2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/module.h>
34 #include <linux/time.h>
35 #include <linux/ext4_jbd2.h>
36 #include <linux/jbd.h>
37 #include <linux/highuid.h>
38 #include <linux/pagemap.h>
39 #include <linux/quotaops.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/falloc.h>
43 #include <linux/ext4_fs_extents.h>
44 #include <asm/uaccess.h>
49 * combine low and high parts of physical block number into ext4_fsblk_t
51 static ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
55 block = le32_to_cpu(ex->ee_start);
56 block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
62 * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64 static ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
68 block = le32_to_cpu(ix->ei_leaf);
69 block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
74 * ext4_ext_store_pblock:
75 * stores a large physical block number into an extent struct,
76 * breaking it into parts
78 static void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
80 ex->ee_start = cpu_to_le32((unsigned long) (pb & 0xffffffff));
81 ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
85 * ext4_idx_store_pblock:
86 * stores a large physical block number into an index struct,
87 * breaking it into parts
89 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
91 ix->ei_leaf = cpu_to_le32((unsigned long) (pb & 0xffffffff));
92 ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
95 static handle_t *ext4_ext_journal_restart(handle_t *handle, int needed)
99 if (handle->h_buffer_credits > needed)
101 if (!ext4_journal_extend(handle, needed))
103 err = ext4_journal_restart(handle, needed);
113 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
114 struct ext4_ext_path *path)
117 /* path points to block */
118 return ext4_journal_get_write_access(handle, path->p_bh);
120 /* path points to leaf/index in inode body */
121 /* we use in-core data, no need to protect them */
131 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
132 struct ext4_ext_path *path)
136 /* path points to block */
137 err = ext4_journal_dirty_metadata(handle, path->p_bh);
139 /* path points to leaf/index in inode body */
140 err = ext4_mark_inode_dirty(handle, inode);
145 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
146 struct ext4_ext_path *path,
149 struct ext4_inode_info *ei = EXT4_I(inode);
150 ext4_fsblk_t bg_start;
151 ext4_grpblk_t colour;
155 struct ext4_extent *ex;
156 depth = path->p_depth;
158 /* try to predict block placement */
159 ex = path[depth].p_ext;
161 return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
163 /* it looks like index is empty;
164 * try to find starting block from index itself */
165 if (path[depth].p_bh)
166 return path[depth].p_bh->b_blocknr;
169 /* OK. use inode's group */
170 bg_start = (ei->i_block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
171 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
172 colour = (current->pid % 16) *
173 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
174 return bg_start + colour + block;
178 ext4_ext_new_block(handle_t *handle, struct inode *inode,
179 struct ext4_ext_path *path,
180 struct ext4_extent *ex, int *err)
182 ext4_fsblk_t goal, newblock;
184 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
185 newblock = ext4_new_block(handle, inode, goal, err);
189 static int ext4_ext_space_block(struct inode *inode)
193 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
194 / sizeof(struct ext4_extent);
195 #ifdef AGGRESSIVE_TEST
202 static int ext4_ext_space_block_idx(struct inode *inode)
206 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
207 / sizeof(struct ext4_extent_idx);
208 #ifdef AGGRESSIVE_TEST
215 static int ext4_ext_space_root(struct inode *inode)
219 size = sizeof(EXT4_I(inode)->i_data);
220 size -= sizeof(struct ext4_extent_header);
221 size /= sizeof(struct ext4_extent);
222 #ifdef AGGRESSIVE_TEST
229 static int ext4_ext_space_root_idx(struct inode *inode)
233 size = sizeof(EXT4_I(inode)->i_data);
234 size -= sizeof(struct ext4_extent_header);
235 size /= sizeof(struct ext4_extent_idx);
236 #ifdef AGGRESSIVE_TEST
244 ext4_ext_max_entries(struct inode *inode, int depth)
248 if (depth == ext_depth(inode)) {
250 max = ext4_ext_space_root(inode);
252 max = ext4_ext_space_root_idx(inode);
255 max = ext4_ext_space_block(inode);
257 max = ext4_ext_space_block_idx(inode);
263 static int __ext4_ext_check_header(const char *function, struct inode *inode,
264 struct ext4_extent_header *eh,
267 const char *error_msg;
270 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
271 error_msg = "invalid magic";
274 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
275 error_msg = "unexpected eh_depth";
278 if (unlikely(eh->eh_max == 0)) {
279 error_msg = "invalid eh_max";
282 max = ext4_ext_max_entries(inode, depth);
283 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
284 error_msg = "too large eh_max";
287 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
288 error_msg = "invalid eh_entries";
294 ext4_error(inode->i_sb, function,
295 "bad header in inode #%lu: %s - magic %x, "
296 "entries %u, max %u(%u), depth %u(%u)",
297 inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
298 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
299 max, le16_to_cpu(eh->eh_depth), depth);
304 #define ext4_ext_check_header(inode, eh, depth) \
305 __ext4_ext_check_header(__FUNCTION__, inode, eh, depth)
308 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
310 int k, l = path->p_depth;
313 for (k = 0; k <= l; k++, path++) {
315 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
316 idx_pblock(path->p_idx));
317 } else if (path->p_ext) {
318 ext_debug(" %d:%d:%llu ",
319 le32_to_cpu(path->p_ext->ee_block),
320 ext4_ext_get_actual_len(path->p_ext),
321 ext_pblock(path->p_ext));
328 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
330 int depth = ext_depth(inode);
331 struct ext4_extent_header *eh;
332 struct ext4_extent *ex;
338 eh = path[depth].p_hdr;
339 ex = EXT_FIRST_EXTENT(eh);
341 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
342 ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block),
343 ext4_ext_get_actual_len(ex), ext_pblock(ex));
348 #define ext4_ext_show_path(inode,path)
349 #define ext4_ext_show_leaf(inode,path)
352 static void ext4_ext_drop_refs(struct ext4_ext_path *path)
354 int depth = path->p_depth;
357 for (i = 0; i <= depth; i++, path++)
365 * ext4_ext_binsearch_idx:
366 * binary search for the closest index of the given block
367 * the header must be checked before calling this
370 ext4_ext_binsearch_idx(struct inode *inode, struct ext4_ext_path *path, int block)
372 struct ext4_extent_header *eh = path->p_hdr;
373 struct ext4_extent_idx *r, *l, *m;
376 ext_debug("binsearch for %d(idx): ", block);
378 l = EXT_FIRST_INDEX(eh) + 1;
379 r = EXT_LAST_INDEX(eh);
382 if (block < le32_to_cpu(m->ei_block))
386 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
387 m, le32_to_cpu(m->ei_block),
388 r, le32_to_cpu(r->ei_block));
392 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
393 idx_pblock(path->p_idx));
395 #ifdef CHECK_BINSEARCH
397 struct ext4_extent_idx *chix, *ix;
400 chix = ix = EXT_FIRST_INDEX(eh);
401 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
403 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
404 printk("k=%d, ix=0x%p, first=0x%p\n", k,
405 ix, EXT_FIRST_INDEX(eh));
407 le32_to_cpu(ix->ei_block),
408 le32_to_cpu(ix[-1].ei_block));
410 BUG_ON(k && le32_to_cpu(ix->ei_block)
411 <= le32_to_cpu(ix[-1].ei_block));
412 if (block < le32_to_cpu(ix->ei_block))
416 BUG_ON(chix != path->p_idx);
423 * ext4_ext_binsearch:
424 * binary search for closest extent of the given block
425 * the header must be checked before calling this
428 ext4_ext_binsearch(struct inode *inode, struct ext4_ext_path *path, int block)
430 struct ext4_extent_header *eh = path->p_hdr;
431 struct ext4_extent *r, *l, *m;
433 if (eh->eh_entries == 0) {
435 * this leaf is empty:
436 * we get such a leaf in split/add case
441 ext_debug("binsearch for %d: ", block);
443 l = EXT_FIRST_EXTENT(eh) + 1;
444 r = EXT_LAST_EXTENT(eh);
448 if (block < le32_to_cpu(m->ee_block))
452 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
453 m, le32_to_cpu(m->ee_block),
454 r, le32_to_cpu(r->ee_block));
458 ext_debug(" -> %d:%llu:%d ",
459 le32_to_cpu(path->p_ext->ee_block),
460 ext_pblock(path->p_ext),
461 ext4_ext_get_actual_len(path->p_ext));
463 #ifdef CHECK_BINSEARCH
465 struct ext4_extent *chex, *ex;
468 chex = ex = EXT_FIRST_EXTENT(eh);
469 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
470 BUG_ON(k && le32_to_cpu(ex->ee_block)
471 <= le32_to_cpu(ex[-1].ee_block));
472 if (block < le32_to_cpu(ex->ee_block))
476 BUG_ON(chex != path->p_ext);
482 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
484 struct ext4_extent_header *eh;
486 eh = ext_inode_hdr(inode);
489 eh->eh_magic = EXT4_EXT_MAGIC;
490 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode));
491 ext4_mark_inode_dirty(handle, inode);
492 ext4_ext_invalidate_cache(inode);
496 struct ext4_ext_path *
497 ext4_ext_find_extent(struct inode *inode, int block, struct ext4_ext_path *path)
499 struct ext4_extent_header *eh;
500 struct buffer_head *bh;
501 short int depth, i, ppos = 0, alloc = 0;
503 eh = ext_inode_hdr(inode);
504 depth = ext_depth(inode);
505 if (ext4_ext_check_header(inode, eh, depth))
506 return ERR_PTR(-EIO);
509 /* account possible depth increase */
511 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
514 return ERR_PTR(-ENOMEM);
520 /* walk through the tree */
522 ext_debug("depth %d: num %d, max %d\n",
523 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
525 ext4_ext_binsearch_idx(inode, path + ppos, block);
526 path[ppos].p_block = idx_pblock(path[ppos].p_idx);
527 path[ppos].p_depth = i;
528 path[ppos].p_ext = NULL;
530 bh = sb_bread(inode->i_sb, path[ppos].p_block);
534 eh = ext_block_hdr(bh);
536 BUG_ON(ppos > depth);
537 path[ppos].p_bh = bh;
538 path[ppos].p_hdr = eh;
541 if (ext4_ext_check_header(inode, eh, i))
545 path[ppos].p_depth = i;
546 path[ppos].p_hdr = eh;
547 path[ppos].p_ext = NULL;
548 path[ppos].p_idx = NULL;
551 ext4_ext_binsearch(inode, path + ppos, block);
553 ext4_ext_show_path(inode, path);
558 ext4_ext_drop_refs(path);
561 return ERR_PTR(-EIO);
565 * ext4_ext_insert_index:
566 * insert new index [@logical;@ptr] into the block at @curp;
567 * check where to insert: before @curp or after @curp
569 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
570 struct ext4_ext_path *curp,
571 int logical, ext4_fsblk_t ptr)
573 struct ext4_extent_idx *ix;
576 err = ext4_ext_get_access(handle, inode, curp);
580 BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
581 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
582 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
584 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
585 len = (len - 1) * sizeof(struct ext4_extent_idx);
586 len = len < 0 ? 0 : len;
587 ext_debug("insert new index %d after: %llu. "
588 "move %d from 0x%p to 0x%p\n",
590 (curp->p_idx + 1), (curp->p_idx + 2));
591 memmove(curp->p_idx + 2, curp->p_idx + 1, len);
593 ix = curp->p_idx + 1;
596 len = len * sizeof(struct ext4_extent_idx);
597 len = len < 0 ? 0 : len;
598 ext_debug("insert new index %d before: %llu. "
599 "move %d from 0x%p to 0x%p\n",
601 curp->p_idx, (curp->p_idx + 1));
602 memmove(curp->p_idx + 1, curp->p_idx, len);
606 ix->ei_block = cpu_to_le32(logical);
607 ext4_idx_store_pblock(ix, ptr);
608 curp->p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(curp->p_hdr->eh_entries)+1);
610 BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
611 > le16_to_cpu(curp->p_hdr->eh_max));
612 BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
614 err = ext4_ext_dirty(handle, inode, curp);
615 ext4_std_error(inode->i_sb, err);
622 * inserts new subtree into the path, using free index entry
624 * - allocates all needed blocks (new leaf and all intermediate index blocks)
625 * - makes decision where to split
626 * - moves remaining extents and index entries (right to the split point)
627 * into the newly allocated blocks
628 * - initializes subtree
630 static int ext4_ext_split(handle_t *handle, struct inode *inode,
631 struct ext4_ext_path *path,
632 struct ext4_extent *newext, int at)
634 struct buffer_head *bh = NULL;
635 int depth = ext_depth(inode);
636 struct ext4_extent_header *neh;
637 struct ext4_extent_idx *fidx;
638 struct ext4_extent *ex;
640 ext4_fsblk_t newblock, oldblock;
642 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
645 /* make decision: where to split? */
646 /* FIXME: now decision is simplest: at current extent */
648 /* if current leaf will be split, then we should use
649 * border from split point */
650 BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
651 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
652 border = path[depth].p_ext[1].ee_block;
653 ext_debug("leaf will be split."
654 " next leaf starts at %d\n",
655 le32_to_cpu(border));
657 border = newext->ee_block;
658 ext_debug("leaf will be added."
659 " next leaf starts at %d\n",
660 le32_to_cpu(border));
664 * If error occurs, then we break processing
665 * and mark filesystem read-only. index won't
666 * be inserted and tree will be in consistent
667 * state. Next mount will repair buffers too.
671 * Get array to track all allocated blocks.
672 * We need this to handle errors and free blocks
675 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
679 /* allocate all needed blocks */
680 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
681 for (a = 0; a < depth - at; a++) {
682 newblock = ext4_ext_new_block(handle, inode, path, newext, &err);
685 ablocks[a] = newblock;
688 /* initialize new leaf */
689 newblock = ablocks[--a];
690 BUG_ON(newblock == 0);
691 bh = sb_getblk(inode->i_sb, newblock);
698 err = ext4_journal_get_create_access(handle, bh);
702 neh = ext_block_hdr(bh);
704 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
705 neh->eh_magic = EXT4_EXT_MAGIC;
707 ex = EXT_FIRST_EXTENT(neh);
709 /* move remainder of path[depth] to the new leaf */
710 BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
711 /* start copy from next extent */
712 /* TODO: we could do it by single memmove */
715 while (path[depth].p_ext <=
716 EXT_MAX_EXTENT(path[depth].p_hdr)) {
717 ext_debug("move %d:%llu:%d in new leaf %llu\n",
718 le32_to_cpu(path[depth].p_ext->ee_block),
719 ext_pblock(path[depth].p_ext),
720 ext4_ext_get_actual_len(path[depth].p_ext),
722 /*memmove(ex++, path[depth].p_ext++,
723 sizeof(struct ext4_extent));
729 memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
730 neh->eh_entries = cpu_to_le16(le16_to_cpu(neh->eh_entries)+m);
733 set_buffer_uptodate(bh);
736 err = ext4_journal_dirty_metadata(handle, bh);
742 /* correct old leaf */
744 err = ext4_ext_get_access(handle, inode, path + depth);
747 path[depth].p_hdr->eh_entries =
748 cpu_to_le16(le16_to_cpu(path[depth].p_hdr->eh_entries)-m);
749 err = ext4_ext_dirty(handle, inode, path + depth);
755 /* create intermediate indexes */
759 ext_debug("create %d intermediate indices\n", k);
760 /* insert new index into current index block */
761 /* current depth stored in i var */
765 newblock = ablocks[--a];
766 bh = sb_getblk(inode->i_sb, (ext4_fsblk_t)newblock);
773 err = ext4_journal_get_create_access(handle, bh);
777 neh = ext_block_hdr(bh);
778 neh->eh_entries = cpu_to_le16(1);
779 neh->eh_magic = EXT4_EXT_MAGIC;
780 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
781 neh->eh_depth = cpu_to_le16(depth - i);
782 fidx = EXT_FIRST_INDEX(neh);
783 fidx->ei_block = border;
784 ext4_idx_store_pblock(fidx, oldblock);
786 ext_debug("int.index at %d (block %llu): %lu -> %llu\n", i,
787 newblock, (unsigned long) le32_to_cpu(border),
793 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
794 EXT_MAX_INDEX(path[i].p_hdr));
795 BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
796 EXT_LAST_INDEX(path[i].p_hdr));
797 while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
798 ext_debug("%d: move %d:%llu in new index %llu\n", i,
799 le32_to_cpu(path[i].p_idx->ei_block),
800 idx_pblock(path[i].p_idx),
802 /*memmove(++fidx, path[i].p_idx++,
803 sizeof(struct ext4_extent_idx));
805 BUG_ON(neh->eh_entries > neh->eh_max);*/
810 memmove(++fidx, path[i].p_idx - m,
811 sizeof(struct ext4_extent_idx) * m);
813 cpu_to_le16(le16_to_cpu(neh->eh_entries) + m);
815 set_buffer_uptodate(bh);
818 err = ext4_journal_dirty_metadata(handle, bh);
824 /* correct old index */
826 err = ext4_ext_get_access(handle, inode, path + i);
829 path[i].p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(path[i].p_hdr->eh_entries)-m);
830 err = ext4_ext_dirty(handle, inode, path + i);
838 /* insert new index */
839 err = ext4_ext_insert_index(handle, inode, path + at,
840 le32_to_cpu(border), newblock);
844 if (buffer_locked(bh))
850 /* free all allocated blocks in error case */
851 for (i = 0; i < depth; i++) {
854 ext4_free_blocks(handle, inode, ablocks[i], 1);
863 * ext4_ext_grow_indepth:
864 * implements tree growing procedure:
865 * - allocates new block
866 * - moves top-level data (index block or leaf) into the new block
867 * - initializes new top-level, creating index that points to the
870 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
871 struct ext4_ext_path *path,
872 struct ext4_extent *newext)
874 struct ext4_ext_path *curp = path;
875 struct ext4_extent_header *neh;
876 struct ext4_extent_idx *fidx;
877 struct buffer_head *bh;
878 ext4_fsblk_t newblock;
881 newblock = ext4_ext_new_block(handle, inode, path, newext, &err);
885 bh = sb_getblk(inode->i_sb, newblock);
888 ext4_std_error(inode->i_sb, err);
893 err = ext4_journal_get_create_access(handle, bh);
899 /* move top-level index/leaf into new block */
900 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
902 /* set size of new block */
903 neh = ext_block_hdr(bh);
904 /* old root could have indexes or leaves
905 * so calculate e_max right way */
906 if (ext_depth(inode))
907 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
909 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
910 neh->eh_magic = EXT4_EXT_MAGIC;
911 set_buffer_uptodate(bh);
914 err = ext4_journal_dirty_metadata(handle, bh);
918 /* create index in new top-level index: num,max,pointer */
919 err = ext4_ext_get_access(handle, inode, curp);
923 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
924 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode));
925 curp->p_hdr->eh_entries = cpu_to_le16(1);
926 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
928 if (path[0].p_hdr->eh_depth)
929 curp->p_idx->ei_block =
930 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
932 curp->p_idx->ei_block =
933 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
934 ext4_idx_store_pblock(curp->p_idx, newblock);
936 neh = ext_inode_hdr(inode);
937 fidx = EXT_FIRST_INDEX(neh);
938 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
939 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
940 le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
942 neh->eh_depth = cpu_to_le16(path->p_depth + 1);
943 err = ext4_ext_dirty(handle, inode, curp);
951 * ext4_ext_create_new_leaf:
952 * finds empty index and adds new leaf.
953 * if no free index is found, then it requests in-depth growing.
955 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
956 struct ext4_ext_path *path,
957 struct ext4_extent *newext)
959 struct ext4_ext_path *curp;
960 int depth, i, err = 0;
963 i = depth = ext_depth(inode);
965 /* walk up to the tree and look for free index entry */
967 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
972 /* we use already allocated block for index block,
973 * so subsequent data blocks should be contiguous */
974 if (EXT_HAS_FREE_INDEX(curp)) {
975 /* if we found index with free entry, then use that
976 * entry: create all needed subtree and add new leaf */
977 err = ext4_ext_split(handle, inode, path, newext, i);
980 ext4_ext_drop_refs(path);
981 path = ext4_ext_find_extent(inode,
982 le32_to_cpu(newext->ee_block),
987 /* tree is full, time to grow in depth */
988 err = ext4_ext_grow_indepth(handle, inode, path, newext);
993 ext4_ext_drop_refs(path);
994 path = ext4_ext_find_extent(inode,
995 le32_to_cpu(newext->ee_block),
1003 * only first (depth 0 -> 1) produces free space;
1004 * in all other cases we have to split the grown tree
1006 depth = ext_depth(inode);
1007 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1008 /* now we need to split */
1018 * ext4_ext_next_allocated_block:
1019 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1020 * NOTE: it considers block number from index entry as
1021 * allocated block. Thus, index entries have to be consistent
1024 static unsigned long
1025 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1029 BUG_ON(path == NULL);
1030 depth = path->p_depth;
1032 if (depth == 0 && path->p_ext == NULL)
1033 return EXT_MAX_BLOCK;
1035 while (depth >= 0) {
1036 if (depth == path->p_depth) {
1038 if (path[depth].p_ext !=
1039 EXT_LAST_EXTENT(path[depth].p_hdr))
1040 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1043 if (path[depth].p_idx !=
1044 EXT_LAST_INDEX(path[depth].p_hdr))
1045 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1050 return EXT_MAX_BLOCK;
1054 * ext4_ext_next_leaf_block:
1055 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1057 static unsigned ext4_ext_next_leaf_block(struct inode *inode,
1058 struct ext4_ext_path *path)
1062 BUG_ON(path == NULL);
1063 depth = path->p_depth;
1065 /* zero-tree has no leaf blocks at all */
1067 return EXT_MAX_BLOCK;
1069 /* go to index block */
1072 while (depth >= 0) {
1073 if (path[depth].p_idx !=
1074 EXT_LAST_INDEX(path[depth].p_hdr))
1075 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1079 return EXT_MAX_BLOCK;
1083 * ext4_ext_correct_indexes:
1084 * if leaf gets modified and modified extent is first in the leaf,
1085 * then we have to correct all indexes above.
1086 * TODO: do we need to correct tree in all cases?
1088 int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1089 struct ext4_ext_path *path)
1091 struct ext4_extent_header *eh;
1092 int depth = ext_depth(inode);
1093 struct ext4_extent *ex;
1097 eh = path[depth].p_hdr;
1098 ex = path[depth].p_ext;
1103 /* there is no tree at all */
1107 if (ex != EXT_FIRST_EXTENT(eh)) {
1108 /* we correct tree if first leaf got modified only */
1113 * TODO: we need correction if border is smaller than current one
1116 border = path[depth].p_ext->ee_block;
1117 err = ext4_ext_get_access(handle, inode, path + k);
1120 path[k].p_idx->ei_block = border;
1121 err = ext4_ext_dirty(handle, inode, path + k);
1126 /* change all left-side indexes */
1127 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1129 err = ext4_ext_get_access(handle, inode, path + k);
1132 path[k].p_idx->ei_block = border;
1133 err = ext4_ext_dirty(handle, inode, path + k);
1142 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1143 struct ext4_extent *ex2)
1145 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1148 * Make sure that either both extents are uninitialized, or
1151 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1154 if (ext4_ext_is_uninitialized(ex1))
1155 max_len = EXT_UNINIT_MAX_LEN;
1157 max_len = EXT_INIT_MAX_LEN;
1159 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1160 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1162 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1163 le32_to_cpu(ex2->ee_block))
1167 * To allow future support for preallocated extents to be added
1168 * as an RO_COMPAT feature, refuse to merge to extents if
1169 * this can result in the top bit of ee_len being set.
1171 if (ext1_ee_len + ext2_ee_len > max_len)
1173 #ifdef AGGRESSIVE_TEST
1174 if (le16_to_cpu(ex1->ee_len) >= 4)
1178 if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1184 * This function tries to merge the "ex" extent to the next extent in the tree.
1185 * It always tries to merge towards right. If you want to merge towards
1186 * left, pass "ex - 1" as argument instead of "ex".
1187 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1188 * 1 if they got merged.
1190 int ext4_ext_try_to_merge(struct inode *inode,
1191 struct ext4_ext_path *path,
1192 struct ext4_extent *ex)
1194 struct ext4_extent_header *eh;
1195 unsigned int depth, len;
1197 int uninitialized = 0;
1199 depth = ext_depth(inode);
1200 BUG_ON(path[depth].p_hdr == NULL);
1201 eh = path[depth].p_hdr;
1203 while (ex < EXT_LAST_EXTENT(eh)) {
1204 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1206 /* merge with next extent! */
1207 if (ext4_ext_is_uninitialized(ex))
1209 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1210 + ext4_ext_get_actual_len(ex + 1));
1212 ext4_ext_mark_uninitialized(ex);
1214 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1215 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1216 * sizeof(struct ext4_extent);
1217 memmove(ex + 1, ex + 2, len);
1219 eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries) - 1);
1221 WARN_ON(eh->eh_entries == 0);
1222 if (!eh->eh_entries)
1223 ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1224 "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1231 * check if a portion of the "newext" extent overlaps with an
1234 * If there is an overlap discovered, it updates the length of the newext
1235 * such that there will be no overlap, and then returns 1.
1236 * If there is no overlap found, it returns 0.
1238 unsigned int ext4_ext_check_overlap(struct inode *inode,
1239 struct ext4_extent *newext,
1240 struct ext4_ext_path *path)
1242 unsigned long b1, b2;
1243 unsigned int depth, len1;
1244 unsigned int ret = 0;
1246 b1 = le32_to_cpu(newext->ee_block);
1247 len1 = ext4_ext_get_actual_len(newext);
1248 depth = ext_depth(inode);
1249 if (!path[depth].p_ext)
1251 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1254 * get the next allocated block if the extent in the path
1255 * is before the requested block(s)
1258 b2 = ext4_ext_next_allocated_block(path);
1259 if (b2 == EXT_MAX_BLOCK)
1263 /* check for wrap through zero */
1264 if (b1 + len1 < b1) {
1265 len1 = EXT_MAX_BLOCK - b1;
1266 newext->ee_len = cpu_to_le16(len1);
1270 /* check for overlap */
1271 if (b1 + len1 > b2) {
1272 newext->ee_len = cpu_to_le16(b2 - b1);
1280 * ext4_ext_insert_extent:
1281 * tries to merge requsted extent into the existing extent or
1282 * inserts requested extent as new one into the tree,
1283 * creating new leaf in the no-space case.
1285 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1286 struct ext4_ext_path *path,
1287 struct ext4_extent *newext)
1289 struct ext4_extent_header * eh;
1290 struct ext4_extent *ex, *fex;
1291 struct ext4_extent *nearex; /* nearest extent */
1292 struct ext4_ext_path *npath = NULL;
1293 int depth, len, err, next;
1294 unsigned uninitialized = 0;
1296 BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1297 depth = ext_depth(inode);
1298 ex = path[depth].p_ext;
1299 BUG_ON(path[depth].p_hdr == NULL);
1301 /* try to insert block into found extent and return */
1302 if (ex && ext4_can_extents_be_merged(inode, ex, newext)) {
1303 ext_debug("append %d block to %d:%d (from %llu)\n",
1304 ext4_ext_get_actual_len(newext),
1305 le32_to_cpu(ex->ee_block),
1306 ext4_ext_get_actual_len(ex), ext_pblock(ex));
1307 err = ext4_ext_get_access(handle, inode, path + depth);
1312 * ext4_can_extents_be_merged should have checked that either
1313 * both extents are uninitialized, or both aren't. Thus we
1314 * need to check only one of them here.
1316 if (ext4_ext_is_uninitialized(ex))
1318 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1319 + ext4_ext_get_actual_len(newext));
1321 ext4_ext_mark_uninitialized(ex);
1322 eh = path[depth].p_hdr;
1328 depth = ext_depth(inode);
1329 eh = path[depth].p_hdr;
1330 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1333 /* probably next leaf has space for us? */
1334 fex = EXT_LAST_EXTENT(eh);
1335 next = ext4_ext_next_leaf_block(inode, path);
1336 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1337 && next != EXT_MAX_BLOCK) {
1338 ext_debug("next leaf block - %d\n", next);
1339 BUG_ON(npath != NULL);
1340 npath = ext4_ext_find_extent(inode, next, NULL);
1342 return PTR_ERR(npath);
1343 BUG_ON(npath->p_depth != path->p_depth);
1344 eh = npath[depth].p_hdr;
1345 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1346 ext_debug("next leaf isnt full(%d)\n",
1347 le16_to_cpu(eh->eh_entries));
1351 ext_debug("next leaf has no free space(%d,%d)\n",
1352 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1356 * There is no free space in the found leaf.
1357 * We're gonna add a new leaf in the tree.
1359 err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1362 depth = ext_depth(inode);
1363 eh = path[depth].p_hdr;
1366 nearex = path[depth].p_ext;
1368 err = ext4_ext_get_access(handle, inode, path + depth);
1373 /* there is no extent in this leaf, create first one */
1374 ext_debug("first extent in the leaf: %d:%llu:%d\n",
1375 le32_to_cpu(newext->ee_block),
1377 ext4_ext_get_actual_len(newext));
1378 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1379 } else if (le32_to_cpu(newext->ee_block)
1380 > le32_to_cpu(nearex->ee_block)) {
1381 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1382 if (nearex != EXT_LAST_EXTENT(eh)) {
1383 len = EXT_MAX_EXTENT(eh) - nearex;
1384 len = (len - 1) * sizeof(struct ext4_extent);
1385 len = len < 0 ? 0 : len;
1386 ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1387 "move %d from 0x%p to 0x%p\n",
1388 le32_to_cpu(newext->ee_block),
1390 ext4_ext_get_actual_len(newext),
1391 nearex, len, nearex + 1, nearex + 2);
1392 memmove(nearex + 2, nearex + 1, len);
1394 path[depth].p_ext = nearex + 1;
1396 BUG_ON(newext->ee_block == nearex->ee_block);
1397 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1398 len = len < 0 ? 0 : len;
1399 ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1400 "move %d from 0x%p to 0x%p\n",
1401 le32_to_cpu(newext->ee_block),
1403 ext4_ext_get_actual_len(newext),
1404 nearex, len, nearex + 1, nearex + 2);
1405 memmove(nearex + 1, nearex, len);
1406 path[depth].p_ext = nearex;
1409 eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries)+1);
1410 nearex = path[depth].p_ext;
1411 nearex->ee_block = newext->ee_block;
1412 nearex->ee_start = newext->ee_start;
1413 nearex->ee_start_hi = newext->ee_start_hi;
1414 nearex->ee_len = newext->ee_len;
1417 /* try to merge extents to the right */
1418 ext4_ext_try_to_merge(inode, path, nearex);
1420 /* try to merge extents to the left */
1422 /* time to correct all indexes above */
1423 err = ext4_ext_correct_indexes(handle, inode, path);
1427 err = ext4_ext_dirty(handle, inode, path + depth);
1431 ext4_ext_drop_refs(npath);
1434 ext4_ext_tree_changed(inode);
1435 ext4_ext_invalidate_cache(inode);
1439 int ext4_ext_walk_space(struct inode *inode, unsigned long block,
1440 unsigned long num, ext_prepare_callback func,
1443 struct ext4_ext_path *path = NULL;
1444 struct ext4_ext_cache cbex;
1445 struct ext4_extent *ex;
1446 unsigned long next, start = 0, end = 0;
1447 unsigned long last = block + num;
1448 int depth, exists, err = 0;
1450 BUG_ON(func == NULL);
1451 BUG_ON(inode == NULL);
1453 while (block < last && block != EXT_MAX_BLOCK) {
1455 /* find extent for this block */
1456 path = ext4_ext_find_extent(inode, block, path);
1458 err = PTR_ERR(path);
1463 depth = ext_depth(inode);
1464 BUG_ON(path[depth].p_hdr == NULL);
1465 ex = path[depth].p_ext;
1466 next = ext4_ext_next_allocated_block(path);
1470 /* there is no extent yet, so try to allocate
1471 * all requested space */
1474 } else if (le32_to_cpu(ex->ee_block) > block) {
1475 /* need to allocate space before found extent */
1477 end = le32_to_cpu(ex->ee_block);
1478 if (block + num < end)
1480 } else if (block >= le32_to_cpu(ex->ee_block)
1481 + ext4_ext_get_actual_len(ex)) {
1482 /* need to allocate space after found extent */
1487 } else if (block >= le32_to_cpu(ex->ee_block)) {
1489 * some part of requested space is covered
1493 end = le32_to_cpu(ex->ee_block)
1494 + ext4_ext_get_actual_len(ex);
1495 if (block + num < end)
1501 BUG_ON(end <= start);
1504 cbex.ec_block = start;
1505 cbex.ec_len = end - start;
1507 cbex.ec_type = EXT4_EXT_CACHE_GAP;
1509 cbex.ec_block = le32_to_cpu(ex->ee_block);
1510 cbex.ec_len = ext4_ext_get_actual_len(ex);
1511 cbex.ec_start = ext_pblock(ex);
1512 cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1515 BUG_ON(cbex.ec_len == 0);
1516 err = func(inode, path, &cbex, cbdata);
1517 ext4_ext_drop_refs(path);
1521 if (err == EXT_REPEAT)
1523 else if (err == EXT_BREAK) {
1528 if (ext_depth(inode) != depth) {
1529 /* depth was changed. we have to realloc path */
1534 block = cbex.ec_block + cbex.ec_len;
1538 ext4_ext_drop_refs(path);
1546 ext4_ext_put_in_cache(struct inode *inode, __u32 block,
1547 __u32 len, ext4_fsblk_t start, int type)
1549 struct ext4_ext_cache *cex;
1551 cex = &EXT4_I(inode)->i_cached_extent;
1552 cex->ec_type = type;
1553 cex->ec_block = block;
1555 cex->ec_start = start;
1559 * ext4_ext_put_gap_in_cache:
1560 * calculate boundaries of the gap that the requested block fits into
1561 * and cache this gap
1564 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1565 unsigned long block)
1567 int depth = ext_depth(inode);
1568 unsigned long lblock, len;
1569 struct ext4_extent *ex;
1571 ex = path[depth].p_ext;
1573 /* there is no extent yet, so gap is [0;-] */
1575 len = EXT_MAX_BLOCK;
1576 ext_debug("cache gap(whole file):");
1577 } else if (block < le32_to_cpu(ex->ee_block)) {
1579 len = le32_to_cpu(ex->ee_block) - block;
1580 ext_debug("cache gap(before): %lu [%lu:%lu]",
1581 (unsigned long) block,
1582 (unsigned long) le32_to_cpu(ex->ee_block),
1583 (unsigned long) ext4_ext_get_actual_len(ex));
1584 } else if (block >= le32_to_cpu(ex->ee_block)
1585 + ext4_ext_get_actual_len(ex)) {
1586 lblock = le32_to_cpu(ex->ee_block)
1587 + ext4_ext_get_actual_len(ex);
1588 len = ext4_ext_next_allocated_block(path);
1589 ext_debug("cache gap(after): [%lu:%lu] %lu",
1590 (unsigned long) le32_to_cpu(ex->ee_block),
1591 (unsigned long) ext4_ext_get_actual_len(ex),
1592 (unsigned long) block);
1593 BUG_ON(len == lblock);
1600 ext_debug(" -> %lu:%lu\n", (unsigned long) lblock, len);
1601 ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1605 ext4_ext_in_cache(struct inode *inode, unsigned long block,
1606 struct ext4_extent *ex)
1608 struct ext4_ext_cache *cex;
1610 cex = &EXT4_I(inode)->i_cached_extent;
1612 /* has cache valid data? */
1613 if (cex->ec_type == EXT4_EXT_CACHE_NO)
1614 return EXT4_EXT_CACHE_NO;
1616 BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1617 cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1618 if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1619 ex->ee_block = cpu_to_le32(cex->ec_block);
1620 ext4_ext_store_pblock(ex, cex->ec_start);
1621 ex->ee_len = cpu_to_le16(cex->ec_len);
1622 ext_debug("%lu cached by %lu:%lu:%llu\n",
1623 (unsigned long) block,
1624 (unsigned long) cex->ec_block,
1625 (unsigned long) cex->ec_len,
1627 return cex->ec_type;
1631 return EXT4_EXT_CACHE_NO;
1636 * removes index from the index block.
1637 * It's used in truncate case only, thus all requests are for
1638 * last index in the block only.
1640 int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1641 struct ext4_ext_path *path)
1643 struct buffer_head *bh;
1647 /* free index block */
1649 leaf = idx_pblock(path->p_idx);
1650 BUG_ON(path->p_hdr->eh_entries == 0);
1651 err = ext4_ext_get_access(handle, inode, path);
1654 path->p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(path->p_hdr->eh_entries)-1);
1655 err = ext4_ext_dirty(handle, inode, path);
1658 ext_debug("index is empty, remove it, free block %llu\n", leaf);
1659 bh = sb_find_get_block(inode->i_sb, leaf);
1660 ext4_forget(handle, 1, inode, bh, leaf);
1661 ext4_free_blocks(handle, inode, leaf, 1);
1666 * ext4_ext_calc_credits_for_insert:
1667 * This routine returns max. credits that the extent tree can consume.
1668 * It should be OK for low-performance paths like ->writepage()
1669 * To allow many writing processes to fit into a single transaction,
1670 * the caller should calculate credits under truncate_mutex and
1671 * pass the actual path.
1673 int ext4_ext_calc_credits_for_insert(struct inode *inode,
1674 struct ext4_ext_path *path)
1679 /* probably there is space in leaf? */
1680 depth = ext_depth(inode);
1681 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1682 < le16_to_cpu(path[depth].p_hdr->eh_max))
1687 * given 32-bit logical block (4294967296 blocks), max. tree
1688 * can be 4 levels in depth -- 4 * 340^4 == 53453440000.
1689 * Let's also add one more level for imbalance.
1693 /* allocation of new data block(s) */
1697 * tree can be full, so it would need to grow in depth:
1698 * we need one credit to modify old root, credits for
1699 * new root will be added in split accounting
1704 * Index split can happen, we would need:
1705 * allocate intermediate indexes (bitmap + group)
1706 * + change two blocks at each level, but root (already included)
1708 needed += (depth * 2) + (depth * 2);
1710 /* any allocation modifies superblock */
1716 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
1717 struct ext4_extent *ex,
1718 unsigned long from, unsigned long to)
1720 struct buffer_head *bh;
1721 unsigned short ee_len = ext4_ext_get_actual_len(ex);
1724 #ifdef EXTENTS_STATS
1726 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1727 spin_lock(&sbi->s_ext_stats_lock);
1728 sbi->s_ext_blocks += ee_len;
1729 sbi->s_ext_extents++;
1730 if (ee_len < sbi->s_ext_min)
1731 sbi->s_ext_min = ee_len;
1732 if (ee_len > sbi->s_ext_max)
1733 sbi->s_ext_max = ee_len;
1734 if (ext_depth(inode) > sbi->s_depth_max)
1735 sbi->s_depth_max = ext_depth(inode);
1736 spin_unlock(&sbi->s_ext_stats_lock);
1739 if (from >= le32_to_cpu(ex->ee_block)
1740 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
1744 num = le32_to_cpu(ex->ee_block) + ee_len - from;
1745 start = ext_pblock(ex) + ee_len - num;
1746 ext_debug("free last %lu blocks starting %llu\n", num, start);
1747 for (i = 0; i < num; i++) {
1748 bh = sb_find_get_block(inode->i_sb, start + i);
1749 ext4_forget(handle, 0, inode, bh, start + i);
1751 ext4_free_blocks(handle, inode, start, num);
1752 } else if (from == le32_to_cpu(ex->ee_block)
1753 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
1754 printk("strange request: removal %lu-%lu from %u:%u\n",
1755 from, to, le32_to_cpu(ex->ee_block), ee_len);
1757 printk("strange request: removal(2) %lu-%lu from %u:%u\n",
1758 from, to, le32_to_cpu(ex->ee_block), ee_len);
1764 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
1765 struct ext4_ext_path *path, unsigned long start)
1767 int err = 0, correct_index = 0;
1768 int depth = ext_depth(inode), credits;
1769 struct ext4_extent_header *eh;
1770 unsigned a, b, block, num;
1771 unsigned long ex_ee_block;
1772 unsigned short ex_ee_len;
1773 unsigned uninitialized = 0;
1774 struct ext4_extent *ex;
1776 /* the header must be checked already in ext4_ext_remove_space() */
1777 ext_debug("truncate since %lu in leaf\n", start);
1778 if (!path[depth].p_hdr)
1779 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
1780 eh = path[depth].p_hdr;
1783 /* find where to start removing */
1784 ex = EXT_LAST_EXTENT(eh);
1786 ex_ee_block = le32_to_cpu(ex->ee_block);
1787 if (ext4_ext_is_uninitialized(ex))
1789 ex_ee_len = ext4_ext_get_actual_len(ex);
1791 while (ex >= EXT_FIRST_EXTENT(eh) &&
1792 ex_ee_block + ex_ee_len > start) {
1793 ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len);
1794 path[depth].p_ext = ex;
1796 a = ex_ee_block > start ? ex_ee_block : start;
1797 b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
1798 ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
1800 ext_debug(" border %u:%u\n", a, b);
1802 if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
1806 } else if (a != ex_ee_block) {
1807 /* remove tail of the extent */
1808 block = ex_ee_block;
1810 } else if (b != ex_ee_block + ex_ee_len - 1) {
1811 /* remove head of the extent */
1814 /* there is no "make a hole" API yet */
1817 /* remove whole extent: excellent! */
1818 block = ex_ee_block;
1820 BUG_ON(a != ex_ee_block);
1821 BUG_ON(b != ex_ee_block + ex_ee_len - 1);
1824 /* at present, extent can't cross block group: */
1825 /* leaf + bitmap + group desc + sb + inode */
1827 if (ex == EXT_FIRST_EXTENT(eh)) {
1829 credits += (ext_depth(inode)) + 1;
1832 credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
1835 handle = ext4_ext_journal_restart(handle, credits);
1836 if (IS_ERR(handle)) {
1837 err = PTR_ERR(handle);
1841 err = ext4_ext_get_access(handle, inode, path + depth);
1845 err = ext4_remove_blocks(handle, inode, ex, a, b);
1850 /* this extent is removed; mark slot entirely unused */
1851 ext4_ext_store_pblock(ex, 0);
1852 eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries)-1);
1855 ex->ee_block = cpu_to_le32(block);
1856 ex->ee_len = cpu_to_le16(num);
1858 * Do not mark uninitialized if all the blocks in the
1859 * extent have been removed.
1861 if (uninitialized && num)
1862 ext4_ext_mark_uninitialized(ex);
1864 err = ext4_ext_dirty(handle, inode, path + depth);
1868 ext_debug("new extent: %u:%u:%llu\n", block, num,
1871 ex_ee_block = le32_to_cpu(ex->ee_block);
1872 ex_ee_len = ext4_ext_get_actual_len(ex);
1875 if (correct_index && eh->eh_entries)
1876 err = ext4_ext_correct_indexes(handle, inode, path);
1878 /* if this leaf is free, then we should
1879 * remove it from index block above */
1880 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
1881 err = ext4_ext_rm_idx(handle, inode, path + depth);
1888 * ext4_ext_more_to_rm:
1889 * returns 1 if current index has to be freed (even partial)
1892 ext4_ext_more_to_rm(struct ext4_ext_path *path)
1894 BUG_ON(path->p_idx == NULL);
1896 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
1900 * if truncate on deeper level happened, it wasn't partial,
1901 * so we have to consider current index for truncation
1903 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
1908 int ext4_ext_remove_space(struct inode *inode, unsigned long start)
1910 struct super_block *sb = inode->i_sb;
1911 int depth = ext_depth(inode);
1912 struct ext4_ext_path *path;
1916 ext_debug("truncate since %lu\n", start);
1918 /* probably first extent we're gonna free will be last in block */
1919 handle = ext4_journal_start(inode, depth + 1);
1921 return PTR_ERR(handle);
1923 ext4_ext_invalidate_cache(inode);
1926 * We start scanning from right side, freeing all the blocks
1927 * after i_size and walking into the tree depth-wise.
1929 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_KERNEL);
1931 ext4_journal_stop(handle);
1934 path[0].p_hdr = ext_inode_hdr(inode);
1935 if (ext4_ext_check_header(inode, path[0].p_hdr, depth)) {
1939 path[0].p_depth = depth;
1941 while (i >= 0 && err == 0) {
1943 /* this is leaf block */
1944 err = ext4_ext_rm_leaf(handle, inode, path, start);
1945 /* root level has p_bh == NULL, brelse() eats this */
1946 brelse(path[i].p_bh);
1947 path[i].p_bh = NULL;
1952 /* this is index block */
1953 if (!path[i].p_hdr) {
1954 ext_debug("initialize header\n");
1955 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
1958 if (!path[i].p_idx) {
1959 /* this level hasn't been touched yet */
1960 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
1961 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
1962 ext_debug("init index ptr: hdr 0x%p, num %d\n",
1964 le16_to_cpu(path[i].p_hdr->eh_entries));
1966 /* we were already here, see at next index */
1970 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
1971 i, EXT_FIRST_INDEX(path[i].p_hdr),
1973 if (ext4_ext_more_to_rm(path + i)) {
1974 struct buffer_head *bh;
1975 /* go to the next level */
1976 ext_debug("move to level %d (block %llu)\n",
1977 i + 1, idx_pblock(path[i].p_idx));
1978 memset(path + i + 1, 0, sizeof(*path));
1979 bh = sb_bread(sb, idx_pblock(path[i].p_idx));
1981 /* should we reset i_size? */
1985 if (WARN_ON(i + 1 > depth)) {
1989 if (ext4_ext_check_header(inode, ext_block_hdr(bh),
1994 path[i + 1].p_bh = bh;
1996 /* save actual number of indexes since this
1997 * number is changed at the next iteration */
1998 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2001 /* we finished processing this index, go up */
2002 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2003 /* index is empty, remove it;
2004 * handle must be already prepared by the
2005 * truncatei_leaf() */
2006 err = ext4_ext_rm_idx(handle, inode, path + i);
2008 /* root level has p_bh == NULL, brelse() eats this */
2009 brelse(path[i].p_bh);
2010 path[i].p_bh = NULL;
2012 ext_debug("return to level %d\n", i);
2016 /* TODO: flexible tree reduction should be here */
2017 if (path->p_hdr->eh_entries == 0) {
2019 * truncate to zero freed all the tree,
2020 * so we need to correct eh_depth
2022 err = ext4_ext_get_access(handle, inode, path);
2024 ext_inode_hdr(inode)->eh_depth = 0;
2025 ext_inode_hdr(inode)->eh_max =
2026 cpu_to_le16(ext4_ext_space_root(inode));
2027 err = ext4_ext_dirty(handle, inode, path);
2031 ext4_ext_tree_changed(inode);
2032 ext4_ext_drop_refs(path);
2034 ext4_journal_stop(handle);
2040 * called at mount time
2042 void ext4_ext_init(struct super_block *sb)
2045 * possible initialization would be here
2048 if (test_opt(sb, EXTENTS)) {
2049 printk("EXT4-fs: file extents enabled");
2050 #ifdef AGGRESSIVE_TEST
2051 printk(", aggressive tests");
2053 #ifdef CHECK_BINSEARCH
2054 printk(", check binsearch");
2056 #ifdef EXTENTS_STATS
2060 #ifdef EXTENTS_STATS
2061 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2062 EXT4_SB(sb)->s_ext_min = 1 << 30;
2063 EXT4_SB(sb)->s_ext_max = 0;
2069 * called at umount time
2071 void ext4_ext_release(struct super_block *sb)
2073 if (!test_opt(sb, EXTENTS))
2076 #ifdef EXTENTS_STATS
2077 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2078 struct ext4_sb_info *sbi = EXT4_SB(sb);
2079 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2080 sbi->s_ext_blocks, sbi->s_ext_extents,
2081 sbi->s_ext_blocks / sbi->s_ext_extents);
2082 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2083 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2089 * This function is called by ext4_ext_get_blocks() if someone tries to write
2090 * to an uninitialized extent. It may result in splitting the uninitialized
2091 * extent into multiple extents (upto three - one initialized and two
2093 * There are three possibilities:
2094 * a> There is no split required: Entire extent should be initialized
2095 * b> Splits in two extents: Write is happening at either end of the extent
2096 * c> Splits in three extents: Somone is writing in middle of the extent
2098 int ext4_ext_convert_to_initialized(handle_t *handle, struct inode *inode,
2099 struct ext4_ext_path *path,
2100 ext4_fsblk_t iblock,
2101 unsigned long max_blocks)
2103 struct ext4_extent *ex, newex;
2104 struct ext4_extent *ex1 = NULL;
2105 struct ext4_extent *ex2 = NULL;
2106 struct ext4_extent *ex3 = NULL;
2107 struct ext4_extent_header *eh;
2108 unsigned int allocated, ee_block, ee_len, depth;
2109 ext4_fsblk_t newblock;
2113 depth = ext_depth(inode);
2114 eh = path[depth].p_hdr;
2115 ex = path[depth].p_ext;
2116 ee_block = le32_to_cpu(ex->ee_block);
2117 ee_len = ext4_ext_get_actual_len(ex);
2118 allocated = ee_len - (iblock - ee_block);
2119 newblock = iblock - ee_block + ext_pblock(ex);
2122 /* ex1: ee_block to iblock - 1 : uninitialized */
2123 if (iblock > ee_block) {
2125 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2126 ext4_ext_mark_uninitialized(ex1);
2130 * for sanity, update the length of the ex2 extent before
2131 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2132 * overlap of blocks.
2134 if (!ex1 && allocated > max_blocks)
2135 ex2->ee_len = cpu_to_le16(max_blocks);
2136 /* ex3: to ee_block + ee_len : uninitialised */
2137 if (allocated > max_blocks) {
2138 unsigned int newdepth;
2140 ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2141 ext4_ext_store_pblock(ex3, newblock + max_blocks);
2142 ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2143 ext4_ext_mark_uninitialized(ex3);
2144 err = ext4_ext_insert_extent(handle, inode, path, ex3);
2148 * The depth, and hence eh & ex might change
2149 * as part of the insert above.
2151 newdepth = ext_depth(inode);
2152 if (newdepth != depth) {
2154 path = ext4_ext_find_extent(inode, iblock, NULL);
2156 err = PTR_ERR(path);
2160 eh = path[depth].p_hdr;
2161 ex = path[depth].p_ext;
2165 allocated = max_blocks;
2168 * If there was a change of depth as part of the
2169 * insertion of ex3 above, we need to update the length
2170 * of the ex1 extent again here
2172 if (ex1 && ex1 != ex) {
2174 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2175 ext4_ext_mark_uninitialized(ex1);
2178 /* ex2: iblock to iblock + maxblocks-1 : initialised */
2179 ex2->ee_block = cpu_to_le32(iblock);
2180 ex2->ee_start = cpu_to_le32(newblock);
2181 ext4_ext_store_pblock(ex2, newblock);
2182 ex2->ee_len = cpu_to_le16(allocated);
2185 err = ext4_ext_get_access(handle, inode, path + depth);
2189 * New (initialized) extent starts from the first block
2190 * in the current extent. i.e., ex2 == ex
2191 * We have to see if it can be merged with the extent
2194 if (ex2 > EXT_FIRST_EXTENT(eh)) {
2196 * To merge left, pass "ex2 - 1" to try_to_merge(),
2197 * since it merges towards right _only_.
2199 ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2201 err = ext4_ext_correct_indexes(handle, inode, path);
2204 depth = ext_depth(inode);
2209 * Try to Merge towards right. This might be required
2210 * only when the whole extent is being written to.
2211 * i.e. ex2 == ex and ex3 == NULL.
2214 ret = ext4_ext_try_to_merge(inode, path, ex2);
2216 err = ext4_ext_correct_indexes(handle, inode, path);
2221 /* Mark modified extent as dirty */
2222 err = ext4_ext_dirty(handle, inode, path + depth);
2225 err = ext4_ext_insert_extent(handle, inode, path, &newex);
2227 return err ? err : allocated;
2230 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
2231 ext4_fsblk_t iblock,
2232 unsigned long max_blocks, struct buffer_head *bh_result,
2233 int create, int extend_disksize)
2235 struct ext4_ext_path *path = NULL;
2236 struct ext4_extent_header *eh;
2237 struct ext4_extent newex, *ex;
2238 ext4_fsblk_t goal, newblock;
2239 int err = 0, depth, ret;
2240 unsigned long allocated = 0;
2242 __clear_bit(BH_New, &bh_result->b_state);
2243 ext_debug("blocks %d/%lu requested for inode %u\n", (int) iblock,
2244 max_blocks, (unsigned) inode->i_ino);
2245 mutex_lock(&EXT4_I(inode)->truncate_mutex);
2247 /* check in cache */
2248 goal = ext4_ext_in_cache(inode, iblock, &newex);
2250 if (goal == EXT4_EXT_CACHE_GAP) {
2253 * block isn't allocated yet and
2254 * user doesn't want to allocate it
2258 /* we should allocate requested block */
2259 } else if (goal == EXT4_EXT_CACHE_EXTENT) {
2260 /* block is already allocated */
2262 - le32_to_cpu(newex.ee_block)
2263 + ext_pblock(&newex);
2264 /* number of remaining blocks in the extent */
2265 allocated = le16_to_cpu(newex.ee_len) -
2266 (iblock - le32_to_cpu(newex.ee_block));
2273 /* find extent for this block */
2274 path = ext4_ext_find_extent(inode, iblock, NULL);
2276 err = PTR_ERR(path);
2281 depth = ext_depth(inode);
2284 * consistent leaf must not be empty;
2285 * this situation is possible, though, _during_ tree modification;
2286 * this is why assert can't be put in ext4_ext_find_extent()
2288 BUG_ON(path[depth].p_ext == NULL && depth != 0);
2289 eh = path[depth].p_hdr;
2291 ex = path[depth].p_ext;
2293 unsigned long ee_block = le32_to_cpu(ex->ee_block);
2294 ext4_fsblk_t ee_start = ext_pblock(ex);
2295 unsigned short ee_len;
2298 * Uninitialized extents are treated as holes, except that
2299 * we split out initialized portions during a write.
2301 ee_len = ext4_ext_get_actual_len(ex);
2302 /* if found extent covers block, simply return it */
2303 if (iblock >= ee_block && iblock < ee_block + ee_len) {
2304 newblock = iblock - ee_block + ee_start;
2305 /* number of remaining blocks in the extent */
2306 allocated = ee_len - (iblock - ee_block);
2307 ext_debug("%d fit into %lu:%d -> %llu\n", (int) iblock,
2308 ee_block, ee_len, newblock);
2310 /* Do not put uninitialized extent in the cache */
2311 if (!ext4_ext_is_uninitialized(ex)) {
2312 ext4_ext_put_in_cache(inode, ee_block,
2314 EXT4_EXT_CACHE_EXTENT);
2317 if (create == EXT4_CREATE_UNINITIALIZED_EXT)
2322 ret = ext4_ext_convert_to_initialized(handle, inode,
2334 * requested block isn't allocated yet;
2335 * we couldn't try to create block if create flag is zero
2339 * put just found gap into cache to speed up
2340 * subsequent requests
2342 ext4_ext_put_gap_in_cache(inode, path, iblock);
2346 * Okay, we need to do block allocation. Lazily initialize the block
2347 * allocation info here if necessary.
2349 if (S_ISREG(inode->i_mode) && (!EXT4_I(inode)->i_block_alloc_info))
2350 ext4_init_block_alloc_info(inode);
2352 /* allocate new block */
2353 goal = ext4_ext_find_goal(inode, path, iblock);
2356 * See if request is beyond maximum number of blocks we can have in
2357 * a single extent. For an initialized extent this limit is
2358 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2359 * EXT_UNINIT_MAX_LEN.
2361 if (max_blocks > EXT_INIT_MAX_LEN &&
2362 create != EXT4_CREATE_UNINITIALIZED_EXT)
2363 max_blocks = EXT_INIT_MAX_LEN;
2364 else if (max_blocks > EXT_UNINIT_MAX_LEN &&
2365 create == EXT4_CREATE_UNINITIALIZED_EXT)
2366 max_blocks = EXT_UNINIT_MAX_LEN;
2368 /* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2369 newex.ee_block = cpu_to_le32(iblock);
2370 newex.ee_len = cpu_to_le16(max_blocks);
2371 err = ext4_ext_check_overlap(inode, &newex, path);
2373 allocated = le16_to_cpu(newex.ee_len);
2375 allocated = max_blocks;
2376 newblock = ext4_new_blocks(handle, inode, goal, &allocated, &err);
2379 ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2380 goal, newblock, allocated);
2382 /* try to insert new extent into found leaf and return */
2383 ext4_ext_store_pblock(&newex, newblock);
2384 newex.ee_len = cpu_to_le16(allocated);
2385 if (create == EXT4_CREATE_UNINITIALIZED_EXT) /* Mark uninitialized */
2386 ext4_ext_mark_uninitialized(&newex);
2387 err = ext4_ext_insert_extent(handle, inode, path, &newex);
2389 /* free data blocks we just allocated */
2390 ext4_free_blocks(handle, inode, ext_pblock(&newex),
2391 le16_to_cpu(newex.ee_len));
2395 if (extend_disksize && inode->i_size > EXT4_I(inode)->i_disksize)
2396 EXT4_I(inode)->i_disksize = inode->i_size;
2398 /* previous routine could use block we allocated */
2399 newblock = ext_pblock(&newex);
2401 __set_bit(BH_New, &bh_result->b_state);
2403 /* Cache only when it is _not_ an uninitialized extent */
2404 if (create != EXT4_CREATE_UNINITIALIZED_EXT)
2405 ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
2406 EXT4_EXT_CACHE_EXTENT);
2408 if (allocated > max_blocks)
2409 allocated = max_blocks;
2410 ext4_ext_show_leaf(inode, path);
2411 __set_bit(BH_Mapped, &bh_result->b_state);
2412 bh_result->b_bdev = inode->i_sb->s_bdev;
2413 bh_result->b_blocknr = newblock;
2416 ext4_ext_drop_refs(path);
2419 mutex_unlock(&EXT4_I(inode)->truncate_mutex);
2421 return err ? err : allocated;
2424 void ext4_ext_truncate(struct inode * inode, struct page *page)
2426 struct address_space *mapping = inode->i_mapping;
2427 struct super_block *sb = inode->i_sb;
2428 unsigned long last_block;
2433 * probably first extent we're gonna free will be last in block
2435 err = ext4_writepage_trans_blocks(inode) + 3;
2436 handle = ext4_journal_start(inode, err);
2437 if (IS_ERR(handle)) {
2439 clear_highpage(page);
2440 flush_dcache_page(page);
2442 page_cache_release(page);
2448 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2450 mutex_lock(&EXT4_I(inode)->truncate_mutex);
2451 ext4_ext_invalidate_cache(inode);
2454 * TODO: optimization is possible here.
2455 * Probably we need not scan at all,
2456 * because page truncation is enough.
2458 if (ext4_orphan_add(handle, inode))
2461 /* we have to know where to truncate from in crash case */
2462 EXT4_I(inode)->i_disksize = inode->i_size;
2463 ext4_mark_inode_dirty(handle, inode);
2465 last_block = (inode->i_size + sb->s_blocksize - 1)
2466 >> EXT4_BLOCK_SIZE_BITS(sb);
2467 err = ext4_ext_remove_space(inode, last_block);
2469 /* In a multi-transaction truncate, we only make the final
2470 * transaction synchronous.
2477 * If this was a simple ftruncate() and the file will remain alive,
2478 * then we need to clear up the orphan record which we created above.
2479 * However, if this was a real unlink then we were called by
2480 * ext4_delete_inode(), and we allow that function to clean up the
2481 * orphan info for us.
2484 ext4_orphan_del(handle, inode);
2486 mutex_unlock(&EXT4_I(inode)->truncate_mutex);
2487 ext4_journal_stop(handle);
2491 * ext4_ext_writepage_trans_blocks:
2492 * calculate max number of blocks we could modify
2493 * in order to allocate new block for an inode
2495 int ext4_ext_writepage_trans_blocks(struct inode *inode, int num)
2499 needed = ext4_ext_calc_credits_for_insert(inode, NULL);
2501 /* caller wants to allocate num blocks, but note it includes sb */
2502 needed = needed * num - (num - 1);
2505 needed += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2512 * preallocate space for a file. This implements ext4's fallocate inode
2513 * operation, which gets called from sys_fallocate system call.
2514 * For block-mapped files, posix_fallocate should fall back to the method
2515 * of writing zeroes to the required new blocks (the same behavior which is
2516 * expected for file systems which do not support fallocate() system call).
2518 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
2521 ext4_fsblk_t block, max_blocks;
2522 ext4_fsblk_t nblocks = 0;
2526 struct buffer_head map_bh;
2527 unsigned int credits, blkbits = inode->i_blkbits;
2530 * currently supporting (pre)allocate mode for extent-based
2533 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
2536 /* preallocation to directories is currently not supported */
2537 if (S_ISDIR(inode->i_mode))
2540 block = offset >> blkbits;
2541 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
2545 * credits to insert 1 extent into extent tree + buffers to be able to
2546 * modify 1 super block, 1 block bitmap and 1 group descriptor.
2548 credits = EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + 3;
2550 while (ret >= 0 && ret < max_blocks) {
2551 block = block + ret;
2552 max_blocks = max_blocks - ret;
2553 handle = ext4_journal_start(inode, credits);
2554 if (IS_ERR(handle)) {
2555 ret = PTR_ERR(handle);
2559 ret = ext4_ext_get_blocks(handle, inode, block,
2560 max_blocks, &map_bh,
2561 EXT4_CREATE_UNINITIALIZED_EXT, 0);
2564 ext4_error(inode->i_sb, "ext4_fallocate",
2565 "ext4_ext_get_blocks returned 0! inode#%lu"
2566 ", block=%llu, max_blocks=%llu",
2567 inode->i_ino, block, max_blocks);
2569 ext4_mark_inode_dirty(handle, inode);
2570 ret2 = ext4_journal_stop(handle);
2574 /* check wrap through sign-bit/zero here */
2575 if ((block + ret) < 0 || (block + ret) < block) {
2577 ext4_mark_inode_dirty(handle, inode);
2578 ret2 = ext4_journal_stop(handle);
2581 if (buffer_new(&map_bh) && ((block + ret) >
2582 (EXT4_BLOCK_ALIGN(i_size_read(inode), blkbits)
2584 nblocks = nblocks + ret;
2587 /* Update ctime if new blocks get allocated */
2589 struct timespec now;
2591 now = current_fs_time(inode->i_sb);
2592 if (!timespec_equal(&inode->i_ctime, &now))
2593 inode->i_ctime = now;
2596 ext4_mark_inode_dirty(handle, inode);
2597 ret2 = ext4_journal_stop(handle);
2602 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2606 * Time to update the file size.
2607 * Update only when preallocation was requested beyond the file size.
2609 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
2610 (offset + len) > i_size_read(inode)) {
2613 * if no error, we assume preallocation succeeded
2616 mutex_lock(&inode->i_mutex);
2617 i_size_write(inode, offset + len);
2618 EXT4_I(inode)->i_disksize = i_size_read(inode);
2619 mutex_unlock(&inode->i_mutex);
2620 } else if (ret < 0 && nblocks) {
2621 /* Handle partial allocation scenario */
2624 mutex_lock(&inode->i_mutex);
2625 newsize = (nblocks << blkbits) + i_size_read(inode);
2626 i_size_write(inode, EXT4_BLOCK_ALIGN(newsize, blkbits));
2627 EXT4_I(inode)->i_disksize = i_size_read(inode);
2628 mutex_unlock(&inode->i_mutex);
2632 return ret > 0 ? ret2 : ret;