Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/teigland/dlm
[linux-2.6] / drivers / net / tsi108_eth.c
1 /*******************************************************************************
2
3   Copyright(c) 2006 Tundra Semiconductor Corporation.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of the GNU General Public License as published by the Free
7   Software Foundation; either version 2 of the License, or (at your option)
8   any later version.
9
10   This program is distributed in the hope that it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc., 59
17   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 *******************************************************************************/
20
21 /* This driver is based on the driver code originally developed
22  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
24  *
25  * Currently changes from original version are:
26  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27  * - modifications to handle two ports independently and support for
28  *   additional PHY devices (alexandre.bounine@tundra.com)
29  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30  *
31  */
32
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/init.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/ethtool.h>
40 #include <linux/skbuff.h>
41 #include <linux/slab.h>
42 #include <linux/spinlock.h>
43 #include <linux/delay.h>
44 #include <linux/crc32.h>
45 #include <linux/mii.h>
46 #include <linux/device.h>
47 #include <linux/pci.h>
48 #include <linux/rtnetlink.h>
49 #include <linux/timer.h>
50 #include <linux/platform_device.h>
51
52 #include <asm/system.h>
53 #include <asm/io.h>
54 #include <asm/tsi108.h>
55
56 #include "tsi108_eth.h"
57
58 #define MII_READ_DELAY 10000    /* max link wait time in msec */
59
60 #define TSI108_RXRING_LEN     256
61
62 /* NOTE: The driver currently does not support receiving packets
63  * larger than the buffer size, so don't decrease this (unless you
64  * want to add such support).
65  */
66 #define TSI108_RXBUF_SIZE     1536
67
68 #define TSI108_TXRING_LEN     256
69
70 #define TSI108_TX_INT_FREQ    64
71
72 /* Check the phy status every half a second. */
73 #define CHECK_PHY_INTERVAL (HZ/2)
74
75 static int tsi108_init_one(struct platform_device *pdev);
76 static int tsi108_ether_remove(struct platform_device *pdev);
77
78 struct tsi108_prv_data {
79         void  __iomem *regs;    /* Base of normal regs */
80         void  __iomem *phyregs; /* Base of register bank used for PHY access */
81
82         struct net_device *dev;
83         struct napi_struct napi;
84
85         unsigned int phy;               /* Index of PHY for this interface */
86         unsigned int irq_num;
87         unsigned int id;
88         unsigned int phy_type;
89
90         struct timer_list timer;/* Timer that triggers the check phy function */
91         unsigned int rxtail;    /* Next entry in rxring to read */
92         unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
93         unsigned int rxfree;    /* Number of free, allocated RX buffers */
94
95         unsigned int rxpending; /* Non-zero if there are still descriptors
96                                  * to be processed from a previous descriptor
97                                  * interrupt condition that has been cleared */
98
99         unsigned int txtail;    /* Next TX descriptor to check status on */
100         unsigned int txhead;    /* Next TX descriptor to use */
101
102         /* Number of free TX descriptors.  This could be calculated from
103          * rxhead and rxtail if one descriptor were left unused to disambiguate
104          * full and empty conditions, but it's simpler to just keep track
105          * explicitly. */
106
107         unsigned int txfree;
108
109         unsigned int phy_ok;            /* The PHY is currently powered on. */
110
111         /* PHY status (duplex is 1 for half, 2 for full,
112          * so that the default 0 indicates that neither has
113          * yet been configured). */
114
115         unsigned int link_up;
116         unsigned int speed;
117         unsigned int duplex;
118
119         tx_desc *txring;
120         rx_desc *rxring;
121         struct sk_buff *txskbs[TSI108_TXRING_LEN];
122         struct sk_buff *rxskbs[TSI108_RXRING_LEN];
123
124         dma_addr_t txdma, rxdma;
125
126         /* txlock nests in misclock and phy_lock */
127
128         spinlock_t txlock, misclock;
129
130         /* stats is used to hold the upper bits of each hardware counter,
131          * and tmpstats is used to hold the full values for returning
132          * to the caller of get_stats().  They must be separate in case
133          * an overflow interrupt occurs before the stats are consumed.
134          */
135
136         struct net_device_stats stats;
137         struct net_device_stats tmpstats;
138
139         /* These stats are kept separate in hardware, thus require individual
140          * fields for handling carry.  They are combined in get_stats.
141          */
142
143         unsigned long rx_fcs;   /* Add to rx_frame_errors */
144         unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
145         unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
146         unsigned long rx_underruns;     /* Add to rx_length_errors */
147         unsigned long rx_overruns;      /* Add to rx_length_errors */
148
149         unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
150         unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
151
152         unsigned long mc_hash[16];
153         u32 msg_enable;                 /* debug message level */
154         struct mii_if_info mii_if;
155         unsigned int init_media;
156 };
157
158 /* Structure for a device driver */
159
160 static struct platform_driver tsi_eth_driver = {
161         .probe = tsi108_init_one,
162         .remove = tsi108_ether_remove,
163         .driver = {
164                 .name = "tsi-ethernet",
165         },
166 };
167
168 static void tsi108_timed_checker(unsigned long dev_ptr);
169
170 static void dump_eth_one(struct net_device *dev)
171 {
172         struct tsi108_prv_data *data = netdev_priv(dev);
173
174         printk("Dumping %s...\n", dev->name);
175         printk("intstat %x intmask %x phy_ok %d"
176                " link %d speed %d duplex %d\n",
177                TSI_READ(TSI108_EC_INTSTAT),
178                TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
179                data->link_up, data->speed, data->duplex);
180
181         printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
182                data->txhead, data->txtail, data->txfree,
183                TSI_READ(TSI108_EC_TXSTAT),
184                TSI_READ(TSI108_EC_TXESTAT),
185                TSI_READ(TSI108_EC_TXERR));
186
187         printk("RX: head %d, tail %d, free %d, stat %x,"
188                " estat %x, err %x, pending %d\n\n",
189                data->rxhead, data->rxtail, data->rxfree,
190                TSI_READ(TSI108_EC_RXSTAT),
191                TSI_READ(TSI108_EC_RXESTAT),
192                TSI_READ(TSI108_EC_RXERR), data->rxpending);
193 }
194
195 /* Synchronization is needed between the thread and up/down events.
196  * Note that the PHY is accessed through the same registers for both
197  * interfaces, so this can't be made interface-specific.
198  */
199
200 static DEFINE_SPINLOCK(phy_lock);
201
202 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
203 {
204         unsigned i;
205
206         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
207                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
208                                 (reg << TSI108_MAC_MII_ADDR_REG));
209         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
210         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
211         for (i = 0; i < 100; i++) {
212                 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
213                       (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
214                         break;
215                 udelay(10);
216         }
217
218         if (i == 100)
219                 return 0xffff;
220         else
221                 return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN));
222 }
223
224 static void tsi108_write_mii(struct tsi108_prv_data *data,
225                                 int reg, u16 val)
226 {
227         unsigned i = 100;
228         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
229                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
230                                 (reg << TSI108_MAC_MII_ADDR_REG));
231         TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
232         while (i--) {
233                 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
234                         TSI108_MAC_MII_IND_BUSY))
235                         break;
236                 udelay(10);
237         }
238 }
239
240 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
241 {
242         struct tsi108_prv_data *data = netdev_priv(dev);
243         return tsi108_read_mii(data, reg);
244 }
245
246 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
247 {
248         struct tsi108_prv_data *data = netdev_priv(dev);
249         tsi108_write_mii(data, reg, val);
250 }
251
252 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
253                                         int reg, u16 val)
254 {
255         unsigned i = 1000;
256         TSI_WRITE(TSI108_MAC_MII_ADDR,
257                              (0x1e << TSI108_MAC_MII_ADDR_PHY)
258                              | (reg << TSI108_MAC_MII_ADDR_REG));
259         TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
260         while(i--) {
261                 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
262                         return;
263                 udelay(10);
264         }
265         printk(KERN_ERR "%s function time out \n", __FUNCTION__);
266 }
267
268 static int mii_speed(struct mii_if_info *mii)
269 {
270         int advert, lpa, val, media;
271         int lpa2 = 0;
272         int speed;
273
274         if (!mii_link_ok(mii))
275                 return 0;
276
277         val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
278         if ((val & BMSR_ANEGCOMPLETE) == 0)
279                 return 0;
280
281         advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
282         lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
283         media = mii_nway_result(advert & lpa);
284
285         if (mii->supports_gmii)
286                 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
287
288         speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
289                         (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
290         return speed;
291 }
292
293 static void tsi108_check_phy(struct net_device *dev)
294 {
295         struct tsi108_prv_data *data = netdev_priv(dev);
296         u32 mac_cfg2_reg, portctrl_reg;
297         u32 duplex;
298         u32 speed;
299         unsigned long flags;
300
301         spin_lock_irqsave(&phy_lock, flags);
302
303         if (!data->phy_ok)
304                 goto out;
305
306         duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
307         data->init_media = 0;
308
309         if (netif_carrier_ok(dev)) {
310
311                 speed = mii_speed(&data->mii_if);
312
313                 if ((speed != data->speed) || duplex) {
314
315                         mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
316                         portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
317
318                         mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
319
320                         if (speed == 1000) {
321                                 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
322                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
323                         } else {
324                                 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
325                                 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
326                         }
327
328                         data->speed = speed;
329
330                         if (data->mii_if.full_duplex) {
331                                 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
332                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
333                                 data->duplex = 2;
334                         } else {
335                                 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
336                                 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
337                                 data->duplex = 1;
338                         }
339
340                         TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
341                         TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
342                 }
343
344                 if (data->link_up == 0) {
345                         /* The manual says it can take 3-4 usecs for the speed change
346                          * to take effect.
347                          */
348                         udelay(5);
349
350                         spin_lock(&data->txlock);
351                         if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
352                                 netif_wake_queue(dev);
353
354                         data->link_up = 1;
355                         spin_unlock(&data->txlock);
356                 }
357         } else {
358                 if (data->link_up == 1) {
359                         netif_stop_queue(dev);
360                         data->link_up = 0;
361                         printk(KERN_NOTICE "%s : link is down\n", dev->name);
362                 }
363
364                 goto out;
365         }
366
367
368 out:
369         spin_unlock_irqrestore(&phy_lock, flags);
370 }
371
372 static inline void
373 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
374                       unsigned long *upper)
375 {
376         if (carry & carry_bit)
377                 *upper += carry_shift;
378 }
379
380 static void tsi108_stat_carry(struct net_device *dev)
381 {
382         struct tsi108_prv_data *data = netdev_priv(dev);
383         u32 carry1, carry2;
384
385         spin_lock_irq(&data->misclock);
386
387         carry1 = TSI_READ(TSI108_STAT_CARRY1);
388         carry2 = TSI_READ(TSI108_STAT_CARRY2);
389
390         TSI_WRITE(TSI108_STAT_CARRY1, carry1);
391         TSI_WRITE(TSI108_STAT_CARRY2, carry2);
392
393         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
394                               TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
395
396         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
397                               TSI108_STAT_RXPKTS_CARRY,
398                               &data->stats.rx_packets);
399
400         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
401                               TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
402
403         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
404                               TSI108_STAT_RXMCAST_CARRY,
405                               &data->stats.multicast);
406
407         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
408                               TSI108_STAT_RXALIGN_CARRY,
409                               &data->stats.rx_frame_errors);
410
411         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
412                               TSI108_STAT_RXLENGTH_CARRY,
413                               &data->stats.rx_length_errors);
414
415         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
416                               TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
417
418         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
419                               TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
420
421         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
422                               TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
423
424         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
425                               TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
426
427         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
428                               TSI108_STAT_RXDROP_CARRY,
429                               &data->stats.rx_missed_errors);
430
431         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
432                               TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
433
434         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
435                               TSI108_STAT_TXPKTS_CARRY,
436                               &data->stats.tx_packets);
437
438         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
439                               TSI108_STAT_TXEXDEF_CARRY,
440                               &data->stats.tx_aborted_errors);
441
442         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
443                               TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
444
445         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
446                               TSI108_STAT_TXTCOL_CARRY,
447                               &data->stats.collisions);
448
449         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
450                               TSI108_STAT_TXPAUSEDROP_CARRY,
451                               &data->tx_pause_drop);
452
453         spin_unlock_irq(&data->misclock);
454 }
455
456 /* Read a stat counter atomically with respect to carries.
457  * data->misclock must be held.
458  */
459 static inline unsigned long
460 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
461                  int carry_shift, unsigned long *upper)
462 {
463         int carryreg;
464         unsigned long val;
465
466         if (reg < 0xb0)
467                 carryreg = TSI108_STAT_CARRY1;
468         else
469                 carryreg = TSI108_STAT_CARRY2;
470
471       again:
472         val = TSI_READ(reg) | *upper;
473
474         /* Check to see if it overflowed, but the interrupt hasn't
475          * been serviced yet.  If so, handle the carry here, and
476          * try again.
477          */
478
479         if (unlikely(TSI_READ(carryreg) & carry_bit)) {
480                 *upper += carry_shift;
481                 TSI_WRITE(carryreg, carry_bit);
482                 goto again;
483         }
484
485         return val;
486 }
487
488 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
489 {
490         unsigned long excol;
491
492         struct tsi108_prv_data *data = netdev_priv(dev);
493         spin_lock_irq(&data->misclock);
494
495         data->tmpstats.rx_packets =
496             tsi108_read_stat(data, TSI108_STAT_RXPKTS,
497                              TSI108_STAT_CARRY1_RXPKTS,
498                              TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
499
500         data->tmpstats.tx_packets =
501             tsi108_read_stat(data, TSI108_STAT_TXPKTS,
502                              TSI108_STAT_CARRY2_TXPKTS,
503                              TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
504
505         data->tmpstats.rx_bytes =
506             tsi108_read_stat(data, TSI108_STAT_RXBYTES,
507                              TSI108_STAT_CARRY1_RXBYTES,
508                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
509
510         data->tmpstats.tx_bytes =
511             tsi108_read_stat(data, TSI108_STAT_TXBYTES,
512                              TSI108_STAT_CARRY2_TXBYTES,
513                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
514
515         data->tmpstats.multicast =
516             tsi108_read_stat(data, TSI108_STAT_RXMCAST,
517                              TSI108_STAT_CARRY1_RXMCAST,
518                              TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
519
520         excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
521                                  TSI108_STAT_CARRY2_TXEXCOL,
522                                  TSI108_STAT_TXEXCOL_CARRY,
523                                  &data->tx_coll_abort);
524
525         data->tmpstats.collisions =
526             tsi108_read_stat(data, TSI108_STAT_TXTCOL,
527                              TSI108_STAT_CARRY2_TXTCOL,
528                              TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
529
530         data->tmpstats.collisions += excol;
531
532         data->tmpstats.rx_length_errors =
533             tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
534                              TSI108_STAT_CARRY1_RXLENGTH,
535                              TSI108_STAT_RXLENGTH_CARRY,
536                              &data->stats.rx_length_errors);
537
538         data->tmpstats.rx_length_errors +=
539             tsi108_read_stat(data, TSI108_STAT_RXRUNT,
540                              TSI108_STAT_CARRY1_RXRUNT,
541                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
542
543         data->tmpstats.rx_length_errors +=
544             tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
545                              TSI108_STAT_CARRY1_RXJUMBO,
546                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
547
548         data->tmpstats.rx_frame_errors =
549             tsi108_read_stat(data, TSI108_STAT_RXALIGN,
550                              TSI108_STAT_CARRY1_RXALIGN,
551                              TSI108_STAT_RXALIGN_CARRY,
552                              &data->stats.rx_frame_errors);
553
554         data->tmpstats.rx_frame_errors +=
555             tsi108_read_stat(data, TSI108_STAT_RXFCS,
556                              TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
557                              &data->rx_fcs);
558
559         data->tmpstats.rx_frame_errors +=
560             tsi108_read_stat(data, TSI108_STAT_RXFRAG,
561                              TSI108_STAT_CARRY1_RXFRAG,
562                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
563
564         data->tmpstats.rx_missed_errors =
565             tsi108_read_stat(data, TSI108_STAT_RXDROP,
566                              TSI108_STAT_CARRY1_RXDROP,
567                              TSI108_STAT_RXDROP_CARRY,
568                              &data->stats.rx_missed_errors);
569
570         /* These three are maintained by software. */
571         data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
572         data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
573
574         data->tmpstats.tx_aborted_errors =
575             tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
576                              TSI108_STAT_CARRY2_TXEXDEF,
577                              TSI108_STAT_TXEXDEF_CARRY,
578                              &data->stats.tx_aborted_errors);
579
580         data->tmpstats.tx_aborted_errors +=
581             tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
582                              TSI108_STAT_CARRY2_TXPAUSE,
583                              TSI108_STAT_TXPAUSEDROP_CARRY,
584                              &data->tx_pause_drop);
585
586         data->tmpstats.tx_aborted_errors += excol;
587
588         data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
589         data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
590             data->tmpstats.rx_crc_errors +
591             data->tmpstats.rx_frame_errors +
592             data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
593
594         spin_unlock_irq(&data->misclock);
595         return &data->tmpstats;
596 }
597
598 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
599 {
600         TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
601                              TSI108_EC_RXQ_PTRHIGH_VALID);
602
603         TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
604                              | TSI108_EC_RXCTRL_QUEUE0);
605 }
606
607 static void tsi108_restart_tx(struct tsi108_prv_data * data)
608 {
609         TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
610                              TSI108_EC_TXQ_PTRHIGH_VALID);
611
612         TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
613                              TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
614 }
615
616 /* txlock must be held by caller, with IRQs disabled, and
617  * with permission to re-enable them when the lock is dropped.
618  */
619 static void tsi108_complete_tx(struct net_device *dev)
620 {
621         struct tsi108_prv_data *data = netdev_priv(dev);
622         int tx;
623         struct sk_buff *skb;
624         int release = 0;
625
626         while (!data->txfree || data->txhead != data->txtail) {
627                 tx = data->txtail;
628
629                 if (data->txring[tx].misc & TSI108_TX_OWN)
630                         break;
631
632                 skb = data->txskbs[tx];
633
634                 if (!(data->txring[tx].misc & TSI108_TX_OK))
635                         printk("%s: bad tx packet, misc %x\n",
636                                dev->name, data->txring[tx].misc);
637
638                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
639                 data->txfree++;
640
641                 if (data->txring[tx].misc & TSI108_TX_EOF) {
642                         dev_kfree_skb_any(skb);
643                         release++;
644                 }
645         }
646
647         if (release) {
648                 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
649                         netif_wake_queue(dev);
650         }
651 }
652
653 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
654 {
655         struct tsi108_prv_data *data = netdev_priv(dev);
656         int frags = skb_shinfo(skb)->nr_frags + 1;
657         int i;
658
659         if (!data->phy_ok && net_ratelimit())
660                 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
661
662         if (!data->link_up) {
663                 printk(KERN_ERR "%s: Transmit while link is down!\n",
664                        dev->name);
665                 netif_stop_queue(dev);
666                 return NETDEV_TX_BUSY;
667         }
668
669         if (data->txfree < MAX_SKB_FRAGS + 1) {
670                 netif_stop_queue(dev);
671
672                 if (net_ratelimit())
673                         printk(KERN_ERR "%s: Transmit with full tx ring!\n",
674                                dev->name);
675                 return NETDEV_TX_BUSY;
676         }
677
678         if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
679                 netif_stop_queue(dev);
680         }
681
682         spin_lock_irq(&data->txlock);
683
684         for (i = 0; i < frags; i++) {
685                 int misc = 0;
686                 int tx = data->txhead;
687
688                 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
689                  * the interrupt bit.  TX descriptor-complete interrupts are
690                  * enabled when the queue fills up, and masked when there is
691                  * still free space.  This way, when saturating the outbound
692                  * link, the tx interrupts are kept to a reasonable level.
693                  * When the queue is not full, reclamation of skbs still occurs
694                  * as new packets are transmitted, or on a queue-empty
695                  * interrupt.
696                  */
697
698                 if ((tx % TSI108_TX_INT_FREQ == 0) &&
699                     ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
700                         misc = TSI108_TX_INT;
701
702                 data->txskbs[tx] = skb;
703
704                 if (i == 0) {
705                         data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
706                                         skb->len - skb->data_len, DMA_TO_DEVICE);
707                         data->txring[tx].len = skb->len - skb->data_len;
708                         misc |= TSI108_TX_SOF;
709                 } else {
710                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
711
712                         data->txring[tx].buf0 =
713                             dma_map_page(NULL, frag->page, frag->page_offset,
714                                             frag->size, DMA_TO_DEVICE);
715                         data->txring[tx].len = frag->size;
716                 }
717
718                 if (i == frags - 1)
719                         misc |= TSI108_TX_EOF;
720
721                 if (netif_msg_pktdata(data)) {
722                         int i;
723                         printk("%s: Tx Frame contents (%d)\n", dev->name,
724                                skb->len);
725                         for (i = 0; i < skb->len; i++)
726                                 printk(" %2.2x", skb->data[i]);
727                         printk(".\n");
728                 }
729                 data->txring[tx].misc = misc | TSI108_TX_OWN;
730
731                 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
732                 data->txfree--;
733         }
734
735         tsi108_complete_tx(dev);
736
737         /* This must be done after the check for completed tx descriptors,
738          * so that the tail pointer is correct.
739          */
740
741         if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
742                 tsi108_restart_tx(data);
743
744         spin_unlock_irq(&data->txlock);
745         return NETDEV_TX_OK;
746 }
747
748 static int tsi108_complete_rx(struct net_device *dev, int budget)
749 {
750         struct tsi108_prv_data *data = netdev_priv(dev);
751         int done = 0;
752
753         while (data->rxfree && done != budget) {
754                 int rx = data->rxtail;
755                 struct sk_buff *skb;
756
757                 if (data->rxring[rx].misc & TSI108_RX_OWN)
758                         break;
759
760                 skb = data->rxskbs[rx];
761                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
762                 data->rxfree--;
763                 done++;
764
765                 if (data->rxring[rx].misc & TSI108_RX_BAD) {
766                         spin_lock_irq(&data->misclock);
767
768                         if (data->rxring[rx].misc & TSI108_RX_CRC)
769                                 data->stats.rx_crc_errors++;
770                         if (data->rxring[rx].misc & TSI108_RX_OVER)
771                                 data->stats.rx_fifo_errors++;
772
773                         spin_unlock_irq(&data->misclock);
774
775                         dev_kfree_skb_any(skb);
776                         continue;
777                 }
778                 if (netif_msg_pktdata(data)) {
779                         int i;
780                         printk("%s: Rx Frame contents (%d)\n",
781                                dev->name, data->rxring[rx].len);
782                         for (i = 0; i < data->rxring[rx].len; i++)
783                                 printk(" %2.2x", skb->data[i]);
784                         printk(".\n");
785                 }
786
787                 skb_put(skb, data->rxring[rx].len);
788                 skb->protocol = eth_type_trans(skb, dev);
789                 netif_receive_skb(skb);
790                 dev->last_rx = jiffies;
791         }
792
793         return done;
794 }
795
796 static int tsi108_refill_rx(struct net_device *dev, int budget)
797 {
798         struct tsi108_prv_data *data = netdev_priv(dev);
799         int done = 0;
800
801         while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
802                 int rx = data->rxhead;
803                 struct sk_buff *skb;
804
805                 data->rxskbs[rx] = skb = dev_alloc_skb(TSI108_RXBUF_SIZE + 2);
806                 if (!skb)
807                         break;
808
809                 skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */
810
811                 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
812                                                         TSI108_RX_SKB_SIZE,
813                                                         DMA_FROM_DEVICE);
814
815                 /* Sometimes the hardware sets blen to zero after packet
816                  * reception, even though the manual says that it's only ever
817                  * modified by the driver.
818                  */
819
820                 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
821                 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
822
823                 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
824                 data->rxfree++;
825                 done++;
826         }
827
828         if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
829                            TSI108_EC_RXSTAT_QUEUE0))
830                 tsi108_restart_rx(data, dev);
831
832         return done;
833 }
834
835 static int tsi108_poll(struct napi_struct *napi, int budget)
836 {
837         struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
838         struct net_device *dev = data->dev;
839         u32 estat = TSI_READ(TSI108_EC_RXESTAT);
840         u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
841         int num_received = 0, num_filled = 0;
842
843         intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
844             TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
845
846         TSI_WRITE(TSI108_EC_RXESTAT, estat);
847         TSI_WRITE(TSI108_EC_INTSTAT, intstat);
848
849         if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
850                 num_received = tsi108_complete_rx(dev, budget);
851
852         /* This should normally fill no more slots than the number of
853          * packets received in tsi108_complete_rx().  The exception
854          * is when we previously ran out of memory for RX SKBs.  In that
855          * case, it's helpful to obey the budget, not only so that the
856          * CPU isn't hogged, but so that memory (which may still be low)
857          * is not hogged by one device.
858          *
859          * A work unit is considered to be two SKBs to allow us to catch
860          * up when the ring has shrunk due to out-of-memory but we're
861          * still removing the full budget's worth of packets each time.
862          */
863
864         if (data->rxfree < TSI108_RXRING_LEN)
865                 num_filled = tsi108_refill_rx(dev, budget * 2);
866
867         if (intstat & TSI108_INT_RXERROR) {
868                 u32 err = TSI_READ(TSI108_EC_RXERR);
869                 TSI_WRITE(TSI108_EC_RXERR, err);
870
871                 if (err) {
872                         if (net_ratelimit())
873                                 printk(KERN_DEBUG "%s: RX error %x\n",
874                                        dev->name, err);
875
876                         if (!(TSI_READ(TSI108_EC_RXSTAT) &
877                               TSI108_EC_RXSTAT_QUEUE0))
878                                 tsi108_restart_rx(data, dev);
879                 }
880         }
881
882         if (intstat & TSI108_INT_RXOVERRUN) {
883                 spin_lock_irq(&data->misclock);
884                 data->stats.rx_fifo_errors++;
885                 spin_unlock_irq(&data->misclock);
886         }
887
888         if (num_received < budget) {
889                 data->rxpending = 0;
890                 netif_rx_complete(dev, napi);
891
892                 TSI_WRITE(TSI108_EC_INTMASK,
893                                      TSI_READ(TSI108_EC_INTMASK)
894                                      & ~(TSI108_INT_RXQUEUE0
895                                          | TSI108_INT_RXTHRESH |
896                                          TSI108_INT_RXOVERRUN |
897                                          TSI108_INT_RXERROR |
898                                          TSI108_INT_RXWAIT));
899         } else {
900                 data->rxpending = 1;
901         }
902
903         return num_received;
904 }
905
906 static void tsi108_rx_int(struct net_device *dev)
907 {
908         struct tsi108_prv_data *data = netdev_priv(dev);
909
910         /* A race could cause dev to already be scheduled, so it's not an
911          * error if that happens (and interrupts shouldn't be re-masked,
912          * because that can cause harmful races, if poll has already
913          * unmasked them but not cleared LINK_STATE_SCHED).
914          *
915          * This can happen if this code races with tsi108_poll(), which masks
916          * the interrupts after tsi108_irq_one() read the mask, but before
917          * netif_rx_schedule is called.  It could also happen due to calls
918          * from tsi108_check_rxring().
919          */
920
921         if (netif_rx_schedule_prep(dev, &data->napi)) {
922                 /* Mask, rather than ack, the receive interrupts.  The ack
923                  * will happen in tsi108_poll().
924                  */
925
926                 TSI_WRITE(TSI108_EC_INTMASK,
927                                      TSI_READ(TSI108_EC_INTMASK) |
928                                      TSI108_INT_RXQUEUE0
929                                      | TSI108_INT_RXTHRESH |
930                                      TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
931                                      TSI108_INT_RXWAIT);
932                 __netif_rx_schedule(dev, &data->napi);
933         } else {
934                 if (!netif_running(dev)) {
935                         /* This can happen if an interrupt occurs while the
936                          * interface is being brought down, as the START
937                          * bit is cleared before the stop function is called.
938                          *
939                          * In this case, the interrupts must be masked, or
940                          * they will continue indefinitely.
941                          *
942                          * There's a race here if the interface is brought down
943                          * and then up in rapid succession, as the device could
944                          * be made running after the above check and before
945                          * the masking below.  This will only happen if the IRQ
946                          * thread has a lower priority than the task brining
947                          * up the interface.  Fixing this race would likely
948                          * require changes in generic code.
949                          */
950
951                         TSI_WRITE(TSI108_EC_INTMASK,
952                                              TSI_READ
953                                              (TSI108_EC_INTMASK) |
954                                              TSI108_INT_RXQUEUE0 |
955                                              TSI108_INT_RXTHRESH |
956                                              TSI108_INT_RXOVERRUN |
957                                              TSI108_INT_RXERROR |
958                                              TSI108_INT_RXWAIT);
959                 }
960         }
961 }
962
963 /* If the RX ring has run out of memory, try periodically
964  * to allocate some more, as otherwise poll would never
965  * get called (apart from the initial end-of-queue condition).
966  *
967  * This is called once per second (by default) from the thread.
968  */
969
970 static void tsi108_check_rxring(struct net_device *dev)
971 {
972         struct tsi108_prv_data *data = netdev_priv(dev);
973
974         /* A poll is scheduled, as opposed to caling tsi108_refill_rx
975          * directly, so as to keep the receive path single-threaded
976          * (and thus not needing a lock).
977          */
978
979         if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
980                 tsi108_rx_int(dev);
981 }
982
983 static void tsi108_tx_int(struct net_device *dev)
984 {
985         struct tsi108_prv_data *data = netdev_priv(dev);
986         u32 estat = TSI_READ(TSI108_EC_TXESTAT);
987
988         TSI_WRITE(TSI108_EC_TXESTAT, estat);
989         TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
990                              TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
991         if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
992                 u32 err = TSI_READ(TSI108_EC_TXERR);
993                 TSI_WRITE(TSI108_EC_TXERR, err);
994
995                 if (err && net_ratelimit())
996                         printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
997         }
998
999         if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1000                 spin_lock(&data->txlock);
1001                 tsi108_complete_tx(dev);
1002                 spin_unlock(&data->txlock);
1003         }
1004 }
1005
1006
1007 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1008 {
1009         struct net_device *dev = dev_id;
1010         struct tsi108_prv_data *data = netdev_priv(dev);
1011         u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1012
1013         if (!(stat & TSI108_INT_ANY))
1014                 return IRQ_NONE;        /* Not our interrupt */
1015
1016         stat &= ~TSI_READ(TSI108_EC_INTMASK);
1017
1018         if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1019                     TSI108_INT_TXERROR))
1020                 tsi108_tx_int(dev);
1021         if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1022                     TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1023                     TSI108_INT_RXERROR))
1024                 tsi108_rx_int(dev);
1025
1026         if (stat & TSI108_INT_SFN) {
1027                 if (net_ratelimit())
1028                         printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1029                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1030         }
1031
1032         if (stat & TSI108_INT_STATCARRY) {
1033                 tsi108_stat_carry(dev);
1034                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1035         }
1036
1037         return IRQ_HANDLED;
1038 }
1039
1040 static void tsi108_stop_ethernet(struct net_device *dev)
1041 {
1042         struct tsi108_prv_data *data = netdev_priv(dev);
1043         int i = 1000;
1044         /* Disable all TX and RX queues ... */
1045         TSI_WRITE(TSI108_EC_TXCTRL, 0);
1046         TSI_WRITE(TSI108_EC_RXCTRL, 0);
1047
1048         /* ...and wait for them to become idle */
1049         while(i--) {
1050                 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1051                         break;
1052                 udelay(10);
1053         }
1054         i = 1000;
1055         while(i--){
1056                 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1057                         return;
1058                 udelay(10);
1059         }
1060         printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1061 }
1062
1063 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1064 {
1065         TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1066         udelay(100);
1067         TSI_WRITE(TSI108_MAC_CFG1, 0);
1068
1069         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1070         udelay(100);
1071         TSI_WRITE(TSI108_EC_PORTCTRL,
1072                              TSI_READ(TSI108_EC_PORTCTRL) &
1073                              ~TSI108_EC_PORTCTRL_STATRST);
1074
1075         TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1076         udelay(100);
1077         TSI_WRITE(TSI108_EC_TXCFG,
1078                              TSI_READ(TSI108_EC_TXCFG) &
1079                              ~TSI108_EC_TXCFG_RST);
1080
1081         TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1082         udelay(100);
1083         TSI_WRITE(TSI108_EC_RXCFG,
1084                              TSI_READ(TSI108_EC_RXCFG) &
1085                              ~TSI108_EC_RXCFG_RST);
1086
1087         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1088                              TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1089                              TSI108_MAC_MII_MGMT_RST);
1090         udelay(100);
1091         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1092                              (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1093                              ~(TSI108_MAC_MII_MGMT_RST |
1094                                TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1095 }
1096
1097 static int tsi108_get_mac(struct net_device *dev)
1098 {
1099         struct tsi108_prv_data *data = netdev_priv(dev);
1100         u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1101         u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1102
1103         /* Note that the octets are reversed from what the manual says,
1104          * producing an even weirder ordering...
1105          */
1106         if (word2 == 0 && word1 == 0) {
1107                 dev->dev_addr[0] = 0x00;
1108                 dev->dev_addr[1] = 0x06;
1109                 dev->dev_addr[2] = 0xd2;
1110                 dev->dev_addr[3] = 0x00;
1111                 dev->dev_addr[4] = 0x00;
1112                 if (0x8 == data->phy)
1113                         dev->dev_addr[5] = 0x01;
1114                 else
1115                         dev->dev_addr[5] = 0x02;
1116
1117                 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1118
1119                 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1120                     (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1121
1122                 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1123                 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1124         } else {
1125                 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1126                 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1127                 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1128                 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1129                 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1130                 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1131         }
1132
1133         if (!is_valid_ether_addr(dev->dev_addr)) {
1134                 printk("KERN_ERR: word1: %08x, word2: %08x\n", word1, word2);
1135                 return -EINVAL;
1136         }
1137
1138         return 0;
1139 }
1140
1141 static int tsi108_set_mac(struct net_device *dev, void *addr)
1142 {
1143         struct tsi108_prv_data *data = netdev_priv(dev);
1144         u32 word1, word2;
1145         int i;
1146
1147         if (!is_valid_ether_addr(addr))
1148                 return -EINVAL;
1149
1150         for (i = 0; i < 6; i++)
1151                 /* +2 is for the offset of the HW addr type */
1152                 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1153
1154         word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1155
1156         word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1157             (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1158
1159         spin_lock_irq(&data->misclock);
1160         TSI_WRITE(TSI108_MAC_ADDR1, word1);
1161         TSI_WRITE(TSI108_MAC_ADDR2, word2);
1162         spin_lock(&data->txlock);
1163
1164         if (data->txfree && data->link_up)
1165                 netif_wake_queue(dev);
1166
1167         spin_unlock(&data->txlock);
1168         spin_unlock_irq(&data->misclock);
1169         return 0;
1170 }
1171
1172 /* Protected by dev->xmit_lock. */
1173 static void tsi108_set_rx_mode(struct net_device *dev)
1174 {
1175         struct tsi108_prv_data *data = netdev_priv(dev);
1176         u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1177
1178         if (dev->flags & IFF_PROMISC) {
1179                 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1180                 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1181                 goto out;
1182         }
1183
1184         rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1185
1186         if (dev->flags & IFF_ALLMULTI || dev->mc_count) {
1187                 int i;
1188                 struct dev_mc_list *mc = dev->mc_list;
1189                 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1190
1191                 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1192
1193                 while (mc) {
1194                         u32 hash, crc;
1195
1196                         if (mc->dmi_addrlen == 6) {
1197                                 crc = ether_crc(6, mc->dmi_addr);
1198                                 hash = crc >> 23;
1199
1200                                 __set_bit(hash, &data->mc_hash[0]);
1201                         } else {
1202                                 printk(KERN_ERR
1203                                        "%s: got multicast address of length %d "
1204                                        "instead of 6.\n", dev->name,
1205                                        mc->dmi_addrlen);
1206                         }
1207
1208                         mc = mc->next;
1209                 }
1210
1211                 TSI_WRITE(TSI108_EC_HASHADDR,
1212                                      TSI108_EC_HASHADDR_AUTOINC |
1213                                      TSI108_EC_HASHADDR_MCAST);
1214
1215                 for (i = 0; i < 16; i++) {
1216                         /* The manual says that the hardware may drop
1217                          * back-to-back writes to the data register.
1218                          */
1219                         udelay(1);
1220                         TSI_WRITE(TSI108_EC_HASHDATA,
1221                                              data->mc_hash[i]);
1222                 }
1223         }
1224
1225       out:
1226         TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1227 }
1228
1229 static void tsi108_init_phy(struct net_device *dev)
1230 {
1231         struct tsi108_prv_data *data = netdev_priv(dev);
1232         u32 i = 0;
1233         u16 phyval = 0;
1234         unsigned long flags;
1235
1236         spin_lock_irqsave(&phy_lock, flags);
1237
1238         tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1239         while (i--){
1240                 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1241                         break;
1242                 udelay(10);
1243         }
1244         if (i == 0)
1245                 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1246
1247         if (data->phy_type == TSI108_PHY_BCM54XX) {
1248                 tsi108_write_mii(data, 0x09, 0x0300);
1249                 tsi108_write_mii(data, 0x10, 0x1020);
1250                 tsi108_write_mii(data, 0x1c, 0x8c00);
1251         }
1252
1253         tsi108_write_mii(data,
1254                          MII_BMCR,
1255                          BMCR_ANENABLE | BMCR_ANRESTART);
1256         while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1257                 cpu_relax();
1258
1259         /* Set G/MII mode and receive clock select in TBI control #2.  The
1260          * second port won't work if this isn't done, even though we don't
1261          * use TBI mode.
1262          */
1263
1264         tsi108_write_tbi(data, 0x11, 0x30);
1265
1266         /* FIXME: It seems to take more than 2 back-to-back reads to the
1267          * PHY_STAT register before the link up status bit is set.
1268          */
1269
1270         data->link_up = 0;
1271
1272         while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1273                  BMSR_LSTATUS)) {
1274                 if (i++ > (MII_READ_DELAY / 10)) {
1275                         break;
1276                 }
1277                 spin_unlock_irqrestore(&phy_lock, flags);
1278                 msleep(10);
1279                 spin_lock_irqsave(&phy_lock, flags);
1280         }
1281
1282         data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1283         printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1284         data->phy_ok = 1;
1285         data->init_media = 1;
1286         spin_unlock_irqrestore(&phy_lock, flags);
1287 }
1288
1289 static void tsi108_kill_phy(struct net_device *dev)
1290 {
1291         struct tsi108_prv_data *data = netdev_priv(dev);
1292         unsigned long flags;
1293
1294         spin_lock_irqsave(&phy_lock, flags);
1295         tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1296         data->phy_ok = 0;
1297         spin_unlock_irqrestore(&phy_lock, flags);
1298 }
1299
1300 static int tsi108_open(struct net_device *dev)
1301 {
1302         int i;
1303         struct tsi108_prv_data *data = netdev_priv(dev);
1304         unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1305         unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1306
1307         i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1308         if (i != 0) {
1309                 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1310                        data->id, data->irq_num);
1311                 return i;
1312         } else {
1313                 dev->irq = data->irq_num;
1314                 printk(KERN_NOTICE
1315                        "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1316                        data->id, dev->irq, dev->name);
1317         }
1318
1319         data->rxring = dma_alloc_coherent(NULL, rxring_size,
1320                         &data->rxdma, GFP_KERNEL);
1321
1322         if (!data->rxring) {
1323                 printk(KERN_DEBUG
1324                        "TSI108_ETH: failed to allocate memory for rxring!\n");
1325                 return -ENOMEM;
1326         } else {
1327                 memset(data->rxring, 0, rxring_size);
1328         }
1329
1330         data->txring = dma_alloc_coherent(NULL, txring_size,
1331                         &data->txdma, GFP_KERNEL);
1332
1333         if (!data->txring) {
1334                 printk(KERN_DEBUG
1335                        "TSI108_ETH: failed to allocate memory for txring!\n");
1336                 pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1337                 return -ENOMEM;
1338         } else {
1339                 memset(data->txring, 0, txring_size);
1340         }
1341
1342         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1343                 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1344                 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1345                 data->rxring[i].vlan = 0;
1346         }
1347
1348         data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1349
1350         data->rxtail = 0;
1351         data->rxhead = 0;
1352
1353         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1354                 struct sk_buff *skb = dev_alloc_skb(TSI108_RXBUF_SIZE + NET_IP_ALIGN);
1355
1356                 if (!skb) {
1357                         /* Bah.  No memory for now, but maybe we'll get
1358                          * some more later.
1359                          * For now, we'll live with the smaller ring.
1360                          */
1361                         printk(KERN_WARNING
1362                                "%s: Could only allocate %d receive skb(s).\n",
1363                                dev->name, i);
1364                         data->rxhead = i;
1365                         break;
1366                 }
1367
1368                 data->rxskbs[i] = skb;
1369                 /* Align the payload on a 4-byte boundary */
1370                 skb_reserve(skb, 2);
1371                 data->rxskbs[i] = skb;
1372                 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1373                 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1374         }
1375
1376         data->rxfree = i;
1377         TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1378
1379         for (i = 0; i < TSI108_TXRING_LEN; i++) {
1380                 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1381                 data->txring[i].misc = 0;
1382         }
1383
1384         data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1385         data->txtail = 0;
1386         data->txhead = 0;
1387         data->txfree = TSI108_TXRING_LEN;
1388         TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1389         tsi108_init_phy(dev);
1390
1391         napi_enable(&data->napi);
1392
1393         setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1394         mod_timer(&data->timer, jiffies + 1);
1395
1396         tsi108_restart_rx(data, dev);
1397
1398         TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1399
1400         TSI_WRITE(TSI108_EC_INTMASK,
1401                              ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1402                                TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1403                                TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1404                                TSI108_INT_SFN | TSI108_INT_STATCARRY));
1405
1406         TSI_WRITE(TSI108_MAC_CFG1,
1407                              TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1408         netif_start_queue(dev);
1409         return 0;
1410 }
1411
1412 static int tsi108_close(struct net_device *dev)
1413 {
1414         struct tsi108_prv_data *data = netdev_priv(dev);
1415
1416         netif_stop_queue(dev);
1417         napi_disable(&data->napi);
1418
1419         del_timer_sync(&data->timer);
1420
1421         tsi108_stop_ethernet(dev);
1422         tsi108_kill_phy(dev);
1423         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1424         TSI_WRITE(TSI108_MAC_CFG1, 0);
1425
1426         /* Check for any pending TX packets, and drop them. */
1427
1428         while (!data->txfree || data->txhead != data->txtail) {
1429                 int tx = data->txtail;
1430                 struct sk_buff *skb;
1431                 skb = data->txskbs[tx];
1432                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1433                 data->txfree++;
1434                 dev_kfree_skb(skb);
1435         }
1436
1437         synchronize_irq(data->irq_num);
1438         free_irq(data->irq_num, dev);
1439
1440         /* Discard the RX ring. */
1441
1442         while (data->rxfree) {
1443                 int rx = data->rxtail;
1444                 struct sk_buff *skb;
1445
1446                 skb = data->rxskbs[rx];
1447                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1448                 data->rxfree--;
1449                 dev_kfree_skb(skb);
1450         }
1451
1452         dma_free_coherent(0,
1453                             TSI108_RXRING_LEN * sizeof(rx_desc),
1454                             data->rxring, data->rxdma);
1455         dma_free_coherent(0,
1456                             TSI108_TXRING_LEN * sizeof(tx_desc),
1457                             data->txring, data->txdma);
1458
1459         return 0;
1460 }
1461
1462 static void tsi108_init_mac(struct net_device *dev)
1463 {
1464         struct tsi108_prv_data *data = netdev_priv(dev);
1465
1466         TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1467                              TSI108_MAC_CFG2_PADCRC);
1468
1469         TSI_WRITE(TSI108_EC_TXTHRESH,
1470                              (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1471                              (192 << TSI108_EC_TXTHRESH_STOPFILL));
1472
1473         TSI_WRITE(TSI108_STAT_CARRYMASK1,
1474                              ~(TSI108_STAT_CARRY1_RXBYTES |
1475                                TSI108_STAT_CARRY1_RXPKTS |
1476                                TSI108_STAT_CARRY1_RXFCS |
1477                                TSI108_STAT_CARRY1_RXMCAST |
1478                                TSI108_STAT_CARRY1_RXALIGN |
1479                                TSI108_STAT_CARRY1_RXLENGTH |
1480                                TSI108_STAT_CARRY1_RXRUNT |
1481                                TSI108_STAT_CARRY1_RXJUMBO |
1482                                TSI108_STAT_CARRY1_RXFRAG |
1483                                TSI108_STAT_CARRY1_RXJABBER |
1484                                TSI108_STAT_CARRY1_RXDROP));
1485
1486         TSI_WRITE(TSI108_STAT_CARRYMASK2,
1487                              ~(TSI108_STAT_CARRY2_TXBYTES |
1488                                TSI108_STAT_CARRY2_TXPKTS |
1489                                TSI108_STAT_CARRY2_TXEXDEF |
1490                                TSI108_STAT_CARRY2_TXEXCOL |
1491                                TSI108_STAT_CARRY2_TXTCOL |
1492                                TSI108_STAT_CARRY2_TXPAUSE));
1493
1494         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1495         TSI_WRITE(TSI108_MAC_CFG1, 0);
1496
1497         TSI_WRITE(TSI108_EC_RXCFG,
1498                              TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1499
1500         TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1501                              TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1502                              TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1503                                                 TSI108_EC_TXQ_CFG_SFNPORT));
1504
1505         TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1506                              TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1507                              TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1508                                                 TSI108_EC_RXQ_CFG_SFNPORT));
1509
1510         TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1511                              TSI108_EC_TXQ_BUFCFG_BURST256 |
1512                              TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1513                                                 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1514
1515         TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1516                              TSI108_EC_RXQ_BUFCFG_BURST256 |
1517                              TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1518                                                 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1519
1520         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1521 }
1522
1523 static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1524 {
1525         struct tsi108_prv_data *data = netdev_priv(dev);
1526         unsigned long flags;
1527         int rc;
1528         
1529         spin_lock_irqsave(&data->txlock, flags);
1530         rc = mii_ethtool_gset(&data->mii_if, cmd);
1531         spin_unlock_irqrestore(&data->txlock, flags);
1532
1533         return rc;
1534 }
1535
1536 static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1537 {
1538         struct tsi108_prv_data *data = netdev_priv(dev);
1539         unsigned long flags;
1540         int rc;
1541
1542         spin_lock_irqsave(&data->txlock, flags);
1543         rc = mii_ethtool_sset(&data->mii_if, cmd);
1544         spin_unlock_irqrestore(&data->txlock, flags);
1545         
1546         return rc;
1547 }
1548
1549 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1550 {
1551         struct tsi108_prv_data *data = netdev_priv(dev);
1552         if (!netif_running(dev))
1553                 return -EINVAL;
1554         return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1555 }
1556
1557 static const struct ethtool_ops tsi108_ethtool_ops = {
1558         .get_link       = ethtool_op_get_link,
1559         .get_settings   = tsi108_get_settings,
1560         .set_settings   = tsi108_set_settings,
1561 };
1562
1563 static int
1564 tsi108_init_one(struct platform_device *pdev)
1565 {
1566         struct net_device *dev = NULL;
1567         struct tsi108_prv_data *data = NULL;
1568         hw_info *einfo;
1569         int err = 0;
1570         DECLARE_MAC_BUF(mac);
1571
1572         einfo = pdev->dev.platform_data;
1573
1574         if (NULL == einfo) {
1575                 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1576                        pdev->id);
1577                 return -ENODEV;
1578         }
1579
1580         /* Create an ethernet device instance */
1581
1582         dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1583         if (!dev) {
1584                 printk("tsi108_eth: Could not allocate a device structure\n");
1585                 return -ENOMEM;
1586         }
1587
1588         printk("tsi108_eth%d: probe...\n", pdev->id);
1589         data = netdev_priv(dev);
1590         data->dev = dev;
1591
1592         pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1593                         pdev->id, einfo->regs, einfo->phyregs,
1594                         einfo->phy, einfo->irq_num);
1595
1596         data->regs = ioremap(einfo->regs, 0x400);
1597         if (NULL == data->regs) {
1598                 err = -ENOMEM;
1599                 goto regs_fail;
1600         }
1601
1602         data->phyregs = ioremap(einfo->phyregs, 0x400);
1603         if (NULL == data->phyregs) {
1604                 err = -ENOMEM;
1605                 goto regs_fail;
1606         }
1607 /* MII setup */
1608         data->mii_if.dev = dev;
1609         data->mii_if.mdio_read = tsi108_mdio_read;
1610         data->mii_if.mdio_write = tsi108_mdio_write;
1611         data->mii_if.phy_id = einfo->phy;
1612         data->mii_if.phy_id_mask = 0x1f;
1613         data->mii_if.reg_num_mask = 0x1f;
1614
1615         data->phy = einfo->phy;
1616         data->phy_type = einfo->phy_type;
1617         data->irq_num = einfo->irq_num;
1618         data->id = pdev->id;
1619         dev->open = tsi108_open;
1620         dev->stop = tsi108_close;
1621         dev->hard_start_xmit = tsi108_send_packet;
1622         dev->set_mac_address = tsi108_set_mac;
1623         dev->set_multicast_list = tsi108_set_rx_mode;
1624         dev->get_stats = tsi108_get_stats;
1625         netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1626         dev->do_ioctl = tsi108_do_ioctl;
1627         dev->ethtool_ops = &tsi108_ethtool_ops;
1628
1629         /* Apparently, the Linux networking code won't use scatter-gather
1630          * if the hardware doesn't do checksums.  However, it's faster
1631          * to checksum in place and use SG, as (among other reasons)
1632          * the cache won't be dirtied (which then has to be flushed
1633          * before DMA).  The checksumming is done by the driver (via
1634          * a new function skb_csum_dev() in net/core/skbuff.c).
1635          */
1636
1637         dev->features = NETIF_F_HIGHDMA;
1638
1639         spin_lock_init(&data->txlock);
1640         spin_lock_init(&data->misclock);
1641
1642         tsi108_reset_ether(data);
1643         tsi108_kill_phy(dev);
1644
1645         if ((err = tsi108_get_mac(dev)) != 0) {
1646                 printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1647                        dev->name);
1648                 goto register_fail;
1649         }
1650
1651         tsi108_init_mac(dev);
1652         err = register_netdev(dev);
1653         if (err) {
1654                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1655                                 dev->name);
1656                 goto register_fail;
1657         }
1658
1659         platform_set_drvdata(pdev, dev);
1660         printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %s\n",
1661                dev->name, print_mac(mac, dev->dev_addr));
1662 #ifdef DEBUG
1663         data->msg_enable = DEBUG;
1664         dump_eth_one(dev);
1665 #endif
1666
1667         return 0;
1668
1669 register_fail:
1670         iounmap(data->regs);
1671         iounmap(data->phyregs);
1672
1673 regs_fail:
1674         free_netdev(dev);
1675         return err;
1676 }
1677
1678 /* There's no way to either get interrupts from the PHY when
1679  * something changes, or to have the Tsi108 automatically communicate
1680  * with the PHY to reconfigure itself.
1681  *
1682  * Thus, we have to do it using a timer.
1683  */
1684
1685 static void tsi108_timed_checker(unsigned long dev_ptr)
1686 {
1687         struct net_device *dev = (struct net_device *)dev_ptr;
1688         struct tsi108_prv_data *data = netdev_priv(dev);
1689
1690         tsi108_check_phy(dev);
1691         tsi108_check_rxring(dev);
1692         mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1693 }
1694
1695 static int tsi108_ether_init(void)
1696 {
1697         int ret;
1698         ret = platform_driver_register (&tsi_eth_driver);
1699         if (ret < 0){
1700                 printk("tsi108_ether_init: error initializing ethernet "
1701                        "device\n");
1702                 return ret;
1703         }
1704         return 0;
1705 }
1706
1707 static int tsi108_ether_remove(struct platform_device *pdev)
1708 {
1709         struct net_device *dev = platform_get_drvdata(pdev);
1710         struct tsi108_prv_data *priv = netdev_priv(dev);
1711
1712         unregister_netdev(dev);
1713         tsi108_stop_ethernet(dev);
1714         platform_set_drvdata(pdev, NULL);
1715         iounmap(priv->regs);
1716         iounmap(priv->phyregs);
1717         free_netdev(dev);
1718
1719         return 0;
1720 }
1721 static void tsi108_ether_exit(void)
1722 {
1723         platform_driver_unregister(&tsi_eth_driver);
1724 }
1725
1726 module_init(tsi108_ether_init);
1727 module_exit(tsi108_ether_exit);
1728
1729 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1730 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1731 MODULE_LICENSE("GPL");