
590 u8 eighty_ninty_three (ide_drive_t *drive)
592 ide_hwif_t *hwif = drive->hwif;
593 struct hd_driveid *id = drive->id;
594 int ivb = ide_in_drive_list(id, ivb_list);
596 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
600 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
603 if (ide_dev_is_sata(id) && !ivb)
606 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
611 * - change master/slave IDENTIFY order
612 * - force bit13 (80c cable present) check also for !ivb devices
613 * (unless the slave device is pre-ATA3)
615 if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
619 if (drive->udma33_warned == 1)
622 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
623 "limiting max speed to UDMA33\n",
625 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
627 drive->udma33_warned = 1;
632 int ide_driveid_update(ide_drive_t *drive)
634 ide_hwif_t *hwif = drive->hwif;
635 struct hd_driveid *id;
636 unsigned long timeout, flags;
640 * Re-read drive->id for possible DMA mode
641 * change (copied from ide-probe.c)
644 SELECT_MASK(drive, 1);
645 ide_set_irq(drive, 1);
647 hwif->OUTB(WIN_IDENTIFY, hwif->io_ports[IDE_COMMAND_OFFSET]);
648 timeout = jiffies + WAIT_WORSTCASE;
650 if (time_after(jiffies, timeout)) {
651 SELECT_MASK(drive, 0);
652 return 0; /* drive timed-out */
655 msleep(50); /* give drive a breather */
656 stat = ide_read_altstatus(drive);
657 } while (stat & BUSY_STAT);
659 msleep(50); /* wait for IRQ and DRQ_STAT */
660 stat = ide_read_status(drive);
662 if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
663 SELECT_MASK(drive, 0);
664 printk("%s: CHECK for good STATUS\n", drive->name);
667 local_irq_save(flags);
668 SELECT_MASK(drive, 0);
669 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
671 local_irq_restore(flags);
674 hwif->ata_input_data(drive, id, SECTOR_WORDS);
675 (void)ide_read_status(drive); /* clear drive IRQ */
677 local_irq_restore(flags);
680 drive->id->dma_ultra = id->dma_ultra;
681 drive->id->dma_mword = id->dma_mword;
682 drive->id->dma_1word = id->dma_1word;
683 /* anything more ? */
686 if (drive->using_dma && ide_id_dma_bug(drive))
693 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
695 ide_hwif_t *hwif = drive->hwif;
699 // while (HWGROUP(drive)->busy)
702 #ifdef CONFIG_BLK_DEV_IDEDMA
703 if (hwif->dma_host_set) /* check if host supports DMA */
704 hwif->dma_host_set(drive, 0);
707 /* Skip setting PIO flow-control modes on pre-EIDE drives */
708 if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
712 * Don't use ide_wait_cmd here - it will
713 * attempt to set_geometry and recalibrate,
714 * but for some reason these don't work at
715 * this point (lost interrupt).
718 * Select the drive, and issue the SETFEATURES command
720 disable_irq_nosync(hwif->irq);
723 * FIXME: we race against the running IRQ here if
724 * this is called from non IRQ context. If we use
725 * disable_irq() we hang on the error path. Work
731 SELECT_MASK(drive, 0);
733 ide_set_irq(drive, 0);
734 hwif->OUTB(speed, hwif->io_ports[IDE_NSECTOR_OFFSET]);
735 hwif->OUTB(SETFEATURES_XFER, hwif->io_ports[IDE_FEATURE_OFFSET]);
736 hwif->OUTBSYNC(drive, WIN_SETFEATURES,
737 hwif->io_ports[IDE_COMMAND_OFFSET]);
738 if (drive->quirk_list == 2)
739 ide_set_irq(drive, 1);
741 error = __ide_wait_stat(drive, drive->ready_stat,
742 BUSY_STAT|DRQ_STAT|ERR_STAT,
745 SELECT_MASK(drive, 0);
747 enable_irq(hwif->irq);
750 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
754 drive->id->dma_ultra &= ~0xFF00;
755 drive->id->dma_mword &= ~0x0F00;
756 drive->id->dma_1word &= ~0x0F00;
759 #ifdef CONFIG_BLK_DEV_IDEDMA
760 if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
762 hwif->dma_host_set(drive, 1);
763 else if (hwif->dma_host_set) /* check if host supports DMA */
764 ide_dma_off_quietly(drive);
768 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
769 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
770 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
771 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
772 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
773 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
774 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
775 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
776 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
777 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
778 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
779 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
780 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
781 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
784 if (!drive->init_speed)
785 drive->init_speed = speed;
786 drive->current_speed = speed;
791 * This should get invoked any time we exit the driver to
792 * wait for an interrupt response from a drive. handler() points
793 * at the appropriate code to handle the next interrupt, and a
794 * timer is started to prevent us from waiting forever in case
795 * something goes wrong (see the ide_timer_expiry() handler later on).
797 * See also ide_execute_command
799 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
800 unsigned int timeout, ide_expiry_t *expiry)
802 ide_hwgroup_t *hwgroup = HWGROUP(drive);
804 BUG_ON(hwgroup->handler);
805 hwgroup->handler = handler;
806 hwgroup->expiry = expiry;
807 hwgroup->timer.expires = jiffies + timeout;
808 hwgroup->req_gen_timer = hwgroup->req_gen;
809 add_timer(&hwgroup->timer);
812 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
813 unsigned int timeout, ide_expiry_t *expiry)
816 spin_lock_irqsave(&ide_lock, flags);
817 __ide_set_handler(drive, handler, timeout, expiry);
818 spin_unlock_irqrestore(&ide_lock, flags);
821 EXPORT_SYMBOL(ide_set_handler);
824 * ide_execute_command - execute an IDE command
825 * @drive: IDE drive to issue the command against
826 * @command: command byte to write
827 * @handler: handler for next phase
828 * @timeout: timeout for command
829 * @expiry: handler to run on timeout
831 * Helper function to issue an IDE command. This handles the
832 * atomicity requirements, command timing and ensures that the
833 * handler and IRQ setup do not race. All IDE command kick off
834 * should go via this function or do equivalent locking.
837 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
838 unsigned timeout, ide_expiry_t *expiry)
841 ide_hwif_t *hwif = HWIF(drive);
843 spin_lock_irqsave(&ide_lock, flags);
844 __ide_set_handler(drive, handler, timeout, expiry);
845 hwif->OUTBSYNC(drive, cmd, hwif->io_ports[IDE_COMMAND_OFFSET]);
847 * Drive takes 400nS to respond, we must avoid the IRQ being
848 * serviced before that.
850 * FIXME: we could skip this delay with care on non shared devices
853 spin_unlock_irqrestore(&ide_lock, flags);
856 EXPORT_SYMBOL(ide_execute_command);
860 static ide_startstop_t do_reset1 (ide_drive_t *, int);
863 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
864 * during an atapi drive reset operation. If the drive has not yet responded,
865 * and we have not yet hit our maximum waiting time, then the timer is restarted
868 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
870 ide_hwgroup_t *hwgroup = HWGROUP(drive);
875 stat = ide_read_status(drive);
877 if (OK_STAT(stat, 0, BUSY_STAT))
878 printk("%s: ATAPI reset complete\n", drive->name);
880 if (time_before(jiffies, hwgroup->poll_timeout)) {
881 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
882 /* continue polling */
886 hwgroup->polling = 0;
887 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
889 /* do it the old fashioned way */
890 return do_reset1(drive, 1);
893 hwgroup->polling = 0;
894 hwgroup->resetting = 0;
899 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
900 * during an ide reset operation. If the drives have not yet responded,
901 * and we have not yet hit our maximum waiting time, then the timer is restarted
904 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
906 ide_hwgroup_t *hwgroup = HWGROUP(drive);
907 ide_hwif_t *hwif = HWIF(drive);
910 if (hwif->reset_poll != NULL) {
911 if (hwif->reset_poll(drive)) {
912 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
913 hwif->name, drive->name);
918 tmp = ide_read_status(drive);
920 if (!OK_STAT(tmp, 0, BUSY_STAT)) {
921 if (time_before(jiffies, hwgroup->poll_timeout)) {
922 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
923 /* continue polling */
926 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
929 printk("%s: reset: ", hwif->name);
930 tmp = ide_read_error(drive);
938 switch (tmp & 0x7f) {
939 case 1: printk("passed");
941 case 2: printk("formatter device error");
943 case 3: printk("sector buffer error");
945 case 4: printk("ECC circuitry error");
947 case 5: printk("controlling MPU error");
949 default:printk("error (0x%02x?)", tmp);
952 printk("; slave: failed");
956 hwgroup->polling = 0; /* done polling */
957 hwgroup->resetting = 0; /* done reset attempt */
961 static void ide_disk_pre_reset(ide_drive_t *drive)
963 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
965 drive->special.all = 0;
966 drive->special.b.set_geometry = legacy;
967 drive->special.b.recalibrate = legacy;
968 drive->mult_count = 0;
969 if (!drive->keep_settings && !drive->using_dma)
971 if (drive->mult_req != drive->mult_count)
972 drive->special.b.set_multmode = 1;
975 static void pre_reset(ide_drive_t *drive)
977 if (drive->media == ide_disk)
978 ide_disk_pre_reset(drive);
980 drive->post_reset = 1;
982 if (drive->using_dma) {
983 if (drive->crc_count)
984 ide_check_dma_crc(drive);
989 if (!drive->keep_settings) {
990 if (!drive->using_dma) {
997 if (HWIF(drive)->pre_reset != NULL)
998 HWIF(drive)->pre_reset(drive);
1000 if (drive->current_speed != 0xff)
1001 drive->desired_speed = drive->current_speed;
1002 drive->current_speed = 0xff;
1006 * do_reset1() attempts to recover a confused drive by resetting it.
1007 * Unfortunately, resetting a disk drive actually resets all devices on
1008 * the same interface, so it can really be thought of as resetting the
1009 * interface rather than resetting the drive.
1011 * ATAPI devices have their own reset mechanism which allows them to be
1012 * individually reset without clobbering other devices on the same interface.
1014 * Unfortunately, the IDE interface does not generate an interrupt to let
1015 * us know when the reset operation has finished, so we must poll for this.
1016 * Equally poor, though, is the fact that this may a very long time to complete,
1017 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1018 * we set a timer to poll at 50ms intervals.
1020 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1023 unsigned long flags;
1025 ide_hwgroup_t *hwgroup;
1028 spin_lock_irqsave(&ide_lock, flags);
1030 hwgroup = HWGROUP(drive);
1032 /* We must not reset with running handlers */
1033 BUG_ON(hwgroup->handler != NULL);
1035 /* For an ATAPI device, first try an ATAPI SRST. */
1036 if (drive->media != ide_disk && !do_not_try_atapi) {
1037 hwgroup->resetting = 1;
1039 SELECT_DRIVE(drive);
1041 hwif->OUTBSYNC(drive, WIN_SRST,
1042 hwif->io_ports[IDE_COMMAND_OFFSET]);
1044 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1045 hwgroup->polling = 1;
1046 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1047 spin_unlock_irqrestore(&ide_lock, flags);
1052 * First, reset any device state data we were maintaining
1053 * for any of the drives on this interface.
1055 for (unit = 0; unit < MAX_DRIVES; ++unit)
1056 pre_reset(&hwif->drives[unit]);
1058 if (hwif->io_ports[IDE_CONTROL_OFFSET] == 0) {
1059 spin_unlock_irqrestore(&ide_lock, flags);
1063 hwgroup->resetting = 1;
1065 * Note that we also set nIEN while resetting the device,
1066 * to mask unwanted interrupts from the interface during the reset.
1067 * However, due to the design of PC hardware, this will cause an
1068 * immediate interrupt due to the edge transition it produces.
1069 * This single interrupt gives us a "fast poll" for drives that
1070 * recover from reset very quickly, saving us the first 50ms wait time.
1072 /* set SRST and nIEN */
1073 hwif->OUTBSYNC(drive, drive->ctl|6, hwif->io_ports[IDE_CONTROL_OFFSET]);
1074 /* more than enough time */
1076 if (drive->quirk_list == 2)
1077 ctl = drive->ctl; /* clear SRST and nIEN */
1079 ctl = drive->ctl | 2; /* clear SRST, leave nIEN */
1080 hwif->OUTBSYNC(drive, ctl, hwif->io_ports[IDE_CONTROL_OFFSET]);
1081 /* more than enough time */
1083 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1084 hwgroup->polling = 1;
1085 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1088 * Some weird controller like resetting themselves to a strange
1089 * state when the disks are reset this way. At least, the Winbond
1090 * 553 documentation says that
1092 if (hwif->resetproc)
1093 hwif->resetproc(drive);
1095 spin_unlock_irqrestore(&ide_lock, flags);
1100 * ide_do_reset() is the entry point to the drive/interface reset code.
1103 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1105 return do_reset1(drive, 0);
1108 EXPORT_SYMBOL(ide_do_reset);
1111 * ide_wait_not_busy() waits for the currently selected device on the hwif
1112 * to report a non-busy status, see comments in ide_probe_port().
1114 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1120 * Turn this into a schedule() sleep once I'm sure
1121 * about locking issues (2.5 work ?).
1124 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1125 if ((stat & BUSY_STAT) == 0)
1128 * Assume a value of 0xff means nothing is connected to
1129 * the interface and it doesn't implement the pull-down
1134 touch_softlockup_watchdog();
1135 touch_nmi_watchdog();
1140 EXPORT_SYMBOL_GPL(ide_wait_not_busy);