2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
19 static const int cfq_quantum = 4; /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
29 #define CFQ_IDLE_GRACE (HZ / 10)
30 #define CFQ_SLICE_SCALE (5)
32 #define CFQ_KEY_ASYNC (0)
35 * for the hash of cfqq inside the cfqd
37 #define CFQ_QHASH_SHIFT 6
38 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
39 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
41 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
43 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
44 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
46 static struct kmem_cache *cfq_pool;
47 static struct kmem_cache *cfq_ioc_pool;
49 static DEFINE_PER_CPU(unsigned long, ioc_count);
50 static struct completion *ioc_gone;
52 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
53 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define cfq_cfqq_dispatched(cfqq) \
60 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
62 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
64 #define cfq_cfqq_sync(cfqq) \
65 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
67 #define sample_valid(samples) ((samples) > 80)
70 * Per block device queue structure
73 request_queue_t *queue;
76 * rr list of queues with requests and the count of them
78 struct list_head rr_list[CFQ_PRIO_LISTS];
79 struct list_head busy_rr;
80 struct list_head cur_rr;
81 struct list_head idle_rr;
82 unsigned int busy_queues;
87 struct hlist_head *cfq_hash;
93 * idle window management
95 struct timer_list idle_slice_timer;
96 struct work_struct unplug_work;
98 struct cfq_queue *active_queue;
99 struct cfq_io_context *active_cic;
100 int cur_prio, cur_end_prio;
101 unsigned int dispatch_slice;
103 struct timer_list idle_class_timer;
105 sector_t last_sector;
106 unsigned long last_end_request;
109 * tunables, see top of file
111 unsigned int cfq_quantum;
112 unsigned int cfq_fifo_expire[2];
113 unsigned int cfq_back_penalty;
114 unsigned int cfq_back_max;
115 unsigned int cfq_slice[2];
116 unsigned int cfq_slice_async_rq;
117 unsigned int cfq_slice_idle;
119 struct list_head cic_list;
123 * Per process-grouping structure
126 /* reference count */
128 /* parent cfq_data */
129 struct cfq_data *cfqd;
130 /* cfqq lookup hash */
131 struct hlist_node cfq_hash;
134 /* member of the rr/busy/cur/idle cfqd list */
135 struct list_head cfq_list;
136 /* sorted list of pending requests */
137 struct rb_root sort_list;
138 /* if fifo isn't expired, next request to serve */
139 struct request *next_rq;
140 /* requests queued in sort_list */
142 /* currently allocated requests */
144 /* pending metadata requests */
146 /* fifo list of requests in sort_list */
147 struct list_head fifo;
149 unsigned long slice_start;
150 unsigned long slice_end;
151 unsigned long slice_left;
153 /* number of requests that are on the dispatch list */
156 /* io prio of this group */
157 unsigned short ioprio, org_ioprio;
158 unsigned short ioprio_class, org_ioprio_class;
160 /* various state flags, see below */
164 enum cfqq_state_flags {
165 CFQ_CFQQ_FLAG_on_rr = 0,
166 CFQ_CFQQ_FLAG_wait_request,
167 CFQ_CFQQ_FLAG_must_alloc,
168 CFQ_CFQQ_FLAG_must_alloc_slice,
169 CFQ_CFQQ_FLAG_must_dispatch,
170 CFQ_CFQQ_FLAG_fifo_expire,
171 CFQ_CFQQ_FLAG_idle_window,
172 CFQ_CFQQ_FLAG_prio_changed,
173 CFQ_CFQQ_FLAG_queue_new,
176 #define CFQ_CFQQ_FNS(name) \
177 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
179 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
181 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
183 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
185 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
187 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
191 CFQ_CFQQ_FNS(wait_request);
192 CFQ_CFQQ_FNS(must_alloc);
193 CFQ_CFQQ_FNS(must_alloc_slice);
194 CFQ_CFQQ_FNS(must_dispatch);
195 CFQ_CFQQ_FNS(fifo_expire);
196 CFQ_CFQQ_FNS(idle_window);
197 CFQ_CFQQ_FNS(prio_changed);
198 CFQ_CFQQ_FNS(queue_new);
201 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
202 static void cfq_dispatch_insert(request_queue_t *, struct request *);
203 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
206 * scheduler run of queue, if there are requests pending and no one in the
207 * driver that will restart queueing
209 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
211 if (cfqd->busy_queues)
212 kblockd_schedule_work(&cfqd->unplug_work);
215 static int cfq_queue_empty(request_queue_t *q)
217 struct cfq_data *cfqd = q->elevator->elevator_data;
219 return !cfqd->busy_queues;
222 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
225 * Use the per-process queue, for read requests and syncronous writes
227 if (!(rw & REQ_RW) || is_sync)
230 return CFQ_KEY_ASYNC;
234 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
235 * We choose the request that is closest to the head right now. Distance
236 * behind the head is penalized and only allowed to a certain extent.
238 static struct request *
239 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
241 sector_t last, s1, s2, d1 = 0, d2 = 0;
242 unsigned long back_max;
243 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
244 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
245 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
247 if (rq1 == NULL || rq1 == rq2)
252 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
254 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
256 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
258 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
264 last = cfqd->last_sector;
267 * by definition, 1KiB is 2 sectors
269 back_max = cfqd->cfq_back_max * 2;
272 * Strict one way elevator _except_ in the case where we allow
273 * short backward seeks which are biased as twice the cost of a
274 * similar forward seek.
278 else if (s1 + back_max >= last)
279 d1 = (last - s1) * cfqd->cfq_back_penalty;
281 wrap |= CFQ_RQ1_WRAP;
285 else if (s2 + back_max >= last)
286 d2 = (last - s2) * cfqd->cfq_back_penalty;
288 wrap |= CFQ_RQ2_WRAP;
290 /* Found required data */
293 * By doing switch() on the bit mask "wrap" we avoid having to
294 * check two variables for all permutations: --> faster!
297 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
313 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
316 * Since both rqs are wrapped,
317 * start with the one that's further behind head
318 * (--> only *one* back seek required),
319 * since back seek takes more time than forward.
329 * would be nice to take fifo expire time into account as well
331 static struct request *
332 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
333 struct request *last)
335 struct rb_node *rbnext = rb_next(&last->rb_node);
336 struct rb_node *rbprev = rb_prev(&last->rb_node);
337 struct request *next = NULL, *prev = NULL;
339 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
342 prev = rb_entry_rq(rbprev);
345 next = rb_entry_rq(rbnext);
347 rbnext = rb_first(&cfqq->sort_list);
348 if (rbnext && rbnext != &last->rb_node)
349 next = rb_entry_rq(rbnext);
352 return cfq_choose_req(cfqd, next, prev);
355 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
357 struct cfq_data *cfqd = cfqq->cfqd;
358 struct list_head *list;
360 BUG_ON(!cfq_cfqq_on_rr(cfqq));
362 list_del(&cfqq->cfq_list);
364 if (cfq_class_rt(cfqq))
365 list = &cfqd->cur_rr;
366 else if (cfq_class_idle(cfqq))
367 list = &cfqd->idle_rr;
370 * if cfqq has requests in flight, don't allow it to be
371 * found in cfq_set_active_queue before it has finished them.
372 * this is done to increase fairness between a process that
373 * has lots of io pending vs one that only generates one
374 * sporadically or synchronously
376 if (cfq_cfqq_dispatched(cfqq))
377 list = &cfqd->busy_rr;
379 list = &cfqd->rr_list[cfqq->ioprio];
383 * If this queue was preempted or is new (never been serviced), let
384 * it be added first for fairness but beind other new queues.
385 * Otherwise, just add to the back of the list.
387 if (preempted || cfq_cfqq_queue_new(cfqq)) {
388 struct list_head *n = list;
389 struct cfq_queue *__cfqq;
391 while (n->next != list) {
392 __cfqq = list_entry_cfqq(n->next);
393 if (!cfq_cfqq_queue_new(__cfqq))
402 list_add_tail(&cfqq->cfq_list, list);
406 * add to busy list of queues for service, trying to be fair in ordering
407 * the pending list according to last request service
410 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
412 BUG_ON(cfq_cfqq_on_rr(cfqq));
413 cfq_mark_cfqq_on_rr(cfqq);
416 cfq_resort_rr_list(cfqq, 0);
420 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
422 BUG_ON(!cfq_cfqq_on_rr(cfqq));
423 cfq_clear_cfqq_on_rr(cfqq);
424 list_del_init(&cfqq->cfq_list);
426 BUG_ON(!cfqd->busy_queues);
431 * rb tree support functions
433 static inline void cfq_del_rq_rb(struct request *rq)
435 struct cfq_queue *cfqq = RQ_CFQQ(rq);
436 struct cfq_data *cfqd = cfqq->cfqd;
437 const int sync = rq_is_sync(rq);
439 BUG_ON(!cfqq->queued[sync]);
440 cfqq->queued[sync]--;
442 elv_rb_del(&cfqq->sort_list, rq);
444 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
445 cfq_del_cfqq_rr(cfqd, cfqq);
448 static void cfq_add_rq_rb(struct request *rq)
450 struct cfq_queue *cfqq = RQ_CFQQ(rq);
451 struct cfq_data *cfqd = cfqq->cfqd;
452 struct request *__alias;
454 cfqq->queued[rq_is_sync(rq)]++;
457 * looks a little odd, but the first insert might return an alias.
458 * if that happens, put the alias on the dispatch list
460 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
461 cfq_dispatch_insert(cfqd->queue, __alias);
463 if (!cfq_cfqq_on_rr(cfqq))
464 cfq_add_cfqq_rr(cfqd, cfqq);
468 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
470 elv_rb_del(&cfqq->sort_list, rq);
471 cfqq->queued[rq_is_sync(rq)]--;
475 static struct request *
476 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
478 struct task_struct *tsk = current;
479 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
480 struct cfq_queue *cfqq;
482 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
484 sector_t sector = bio->bi_sector + bio_sectors(bio);
486 return elv_rb_find(&cfqq->sort_list, sector);
492 static void cfq_activate_request(request_queue_t *q, struct request *rq)
494 struct cfq_data *cfqd = q->elevator->elevator_data;
496 cfqd->rq_in_driver++;
499 * If the depth is larger 1, it really could be queueing. But lets
500 * make the mark a little higher - idling could still be good for
501 * low queueing, and a low queueing number could also just indicate
502 * a SCSI mid layer like behaviour where limit+1 is often seen.
504 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
508 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
510 struct cfq_data *cfqd = q->elevator->elevator_data;
512 WARN_ON(!cfqd->rq_in_driver);
513 cfqd->rq_in_driver--;
516 static void cfq_remove_request(struct request *rq)
518 struct cfq_queue *cfqq = RQ_CFQQ(rq);
520 if (cfqq->next_rq == rq)
521 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
523 list_del_init(&rq->queuelist);
526 if (rq_is_meta(rq)) {
527 WARN_ON(!cfqq->meta_pending);
528 cfqq->meta_pending--;
533 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
535 struct cfq_data *cfqd = q->elevator->elevator_data;
536 struct request *__rq;
538 __rq = cfq_find_rq_fmerge(cfqd, bio);
539 if (__rq && elv_rq_merge_ok(__rq, bio)) {
541 return ELEVATOR_FRONT_MERGE;
544 return ELEVATOR_NO_MERGE;
547 static void cfq_merged_request(request_queue_t *q, struct request *req,
550 if (type == ELEVATOR_FRONT_MERGE) {
551 struct cfq_queue *cfqq = RQ_CFQQ(req);
553 cfq_reposition_rq_rb(cfqq, req);
558 cfq_merged_requests(request_queue_t *q, struct request *rq,
559 struct request *next)
562 * reposition in fifo if next is older than rq
564 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
565 time_before(next->start_time, rq->start_time))
566 list_move(&rq->queuelist, &next->queuelist);
568 cfq_remove_request(next);
572 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
576 * stop potential idle class queues waiting service
578 del_timer(&cfqd->idle_class_timer);
580 cfqq->slice_start = jiffies;
582 cfqq->slice_left = 0;
583 cfq_clear_cfqq_must_alloc_slice(cfqq);
584 cfq_clear_cfqq_fifo_expire(cfqq);
587 cfqd->active_queue = cfqq;
591 * current cfqq expired its slice (or was too idle), select new one
594 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
597 unsigned long now = jiffies;
599 if (cfq_cfqq_wait_request(cfqq))
600 del_timer(&cfqd->idle_slice_timer);
602 if (!preempted && !cfq_cfqq_dispatched(cfqq))
603 cfq_schedule_dispatch(cfqd);
605 cfq_clear_cfqq_must_dispatch(cfqq);
606 cfq_clear_cfqq_wait_request(cfqq);
607 cfq_clear_cfqq_queue_new(cfqq);
610 * store what was left of this slice, if the queue idled out
613 if (time_after(cfqq->slice_end, now))
614 cfqq->slice_left = cfqq->slice_end - now;
616 cfqq->slice_left = 0;
618 if (cfq_cfqq_on_rr(cfqq))
619 cfq_resort_rr_list(cfqq, preempted);
621 if (cfqq == cfqd->active_queue)
622 cfqd->active_queue = NULL;
624 if (cfqd->active_cic) {
625 put_io_context(cfqd->active_cic->ioc);
626 cfqd->active_cic = NULL;
629 cfqd->dispatch_slice = 0;
632 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
634 struct cfq_queue *cfqq = cfqd->active_queue;
637 __cfq_slice_expired(cfqd, cfqq, preempted);
650 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
659 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
660 if (!list_empty(&cfqd->rr_list[p])) {
669 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
670 cfqd->cur_end_prio = 0;
677 if (unlikely(prio == -1))
680 BUG_ON(prio >= CFQ_PRIO_LISTS);
682 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
684 cfqd->cur_prio = prio + 1;
685 if (cfqd->cur_prio > cfqd->cur_end_prio) {
686 cfqd->cur_end_prio = cfqd->cur_prio;
689 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
691 cfqd->cur_end_prio = 0;
697 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
699 struct cfq_queue *cfqq = NULL;
701 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
703 * if current list is non-empty, grab first entry. if it is
704 * empty, get next prio level and grab first entry then if any
707 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
708 } else if (!list_empty(&cfqd->busy_rr)) {
710 * If no new queues are available, check if the busy list has
711 * some before falling back to idle io.
713 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
714 } else if (!list_empty(&cfqd->idle_rr)) {
716 * if we have idle queues and no rt or be queues had pending
717 * requests, either allow immediate service if the grace period
718 * has passed or arm the idle grace timer
720 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
722 if (time_after_eq(jiffies, end))
723 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
725 mod_timer(&cfqd->idle_class_timer, end);
728 __cfq_set_active_queue(cfqd, cfqq);
732 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
734 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
737 struct cfq_io_context *cic;
740 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
741 WARN_ON(cfqq != cfqd->active_queue);
744 * idle is disabled, either manually or by past process history
746 if (!cfqd->cfq_slice_idle)
748 if (!cfq_cfqq_idle_window(cfqq))
751 * task has exited, don't wait
753 cic = cfqd->active_cic;
754 if (!cic || !cic->ioc->task)
757 cfq_mark_cfqq_must_dispatch(cfqq);
758 cfq_mark_cfqq_wait_request(cfqq);
760 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
763 * we don't want to idle for seeks, but we do want to allow
764 * fair distribution of slice time for a process doing back-to-back
765 * seeks. so allow a little bit of time for him to submit a new rq
767 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
768 sl = min(sl, msecs_to_jiffies(2));
770 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
774 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
776 struct cfq_data *cfqd = q->elevator->elevator_data;
777 struct cfq_queue *cfqq = RQ_CFQQ(rq);
779 cfq_remove_request(rq);
780 cfqq->on_dispatch[rq_is_sync(rq)]++;
781 elv_dispatch_sort(q, rq);
783 rq = list_entry(q->queue_head.prev, struct request, queuelist);
784 cfqd->last_sector = rq->sector + rq->nr_sectors;
788 * return expired entry, or NULL to just start from scratch in rbtree
790 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
792 struct cfq_data *cfqd = cfqq->cfqd;
796 if (cfq_cfqq_fifo_expire(cfqq))
798 if (list_empty(&cfqq->fifo))
801 fifo = cfq_cfqq_class_sync(cfqq);
802 rq = rq_entry_fifo(cfqq->fifo.next);
804 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
805 cfq_mark_cfqq_fifo_expire(cfqq);
813 * Scale schedule slice based on io priority. Use the sync time slice only
814 * if a queue is marked sync and has sync io queued. A sync queue with async
815 * io only, should not get full sync slice length.
818 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
820 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
822 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
824 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
828 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
830 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
834 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
836 const int base_rq = cfqd->cfq_slice_async_rq;
838 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
840 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
844 * get next queue for service
846 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
848 unsigned long now = jiffies;
849 struct cfq_queue *cfqq;
851 cfqq = cfqd->active_queue;
858 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
862 * if queue has requests, dispatch one. if not, check if
863 * enough slice is left to wait for one
865 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
867 else if (cfq_cfqq_dispatched(cfqq)) {
870 } else if (cfq_cfqq_class_sync(cfqq)) {
871 if (cfq_arm_slice_timer(cfqd, cfqq))
876 cfq_slice_expired(cfqd, 0);
878 cfqq = cfq_set_active_queue(cfqd);
884 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
889 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
895 * follow expired path, else get first next available
897 if ((rq = cfq_check_fifo(cfqq)) == NULL)
901 * finally, insert request into driver dispatch list
903 cfq_dispatch_insert(cfqd->queue, rq);
905 cfqd->dispatch_slice++;
908 if (!cfqd->active_cic) {
909 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
910 cfqd->active_cic = RQ_CIC(rq);
913 if (RB_EMPTY_ROOT(&cfqq->sort_list))
916 } while (dispatched < max_dispatch);
919 * if slice end isn't set yet, set it.
921 if (!cfqq->slice_end)
922 cfq_set_prio_slice(cfqd, cfqq);
925 * expire an async queue immediately if it has used up its slice. idle
926 * queue always expire after 1 dispatch round.
928 if ((!cfq_cfqq_sync(cfqq) &&
929 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
930 cfq_class_idle(cfqq) ||
931 !cfq_cfqq_idle_window(cfqq))
932 cfq_slice_expired(cfqd, 0);
938 cfq_forced_dispatch_cfqqs(struct list_head *list)
940 struct cfq_queue *cfqq, *next;
944 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
945 while (cfqq->next_rq) {
946 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
949 BUG_ON(!list_empty(&cfqq->fifo));
956 cfq_forced_dispatch(struct cfq_data *cfqd)
958 int i, dispatched = 0;
960 for (i = 0; i < CFQ_PRIO_LISTS; i++)
961 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
963 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
964 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
965 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
967 cfq_slice_expired(cfqd, 0);
969 BUG_ON(cfqd->busy_queues);
975 cfq_dispatch_requests(request_queue_t *q, int force)
977 struct cfq_data *cfqd = q->elevator->elevator_data;
978 struct cfq_queue *cfqq, *prev_cfqq;
981 if (!cfqd->busy_queues)
985 return cfq_forced_dispatch(cfqd);
989 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
993 * Don't repeat dispatch from the previous queue.
995 if (prev_cfqq == cfqq)
998 cfq_clear_cfqq_must_dispatch(cfqq);
999 cfq_clear_cfqq_wait_request(cfqq);
1000 del_timer(&cfqd->idle_slice_timer);
1002 max_dispatch = cfqd->cfq_quantum;
1003 if (cfq_class_idle(cfqq))
1006 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1009 * If the dispatch cfqq has idling enabled and is still
1010 * the active queue, break out.
1012 if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
1022 * task holds one reference to the queue, dropped when task exits. each rq
1023 * in-flight on this queue also holds a reference, dropped when rq is freed.
1025 * queue lock must be held here.
1027 static void cfq_put_queue(struct cfq_queue *cfqq)
1029 struct cfq_data *cfqd = cfqq->cfqd;
1031 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1033 if (!atomic_dec_and_test(&cfqq->ref))
1036 BUG_ON(rb_first(&cfqq->sort_list));
1037 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1038 BUG_ON(cfq_cfqq_on_rr(cfqq));
1040 if (unlikely(cfqd->active_queue == cfqq))
1041 __cfq_slice_expired(cfqd, cfqq, 0);
1044 * it's on the empty list and still hashed
1046 list_del(&cfqq->cfq_list);
1047 hlist_del(&cfqq->cfq_hash);
1048 kmem_cache_free(cfq_pool, cfqq);
1051 static struct cfq_queue *
1052 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1055 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1056 struct hlist_node *entry;
1057 struct cfq_queue *__cfqq;
1059 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1060 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1062 if (__cfqq->key == key && (__p == prio || !prio))
1069 static struct cfq_queue *
1070 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1072 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1075 static void cfq_free_io_context(struct io_context *ioc)
1077 struct cfq_io_context *__cic;
1081 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1082 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1083 rb_erase(&__cic->rb_node, &ioc->cic_root);
1084 kmem_cache_free(cfq_ioc_pool, __cic);
1088 elv_ioc_count_mod(ioc_count, -freed);
1090 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1094 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1096 if (unlikely(cfqq == cfqd->active_queue))
1097 __cfq_slice_expired(cfqd, cfqq, 0);
1099 cfq_put_queue(cfqq);
1102 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1103 struct cfq_io_context *cic)
1105 list_del_init(&cic->queue_list);
1109 if (cic->cfqq[ASYNC]) {
1110 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1111 cic->cfqq[ASYNC] = NULL;
1114 if (cic->cfqq[SYNC]) {
1115 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1116 cic->cfqq[SYNC] = NULL;
1122 * Called with interrupts disabled
1124 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1126 struct cfq_data *cfqd = cic->key;
1129 request_queue_t *q = cfqd->queue;
1131 spin_lock_irq(q->queue_lock);
1132 __cfq_exit_single_io_context(cfqd, cic);
1133 spin_unlock_irq(q->queue_lock);
1137 static void cfq_exit_io_context(struct io_context *ioc)
1139 struct cfq_io_context *__cic;
1143 * put the reference this task is holding to the various queues
1146 n = rb_first(&ioc->cic_root);
1148 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1150 cfq_exit_single_io_context(__cic);
1155 static struct cfq_io_context *
1156 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1158 struct cfq_io_context *cic;
1160 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1162 memset(cic, 0, sizeof(*cic));
1163 cic->last_end_request = jiffies;
1164 INIT_LIST_HEAD(&cic->queue_list);
1165 cic->dtor = cfq_free_io_context;
1166 cic->exit = cfq_exit_io_context;
1167 elv_ioc_count_inc(ioc_count);
1173 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1175 struct task_struct *tsk = current;
1178 if (!cfq_cfqq_prio_changed(cfqq))
1181 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1182 switch (ioprio_class) {
1184 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1185 case IOPRIO_CLASS_NONE:
1187 * no prio set, place us in the middle of the BE classes
1189 cfqq->ioprio = task_nice_ioprio(tsk);
1190 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1192 case IOPRIO_CLASS_RT:
1193 cfqq->ioprio = task_ioprio(tsk);
1194 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1196 case IOPRIO_CLASS_BE:
1197 cfqq->ioprio = task_ioprio(tsk);
1198 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1200 case IOPRIO_CLASS_IDLE:
1201 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1203 cfq_clear_cfqq_idle_window(cfqq);
1208 * keep track of original prio settings in case we have to temporarily
1209 * elevate the priority of this queue
1211 cfqq->org_ioprio = cfqq->ioprio;
1212 cfqq->org_ioprio_class = cfqq->ioprio_class;
1214 if (cfq_cfqq_on_rr(cfqq))
1215 cfq_resort_rr_list(cfqq, 0);
1217 cfq_clear_cfqq_prio_changed(cfqq);
1220 static inline void changed_ioprio(struct cfq_io_context *cic)
1222 struct cfq_data *cfqd = cic->key;
1223 struct cfq_queue *cfqq;
1224 unsigned long flags;
1226 if (unlikely(!cfqd))
1229 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1231 cfqq = cic->cfqq[ASYNC];
1233 struct cfq_queue *new_cfqq;
1234 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1237 cic->cfqq[ASYNC] = new_cfqq;
1238 cfq_put_queue(cfqq);
1242 cfqq = cic->cfqq[SYNC];
1244 cfq_mark_cfqq_prio_changed(cfqq);
1246 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1249 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1251 struct cfq_io_context *cic;
1254 ioc->ioprio_changed = 0;
1256 n = rb_first(&ioc->cic_root);
1258 cic = rb_entry(n, struct cfq_io_context, rb_node);
1260 changed_ioprio(cic);
1265 static struct cfq_queue *
1266 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1269 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1270 struct cfq_queue *cfqq, *new_cfqq = NULL;
1271 unsigned short ioprio;
1274 ioprio = tsk->ioprio;
1275 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1281 } else if (gfp_mask & __GFP_WAIT) {
1283 * Inform the allocator of the fact that we will
1284 * just repeat this allocation if it fails, to allow
1285 * the allocator to do whatever it needs to attempt to
1288 spin_unlock_irq(cfqd->queue->queue_lock);
1289 new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1290 spin_lock_irq(cfqd->queue->queue_lock);
1293 cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1298 memset(cfqq, 0, sizeof(*cfqq));
1300 INIT_HLIST_NODE(&cfqq->cfq_hash);
1301 INIT_LIST_HEAD(&cfqq->cfq_list);
1302 INIT_LIST_HEAD(&cfqq->fifo);
1305 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1306 atomic_set(&cfqq->ref, 0);
1309 * set ->slice_left to allow preemption for a new process
1311 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1312 cfq_mark_cfqq_idle_window(cfqq);
1313 cfq_mark_cfqq_prio_changed(cfqq);
1314 cfq_mark_cfqq_queue_new(cfqq);
1315 cfq_init_prio_data(cfqq);
1319 kmem_cache_free(cfq_pool, new_cfqq);
1321 atomic_inc(&cfqq->ref);
1323 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1328 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1330 WARN_ON(!list_empty(&cic->queue_list));
1331 rb_erase(&cic->rb_node, &ioc->cic_root);
1332 kmem_cache_free(cfq_ioc_pool, cic);
1333 elv_ioc_count_dec(ioc_count);
1336 static struct cfq_io_context *
1337 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1340 struct cfq_io_context *cic;
1341 void *k, *key = cfqd;
1344 n = ioc->cic_root.rb_node;
1346 cic = rb_entry(n, struct cfq_io_context, rb_node);
1347 /* ->key must be copied to avoid race with cfq_exit_queue() */
1350 cfq_drop_dead_cic(ioc, cic);
1366 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1367 struct cfq_io_context *cic)
1370 struct rb_node *parent;
1371 struct cfq_io_context *__cic;
1372 unsigned long flags;
1380 p = &ioc->cic_root.rb_node;
1383 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1384 /* ->key must be copied to avoid race with cfq_exit_queue() */
1387 cfq_drop_dead_cic(ioc, __cic);
1393 else if (cic->key > k)
1394 p = &(*p)->rb_right;
1399 rb_link_node(&cic->rb_node, parent, p);
1400 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1402 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1403 list_add(&cic->queue_list, &cfqd->cic_list);
1404 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1408 * Setup general io context and cfq io context. There can be several cfq
1409 * io contexts per general io context, if this process is doing io to more
1410 * than one device managed by cfq.
1412 static struct cfq_io_context *
1413 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1415 struct io_context *ioc = NULL;
1416 struct cfq_io_context *cic;
1418 might_sleep_if(gfp_mask & __GFP_WAIT);
1420 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1424 cic = cfq_cic_rb_lookup(cfqd, ioc);
1428 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1432 cfq_cic_link(cfqd, ioc, cic);
1434 smp_read_barrier_depends();
1435 if (unlikely(ioc->ioprio_changed))
1436 cfq_ioc_set_ioprio(ioc);
1440 put_io_context(ioc);
1445 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1447 unsigned long elapsed, ttime;
1450 * if this context already has stuff queued, thinktime is from
1451 * last queue not last end
1454 if (time_after(cic->last_end_request, cic->last_queue))
1455 elapsed = jiffies - cic->last_end_request;
1457 elapsed = jiffies - cic->last_queue;
1459 elapsed = jiffies - cic->last_end_request;
1462 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1464 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1465 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1466 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1470 cfq_update_io_seektime(struct cfq_io_context *cic, struct request *rq)
1475 if (cic->last_request_pos < rq->sector)
1476 sdist = rq->sector - cic->last_request_pos;
1478 sdist = cic->last_request_pos - rq->sector;
1481 * Don't allow the seek distance to get too large from the
1482 * odd fragment, pagein, etc
1484 if (cic->seek_samples <= 60) /* second&third seek */
1485 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1487 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1489 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1490 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1491 total = cic->seek_total + (cic->seek_samples/2);
1492 do_div(total, cic->seek_samples);
1493 cic->seek_mean = (sector_t)total;
1497 * Disable idle window if the process thinks too long or seeks so much that
1501 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1502 struct cfq_io_context *cic)
1504 int enable_idle = cfq_cfqq_idle_window(cfqq);
1506 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1507 (cfqd->hw_tag && CIC_SEEKY(cic)))
1509 else if (sample_valid(cic->ttime_samples)) {
1510 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1517 cfq_mark_cfqq_idle_window(cfqq);
1519 cfq_clear_cfqq_idle_window(cfqq);
1524 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1525 * no or if we aren't sure, a 1 will cause a preempt.
1528 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1531 struct cfq_queue *cfqq = cfqd->active_queue;
1533 if (cfq_class_idle(new_cfqq))
1539 if (cfq_class_idle(cfqq))
1541 if (!cfq_cfqq_wait_request(new_cfqq))
1544 * if it doesn't have slice left, forget it
1546 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1549 * if the new request is sync, but the currently running queue is
1550 * not, let the sync request have priority.
1552 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1555 * So both queues are sync. Let the new request get disk time if
1556 * it's a metadata request and the current queue is doing regular IO.
1558 if (rq_is_meta(rq) && !cfqq->meta_pending)
1565 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1566 * let it have half of its nominal slice.
1568 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1570 cfq_slice_expired(cfqd, 1);
1572 if (!cfqq->slice_left)
1573 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1576 * Put the new queue at the front of the of the current list,
1577 * so we know that it will be selected next.
1579 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1580 list_move(&cfqq->cfq_list, &cfqd->cur_rr);
1582 cfqq->slice_end = cfqq->slice_left + jiffies;
1586 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1587 * something we should do about it
1590 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1593 struct cfq_io_context *cic = RQ_CIC(rq);
1596 cfqq->meta_pending++;
1599 * check if this request is a better next-serve candidate)) {
1601 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
1602 BUG_ON(!cfqq->next_rq);
1605 * we never wait for an async request and we don't allow preemption
1606 * of an async request. so just return early
1608 if (!rq_is_sync(rq)) {
1610 * sync process issued an async request, if it's waiting
1611 * then expire it and kick rq handling.
1613 if (cic == cfqd->active_cic &&
1614 del_timer(&cfqd->idle_slice_timer)) {
1615 cfq_slice_expired(cfqd, 0);
1616 blk_start_queueing(cfqd->queue);
1621 cfq_update_io_thinktime(cfqd, cic);
1622 cfq_update_io_seektime(cic, rq);
1623 cfq_update_idle_window(cfqd, cfqq, cic);
1625 cic->last_queue = jiffies;
1626 cic->last_request_pos = rq->sector + rq->nr_sectors;
1628 if (cfqq == cfqd->active_queue) {
1630 * if we are waiting for a request for this queue, let it rip
1631 * immediately and flag that we must not expire this queue
1634 if (cfq_cfqq_wait_request(cfqq)) {
1635 cfq_mark_cfqq_must_dispatch(cfqq);
1636 del_timer(&cfqd->idle_slice_timer);
1637 blk_start_queueing(cfqd->queue);
1639 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1641 * not the active queue - expire current slice if it is
1642 * idle and has expired it's mean thinktime or this new queue
1643 * has some old slice time left and is of higher priority
1645 cfq_preempt_queue(cfqd, cfqq);
1646 cfq_mark_cfqq_must_dispatch(cfqq);
1647 blk_start_queueing(cfqd->queue);
1651 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1653 struct cfq_data *cfqd = q->elevator->elevator_data;
1654 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1656 cfq_init_prio_data(cfqq);
1660 list_add_tail(&rq->queuelist, &cfqq->fifo);
1662 cfq_rq_enqueued(cfqd, cfqq, rq);
1665 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1667 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1668 struct cfq_data *cfqd = cfqq->cfqd;
1669 const int sync = rq_is_sync(rq);
1674 WARN_ON(!cfqd->rq_in_driver);
1675 WARN_ON(!cfqq->on_dispatch[sync]);
1676 cfqd->rq_in_driver--;
1677 cfqq->on_dispatch[sync]--;
1679 if (!cfq_class_idle(cfqq))
1680 cfqd->last_end_request = now;
1682 if (!cfq_cfqq_dispatched(cfqq) && cfq_cfqq_on_rr(cfqq))
1683 cfq_resort_rr_list(cfqq, 0);
1686 RQ_CIC(rq)->last_end_request = now;
1689 * If this is the active queue, check if it needs to be expired,
1690 * or if we want to idle in case it has no pending requests.
1692 if (cfqd->active_queue == cfqq) {
1693 if (time_after(now, cfqq->slice_end))
1694 cfq_slice_expired(cfqd, 0);
1695 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1696 if (!cfq_arm_slice_timer(cfqd, cfqq))
1697 cfq_schedule_dispatch(cfqd);
1703 * we temporarily boost lower priority queues if they are holding fs exclusive
1704 * resources. they are boosted to normal prio (CLASS_BE/4)
1706 static void cfq_prio_boost(struct cfq_queue *cfqq)
1708 const int ioprio_class = cfqq->ioprio_class;
1709 const int ioprio = cfqq->ioprio;
1711 if (has_fs_excl()) {
1713 * boost idle prio on transactions that would lock out other
1714 * users of the filesystem
1716 if (cfq_class_idle(cfqq))
1717 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1718 if (cfqq->ioprio > IOPRIO_NORM)
1719 cfqq->ioprio = IOPRIO_NORM;
1722 * check if we need to unboost the queue
1724 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1725 cfqq->ioprio_class = cfqq->org_ioprio_class;
1726 if (cfqq->ioprio != cfqq->org_ioprio)
1727 cfqq->ioprio = cfqq->org_ioprio;
1731 * refile between round-robin lists if we moved the priority class
1733 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1734 cfq_cfqq_on_rr(cfqq))
1735 cfq_resort_rr_list(cfqq, 0);
1738 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1740 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1741 !cfq_cfqq_must_alloc_slice(cfqq)) {
1742 cfq_mark_cfqq_must_alloc_slice(cfqq);
1743 return ELV_MQUEUE_MUST;
1746 return ELV_MQUEUE_MAY;
1749 static int cfq_may_queue(request_queue_t *q, int rw)
1751 struct cfq_data *cfqd = q->elevator->elevator_data;
1752 struct task_struct *tsk = current;
1753 struct cfq_queue *cfqq;
1756 key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1759 * don't force setup of a queue from here, as a call to may_queue
1760 * does not necessarily imply that a request actually will be queued.
1761 * so just lookup a possibly existing queue, or return 'may queue'
1764 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1766 cfq_init_prio_data(cfqq);
1767 cfq_prio_boost(cfqq);
1769 return __cfq_may_queue(cfqq);
1772 return ELV_MQUEUE_MAY;
1776 * queue lock held here
1778 static void cfq_put_request(struct request *rq)
1780 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1783 const int rw = rq_data_dir(rq);
1785 BUG_ON(!cfqq->allocated[rw]);
1786 cfqq->allocated[rw]--;
1788 put_io_context(RQ_CIC(rq)->ioc);
1790 rq->elevator_private = NULL;
1791 rq->elevator_private2 = NULL;
1793 cfq_put_queue(cfqq);
1798 * Allocate cfq data structures associated with this request.
1801 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1803 struct cfq_data *cfqd = q->elevator->elevator_data;
1804 struct task_struct *tsk = current;
1805 struct cfq_io_context *cic;
1806 const int rw = rq_data_dir(rq);
1807 const int is_sync = rq_is_sync(rq);
1808 pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1809 struct cfq_queue *cfqq;
1810 unsigned long flags;
1812 might_sleep_if(gfp_mask & __GFP_WAIT);
1814 cic = cfq_get_io_context(cfqd, gfp_mask);
1816 spin_lock_irqsave(q->queue_lock, flags);
1821 if (!cic->cfqq[is_sync]) {
1822 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1826 cic->cfqq[is_sync] = cfqq;
1828 cfqq = cic->cfqq[is_sync];
1830 cfqq->allocated[rw]++;
1831 cfq_clear_cfqq_must_alloc(cfqq);
1832 atomic_inc(&cfqq->ref);
1834 spin_unlock_irqrestore(q->queue_lock, flags);
1836 rq->elevator_private = cic;
1837 rq->elevator_private2 = cfqq;
1842 put_io_context(cic->ioc);
1844 cfq_schedule_dispatch(cfqd);
1845 spin_unlock_irqrestore(q->queue_lock, flags);
1849 static void cfq_kick_queue(struct work_struct *work)
1851 struct cfq_data *cfqd =
1852 container_of(work, struct cfq_data, unplug_work);
1853 request_queue_t *q = cfqd->queue;
1854 unsigned long flags;
1856 spin_lock_irqsave(q->queue_lock, flags);
1857 blk_start_queueing(q);
1858 spin_unlock_irqrestore(q->queue_lock, flags);
1862 * Timer running if the active_queue is currently idling inside its time slice
1864 static void cfq_idle_slice_timer(unsigned long data)
1866 struct cfq_data *cfqd = (struct cfq_data *) data;
1867 struct cfq_queue *cfqq;
1868 unsigned long flags;
1870 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1872 if ((cfqq = cfqd->active_queue) != NULL) {
1873 unsigned long now = jiffies;
1878 if (time_after(now, cfqq->slice_end))
1882 * only expire and reinvoke request handler, if there are
1883 * other queues with pending requests
1885 if (!cfqd->busy_queues)
1889 * not expired and it has a request pending, let it dispatch
1891 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1892 cfq_mark_cfqq_must_dispatch(cfqq);
1897 cfq_slice_expired(cfqd, 0);
1899 cfq_schedule_dispatch(cfqd);
1901 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1905 * Timer running if an idle class queue is waiting for service
1907 static void cfq_idle_class_timer(unsigned long data)
1909 struct cfq_data *cfqd = (struct cfq_data *) data;
1910 unsigned long flags, end;
1912 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1915 * race with a non-idle queue, reset timer
1917 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1918 if (!time_after_eq(jiffies, end))
1919 mod_timer(&cfqd->idle_class_timer, end);
1921 cfq_schedule_dispatch(cfqd);
1923 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1926 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
1928 del_timer_sync(&cfqd->idle_slice_timer);
1929 del_timer_sync(&cfqd->idle_class_timer);
1930 blk_sync_queue(cfqd->queue);
1933 static void cfq_exit_queue(elevator_t *e)
1935 struct cfq_data *cfqd = e->elevator_data;
1936 request_queue_t *q = cfqd->queue;
1938 cfq_shutdown_timer_wq(cfqd);
1940 spin_lock_irq(q->queue_lock);
1942 if (cfqd->active_queue)
1943 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
1945 while (!list_empty(&cfqd->cic_list)) {
1946 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
1947 struct cfq_io_context,
1950 __cfq_exit_single_io_context(cfqd, cic);
1953 spin_unlock_irq(q->queue_lock);
1955 cfq_shutdown_timer_wq(cfqd);
1957 kfree(cfqd->cfq_hash);
1961 static void *cfq_init_queue(request_queue_t *q)
1963 struct cfq_data *cfqd;
1966 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
1970 memset(cfqd, 0, sizeof(*cfqd));
1972 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1973 INIT_LIST_HEAD(&cfqd->rr_list[i]);
1975 INIT_LIST_HEAD(&cfqd->busy_rr);
1976 INIT_LIST_HEAD(&cfqd->cur_rr);
1977 INIT_LIST_HEAD(&cfqd->idle_rr);
1978 INIT_LIST_HEAD(&cfqd->cic_list);
1980 cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
1981 if (!cfqd->cfq_hash)
1984 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
1985 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
1989 init_timer(&cfqd->idle_slice_timer);
1990 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
1991 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
1993 init_timer(&cfqd->idle_class_timer);
1994 cfqd->idle_class_timer.function = cfq_idle_class_timer;
1995 cfqd->idle_class_timer.data = (unsigned long) cfqd;
1997 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
1999 cfqd->cfq_quantum = cfq_quantum;
2000 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2001 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2002 cfqd->cfq_back_max = cfq_back_max;
2003 cfqd->cfq_back_penalty = cfq_back_penalty;
2004 cfqd->cfq_slice[0] = cfq_slice_async;
2005 cfqd->cfq_slice[1] = cfq_slice_sync;
2006 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2007 cfqd->cfq_slice_idle = cfq_slice_idle;
2015 static void cfq_slab_kill(void)
2018 kmem_cache_destroy(cfq_pool);
2020 kmem_cache_destroy(cfq_ioc_pool);
2023 static int __init cfq_slab_setup(void)
2025 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2030 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2031 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2042 * sysfs parts below -->
2046 cfq_var_show(unsigned int var, char *page)
2048 return sprintf(page, "%d\n", var);
2052 cfq_var_store(unsigned int *var, const char *page, size_t count)
2054 char *p = (char *) page;
2056 *var = simple_strtoul(p, &p, 10);
2060 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2061 static ssize_t __FUNC(elevator_t *e, char *page) \
2063 struct cfq_data *cfqd = e->elevator_data; \
2064 unsigned int __data = __VAR; \
2066 __data = jiffies_to_msecs(__data); \
2067 return cfq_var_show(__data, (page)); \
2069 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2070 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2071 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2072 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2073 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2074 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2075 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2076 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2077 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2078 #undef SHOW_FUNCTION
2080 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2081 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2083 struct cfq_data *cfqd = e->elevator_data; \
2084 unsigned int __data; \
2085 int ret = cfq_var_store(&__data, (page), count); \
2086 if (__data < (MIN)) \
2088 else if (__data > (MAX)) \
2091 *(__PTR) = msecs_to_jiffies(__data); \
2093 *(__PTR) = __data; \
2096 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2097 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2098 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2099 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2100 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2101 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2102 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2103 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2104 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2105 #undef STORE_FUNCTION
2107 #define CFQ_ATTR(name) \
2108 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2110 static struct elv_fs_entry cfq_attrs[] = {
2112 CFQ_ATTR(fifo_expire_sync),
2113 CFQ_ATTR(fifo_expire_async),
2114 CFQ_ATTR(back_seek_max),
2115 CFQ_ATTR(back_seek_penalty),
2116 CFQ_ATTR(slice_sync),
2117 CFQ_ATTR(slice_async),
2118 CFQ_ATTR(slice_async_rq),
2119 CFQ_ATTR(slice_idle),
2123 static struct elevator_type iosched_cfq = {
2125 .elevator_merge_fn = cfq_merge,
2126 .elevator_merged_fn = cfq_merged_request,
2127 .elevator_merge_req_fn = cfq_merged_requests,
2128 .elevator_dispatch_fn = cfq_dispatch_requests,
2129 .elevator_add_req_fn = cfq_insert_request,
2130 .elevator_activate_req_fn = cfq_activate_request,
2131 .elevator_deactivate_req_fn = cfq_deactivate_request,
2132 .elevator_queue_empty_fn = cfq_queue_empty,
2133 .elevator_completed_req_fn = cfq_completed_request,
2134 .elevator_former_req_fn = elv_rb_former_request,
2135 .elevator_latter_req_fn = elv_rb_latter_request,
2136 .elevator_set_req_fn = cfq_set_request,
2137 .elevator_put_req_fn = cfq_put_request,
2138 .elevator_may_queue_fn = cfq_may_queue,
2139 .elevator_init_fn = cfq_init_queue,
2140 .elevator_exit_fn = cfq_exit_queue,
2141 .trim = cfq_free_io_context,
2143 .elevator_attrs = cfq_attrs,
2144 .elevator_name = "cfq",
2145 .elevator_owner = THIS_MODULE,
2148 static int __init cfq_init(void)
2153 * could be 0 on HZ < 1000 setups
2155 if (!cfq_slice_async)
2156 cfq_slice_async = 1;
2157 if (!cfq_slice_idle)
2160 if (cfq_slab_setup())
2163 ret = elv_register(&iosched_cfq);
2170 static void __exit cfq_exit(void)
2172 DECLARE_COMPLETION_ONSTACK(all_gone);
2173 elv_unregister(&iosched_cfq);
2174 ioc_gone = &all_gone;
2175 /* ioc_gone's update must be visible before reading ioc_count */
2177 if (elv_ioc_count_read(ioc_count))
2178 wait_for_completion(ioc_gone);
2183 module_init(cfq_init);
2184 module_exit(cfq_exit);
2186 MODULE_AUTHOR("Jens Axboe");
2187 MODULE_LICENSE("GPL");
2188 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");