4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
39 #include <linux/memory.h>
40 #include <linux/module.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
57 #include <asm/uaccess.h>
58 #include <asm/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
64 * Tracks how many cpusets are currently defined in system.
65 * When there is only one cpuset (the root cpuset) we can
66 * short circuit some hooks.
68 int number_of_cpusets __read_mostly;
70 /* Forward declare cgroup structures */
71 struct cgroup_subsys cpuset_subsys;
74 /* See "Frequency meter" comments, below. */
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
84 struct cgroup_subsys_state css;
86 unsigned long flags; /* "unsigned long" so bitops work */
87 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
90 struct cpuset *parent; /* my parent */
93 * Copy of global cpuset_mems_generation as of the most
94 * recent time this cpuset changed its mems_allowed.
98 struct fmeter fmeter; /* memory_pressure filter */
100 /* partition number for rebuild_sched_domains() */
103 /* for custom sched domain */
104 int relax_domain_level;
106 /* used for walking a cpuset heirarchy */
107 struct list_head stack_list;
110 /* Retrieve the cpuset for a cgroup */
111 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
113 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
117 /* Retrieve the cpuset for a task */
118 static inline struct cpuset *task_cs(struct task_struct *task)
120 return container_of(task_subsys_state(task, cpuset_subsys_id),
123 struct cpuset_hotplug_scanner {
124 struct cgroup_scanner scan;
128 /* bits in struct cpuset flags field */
134 CS_SCHED_LOAD_BALANCE,
139 /* convenient tests for these bits */
140 static inline int is_cpu_exclusive(const struct cpuset *cs)
142 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
145 static inline int is_mem_exclusive(const struct cpuset *cs)
147 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
150 static inline int is_mem_hardwall(const struct cpuset *cs)
152 return test_bit(CS_MEM_HARDWALL, &cs->flags);
155 static inline int is_sched_load_balance(const struct cpuset *cs)
157 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
160 static inline int is_memory_migrate(const struct cpuset *cs)
162 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
165 static inline int is_spread_page(const struct cpuset *cs)
167 return test_bit(CS_SPREAD_PAGE, &cs->flags);
170 static inline int is_spread_slab(const struct cpuset *cs)
172 return test_bit(CS_SPREAD_SLAB, &cs->flags);
176 * Increment this integer everytime any cpuset changes its
177 * mems_allowed value. Users of cpusets can track this generation
178 * number, and avoid having to lock and reload mems_allowed unless
179 * the cpuset they're using changes generation.
181 * A single, global generation is needed because cpuset_attach_task() could
182 * reattach a task to a different cpuset, which must not have its
183 * generation numbers aliased with those of that tasks previous cpuset.
185 * Generations are needed for mems_allowed because one task cannot
186 * modify another's memory placement. So we must enable every task,
187 * on every visit to __alloc_pages(), to efficiently check whether
188 * its current->cpuset->mems_allowed has changed, requiring an update
189 * of its current->mems_allowed.
191 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
192 * there is no need to mark it atomic.
194 static int cpuset_mems_generation;
196 static struct cpuset top_cpuset = {
197 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
198 .cpus_allowed = CPU_MASK_ALL,
199 .mems_allowed = NODE_MASK_ALL,
203 * There are two global mutexes guarding cpuset structures. The first
204 * is the main control groups cgroup_mutex, accessed via
205 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
206 * callback_mutex, below. They can nest. It is ok to first take
207 * cgroup_mutex, then nest callback_mutex. We also require taking
208 * task_lock() when dereferencing a task's cpuset pointer. See "The
209 * task_lock() exception", at the end of this comment.
211 * A task must hold both mutexes to modify cpusets. If a task
212 * holds cgroup_mutex, then it blocks others wanting that mutex,
213 * ensuring that it is the only task able to also acquire callback_mutex
214 * and be able to modify cpusets. It can perform various checks on
215 * the cpuset structure first, knowing nothing will change. It can
216 * also allocate memory while just holding cgroup_mutex. While it is
217 * performing these checks, various callback routines can briefly
218 * acquire callback_mutex to query cpusets. Once it is ready to make
219 * the changes, it takes callback_mutex, blocking everyone else.
221 * Calls to the kernel memory allocator can not be made while holding
222 * callback_mutex, as that would risk double tripping on callback_mutex
223 * from one of the callbacks into the cpuset code from within
226 * If a task is only holding callback_mutex, then it has read-only
229 * The task_struct fields mems_allowed and mems_generation may only
230 * be accessed in the context of that task, so require no locks.
232 * The cpuset_common_file_read() handlers only hold callback_mutex across
233 * small pieces of code, such as when reading out possibly multi-word
234 * cpumasks and nodemasks.
236 * Accessing a task's cpuset should be done in accordance with the
237 * guidelines for accessing subsystem state in kernel/cgroup.c
240 static DEFINE_MUTEX(callback_mutex);
243 * This is ugly, but preserves the userspace API for existing cpuset
244 * users. If someone tries to mount the "cpuset" filesystem, we
245 * silently switch it to mount "cgroup" instead
247 static int cpuset_get_sb(struct file_system_type *fs_type,
248 int flags, const char *unused_dev_name,
249 void *data, struct vfsmount *mnt)
251 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
256 "release_agent=/sbin/cpuset_release_agent";
257 ret = cgroup_fs->get_sb(cgroup_fs, flags,
258 unused_dev_name, mountopts, mnt);
259 put_filesystem(cgroup_fs);
264 static struct file_system_type cpuset_fs_type = {
266 .get_sb = cpuset_get_sb,
270 * Return in *pmask the portion of a cpusets's cpus_allowed that
271 * are online. If none are online, walk up the cpuset hierarchy
272 * until we find one that does have some online cpus. If we get
273 * all the way to the top and still haven't found any online cpus,
274 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
275 * task, return cpu_online_map.
277 * One way or another, we guarantee to return some non-empty subset
280 * Call with callback_mutex held.
283 static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
285 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
288 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
290 *pmask = cpu_online_map;
291 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
295 * Return in *pmask the portion of a cpusets's mems_allowed that
296 * are online, with memory. If none are online with memory, walk
297 * up the cpuset hierarchy until we find one that does have some
298 * online mems. If we get all the way to the top and still haven't
299 * found any online mems, return node_states[N_HIGH_MEMORY].
301 * One way or another, we guarantee to return some non-empty subset
302 * of node_states[N_HIGH_MEMORY].
304 * Call with callback_mutex held.
307 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
309 while (cs && !nodes_intersects(cs->mems_allowed,
310 node_states[N_HIGH_MEMORY]))
313 nodes_and(*pmask, cs->mems_allowed,
314 node_states[N_HIGH_MEMORY]);
316 *pmask = node_states[N_HIGH_MEMORY];
317 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
321 * cpuset_update_task_memory_state - update task memory placement
323 * If the current tasks cpusets mems_allowed changed behind our
324 * backs, update current->mems_allowed, mems_generation and task NUMA
325 * mempolicy to the new value.
327 * Task mempolicy is updated by rebinding it relative to the
328 * current->cpuset if a task has its memory placement changed.
329 * Do not call this routine if in_interrupt().
331 * Call without callback_mutex or task_lock() held. May be
332 * called with or without cgroup_mutex held. Thanks in part to
333 * 'the_top_cpuset_hack', the task's cpuset pointer will never
334 * be NULL. This routine also might acquire callback_mutex during
337 * Reading current->cpuset->mems_generation doesn't need task_lock
338 * to guard the current->cpuset derefence, because it is guarded
339 * from concurrent freeing of current->cpuset using RCU.
341 * The rcu_dereference() is technically probably not needed,
342 * as I don't actually mind if I see a new cpuset pointer but
343 * an old value of mems_generation. However this really only
344 * matters on alpha systems using cpusets heavily. If I dropped
345 * that rcu_dereference(), it would save them a memory barrier.
346 * For all other arch's, rcu_dereference is a no-op anyway, and for
347 * alpha systems not using cpusets, another planned optimization,
348 * avoiding the rcu critical section for tasks in the root cpuset
349 * which is statically allocated, so can't vanish, will make this
350 * irrelevant. Better to use RCU as intended, than to engage in
351 * some cute trick to save a memory barrier that is impossible to
352 * test, for alpha systems using cpusets heavily, which might not
355 * This routine is needed to update the per-task mems_allowed data,
356 * within the tasks context, when it is trying to allocate memory
357 * (in various mm/mempolicy.c routines) and notices that some other
358 * task has been modifying its cpuset.
361 void cpuset_update_task_memory_state(void)
363 int my_cpusets_mem_gen;
364 struct task_struct *tsk = current;
367 if (task_cs(tsk) == &top_cpuset) {
368 /* Don't need rcu for top_cpuset. It's never freed. */
369 my_cpusets_mem_gen = top_cpuset.mems_generation;
372 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
376 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
377 mutex_lock(&callback_mutex);
379 cs = task_cs(tsk); /* Maybe changed when task not locked */
380 guarantee_online_mems(cs, &tsk->mems_allowed);
381 tsk->cpuset_mems_generation = cs->mems_generation;
382 if (is_spread_page(cs))
383 tsk->flags |= PF_SPREAD_PAGE;
385 tsk->flags &= ~PF_SPREAD_PAGE;
386 if (is_spread_slab(cs))
387 tsk->flags |= PF_SPREAD_SLAB;
389 tsk->flags &= ~PF_SPREAD_SLAB;
391 mutex_unlock(&callback_mutex);
392 mpol_rebind_task(tsk, &tsk->mems_allowed);
397 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
399 * One cpuset is a subset of another if all its allowed CPUs and
400 * Memory Nodes are a subset of the other, and its exclusive flags
401 * are only set if the other's are set. Call holding cgroup_mutex.
404 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
406 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
407 nodes_subset(p->mems_allowed, q->mems_allowed) &&
408 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
409 is_mem_exclusive(p) <= is_mem_exclusive(q);
413 * validate_change() - Used to validate that any proposed cpuset change
414 * follows the structural rules for cpusets.
416 * If we replaced the flag and mask values of the current cpuset
417 * (cur) with those values in the trial cpuset (trial), would
418 * our various subset and exclusive rules still be valid? Presumes
421 * 'cur' is the address of an actual, in-use cpuset. Operations
422 * such as list traversal that depend on the actual address of the
423 * cpuset in the list must use cur below, not trial.
425 * 'trial' is the address of bulk structure copy of cur, with
426 * perhaps one or more of the fields cpus_allowed, mems_allowed,
427 * or flags changed to new, trial values.
429 * Return 0 if valid, -errno if not.
432 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
435 struct cpuset *c, *par;
437 /* Each of our child cpusets must be a subset of us */
438 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
439 if (!is_cpuset_subset(cgroup_cs(cont), trial))
443 /* Remaining checks don't apply to root cpuset */
444 if (cur == &top_cpuset)
449 /* We must be a subset of our parent cpuset */
450 if (!is_cpuset_subset(trial, par))
454 * If either I or some sibling (!= me) is exclusive, we can't
457 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
459 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
461 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
463 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
465 nodes_intersects(trial->mems_allowed, c->mems_allowed))
469 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
470 if (cgroup_task_count(cur->css.cgroup)) {
471 if (cpus_empty(trial->cpus_allowed) ||
472 nodes_empty(trial->mems_allowed)) {
481 * Helper routine for generate_sched_domains().
482 * Do cpusets a, b have overlapping cpus_allowed masks?
484 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
486 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
490 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
492 if (dattr->relax_domain_level < c->relax_domain_level)
493 dattr->relax_domain_level = c->relax_domain_level;
498 update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
502 list_add(&c->stack_list, &q);
503 while (!list_empty(&q)) {
506 struct cpuset *child;
508 cp = list_first_entry(&q, struct cpuset, stack_list);
511 if (cpus_empty(cp->cpus_allowed))
514 if (is_sched_load_balance(cp))
515 update_domain_attr(dattr, cp);
517 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
518 child = cgroup_cs(cont);
519 list_add_tail(&child->stack_list, &q);
525 * generate_sched_domains()
527 * This function builds a partial partition of the systems CPUs
528 * A 'partial partition' is a set of non-overlapping subsets whose
529 * union is a subset of that set.
530 * The output of this function needs to be passed to kernel/sched.c
531 * partition_sched_domains() routine, which will rebuild the scheduler's
532 * load balancing domains (sched domains) as specified by that partial
535 * See "What is sched_load_balance" in Documentation/cpusets.txt
536 * for a background explanation of this.
538 * Does not return errors, on the theory that the callers of this
539 * routine would rather not worry about failures to rebuild sched
540 * domains when operating in the severe memory shortage situations
541 * that could cause allocation failures below.
543 * Must be called with cgroup_lock held.
545 * The three key local variables below are:
546 * q - a linked-list queue of cpuset pointers, used to implement a
547 * top-down scan of all cpusets. This scan loads a pointer
548 * to each cpuset marked is_sched_load_balance into the
549 * array 'csa'. For our purposes, rebuilding the schedulers
550 * sched domains, we can ignore !is_sched_load_balance cpusets.
551 * csa - (for CpuSet Array) Array of pointers to all the cpusets
552 * that need to be load balanced, for convenient iterative
553 * access by the subsequent code that finds the best partition,
554 * i.e the set of domains (subsets) of CPUs such that the
555 * cpus_allowed of every cpuset marked is_sched_load_balance
556 * is a subset of one of these domains, while there are as
557 * many such domains as possible, each as small as possible.
558 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
559 * the kernel/sched.c routine partition_sched_domains() in a
560 * convenient format, that can be easily compared to the prior
561 * value to determine what partition elements (sched domains)
562 * were changed (added or removed.)
564 * Finding the best partition (set of domains):
565 * The triple nested loops below over i, j, k scan over the
566 * load balanced cpusets (using the array of cpuset pointers in
567 * csa[]) looking for pairs of cpusets that have overlapping
568 * cpus_allowed, but which don't have the same 'pn' partition
569 * number and gives them in the same partition number. It keeps
570 * looping on the 'restart' label until it can no longer find
573 * The union of the cpus_allowed masks from the set of
574 * all cpusets having the same 'pn' value then form the one
575 * element of the partition (one sched domain) to be passed to
576 * partition_sched_domains().
578 static int generate_sched_domains(cpumask_t **domains,
579 struct sched_domain_attr **attributes)
581 LIST_HEAD(q); /* queue of cpusets to be scanned */
582 struct cpuset *cp; /* scans q */
583 struct cpuset **csa; /* array of all cpuset ptrs */
584 int csn; /* how many cpuset ptrs in csa so far */
585 int i, j, k; /* indices for partition finding loops */
586 cpumask_t *doms; /* resulting partition; i.e. sched domains */
587 struct sched_domain_attr *dattr; /* attributes for custom domains */
588 int ndoms = 0; /* number of sched domains in result */
589 int nslot; /* next empty doms[] cpumask_t slot */
595 /* Special case for the 99% of systems with one, full, sched domain */
596 if (is_sched_load_balance(&top_cpuset)) {
597 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
601 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
603 *dattr = SD_ATTR_INIT;
604 update_domain_attr_tree(dattr, &top_cpuset);
606 *doms = top_cpuset.cpus_allowed;
612 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
617 list_add(&top_cpuset.stack_list, &q);
618 while (!list_empty(&q)) {
620 struct cpuset *child; /* scans child cpusets of cp */
622 cp = list_first_entry(&q, struct cpuset, stack_list);
625 if (cpus_empty(cp->cpus_allowed))
629 * All child cpusets contain a subset of the parent's cpus, so
630 * just skip them, and then we call update_domain_attr_tree()
631 * to calc relax_domain_level of the corresponding sched
634 if (is_sched_load_balance(cp)) {
639 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
640 child = cgroup_cs(cont);
641 list_add_tail(&child->stack_list, &q);
645 for (i = 0; i < csn; i++)
650 /* Find the best partition (set of sched domains) */
651 for (i = 0; i < csn; i++) {
652 struct cpuset *a = csa[i];
655 for (j = 0; j < csn; j++) {
656 struct cpuset *b = csa[j];
659 if (apn != bpn && cpusets_overlap(a, b)) {
660 for (k = 0; k < csn; k++) {
661 struct cpuset *c = csa[k];
666 ndoms--; /* one less element */
673 * Now we know how many domains to create.
674 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
676 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
681 * The rest of the code, including the scheduler, can deal with
682 * dattr==NULL case. No need to abort if alloc fails.
684 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
686 for (nslot = 0, i = 0; i < csn; i++) {
687 struct cpuset *a = csa[i];
692 /* Skip completed partitions */
698 if (nslot == ndoms) {
699 static int warnings = 10;
702 "rebuild_sched_domains confused:"
703 " nslot %d, ndoms %d, csn %d, i %d,"
705 nslot, ndoms, csn, i, apn);
713 *(dattr + nslot) = SD_ATTR_INIT;
714 for (j = i; j < csn; j++) {
715 struct cpuset *b = csa[j];
718 cpus_or(*dp, *dp, b->cpus_allowed);
720 update_domain_attr_tree(dattr + nslot, b);
722 /* Done with this partition */
728 BUG_ON(nslot != ndoms);
734 * Fallback to the default domain if kmalloc() failed.
735 * See comments in partition_sched_domains().
746 * Rebuild scheduler domains.
748 * Call with neither cgroup_mutex held nor within get_online_cpus().
749 * Takes both cgroup_mutex and get_online_cpus().
751 * Cannot be directly called from cpuset code handling changes
752 * to the cpuset pseudo-filesystem, because it cannot be called
753 * from code that already holds cgroup_mutex.
755 static void do_rebuild_sched_domains(struct work_struct *unused)
757 struct sched_domain_attr *attr;
763 /* Generate domain masks and attrs */
765 ndoms = generate_sched_domains(&doms, &attr);
768 /* Have scheduler rebuild the domains */
769 partition_sched_domains(ndoms, doms, attr);
774 static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
777 * Rebuild scheduler domains, asynchronously via workqueue.
779 * If the flag 'sched_load_balance' of any cpuset with non-empty
780 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
781 * which has that flag enabled, or if any cpuset with a non-empty
782 * 'cpus' is removed, then call this routine to rebuild the
783 * scheduler's dynamic sched domains.
785 * The rebuild_sched_domains() and partition_sched_domains()
786 * routines must nest cgroup_lock() inside get_online_cpus(),
787 * but such cpuset changes as these must nest that locking the
788 * other way, holding cgroup_lock() for much of the code.
790 * So in order to avoid an ABBA deadlock, the cpuset code handling
791 * these user changes delegates the actual sched domain rebuilding
792 * to a separate workqueue thread, which ends up processing the
793 * above do_rebuild_sched_domains() function.
795 static void async_rebuild_sched_domains(void)
797 schedule_work(&rebuild_sched_domains_work);
801 * Accomplishes the same scheduler domain rebuild as the above
802 * async_rebuild_sched_domains(), however it directly calls the
803 * rebuild routine synchronously rather than calling it via an
804 * asynchronous work thread.
806 * This can only be called from code that is not holding
807 * cgroup_mutex (not nested in a cgroup_lock() call.)
809 void rebuild_sched_domains(void)
811 do_rebuild_sched_domains(NULL);
815 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
817 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
819 * Call with cgroup_mutex held. May take callback_mutex during call.
820 * Called for each task in a cgroup by cgroup_scan_tasks().
821 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
822 * words, if its mask is not equal to its cpuset's mask).
824 static int cpuset_test_cpumask(struct task_struct *tsk,
825 struct cgroup_scanner *scan)
827 return !cpus_equal(tsk->cpus_allowed,
828 (cgroup_cs(scan->cg))->cpus_allowed);
832 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
834 * @scan: struct cgroup_scanner containing the cgroup of the task
836 * Called by cgroup_scan_tasks() for each task in a cgroup whose
837 * cpus_allowed mask needs to be changed.
839 * We don't need to re-check for the cgroup/cpuset membership, since we're
840 * holding cgroup_lock() at this point.
842 static void cpuset_change_cpumask(struct task_struct *tsk,
843 struct cgroup_scanner *scan)
845 set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
849 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
850 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
851 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
853 * Called with cgroup_mutex held
855 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
856 * calling callback functions for each.
858 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
861 static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
863 struct cgroup_scanner scan;
865 scan.cg = cs->css.cgroup;
866 scan.test_task = cpuset_test_cpumask;
867 scan.process_task = cpuset_change_cpumask;
869 cgroup_scan_tasks(&scan);
873 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
874 * @cs: the cpuset to consider
875 * @buf: buffer of cpu numbers written to this cpuset
877 static int update_cpumask(struct cpuset *cs, const char *buf)
879 struct ptr_heap heap;
880 struct cpuset trialcs;
882 int is_load_balanced;
884 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
885 if (cs == &top_cpuset)
891 * An empty cpus_allowed is ok only if the cpuset has no tasks.
892 * Since cpulist_parse() fails on an empty mask, we special case
893 * that parsing. The validate_change() call ensures that cpusets
894 * with tasks have cpus.
897 cpus_clear(trialcs.cpus_allowed);
899 retval = cpulist_parse(buf, &trialcs.cpus_allowed);
903 if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
906 retval = validate_change(cs, &trialcs);
910 /* Nothing to do if the cpus didn't change */
911 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
914 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
918 is_load_balanced = is_sched_load_balance(&trialcs);
920 mutex_lock(&callback_mutex);
921 cs->cpus_allowed = trialcs.cpus_allowed;
922 mutex_unlock(&callback_mutex);
925 * Scan tasks in the cpuset, and update the cpumasks of any
926 * that need an update.
928 update_tasks_cpumask(cs, &heap);
932 if (is_load_balanced)
933 async_rebuild_sched_domains();
940 * Migrate memory region from one set of nodes to another.
942 * Temporarilly set tasks mems_allowed to target nodes of migration,
943 * so that the migration code can allocate pages on these nodes.
945 * Call holding cgroup_mutex, so current's cpuset won't change
946 * during this call, as manage_mutex holds off any cpuset_attach()
947 * calls. Therefore we don't need to take task_lock around the
948 * call to guarantee_online_mems(), as we know no one is changing
951 * Hold callback_mutex around the two modifications of our tasks
952 * mems_allowed to synchronize with cpuset_mems_allowed().
954 * While the mm_struct we are migrating is typically from some
955 * other task, the task_struct mems_allowed that we are hacking
956 * is for our current task, which must allocate new pages for that
957 * migrating memory region.
959 * We call cpuset_update_task_memory_state() before hacking
960 * our tasks mems_allowed, so that we are assured of being in
961 * sync with our tasks cpuset, and in particular, callbacks to
962 * cpuset_update_task_memory_state() from nested page allocations
963 * won't see any mismatch of our cpuset and task mems_generation
964 * values, so won't overwrite our hacked tasks mems_allowed
968 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
969 const nodemask_t *to)
971 struct task_struct *tsk = current;
973 cpuset_update_task_memory_state();
975 mutex_lock(&callback_mutex);
976 tsk->mems_allowed = *to;
977 mutex_unlock(&callback_mutex);
979 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
981 mutex_lock(&callback_mutex);
982 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
983 mutex_unlock(&callback_mutex);
986 static void *cpuset_being_rebound;
989 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
990 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
991 * @oldmem: old mems_allowed of cpuset cs
993 * Called with cgroup_mutex held
994 * Return 0 if successful, -errno if not.
996 static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
998 struct task_struct *p;
999 struct mm_struct **mmarray;
1003 struct cgroup_iter it;
1006 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1008 fudge = 10; /* spare mmarray[] slots */
1009 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
1013 * Allocate mmarray[] to hold mm reference for each task
1014 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
1015 * tasklist_lock. We could use GFP_ATOMIC, but with a
1016 * few more lines of code, we can retry until we get a big
1017 * enough mmarray[] w/o using GFP_ATOMIC.
1020 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
1022 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
1025 read_lock(&tasklist_lock); /* block fork */
1026 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
1027 break; /* got enough */
1028 read_unlock(&tasklist_lock); /* try again */
1034 /* Load up mmarray[] with mm reference for each task in cpuset. */
1035 cgroup_iter_start(cs->css.cgroup, &it);
1036 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
1037 struct mm_struct *mm;
1041 "Cpuset mempolicy rebind incomplete.\n");
1044 mm = get_task_mm(p);
1049 cgroup_iter_end(cs->css.cgroup, &it);
1050 read_unlock(&tasklist_lock);
1053 * Now that we've dropped the tasklist spinlock, we can
1054 * rebind the vma mempolicies of each mm in mmarray[] to their
1055 * new cpuset, and release that mm. The mpol_rebind_mm()
1056 * call takes mmap_sem, which we couldn't take while holding
1057 * tasklist_lock. Forks can happen again now - the mpol_dup()
1058 * cpuset_being_rebound check will catch such forks, and rebind
1059 * their vma mempolicies too. Because we still hold the global
1060 * cgroup_mutex, we know that no other rebind effort will
1061 * be contending for the global variable cpuset_being_rebound.
1062 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1063 * is idempotent. Also migrate pages in each mm to new nodes.
1065 migrate = is_memory_migrate(cs);
1066 for (i = 0; i < n; i++) {
1067 struct mm_struct *mm = mmarray[i];
1069 mpol_rebind_mm(mm, &cs->mems_allowed);
1071 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1075 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1077 cpuset_being_rebound = NULL;
1084 * Handle user request to change the 'mems' memory placement
1085 * of a cpuset. Needs to validate the request, update the
1086 * cpusets mems_allowed and mems_generation, and for each
1087 * task in the cpuset, rebind any vma mempolicies and if
1088 * the cpuset is marked 'memory_migrate', migrate the tasks
1089 * pages to the new memory.
1091 * Call with cgroup_mutex held. May take callback_mutex during call.
1092 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1093 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1094 * their mempolicies to the cpusets new mems_allowed.
1096 static int update_nodemask(struct cpuset *cs, const char *buf)
1098 struct cpuset trialcs;
1103 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1106 if (cs == &top_cpuset)
1112 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1113 * Since nodelist_parse() fails on an empty mask, we special case
1114 * that parsing. The validate_change() call ensures that cpusets
1115 * with tasks have memory.
1118 nodes_clear(trialcs.mems_allowed);
1120 retval = nodelist_parse(buf, trialcs.mems_allowed);
1124 if (!nodes_subset(trialcs.mems_allowed,
1125 node_states[N_HIGH_MEMORY]))
1128 oldmem = cs->mems_allowed;
1129 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
1130 retval = 0; /* Too easy - nothing to do */
1133 retval = validate_change(cs, &trialcs);
1137 mutex_lock(&callback_mutex);
1138 cs->mems_allowed = trialcs.mems_allowed;
1139 cs->mems_generation = cpuset_mems_generation++;
1140 mutex_unlock(&callback_mutex);
1142 retval = update_tasks_nodemask(cs, &oldmem);
1147 int current_cpuset_is_being_rebound(void)
1149 return task_cs(current) == cpuset_being_rebound;
1152 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1154 if (val < -1 || val >= SD_LV_MAX)
1157 if (val != cs->relax_domain_level) {
1158 cs->relax_domain_level = val;
1159 if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
1160 async_rebuild_sched_domains();
1167 * update_flag - read a 0 or a 1 in a file and update associated flag
1168 * bit: the bit to update (see cpuset_flagbits_t)
1169 * cs: the cpuset to update
1170 * turning_on: whether the flag is being set or cleared
1172 * Call with cgroup_mutex held.
1175 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1178 struct cpuset trialcs;
1180 int balance_flag_changed;
1184 set_bit(bit, &trialcs.flags);
1186 clear_bit(bit, &trialcs.flags);
1188 err = validate_change(cs, &trialcs);
1192 balance_flag_changed = (is_sched_load_balance(cs) !=
1193 is_sched_load_balance(&trialcs));
1195 mutex_lock(&callback_mutex);
1196 cs->flags = trialcs.flags;
1197 mutex_unlock(&callback_mutex);
1199 if (!cpus_empty(trialcs.cpus_allowed) && balance_flag_changed)
1200 async_rebuild_sched_domains();
1206 * Frequency meter - How fast is some event occurring?
1208 * These routines manage a digitally filtered, constant time based,
1209 * event frequency meter. There are four routines:
1210 * fmeter_init() - initialize a frequency meter.
1211 * fmeter_markevent() - called each time the event happens.
1212 * fmeter_getrate() - returns the recent rate of such events.
1213 * fmeter_update() - internal routine used to update fmeter.
1215 * A common data structure is passed to each of these routines,
1216 * which is used to keep track of the state required to manage the
1217 * frequency meter and its digital filter.
1219 * The filter works on the number of events marked per unit time.
1220 * The filter is single-pole low-pass recursive (IIR). The time unit
1221 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1222 * simulate 3 decimal digits of precision (multiplied by 1000).
1224 * With an FM_COEF of 933, and a time base of 1 second, the filter
1225 * has a half-life of 10 seconds, meaning that if the events quit
1226 * happening, then the rate returned from the fmeter_getrate()
1227 * will be cut in half each 10 seconds, until it converges to zero.
1229 * It is not worth doing a real infinitely recursive filter. If more
1230 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1231 * just compute FM_MAXTICKS ticks worth, by which point the level
1234 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1235 * arithmetic overflow in the fmeter_update() routine.
1237 * Given the simple 32 bit integer arithmetic used, this meter works
1238 * best for reporting rates between one per millisecond (msec) and
1239 * one per 32 (approx) seconds. At constant rates faster than one
1240 * per msec it maxes out at values just under 1,000,000. At constant
1241 * rates between one per msec, and one per second it will stabilize
1242 * to a value N*1000, where N is the rate of events per second.
1243 * At constant rates between one per second and one per 32 seconds,
1244 * it will be choppy, moving up on the seconds that have an event,
1245 * and then decaying until the next event. At rates slower than
1246 * about one in 32 seconds, it decays all the way back to zero between
1250 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1251 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1252 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1253 #define FM_SCALE 1000 /* faux fixed point scale */
1255 /* Initialize a frequency meter */
1256 static void fmeter_init(struct fmeter *fmp)
1261 spin_lock_init(&fmp->lock);
1264 /* Internal meter update - process cnt events and update value */
1265 static void fmeter_update(struct fmeter *fmp)
1267 time_t now = get_seconds();
1268 time_t ticks = now - fmp->time;
1273 ticks = min(FM_MAXTICKS, ticks);
1275 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1278 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1282 /* Process any previous ticks, then bump cnt by one (times scale). */
1283 static void fmeter_markevent(struct fmeter *fmp)
1285 spin_lock(&fmp->lock);
1287 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1288 spin_unlock(&fmp->lock);
1291 /* Process any previous ticks, then return current value. */
1292 static int fmeter_getrate(struct fmeter *fmp)
1296 spin_lock(&fmp->lock);
1299 spin_unlock(&fmp->lock);
1303 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1304 static int cpuset_can_attach(struct cgroup_subsys *ss,
1305 struct cgroup *cont, struct task_struct *tsk)
1307 struct cpuset *cs = cgroup_cs(cont);
1309 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1311 if (tsk->flags & PF_THREAD_BOUND) {
1314 mutex_lock(&callback_mutex);
1315 mask = cs->cpus_allowed;
1316 mutex_unlock(&callback_mutex);
1317 if (!cpus_equal(tsk->cpus_allowed, mask))
1321 return security_task_setscheduler(tsk, 0, NULL);
1324 static void cpuset_attach(struct cgroup_subsys *ss,
1325 struct cgroup *cont, struct cgroup *oldcont,
1326 struct task_struct *tsk)
1329 nodemask_t from, to;
1330 struct mm_struct *mm;
1331 struct cpuset *cs = cgroup_cs(cont);
1332 struct cpuset *oldcs = cgroup_cs(oldcont);
1335 mutex_lock(&callback_mutex);
1336 guarantee_online_cpus(cs, &cpus);
1337 err = set_cpus_allowed_ptr(tsk, &cpus);
1338 mutex_unlock(&callback_mutex);
1342 from = oldcs->mems_allowed;
1343 to = cs->mems_allowed;
1344 mm = get_task_mm(tsk);
1346 mpol_rebind_mm(mm, &to);
1347 if (is_memory_migrate(cs))
1348 cpuset_migrate_mm(mm, &from, &to);
1354 /* The various types of files and directories in a cpuset file system */
1357 FILE_MEMORY_MIGRATE,
1363 FILE_SCHED_LOAD_BALANCE,
1364 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1365 FILE_MEMORY_PRESSURE_ENABLED,
1366 FILE_MEMORY_PRESSURE,
1369 } cpuset_filetype_t;
1371 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1374 struct cpuset *cs = cgroup_cs(cgrp);
1375 cpuset_filetype_t type = cft->private;
1377 if (!cgroup_lock_live_group(cgrp))
1381 case FILE_CPU_EXCLUSIVE:
1382 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1384 case FILE_MEM_EXCLUSIVE:
1385 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1387 case FILE_MEM_HARDWALL:
1388 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1390 case FILE_SCHED_LOAD_BALANCE:
1391 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1393 case FILE_MEMORY_MIGRATE:
1394 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1396 case FILE_MEMORY_PRESSURE_ENABLED:
1397 cpuset_memory_pressure_enabled = !!val;
1399 case FILE_MEMORY_PRESSURE:
1402 case FILE_SPREAD_PAGE:
1403 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1404 cs->mems_generation = cpuset_mems_generation++;
1406 case FILE_SPREAD_SLAB:
1407 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1408 cs->mems_generation = cpuset_mems_generation++;
1418 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1421 struct cpuset *cs = cgroup_cs(cgrp);
1422 cpuset_filetype_t type = cft->private;
1424 if (!cgroup_lock_live_group(cgrp))
1428 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1429 retval = update_relax_domain_level(cs, val);
1440 * Common handling for a write to a "cpus" or "mems" file.
1442 static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1447 if (!cgroup_lock_live_group(cgrp))
1450 switch (cft->private) {
1452 retval = update_cpumask(cgroup_cs(cgrp), buf);
1455 retval = update_nodemask(cgroup_cs(cgrp), buf);
1466 * These ascii lists should be read in a single call, by using a user
1467 * buffer large enough to hold the entire map. If read in smaller
1468 * chunks, there is no guarantee of atomicity. Since the display format
1469 * used, list of ranges of sequential numbers, is variable length,
1470 * and since these maps can change value dynamically, one could read
1471 * gibberish by doing partial reads while a list was changing.
1472 * A single large read to a buffer that crosses a page boundary is
1473 * ok, because the result being copied to user land is not recomputed
1474 * across a page fault.
1477 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1481 mutex_lock(&callback_mutex);
1482 mask = cs->cpus_allowed;
1483 mutex_unlock(&callback_mutex);
1485 return cpulist_scnprintf(page, PAGE_SIZE, &mask);
1488 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1492 mutex_lock(&callback_mutex);
1493 mask = cs->mems_allowed;
1494 mutex_unlock(&callback_mutex);
1496 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1499 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1503 size_t nbytes, loff_t *ppos)
1505 struct cpuset *cs = cgroup_cs(cont);
1506 cpuset_filetype_t type = cft->private;
1511 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1518 s += cpuset_sprintf_cpulist(s, cs);
1521 s += cpuset_sprintf_memlist(s, cs);
1529 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1531 free_page((unsigned long)page);
1535 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1537 struct cpuset *cs = cgroup_cs(cont);
1538 cpuset_filetype_t type = cft->private;
1540 case FILE_CPU_EXCLUSIVE:
1541 return is_cpu_exclusive(cs);
1542 case FILE_MEM_EXCLUSIVE:
1543 return is_mem_exclusive(cs);
1544 case FILE_MEM_HARDWALL:
1545 return is_mem_hardwall(cs);
1546 case FILE_SCHED_LOAD_BALANCE:
1547 return is_sched_load_balance(cs);
1548 case FILE_MEMORY_MIGRATE:
1549 return is_memory_migrate(cs);
1550 case FILE_MEMORY_PRESSURE_ENABLED:
1551 return cpuset_memory_pressure_enabled;
1552 case FILE_MEMORY_PRESSURE:
1553 return fmeter_getrate(&cs->fmeter);
1554 case FILE_SPREAD_PAGE:
1555 return is_spread_page(cs);
1556 case FILE_SPREAD_SLAB:
1557 return is_spread_slab(cs);
1562 /* Unreachable but makes gcc happy */
1566 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1568 struct cpuset *cs = cgroup_cs(cont);
1569 cpuset_filetype_t type = cft->private;
1571 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1572 return cs->relax_domain_level;
1577 /* Unrechable but makes gcc happy */
1583 * for the common functions, 'private' gives the type of file
1586 static struct cftype files[] = {
1589 .read = cpuset_common_file_read,
1590 .write_string = cpuset_write_resmask,
1591 .max_write_len = (100U + 6 * NR_CPUS),
1592 .private = FILE_CPULIST,
1597 .read = cpuset_common_file_read,
1598 .write_string = cpuset_write_resmask,
1599 .max_write_len = (100U + 6 * MAX_NUMNODES),
1600 .private = FILE_MEMLIST,
1604 .name = "cpu_exclusive",
1605 .read_u64 = cpuset_read_u64,
1606 .write_u64 = cpuset_write_u64,
1607 .private = FILE_CPU_EXCLUSIVE,
1611 .name = "mem_exclusive",
1612 .read_u64 = cpuset_read_u64,
1613 .write_u64 = cpuset_write_u64,
1614 .private = FILE_MEM_EXCLUSIVE,
1618 .name = "mem_hardwall",
1619 .read_u64 = cpuset_read_u64,
1620 .write_u64 = cpuset_write_u64,
1621 .private = FILE_MEM_HARDWALL,
1625 .name = "sched_load_balance",
1626 .read_u64 = cpuset_read_u64,
1627 .write_u64 = cpuset_write_u64,
1628 .private = FILE_SCHED_LOAD_BALANCE,
1632 .name = "sched_relax_domain_level",
1633 .read_s64 = cpuset_read_s64,
1634 .write_s64 = cpuset_write_s64,
1635 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1639 .name = "memory_migrate",
1640 .read_u64 = cpuset_read_u64,
1641 .write_u64 = cpuset_write_u64,
1642 .private = FILE_MEMORY_MIGRATE,
1646 .name = "memory_pressure",
1647 .read_u64 = cpuset_read_u64,
1648 .write_u64 = cpuset_write_u64,
1649 .private = FILE_MEMORY_PRESSURE,
1653 .name = "memory_spread_page",
1654 .read_u64 = cpuset_read_u64,
1655 .write_u64 = cpuset_write_u64,
1656 .private = FILE_SPREAD_PAGE,
1660 .name = "memory_spread_slab",
1661 .read_u64 = cpuset_read_u64,
1662 .write_u64 = cpuset_write_u64,
1663 .private = FILE_SPREAD_SLAB,
1667 static struct cftype cft_memory_pressure_enabled = {
1668 .name = "memory_pressure_enabled",
1669 .read_u64 = cpuset_read_u64,
1670 .write_u64 = cpuset_write_u64,
1671 .private = FILE_MEMORY_PRESSURE_ENABLED,
1674 static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1678 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1681 /* memory_pressure_enabled is in root cpuset only */
1683 err = cgroup_add_file(cont, ss,
1684 &cft_memory_pressure_enabled);
1689 * post_clone() is called at the end of cgroup_clone().
1690 * 'cgroup' was just created automatically as a result of
1691 * a cgroup_clone(), and the current task is about to
1692 * be moved into 'cgroup'.
1694 * Currently we refuse to set up the cgroup - thereby
1695 * refusing the task to be entered, and as a result refusing
1696 * the sys_unshare() or clone() which initiated it - if any
1697 * sibling cpusets have exclusive cpus or mem.
1699 * If this becomes a problem for some users who wish to
1700 * allow that scenario, then cpuset_post_clone() could be
1701 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1702 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1705 static void cpuset_post_clone(struct cgroup_subsys *ss,
1706 struct cgroup *cgroup)
1708 struct cgroup *parent, *child;
1709 struct cpuset *cs, *parent_cs;
1711 parent = cgroup->parent;
1712 list_for_each_entry(child, &parent->children, sibling) {
1713 cs = cgroup_cs(child);
1714 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1717 cs = cgroup_cs(cgroup);
1718 parent_cs = cgroup_cs(parent);
1720 cs->mems_allowed = parent_cs->mems_allowed;
1721 cs->cpus_allowed = parent_cs->cpus_allowed;
1726 * cpuset_create - create a cpuset
1727 * ss: cpuset cgroup subsystem
1728 * cont: control group that the new cpuset will be part of
1731 static struct cgroup_subsys_state *cpuset_create(
1732 struct cgroup_subsys *ss,
1733 struct cgroup *cont)
1736 struct cpuset *parent;
1738 if (!cont->parent) {
1739 /* This is early initialization for the top cgroup */
1740 top_cpuset.mems_generation = cpuset_mems_generation++;
1741 return &top_cpuset.css;
1743 parent = cgroup_cs(cont->parent);
1744 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1746 return ERR_PTR(-ENOMEM);
1748 cpuset_update_task_memory_state();
1750 if (is_spread_page(parent))
1751 set_bit(CS_SPREAD_PAGE, &cs->flags);
1752 if (is_spread_slab(parent))
1753 set_bit(CS_SPREAD_SLAB, &cs->flags);
1754 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1755 cpus_clear(cs->cpus_allowed);
1756 nodes_clear(cs->mems_allowed);
1757 cs->mems_generation = cpuset_mems_generation++;
1758 fmeter_init(&cs->fmeter);
1759 cs->relax_domain_level = -1;
1761 cs->parent = parent;
1762 number_of_cpusets++;
1767 * If the cpuset being removed has its flag 'sched_load_balance'
1768 * enabled, then simulate turning sched_load_balance off, which
1769 * will call async_rebuild_sched_domains().
1772 static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1774 struct cpuset *cs = cgroup_cs(cont);
1776 cpuset_update_task_memory_state();
1778 if (is_sched_load_balance(cs))
1779 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1781 number_of_cpusets--;
1785 struct cgroup_subsys cpuset_subsys = {
1787 .create = cpuset_create,
1788 .destroy = cpuset_destroy,
1789 .can_attach = cpuset_can_attach,
1790 .attach = cpuset_attach,
1791 .populate = cpuset_populate,
1792 .post_clone = cpuset_post_clone,
1793 .subsys_id = cpuset_subsys_id,
1798 * cpuset_init_early - just enough so that the calls to
1799 * cpuset_update_task_memory_state() in early init code
1803 int __init cpuset_init_early(void)
1805 top_cpuset.mems_generation = cpuset_mems_generation++;
1811 * cpuset_init - initialize cpusets at system boot
1813 * Description: Initialize top_cpuset and the cpuset internal file system,
1816 int __init cpuset_init(void)
1820 cpus_setall(top_cpuset.cpus_allowed);
1821 nodes_setall(top_cpuset.mems_allowed);
1823 fmeter_init(&top_cpuset.fmeter);
1824 top_cpuset.mems_generation = cpuset_mems_generation++;
1825 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1826 top_cpuset.relax_domain_level = -1;
1828 err = register_filesystem(&cpuset_fs_type);
1832 number_of_cpusets = 1;
1837 * cpuset_do_move_task - move a given task to another cpuset
1838 * @tsk: pointer to task_struct the task to move
1839 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1841 * Called by cgroup_scan_tasks() for each task in a cgroup.
1842 * Return nonzero to stop the walk through the tasks.
1844 static void cpuset_do_move_task(struct task_struct *tsk,
1845 struct cgroup_scanner *scan)
1847 struct cpuset_hotplug_scanner *chsp;
1849 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1850 cgroup_attach_task(chsp->to, tsk);
1854 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1855 * @from: cpuset in which the tasks currently reside
1856 * @to: cpuset to which the tasks will be moved
1858 * Called with cgroup_mutex held
1859 * callback_mutex must not be held, as cpuset_attach() will take it.
1861 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1862 * calling callback functions for each.
1864 static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1866 struct cpuset_hotplug_scanner scan;
1868 scan.scan.cg = from->css.cgroup;
1869 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1870 scan.scan.process_task = cpuset_do_move_task;
1871 scan.scan.heap = NULL;
1872 scan.to = to->css.cgroup;
1874 if (cgroup_scan_tasks(&scan.scan))
1875 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1876 "cgroup_scan_tasks failed\n");
1880 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1881 * or memory nodes, we need to walk over the cpuset hierarchy,
1882 * removing that CPU or node from all cpusets. If this removes the
1883 * last CPU or node from a cpuset, then move the tasks in the empty
1884 * cpuset to its next-highest non-empty parent.
1886 * Called with cgroup_mutex held
1887 * callback_mutex must not be held, as cpuset_attach() will take it.
1889 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1891 struct cpuset *parent;
1894 * The cgroup's css_sets list is in use if there are tasks
1895 * in the cpuset; the list is empty if there are none;
1896 * the cs->css.refcnt seems always 0.
1898 if (list_empty(&cs->css.cgroup->css_sets))
1902 * Find its next-highest non-empty parent, (top cpuset
1903 * has online cpus, so can't be empty).
1905 parent = cs->parent;
1906 while (cpus_empty(parent->cpus_allowed) ||
1907 nodes_empty(parent->mems_allowed))
1908 parent = parent->parent;
1910 move_member_tasks_to_cpuset(cs, parent);
1914 * Walk the specified cpuset subtree and look for empty cpusets.
1915 * The tasks of such cpuset must be moved to a parent cpuset.
1917 * Called with cgroup_mutex held. We take callback_mutex to modify
1918 * cpus_allowed and mems_allowed.
1920 * This walk processes the tree from top to bottom, completing one layer
1921 * before dropping down to the next. It always processes a node before
1922 * any of its children.
1924 * For now, since we lack memory hot unplug, we'll never see a cpuset
1925 * that has tasks along with an empty 'mems'. But if we did see such
1926 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1928 static void scan_for_empty_cpusets(struct cpuset *root)
1931 struct cpuset *cp; /* scans cpusets being updated */
1932 struct cpuset *child; /* scans child cpusets of cp */
1933 struct cgroup *cont;
1936 list_add_tail((struct list_head *)&root->stack_list, &queue);
1938 while (!list_empty(&queue)) {
1939 cp = list_first_entry(&queue, struct cpuset, stack_list);
1940 list_del(queue.next);
1941 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1942 child = cgroup_cs(cont);
1943 list_add_tail(&child->stack_list, &queue);
1946 /* Continue past cpusets with all cpus, mems online */
1947 if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
1948 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1951 oldmems = cp->mems_allowed;
1953 /* Remove offline cpus and mems from this cpuset. */
1954 mutex_lock(&callback_mutex);
1955 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1956 nodes_and(cp->mems_allowed, cp->mems_allowed,
1957 node_states[N_HIGH_MEMORY]);
1958 mutex_unlock(&callback_mutex);
1960 /* Move tasks from the empty cpuset to a parent */
1961 if (cpus_empty(cp->cpus_allowed) ||
1962 nodes_empty(cp->mems_allowed))
1963 remove_tasks_in_empty_cpuset(cp);
1965 update_tasks_cpumask(cp, NULL);
1966 update_tasks_nodemask(cp, &oldmems);
1972 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1973 * period. This is necessary in order to make cpusets transparent
1974 * (of no affect) on systems that are actively using CPU hotplug
1975 * but making no active use of cpusets.
1977 * This routine ensures that top_cpuset.cpus_allowed tracks
1978 * cpu_online_map on each CPU hotplug (cpuhp) event.
1980 * Called within get_online_cpus(). Needs to call cgroup_lock()
1981 * before calling generate_sched_domains().
1983 static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
1984 unsigned long phase, void *unused_cpu)
1986 struct sched_domain_attr *attr;
1992 case CPU_ONLINE_FROZEN:
1994 case CPU_DEAD_FROZEN:
2002 top_cpuset.cpus_allowed = cpu_online_map;
2003 scan_for_empty_cpusets(&top_cpuset);
2004 ndoms = generate_sched_domains(&doms, &attr);
2007 /* Have scheduler rebuild the domains */
2008 partition_sched_domains(ndoms, doms, attr);
2013 #ifdef CONFIG_MEMORY_HOTPLUG
2015 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2016 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2017 * See also the previous routine cpuset_track_online_cpus().
2019 static int cpuset_track_online_nodes(struct notifier_block *self,
2020 unsigned long action, void *arg)
2025 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2028 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2029 scan_for_empty_cpusets(&top_cpuset);
2040 * cpuset_init_smp - initialize cpus_allowed
2042 * Description: Finish top cpuset after cpu, node maps are initialized
2045 void __init cpuset_init_smp(void)
2047 top_cpuset.cpus_allowed = cpu_online_map;
2048 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2050 hotcpu_notifier(cpuset_track_online_cpus, 0);
2051 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2055 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2056 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2057 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
2059 * Description: Returns the cpumask_t cpus_allowed of the cpuset
2060 * attached to the specified @tsk. Guaranteed to return some non-empty
2061 * subset of cpu_online_map, even if this means going outside the
2065 void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
2067 mutex_lock(&callback_mutex);
2068 cpuset_cpus_allowed_locked(tsk, pmask);
2069 mutex_unlock(&callback_mutex);
2073 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2074 * Must be called with callback_mutex held.
2076 void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
2079 guarantee_online_cpus(task_cs(tsk), pmask);
2083 void cpuset_init_current_mems_allowed(void)
2085 nodes_setall(current->mems_allowed);
2089 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2090 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2092 * Description: Returns the nodemask_t mems_allowed of the cpuset
2093 * attached to the specified @tsk. Guaranteed to return some non-empty
2094 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2098 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2102 mutex_lock(&callback_mutex);
2104 guarantee_online_mems(task_cs(tsk), &mask);
2106 mutex_unlock(&callback_mutex);
2112 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2113 * @nodemask: the nodemask to be checked
2115 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2117 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2119 return nodes_intersects(*nodemask, current->mems_allowed);
2123 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2124 * mem_hardwall ancestor to the specified cpuset. Call holding
2125 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2126 * (an unusual configuration), then returns the root cpuset.
2128 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2130 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2136 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
2137 * @z: is this zone on an allowed node?
2138 * @gfp_mask: memory allocation flags
2140 * If we're in interrupt, yes, we can always allocate. If
2141 * __GFP_THISNODE is set, yes, we can always allocate. If zone
2142 * z's node is in our tasks mems_allowed, yes. If it's not a
2143 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2144 * hardwalled cpuset ancestor to this tasks cpuset, yes.
2145 * If the task has been OOM killed and has access to memory reserves
2146 * as specified by the TIF_MEMDIE flag, yes.
2149 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2150 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2151 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2152 * from an enclosing cpuset.
2154 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2155 * hardwall cpusets, and never sleeps.
2157 * The __GFP_THISNODE placement logic is really handled elsewhere,
2158 * by forcibly using a zonelist starting at a specified node, and by
2159 * (in get_page_from_freelist()) refusing to consider the zones for
2160 * any node on the zonelist except the first. By the time any such
2161 * calls get to this routine, we should just shut up and say 'yes'.
2163 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2164 * and do not allow allocations outside the current tasks cpuset
2165 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2166 * GFP_KERNEL allocations are not so marked, so can escape to the
2167 * nearest enclosing hardwalled ancestor cpuset.
2169 * Scanning up parent cpusets requires callback_mutex. The
2170 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2171 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2172 * current tasks mems_allowed came up empty on the first pass over
2173 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2174 * cpuset are short of memory, might require taking the callback_mutex
2177 * The first call here from mm/page_alloc:get_page_from_freelist()
2178 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2179 * so no allocation on a node outside the cpuset is allowed (unless
2180 * in interrupt, of course).
2182 * The second pass through get_page_from_freelist() doesn't even call
2183 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2184 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2185 * in alloc_flags. That logic and the checks below have the combined
2187 * in_interrupt - any node ok (current task context irrelevant)
2188 * GFP_ATOMIC - any node ok
2189 * TIF_MEMDIE - any node ok
2190 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2191 * GFP_USER - only nodes in current tasks mems allowed ok.
2194 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
2195 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2196 * the code that might scan up ancestor cpusets and sleep.
2199 int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
2201 int node; /* node that zone z is on */
2202 const struct cpuset *cs; /* current cpuset ancestors */
2203 int allowed; /* is allocation in zone z allowed? */
2205 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2207 node = zone_to_nid(z);
2208 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2209 if (node_isset(node, current->mems_allowed))
2212 * Allow tasks that have access to memory reserves because they have
2213 * been OOM killed to get memory anywhere.
2215 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2217 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2220 if (current->flags & PF_EXITING) /* Let dying task have memory */
2223 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2224 mutex_lock(&callback_mutex);
2227 cs = nearest_hardwall_ancestor(task_cs(current));
2228 task_unlock(current);
2230 allowed = node_isset(node, cs->mems_allowed);
2231 mutex_unlock(&callback_mutex);
2236 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2237 * @z: is this zone on an allowed node?
2238 * @gfp_mask: memory allocation flags
2240 * If we're in interrupt, yes, we can always allocate.
2241 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
2242 * z's node is in our tasks mems_allowed, yes. If the task has been
2243 * OOM killed and has access to memory reserves as specified by the
2244 * TIF_MEMDIE flag, yes. Otherwise, no.
2246 * The __GFP_THISNODE placement logic is really handled elsewhere,
2247 * by forcibly using a zonelist starting at a specified node, and by
2248 * (in get_page_from_freelist()) refusing to consider the zones for
2249 * any node on the zonelist except the first. By the time any such
2250 * calls get to this routine, we should just shut up and say 'yes'.
2252 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2253 * this variant requires that the zone be in the current tasks
2254 * mems_allowed or that we're in interrupt. It does not scan up the
2255 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2259 int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2261 int node; /* node that zone z is on */
2263 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2265 node = zone_to_nid(z);
2266 if (node_isset(node, current->mems_allowed))
2269 * Allow tasks that have access to memory reserves because they have
2270 * been OOM killed to get memory anywhere.
2272 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2278 * cpuset_lock - lock out any changes to cpuset structures
2280 * The out of memory (oom) code needs to mutex_lock cpusets
2281 * from being changed while it scans the tasklist looking for a
2282 * task in an overlapping cpuset. Expose callback_mutex via this
2283 * cpuset_lock() routine, so the oom code can lock it, before
2284 * locking the task list. The tasklist_lock is a spinlock, so
2285 * must be taken inside callback_mutex.
2288 void cpuset_lock(void)
2290 mutex_lock(&callback_mutex);
2294 * cpuset_unlock - release lock on cpuset changes
2296 * Undo the lock taken in a previous cpuset_lock() call.
2299 void cpuset_unlock(void)
2301 mutex_unlock(&callback_mutex);
2305 * cpuset_mem_spread_node() - On which node to begin search for a page
2307 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2308 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2309 * and if the memory allocation used cpuset_mem_spread_node()
2310 * to determine on which node to start looking, as it will for
2311 * certain page cache or slab cache pages such as used for file
2312 * system buffers and inode caches, then instead of starting on the
2313 * local node to look for a free page, rather spread the starting
2314 * node around the tasks mems_allowed nodes.
2316 * We don't have to worry about the returned node being offline
2317 * because "it can't happen", and even if it did, it would be ok.
2319 * The routines calling guarantee_online_mems() are careful to
2320 * only set nodes in task->mems_allowed that are online. So it
2321 * should not be possible for the following code to return an
2322 * offline node. But if it did, that would be ok, as this routine
2323 * is not returning the node where the allocation must be, only
2324 * the node where the search should start. The zonelist passed to
2325 * __alloc_pages() will include all nodes. If the slab allocator
2326 * is passed an offline node, it will fall back to the local node.
2327 * See kmem_cache_alloc_node().
2330 int cpuset_mem_spread_node(void)
2334 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2335 if (node == MAX_NUMNODES)
2336 node = first_node(current->mems_allowed);
2337 current->cpuset_mem_spread_rotor = node;
2340 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2343 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2344 * @tsk1: pointer to task_struct of some task.
2345 * @tsk2: pointer to task_struct of some other task.
2347 * Description: Return true if @tsk1's mems_allowed intersects the
2348 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2349 * one of the task's memory usage might impact the memory available
2353 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2354 const struct task_struct *tsk2)
2356 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2360 * Collection of memory_pressure is suppressed unless
2361 * this flag is enabled by writing "1" to the special
2362 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2365 int cpuset_memory_pressure_enabled __read_mostly;
2368 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2370 * Keep a running average of the rate of synchronous (direct)
2371 * page reclaim efforts initiated by tasks in each cpuset.
2373 * This represents the rate at which some task in the cpuset
2374 * ran low on memory on all nodes it was allowed to use, and
2375 * had to enter the kernels page reclaim code in an effort to
2376 * create more free memory by tossing clean pages or swapping
2377 * or writing dirty pages.
2379 * Display to user space in the per-cpuset read-only file
2380 * "memory_pressure". Value displayed is an integer
2381 * representing the recent rate of entry into the synchronous
2382 * (direct) page reclaim by any task attached to the cpuset.
2385 void __cpuset_memory_pressure_bump(void)
2388 fmeter_markevent(&task_cs(current)->fmeter);
2389 task_unlock(current);
2392 #ifdef CONFIG_PROC_PID_CPUSET
2394 * proc_cpuset_show()
2395 * - Print tasks cpuset path into seq_file.
2396 * - Used for /proc/<pid>/cpuset.
2397 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2398 * doesn't really matter if tsk->cpuset changes after we read it,
2399 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2402 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2405 struct task_struct *tsk;
2407 struct cgroup_subsys_state *css;
2411 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2417 tsk = get_pid_task(pid, PIDTYPE_PID);
2423 css = task_subsys_state(tsk, cpuset_subsys_id);
2424 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2431 put_task_struct(tsk);
2438 static int cpuset_open(struct inode *inode, struct file *file)
2440 struct pid *pid = PROC_I(inode)->pid;
2441 return single_open(file, proc_cpuset_show, pid);
2444 const struct file_operations proc_cpuset_operations = {
2445 .open = cpuset_open,
2447 .llseek = seq_lseek,
2448 .release = single_release,
2450 #endif /* CONFIG_PROC_PID_CPUSET */
2452 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2453 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2455 seq_printf(m, "Cpus_allowed:\t");
2456 seq_cpumask(m, &task->cpus_allowed);
2457 seq_printf(m, "\n");
2458 seq_printf(m, "Cpus_allowed_list:\t");
2459 seq_cpumask_list(m, &task->cpus_allowed);
2460 seq_printf(m, "\n");
2461 seq_printf(m, "Mems_allowed:\t");
2462 seq_nodemask(m, &task->mems_allowed);
2463 seq_printf(m, "\n");
2464 seq_printf(m, "Mems_allowed_list:\t");
2465 seq_nodemask_list(m, &task->mems_allowed);
2466 seq_printf(m, "\n");