2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
6 * - privileged instructions
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/features.h>
35 #include <xen/hvc-console.h>
37 #include <asm/paravirt.h>
39 #include <asm/xen/hypercall.h>
40 #include <asm/xen/hypervisor.h>
41 #include <asm/fixmap.h>
42 #include <asm/processor.h>
43 #include <asm/msr-index.h>
44 #include <asm/setup.h>
46 #include <asm/pgtable.h>
47 #include <asm/tlbflush.h>
48 #include <asm/reboot.h>
52 #include "multicalls.h"
54 EXPORT_SYMBOL_GPL(hypercall_page);
56 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
57 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
59 enum xen_domain_type xen_domain_type = XEN_NATIVE;
60 EXPORT_SYMBOL_GPL(xen_domain_type);
63 * Identity map, in addition to plain kernel map. This needs to be
64 * large enough to allocate page table pages to allocate the rest.
65 * Each page can map 2MB.
67 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
70 /* l3 pud for userspace vsyscall mapping */
71 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
72 #endif /* CONFIG_X86_64 */
75 * Note about cr3 (pagetable base) values:
77 * xen_cr3 contains the current logical cr3 value; it contains the
78 * last set cr3. This may not be the current effective cr3, because
79 * its update may be being lazily deferred. However, a vcpu looking
80 * at its own cr3 can use this value knowing that it everything will
83 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
84 * hypercall to set the vcpu cr3 is complete (so it may be a little
85 * out of date, but it will never be set early). If one vcpu is
86 * looking at another vcpu's cr3 value, it should use this variable.
88 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
89 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
91 struct start_info *xen_start_info;
92 EXPORT_SYMBOL_GPL(xen_start_info);
94 struct shared_info xen_dummy_shared_info;
97 * Point at some empty memory to start with. We map the real shared_info
98 * page as soon as fixmap is up and running.
100 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
103 * Flag to determine whether vcpu info placement is available on all
104 * VCPUs. We assume it is to start with, and then set it to zero on
105 * the first failure. This is because it can succeed on some VCPUs
106 * and not others, since it can involve hypervisor memory allocation,
107 * or because the guest failed to guarantee all the appropriate
108 * constraints on all VCPUs (ie buffer can't cross a page boundary).
110 * Note that any particular CPU may be using a placed vcpu structure,
111 * but we can only optimise if the all are.
113 * 0: not available, 1: available
115 static int have_vcpu_info_placement =
124 static void xen_vcpu_setup(int cpu)
126 struct vcpu_register_vcpu_info info;
128 struct vcpu_info *vcpup;
130 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
131 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
133 if (!have_vcpu_info_placement)
134 return; /* already tested, not available */
136 vcpup = &per_cpu(xen_vcpu_info, cpu);
138 info.mfn = virt_to_mfn(vcpup);
139 info.offset = offset_in_page(vcpup);
141 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
142 cpu, vcpup, info.mfn, info.offset);
144 /* Check to see if the hypervisor will put the vcpu_info
145 structure where we want it, which allows direct access via
146 a percpu-variable. */
147 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
150 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
151 have_vcpu_info_placement = 0;
153 /* This cpu is using the registered vcpu info, even if
154 later ones fail to. */
155 per_cpu(xen_vcpu, cpu) = vcpup;
157 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
163 * On restore, set the vcpu placement up again.
164 * If it fails, then we're in a bad state, since
165 * we can't back out from using it...
167 void xen_vcpu_restore(void)
169 if (have_vcpu_info_placement) {
172 for_each_online_cpu(cpu) {
173 bool other_cpu = (cpu != smp_processor_id());
176 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
182 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
186 BUG_ON(!have_vcpu_info_placement);
190 static void __init xen_banner(void)
192 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
193 struct xen_extraversion extra;
194 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
196 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
198 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
199 version >> 16, version & 0xffff, extra.extraversion,
200 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
203 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
204 unsigned int *cx, unsigned int *dx)
206 unsigned maskedx = ~0;
209 * Mask out inconvenient features, to try and disable as many
210 * unsupported kernel subsystems as possible.
213 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
214 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
215 (1 << X86_FEATURE_MCE) | /* disable MCE */
216 (1 << X86_FEATURE_MCA) | /* disable MCA */
217 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
219 asm(XEN_EMULATE_PREFIX "cpuid"
224 : "0" (*ax), "2" (*cx));
228 static void xen_set_debugreg(int reg, unsigned long val)
230 HYPERVISOR_set_debugreg(reg, val);
233 static unsigned long xen_get_debugreg(int reg)
235 return HYPERVISOR_get_debugreg(reg);
238 static void xen_leave_lazy(void)
240 paravirt_leave_lazy(paravirt_get_lazy_mode());
244 static unsigned long xen_store_tr(void)
250 * Set the page permissions for a particular virtual address. If the
251 * address is a vmalloc mapping (or other non-linear mapping), then
252 * find the linear mapping of the page and also set its protections to
255 static void set_aliased_prot(void *v, pgprot_t prot)
263 ptep = lookup_address((unsigned long)v, &level);
264 BUG_ON(ptep == NULL);
266 pfn = pte_pfn(*ptep);
267 page = pfn_to_page(pfn);
269 pte = pfn_pte(pfn, prot);
271 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
274 if (!PageHighMem(page)) {
275 void *av = __va(PFN_PHYS(pfn));
278 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
284 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
286 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
289 for(i = 0; i < entries; i += entries_per_page)
290 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
293 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
295 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
298 for(i = 0; i < entries; i += entries_per_page)
299 set_aliased_prot(ldt + i, PAGE_KERNEL);
302 static void xen_set_ldt(const void *addr, unsigned entries)
304 struct mmuext_op *op;
305 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
308 op->cmd = MMUEXT_SET_LDT;
309 op->arg1.linear_addr = (unsigned long)addr;
310 op->arg2.nr_ents = entries;
312 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
314 xen_mc_issue(PARAVIRT_LAZY_CPU);
317 static void xen_load_gdt(const struct desc_ptr *dtr)
319 unsigned long *frames;
320 unsigned long va = dtr->address;
321 unsigned int size = dtr->size + 1;
322 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
324 struct multicall_space mcs;
326 /* A GDT can be up to 64k in size, which corresponds to 8192
327 8-byte entries, or 16 4k pages.. */
329 BUG_ON(size > 65536);
330 BUG_ON(va & ~PAGE_MASK);
332 mcs = xen_mc_entry(sizeof(*frames) * pages);
335 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
336 frames[f] = virt_to_mfn(va);
337 make_lowmem_page_readonly((void *)va);
340 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
342 xen_mc_issue(PARAVIRT_LAZY_CPU);
345 static void load_TLS_descriptor(struct thread_struct *t,
346 unsigned int cpu, unsigned int i)
348 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
349 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
350 struct multicall_space mc = __xen_mc_entry(0);
352 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
355 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
358 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
359 * it means we're in a context switch, and %gs has just been
360 * saved. This means we can zero it out to prevent faults on
361 * exit from the hypervisor if the next process has no %gs.
362 * Either way, it has been saved, and the new value will get
363 * loaded properly. This will go away as soon as Xen has been
364 * modified to not save/restore %gs for normal hypercalls.
366 * On x86_64, this hack is not used for %gs, because gs points
367 * to KERNEL_GS_BASE (and uses it for PDA references), so we
368 * must not zero %gs on x86_64
370 * For x86_64, we need to zero %fs, otherwise we may get an
371 * exception between the new %fs descriptor being loaded and
372 * %fs being effectively cleared at __switch_to().
374 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
384 load_TLS_descriptor(t, cpu, 0);
385 load_TLS_descriptor(t, cpu, 1);
386 load_TLS_descriptor(t, cpu, 2);
388 xen_mc_issue(PARAVIRT_LAZY_CPU);
392 static void xen_load_gs_index(unsigned int idx)
394 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
399 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
402 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
403 u64 entry = *(u64 *)ptr;
408 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
414 static int cvt_gate_to_trap(int vector, const gate_desc *val,
415 struct trap_info *info)
417 if (val->type != 0xf && val->type != 0xe)
420 info->vector = vector;
421 info->address = gate_offset(*val);
422 info->cs = gate_segment(*val);
423 info->flags = val->dpl;
424 /* interrupt gates clear IF */
425 if (val->type == 0xe)
431 /* Locations of each CPU's IDT */
432 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
434 /* Set an IDT entry. If the entry is part of the current IDT, then
436 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
438 unsigned long p = (unsigned long)&dt[entrynum];
439 unsigned long start, end;
443 start = __get_cpu_var(idt_desc).address;
444 end = start + __get_cpu_var(idt_desc).size + 1;
448 native_write_idt_entry(dt, entrynum, g);
450 if (p >= start && (p + 8) <= end) {
451 struct trap_info info[2];
455 if (cvt_gate_to_trap(entrynum, g, &info[0]))
456 if (HYPERVISOR_set_trap_table(info))
463 static void xen_convert_trap_info(const struct desc_ptr *desc,
464 struct trap_info *traps)
466 unsigned in, out, count;
468 count = (desc->size+1) / sizeof(gate_desc);
471 for (in = out = 0; in < count; in++) {
472 gate_desc *entry = (gate_desc*)(desc->address) + in;
474 if (cvt_gate_to_trap(in, entry, &traps[out]))
477 traps[out].address = 0;
480 void xen_copy_trap_info(struct trap_info *traps)
482 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
484 xen_convert_trap_info(desc, traps);
487 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
488 hold a spinlock to protect the static traps[] array (static because
489 it avoids allocation, and saves stack space). */
490 static void xen_load_idt(const struct desc_ptr *desc)
492 static DEFINE_SPINLOCK(lock);
493 static struct trap_info traps[257];
497 __get_cpu_var(idt_desc) = *desc;
499 xen_convert_trap_info(desc, traps);
502 if (HYPERVISOR_set_trap_table(traps))
508 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
509 they're handled differently. */
510 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
511 const void *desc, int type)
522 xmaddr_t maddr = virt_to_machine(&dt[entry]);
525 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
534 static void xen_load_sp0(struct tss_struct *tss,
535 struct thread_struct *thread)
537 struct multicall_space mcs = xen_mc_entry(0);
538 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
539 xen_mc_issue(PARAVIRT_LAZY_CPU);
542 static void xen_set_iopl_mask(unsigned mask)
544 struct physdev_set_iopl set_iopl;
546 /* Force the change at ring 0. */
547 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
548 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
551 static void xen_io_delay(void)
555 #ifdef CONFIG_X86_LOCAL_APIC
556 static u32 xen_apic_read(unsigned long reg)
561 static void xen_apic_write(unsigned long reg, u32 val)
563 /* Warn to see if there's any stray references */
568 static void xen_flush_tlb(void)
570 struct mmuext_op *op;
571 struct multicall_space mcs;
575 mcs = xen_mc_entry(sizeof(*op));
578 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
579 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
581 xen_mc_issue(PARAVIRT_LAZY_MMU);
586 static void xen_flush_tlb_single(unsigned long addr)
588 struct mmuext_op *op;
589 struct multicall_space mcs;
593 mcs = xen_mc_entry(sizeof(*op));
595 op->cmd = MMUEXT_INVLPG_LOCAL;
596 op->arg1.linear_addr = addr & PAGE_MASK;
597 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
599 xen_mc_issue(PARAVIRT_LAZY_MMU);
604 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
611 cpumask_t cpumask = *cpus;
612 struct multicall_space mcs;
615 * A couple of (to be removed) sanity checks:
617 * - current CPU must not be in mask
618 * - mask must exist :)
620 BUG_ON(cpus_empty(cpumask));
621 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
624 /* If a CPU which we ran on has gone down, OK. */
625 cpus_and(cpumask, cpumask, cpu_online_map);
626 if (cpus_empty(cpumask))
629 mcs = xen_mc_entry(sizeof(*args));
631 args->mask = cpumask;
632 args->op.arg2.vcpumask = &args->mask;
634 if (va == TLB_FLUSH_ALL) {
635 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
637 args->op.cmd = MMUEXT_INVLPG_MULTI;
638 args->op.arg1.linear_addr = va;
641 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
643 xen_mc_issue(PARAVIRT_LAZY_MMU);
646 static void xen_clts(void)
648 struct multicall_space mcs;
650 mcs = xen_mc_entry(0);
652 MULTI_fpu_taskswitch(mcs.mc, 0);
654 xen_mc_issue(PARAVIRT_LAZY_CPU);
657 static void xen_write_cr0(unsigned long cr0)
659 struct multicall_space mcs;
661 /* Only pay attention to cr0.TS; everything else is
663 mcs = xen_mc_entry(0);
665 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
667 xen_mc_issue(PARAVIRT_LAZY_CPU);
670 static void xen_write_cr2(unsigned long cr2)
672 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
675 static unsigned long xen_read_cr2(void)
677 return x86_read_percpu(xen_vcpu)->arch.cr2;
680 static unsigned long xen_read_cr2_direct(void)
682 return x86_read_percpu(xen_vcpu_info.arch.cr2);
685 static void xen_write_cr4(unsigned long cr4)
690 native_write_cr4(cr4);
693 static unsigned long xen_read_cr3(void)
695 return x86_read_percpu(xen_cr3);
698 static void set_current_cr3(void *v)
700 x86_write_percpu(xen_current_cr3, (unsigned long)v);
703 static void __xen_write_cr3(bool kernel, unsigned long cr3)
705 struct mmuext_op *op;
706 struct multicall_space mcs;
710 mfn = pfn_to_mfn(PFN_DOWN(cr3));
714 WARN_ON(mfn == 0 && kernel);
716 mcs = __xen_mc_entry(sizeof(*op));
719 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
722 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
725 x86_write_percpu(xen_cr3, cr3);
727 /* Update xen_current_cr3 once the batch has actually
729 xen_mc_callback(set_current_cr3, (void *)cr3);
733 static void xen_write_cr3(unsigned long cr3)
735 BUG_ON(preemptible());
737 xen_mc_batch(); /* disables interrupts */
739 /* Update while interrupts are disabled, so its atomic with
741 x86_write_percpu(xen_cr3, cr3);
743 __xen_write_cr3(true, cr3);
747 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
749 __xen_write_cr3(false, __pa(user_pgd));
751 __xen_write_cr3(false, 0);
755 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
758 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
769 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
770 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
771 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
774 base = ((u64)high << 32) | low;
775 if (HYPERVISOR_set_segment_base(which, base) != 0)
783 case MSR_SYSCALL_MASK:
784 case MSR_IA32_SYSENTER_CS:
785 case MSR_IA32_SYSENTER_ESP:
786 case MSR_IA32_SYSENTER_EIP:
787 /* Fast syscall setup is all done in hypercalls, so
788 these are all ignored. Stub them out here to stop
789 Xen console noise. */
793 ret = native_write_msr_safe(msr, low, high);
799 /* Early in boot, while setting up the initial pagetable, assume
800 everything is pinned. */
801 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
803 #ifdef CONFIG_FLATMEM
804 BUG_ON(mem_map); /* should only be used early */
806 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
809 /* Early release_pte assumes that all pts are pinned, since there's
810 only init_mm and anything attached to that is pinned. */
811 static void xen_release_pte_init(u32 pfn)
813 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
816 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
820 op.arg1.mfn = pfn_to_mfn(pfn);
821 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
825 /* This needs to make sure the new pte page is pinned iff its being
826 attached to a pinned pagetable. */
827 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
829 struct page *page = pfn_to_page(pfn);
831 if (PagePinned(virt_to_page(mm->pgd))) {
834 if (!PageHighMem(page)) {
835 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
836 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
837 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
839 /* make sure there are no stray mappings of
845 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
847 xen_alloc_ptpage(mm, pfn, PT_PTE);
850 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
852 xen_alloc_ptpage(mm, pfn, PT_PMD);
855 static int xen_pgd_alloc(struct mm_struct *mm)
857 pgd_t *pgd = mm->pgd;
860 BUG_ON(PagePinned(virt_to_page(pgd)));
864 struct page *page = virt_to_page(pgd);
867 BUG_ON(page->private != 0);
871 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
872 page->private = (unsigned long)user_pgd;
874 if (user_pgd != NULL) {
875 user_pgd[pgd_index(VSYSCALL_START)] =
876 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
880 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
887 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
890 pgd_t *user_pgd = xen_get_user_pgd(pgd);
893 free_page((unsigned long)user_pgd);
897 /* This should never happen until we're OK to use struct page */
898 static void xen_release_ptpage(u32 pfn, unsigned level)
900 struct page *page = pfn_to_page(pfn);
902 if (PagePinned(page)) {
903 if (!PageHighMem(page)) {
904 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
905 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
906 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
908 ClearPagePinned(page);
912 static void xen_release_pte(u32 pfn)
914 xen_release_ptpage(pfn, PT_PTE);
917 static void xen_release_pmd(u32 pfn)
919 xen_release_ptpage(pfn, PT_PMD);
922 #if PAGETABLE_LEVELS == 4
923 static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
925 xen_alloc_ptpage(mm, pfn, PT_PUD);
928 static void xen_release_pud(u32 pfn)
930 xen_release_ptpage(pfn, PT_PUD);
934 #ifdef CONFIG_HIGHPTE
935 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
937 pgprot_t prot = PAGE_KERNEL;
939 if (PagePinned(page))
940 prot = PAGE_KERNEL_RO;
942 if (0 && PageHighMem(page))
943 printk("mapping highpte %lx type %d prot %s\n",
944 page_to_pfn(page), type,
945 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
947 return kmap_atomic_prot(page, type, prot);
952 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
954 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
955 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
956 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
962 /* Init-time set_pte while constructing initial pagetables, which
963 doesn't allow RO pagetable pages to be remapped RW */
964 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
966 pte = mask_rw_pte(ptep, pte);
968 xen_set_pte(ptep, pte);
972 static __init void xen_pagetable_setup_start(pgd_t *base)
976 void xen_setup_shared_info(void)
978 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
979 set_fixmap(FIX_PARAVIRT_BOOTMAP,
980 xen_start_info->shared_info);
982 HYPERVISOR_shared_info =
983 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
985 HYPERVISOR_shared_info =
986 (struct shared_info *)__va(xen_start_info->shared_info);
989 /* In UP this is as good a place as any to set up shared info */
990 xen_setup_vcpu_info_placement();
993 xen_setup_mfn_list_list();
996 static __init void xen_pagetable_setup_done(pgd_t *base)
998 xen_setup_shared_info();
1001 static __init void xen_post_allocator_init(void)
1003 pv_mmu_ops.set_pte = xen_set_pte;
1004 pv_mmu_ops.set_pmd = xen_set_pmd;
1005 pv_mmu_ops.set_pud = xen_set_pud;
1006 #if PAGETABLE_LEVELS == 4
1007 pv_mmu_ops.set_pgd = xen_set_pgd;
1010 /* This will work as long as patching hasn't happened yet
1011 (which it hasn't) */
1012 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1013 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1014 pv_mmu_ops.release_pte = xen_release_pte;
1015 pv_mmu_ops.release_pmd = xen_release_pmd;
1016 #if PAGETABLE_LEVELS == 4
1017 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1018 pv_mmu_ops.release_pud = xen_release_pud;
1021 #ifdef CONFIG_X86_64
1022 SetPagePinned(virt_to_page(level3_user_vsyscall));
1024 xen_mark_init_mm_pinned();
1027 /* This is called once we have the cpu_possible_map */
1028 void xen_setup_vcpu_info_placement(void)
1032 for_each_possible_cpu(cpu)
1033 xen_vcpu_setup(cpu);
1035 /* xen_vcpu_setup managed to place the vcpu_info within the
1036 percpu area for all cpus, so make use of it */
1037 if (have_vcpu_info_placement) {
1038 printk(KERN_INFO "Xen: using vcpu_info placement\n");
1040 pv_irq_ops.save_fl = xen_save_fl_direct;
1041 pv_irq_ops.restore_fl = xen_restore_fl_direct;
1042 pv_irq_ops.irq_disable = xen_irq_disable_direct;
1043 pv_irq_ops.irq_enable = xen_irq_enable_direct;
1044 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1048 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1049 unsigned long addr, unsigned len)
1051 char *start, *end, *reloc;
1054 start = end = reloc = NULL;
1056 #define SITE(op, x) \
1057 case PARAVIRT_PATCH(op.x): \
1058 if (have_vcpu_info_placement) { \
1059 start = (char *)xen_##x##_direct; \
1060 end = xen_##x##_direct_end; \
1061 reloc = xen_##x##_direct_reloc; \
1066 SITE(pv_irq_ops, irq_enable);
1067 SITE(pv_irq_ops, irq_disable);
1068 SITE(pv_irq_ops, save_fl);
1069 SITE(pv_irq_ops, restore_fl);
1073 if (start == NULL || (end-start) > len)
1076 ret = paravirt_patch_insns(insnbuf, len, start, end);
1078 /* Note: because reloc is assigned from something that
1079 appears to be an array, gcc assumes it's non-null,
1080 but doesn't know its relationship with start and
1082 if (reloc > start && reloc < end) {
1083 int reloc_off = reloc - start;
1084 long *relocp = (long *)(insnbuf + reloc_off);
1085 long delta = start - (char *)addr;
1093 ret = paravirt_patch_default(type, clobbers, insnbuf,
1101 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1105 phys >>= PAGE_SHIFT;
1108 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1109 #ifdef CONFIG_X86_F00F_BUG
1112 #ifdef CONFIG_X86_32
1115 # ifdef CONFIG_HIGHMEM
1116 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1119 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1121 #ifdef CONFIG_X86_LOCAL_APIC
1122 case FIX_APIC_BASE: /* maps dummy local APIC */
1124 pte = pfn_pte(phys, prot);
1128 pte = mfn_pte(phys, prot);
1132 __native_set_fixmap(idx, pte);
1134 #ifdef CONFIG_X86_64
1135 /* Replicate changes to map the vsyscall page into the user
1136 pagetable vsyscall mapping. */
1137 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1138 unsigned long vaddr = __fix_to_virt(idx);
1139 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1144 static const struct pv_info xen_info __initdata = {
1145 .paravirt_enabled = 1,
1146 .shared_kernel_pmd = 0,
1151 static const struct pv_init_ops xen_init_ops __initdata = {
1154 .banner = xen_banner,
1155 .memory_setup = xen_memory_setup,
1156 .arch_setup = xen_arch_setup,
1157 .post_allocator_init = xen_post_allocator_init,
1160 static const struct pv_time_ops xen_time_ops __initdata = {
1161 .time_init = xen_time_init,
1163 .set_wallclock = xen_set_wallclock,
1164 .get_wallclock = xen_get_wallclock,
1165 .get_tsc_khz = xen_tsc_khz,
1166 .sched_clock = xen_sched_clock,
1169 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1172 .set_debugreg = xen_set_debugreg,
1173 .get_debugreg = xen_get_debugreg,
1177 .read_cr0 = native_read_cr0,
1178 .write_cr0 = xen_write_cr0,
1180 .read_cr4 = native_read_cr4,
1181 .read_cr4_safe = native_read_cr4_safe,
1182 .write_cr4 = xen_write_cr4,
1184 .wbinvd = native_wbinvd,
1186 .read_msr = native_read_msr_safe,
1187 .write_msr = xen_write_msr_safe,
1188 .read_tsc = native_read_tsc,
1189 .read_pmc = native_read_pmc,
1192 .irq_enable_sysexit = xen_sysexit,
1193 #ifdef CONFIG_X86_64
1194 .usergs_sysret32 = xen_sysret32,
1195 .usergs_sysret64 = xen_sysret64,
1198 .load_tr_desc = paravirt_nop,
1199 .set_ldt = xen_set_ldt,
1200 .load_gdt = xen_load_gdt,
1201 .load_idt = xen_load_idt,
1202 .load_tls = xen_load_tls,
1203 #ifdef CONFIG_X86_64
1204 .load_gs_index = xen_load_gs_index,
1207 .alloc_ldt = xen_alloc_ldt,
1208 .free_ldt = xen_free_ldt,
1210 .store_gdt = native_store_gdt,
1211 .store_idt = native_store_idt,
1212 .store_tr = xen_store_tr,
1214 .write_ldt_entry = xen_write_ldt_entry,
1215 .write_gdt_entry = xen_write_gdt_entry,
1216 .write_idt_entry = xen_write_idt_entry,
1217 .load_sp0 = xen_load_sp0,
1219 .set_iopl_mask = xen_set_iopl_mask,
1220 .io_delay = xen_io_delay,
1222 /* Xen takes care of %gs when switching to usermode for us */
1223 .swapgs = paravirt_nop,
1226 .enter = paravirt_enter_lazy_cpu,
1227 .leave = xen_leave_lazy,
1231 static const struct pv_apic_ops xen_apic_ops __initdata = {
1232 #ifdef CONFIG_X86_LOCAL_APIC
1233 .apic_write = xen_apic_write,
1234 .apic_read = xen_apic_read,
1235 .setup_boot_clock = paravirt_nop,
1236 .setup_secondary_clock = paravirt_nop,
1237 .startup_ipi_hook = paravirt_nop,
1241 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1242 .pagetable_setup_start = xen_pagetable_setup_start,
1243 .pagetable_setup_done = xen_pagetable_setup_done,
1245 .read_cr2 = xen_read_cr2,
1246 .write_cr2 = xen_write_cr2,
1248 .read_cr3 = xen_read_cr3,
1249 .write_cr3 = xen_write_cr3,
1251 .flush_tlb_user = xen_flush_tlb,
1252 .flush_tlb_kernel = xen_flush_tlb,
1253 .flush_tlb_single = xen_flush_tlb_single,
1254 .flush_tlb_others = xen_flush_tlb_others,
1256 .pte_update = paravirt_nop,
1257 .pte_update_defer = paravirt_nop,
1259 .pgd_alloc = xen_pgd_alloc,
1260 .pgd_free = xen_pgd_free,
1262 .alloc_pte = xen_alloc_pte_init,
1263 .release_pte = xen_release_pte_init,
1264 .alloc_pmd = xen_alloc_pte_init,
1265 .alloc_pmd_clone = paravirt_nop,
1266 .release_pmd = xen_release_pte_init,
1268 #ifdef CONFIG_HIGHPTE
1269 .kmap_atomic_pte = xen_kmap_atomic_pte,
1272 #ifdef CONFIG_X86_64
1273 .set_pte = xen_set_pte,
1275 .set_pte = xen_set_pte_init,
1277 .set_pte_at = xen_set_pte_at,
1278 .set_pmd = xen_set_pmd_hyper,
1280 .ptep_modify_prot_start = __ptep_modify_prot_start,
1281 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1283 .pte_val = xen_pte_val,
1284 .pte_flags = native_pte_flags,
1285 .pgd_val = xen_pgd_val,
1287 .make_pte = xen_make_pte,
1288 .make_pgd = xen_make_pgd,
1290 #ifdef CONFIG_X86_PAE
1291 .set_pte_atomic = xen_set_pte_atomic,
1292 .set_pte_present = xen_set_pte_at,
1293 .pte_clear = xen_pte_clear,
1294 .pmd_clear = xen_pmd_clear,
1295 #endif /* CONFIG_X86_PAE */
1296 .set_pud = xen_set_pud_hyper,
1298 .make_pmd = xen_make_pmd,
1299 .pmd_val = xen_pmd_val,
1301 #if PAGETABLE_LEVELS == 4
1302 .pud_val = xen_pud_val,
1303 .make_pud = xen_make_pud,
1304 .set_pgd = xen_set_pgd_hyper,
1306 .alloc_pud = xen_alloc_pte_init,
1307 .release_pud = xen_release_pte_init,
1308 #endif /* PAGETABLE_LEVELS == 4 */
1310 .activate_mm = xen_activate_mm,
1311 .dup_mmap = xen_dup_mmap,
1312 .exit_mmap = xen_exit_mmap,
1315 .enter = paravirt_enter_lazy_mmu,
1316 .leave = xen_leave_lazy,
1319 .set_fixmap = xen_set_fixmap,
1322 static void xen_reboot(int reason)
1324 struct sched_shutdown r = { .reason = reason };
1330 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1334 static void xen_restart(char *msg)
1336 xen_reboot(SHUTDOWN_reboot);
1339 static void xen_emergency_restart(void)
1341 xen_reboot(SHUTDOWN_reboot);
1344 static void xen_machine_halt(void)
1346 xen_reboot(SHUTDOWN_poweroff);
1349 static void xen_crash_shutdown(struct pt_regs *regs)
1351 xen_reboot(SHUTDOWN_crash);
1354 static const struct machine_ops __initdata xen_machine_ops = {
1355 .restart = xen_restart,
1356 .halt = xen_machine_halt,
1357 .power_off = xen_machine_halt,
1358 .shutdown = xen_machine_halt,
1359 .crash_shutdown = xen_crash_shutdown,
1360 .emergency_restart = xen_emergency_restart,
1364 static void __init xen_reserve_top(void)
1366 #ifdef CONFIG_X86_32
1367 unsigned long top = HYPERVISOR_VIRT_START;
1368 struct xen_platform_parameters pp;
1370 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1371 top = pp.virt_start;
1373 reserve_top_address(-top);
1374 #endif /* CONFIG_X86_32 */
1378 * Like __va(), but returns address in the kernel mapping (which is
1379 * all we have until the physical memory mapping has been set up.
1381 static void *__ka(phys_addr_t paddr)
1383 #ifdef CONFIG_X86_64
1384 return (void *)(paddr + __START_KERNEL_map);
1390 /* Convert a machine address to physical address */
1391 static unsigned long m2p(phys_addr_t maddr)
1395 maddr &= PTE_PFN_MASK;
1396 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1401 /* Convert a machine address to kernel virtual */
1402 static void *m2v(phys_addr_t maddr)
1404 return __ka(m2p(maddr));
1407 static void set_page_prot(void *addr, pgprot_t prot)
1409 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1410 pte_t pte = pfn_pte(pfn, prot);
1412 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1416 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1418 unsigned pmdidx, pteidx;
1424 for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1427 /* Reuse or allocate a page of ptes */
1428 if (pmd_present(pmd[pmdidx]))
1429 pte_page = m2v(pmd[pmdidx].pmd);
1431 /* Check for free pte pages */
1432 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1435 pte_page = &level1_ident_pgt[ident_pte];
1436 ident_pte += PTRS_PER_PTE;
1438 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1441 /* Install mappings */
1442 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1445 if (pfn > max_pfn_mapped)
1446 max_pfn_mapped = pfn;
1448 if (!pte_none(pte_page[pteidx]))
1451 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1452 pte_page[pteidx] = pte;
1456 for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1457 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1459 set_page_prot(pmd, PAGE_KERNEL_RO);
1462 #ifdef CONFIG_X86_64
1463 static void convert_pfn_mfn(void *v)
1468 /* All levels are converted the same way, so just treat them
1470 for(i = 0; i < PTRS_PER_PTE; i++)
1471 pte[i] = xen_make_pte(pte[i].pte);
1475 * Set up the inital kernel pagetable.
1477 * We can construct this by grafting the Xen provided pagetable into
1478 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1479 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1480 * means that only the kernel has a physical mapping to start with -
1481 * but that's enough to get __va working. We need to fill in the rest
1482 * of the physical mapping once some sort of allocator has been set
1485 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1490 /* Zap identity mapping */
1491 init_level4_pgt[0] = __pgd(0);
1493 /* Pre-constructed entries are in pfn, so convert to mfn */
1494 convert_pfn_mfn(init_level4_pgt);
1495 convert_pfn_mfn(level3_ident_pgt);
1496 convert_pfn_mfn(level3_kernel_pgt);
1498 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1499 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1501 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1502 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1504 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1505 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1506 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1508 /* Set up identity map */
1509 xen_map_identity_early(level2_ident_pgt, max_pfn);
1511 /* Make pagetable pieces RO */
1512 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1513 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1514 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1515 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1516 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1517 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1519 /* Pin down new L4 */
1520 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1521 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1523 /* Unpin Xen-provided one */
1524 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1527 pgd = init_level4_pgt;
1530 * At this stage there can be no user pgd, and no page
1531 * structure to attach it to, so make sure we just set kernel
1535 __xen_write_cr3(true, __pa(pgd));
1536 xen_mc_issue(PARAVIRT_LAZY_CPU);
1538 reserve_early(__pa(xen_start_info->pt_base),
1539 __pa(xen_start_info->pt_base +
1540 xen_start_info->nr_pt_frames * PAGE_SIZE),
1545 #else /* !CONFIG_X86_64 */
1546 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1548 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1552 init_pg_tables_start = __pa(pgd);
1553 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1554 max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1556 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1557 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1559 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1561 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1562 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1563 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1565 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1566 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1567 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1569 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1571 xen_write_cr3(__pa(swapper_pg_dir));
1573 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1575 return swapper_pg_dir;
1577 #endif /* CONFIG_X86_64 */
1579 /* First C function to be called on Xen boot */
1580 asmlinkage void __init xen_start_kernel(void)
1584 if (!xen_start_info)
1587 xen_domain_type = XEN_PV_DOMAIN;
1589 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1591 xen_setup_features();
1593 /* Install Xen paravirt ops */
1595 pv_init_ops = xen_init_ops;
1596 pv_time_ops = xen_time_ops;
1597 pv_cpu_ops = xen_cpu_ops;
1598 pv_apic_ops = xen_apic_ops;
1599 pv_mmu_ops = xen_mmu_ops;
1603 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1604 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1605 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1608 machine_ops = xen_machine_ops;
1610 #ifdef CONFIG_X86_64
1611 /* Disable until direct per-cpu data access. */
1612 have_vcpu_info_placement = 0;
1619 if (!xen_feature(XENFEAT_auto_translated_physmap))
1620 xen_build_dynamic_phys_to_machine();
1622 pgd = (pgd_t *)xen_start_info->pt_base;
1624 /* Prevent unwanted bits from being set in PTEs. */
1625 __supported_pte_mask &= ~_PAGE_GLOBAL;
1626 if (!xen_initial_domain())
1627 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1629 /* Don't do the full vcpu_info placement stuff until we have a
1630 possible map and a non-dummy shared_info. */
1631 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1633 xen_raw_console_write("mapping kernel into physical memory\n");
1634 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1638 /* keep using Xen gdt for now; no urgent need to change it */
1640 pv_info.kernel_rpl = 1;
1641 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1642 pv_info.kernel_rpl = 0;
1644 /* set the limit of our address space */
1647 #ifdef CONFIG_X86_32
1648 /* set up basic CPUID stuff */
1649 cpu_detect(&new_cpu_data);
1650 new_cpu_data.hard_math = 1;
1651 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1654 /* Poke various useful things into boot_params */
1655 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1656 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1657 ? __pa(xen_start_info->mod_start) : 0;
1658 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1659 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1661 if (!xen_initial_domain()) {
1662 add_preferred_console("xenboot", 0, NULL);
1663 add_preferred_console("tty", 0, NULL);
1664 add_preferred_console("hvc", 0, NULL);
1667 xen_raw_console_write("about to get started...\n");
1669 /* Start the world */
1670 #ifdef CONFIG_X86_32
1671 i386_start_kernel();
1673 x86_64_start_reservations((char *)__pa_symbol(&boot_params));