Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[linux-2.6] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/delay.h>
22 #include <linux/blkdev.h>
23 #include <linux/seq_file.h>
24 #include "md.h"
25 #include "dm-bio-list.h"
26 #include "raid10.h"
27 #include "bitmap.h"
28
29 /*
30  * RAID10 provides a combination of RAID0 and RAID1 functionality.
31  * The layout of data is defined by
32  *    chunk_size
33  *    raid_disks
34  *    near_copies (stored in low byte of layout)
35  *    far_copies (stored in second byte of layout)
36  *    far_offset (stored in bit 16 of layout )
37  *
38  * The data to be stored is divided into chunks using chunksize.
39  * Each device is divided into far_copies sections.
40  * In each section, chunks are laid out in a style similar to raid0, but
41  * near_copies copies of each chunk is stored (each on a different drive).
42  * The starting device for each section is offset near_copies from the starting
43  * device of the previous section.
44  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
45  * drive.
46  * near_copies and far_copies must be at least one, and their product is at most
47  * raid_disks.
48  *
49  * If far_offset is true, then the far_copies are handled a bit differently.
50  * The copies are still in different stripes, but instead of be very far apart
51  * on disk, there are adjacent stripes.
52  */
53
54 /*
55  * Number of guaranteed r10bios in case of extreme VM load:
56  */
57 #define NR_RAID10_BIOS 256
58
59 static void unplug_slaves(mddev_t *mddev);
60
61 static void allow_barrier(conf_t *conf);
62 static void lower_barrier(conf_t *conf);
63
64 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
65 {
66         conf_t *conf = data;
67         r10bio_t *r10_bio;
68         int size = offsetof(struct r10bio_s, devs[conf->copies]);
69
70         /* allocate a r10bio with room for raid_disks entries in the bios array */
71         r10_bio = kzalloc(size, gfp_flags);
72         if (!r10_bio)
73                 unplug_slaves(conf->mddev);
74
75         return r10_bio;
76 }
77
78 static void r10bio_pool_free(void *r10_bio, void *data)
79 {
80         kfree(r10_bio);
81 }
82
83 /* Maximum size of each resync request */
84 #define RESYNC_BLOCK_SIZE (64*1024)
85 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
86 /* amount of memory to reserve for resync requests */
87 #define RESYNC_WINDOW (1024*1024)
88 /* maximum number of concurrent requests, memory permitting */
89 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
90
91 /*
92  * When performing a resync, we need to read and compare, so
93  * we need as many pages are there are copies.
94  * When performing a recovery, we need 2 bios, one for read,
95  * one for write (we recover only one drive per r10buf)
96  *
97  */
98 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
99 {
100         conf_t *conf = data;
101         struct page *page;
102         r10bio_t *r10_bio;
103         struct bio *bio;
104         int i, j;
105         int nalloc;
106
107         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
108         if (!r10_bio) {
109                 unplug_slaves(conf->mddev);
110                 return NULL;
111         }
112
113         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
114                 nalloc = conf->copies; /* resync */
115         else
116                 nalloc = 2; /* recovery */
117
118         /*
119          * Allocate bios.
120          */
121         for (j = nalloc ; j-- ; ) {
122                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
123                 if (!bio)
124                         goto out_free_bio;
125                 r10_bio->devs[j].bio = bio;
126         }
127         /*
128          * Allocate RESYNC_PAGES data pages and attach them
129          * where needed.
130          */
131         for (j = 0 ; j < nalloc; j++) {
132                 bio = r10_bio->devs[j].bio;
133                 for (i = 0; i < RESYNC_PAGES; i++) {
134                         page = alloc_page(gfp_flags);
135                         if (unlikely(!page))
136                                 goto out_free_pages;
137
138                         bio->bi_io_vec[i].bv_page = page;
139                 }
140         }
141
142         return r10_bio;
143
144 out_free_pages:
145         for ( ; i > 0 ; i--)
146                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
147         while (j--)
148                 for (i = 0; i < RESYNC_PAGES ; i++)
149                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
150         j = -1;
151 out_free_bio:
152         while ( ++j < nalloc )
153                 bio_put(r10_bio->devs[j].bio);
154         r10bio_pool_free(r10_bio, conf);
155         return NULL;
156 }
157
158 static void r10buf_pool_free(void *__r10_bio, void *data)
159 {
160         int i;
161         conf_t *conf = data;
162         r10bio_t *r10bio = __r10_bio;
163         int j;
164
165         for (j=0; j < conf->copies; j++) {
166                 struct bio *bio = r10bio->devs[j].bio;
167                 if (bio) {
168                         for (i = 0; i < RESYNC_PAGES; i++) {
169                                 safe_put_page(bio->bi_io_vec[i].bv_page);
170                                 bio->bi_io_vec[i].bv_page = NULL;
171                         }
172                         bio_put(bio);
173                 }
174         }
175         r10bio_pool_free(r10bio, conf);
176 }
177
178 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
179 {
180         int i;
181
182         for (i = 0; i < conf->copies; i++) {
183                 struct bio **bio = & r10_bio->devs[i].bio;
184                 if (*bio && *bio != IO_BLOCKED)
185                         bio_put(*bio);
186                 *bio = NULL;
187         }
188 }
189
190 static void free_r10bio(r10bio_t *r10_bio)
191 {
192         conf_t *conf = mddev_to_conf(r10_bio->mddev);
193
194         /*
195          * Wake up any possible resync thread that waits for the device
196          * to go idle.
197          */
198         allow_barrier(conf);
199
200         put_all_bios(conf, r10_bio);
201         mempool_free(r10_bio, conf->r10bio_pool);
202 }
203
204 static void put_buf(r10bio_t *r10_bio)
205 {
206         conf_t *conf = mddev_to_conf(r10_bio->mddev);
207
208         mempool_free(r10_bio, conf->r10buf_pool);
209
210         lower_barrier(conf);
211 }
212
213 static void reschedule_retry(r10bio_t *r10_bio)
214 {
215         unsigned long flags;
216         mddev_t *mddev = r10_bio->mddev;
217         conf_t *conf = mddev_to_conf(mddev);
218
219         spin_lock_irqsave(&conf->device_lock, flags);
220         list_add(&r10_bio->retry_list, &conf->retry_list);
221         conf->nr_queued ++;
222         spin_unlock_irqrestore(&conf->device_lock, flags);
223
224         /* wake up frozen array... */
225         wake_up(&conf->wait_barrier);
226
227         md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void raid_end_bio_io(r10bio_t *r10_bio)
236 {
237         struct bio *bio = r10_bio->master_bio;
238
239         bio_endio(bio,
240                 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
241         free_r10bio(r10_bio);
242 }
243
244 /*
245  * Update disk head position estimator based on IRQ completion info.
246  */
247 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
248 {
249         conf_t *conf = mddev_to_conf(r10_bio->mddev);
250
251         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
252                 r10_bio->devs[slot].addr + (r10_bio->sectors);
253 }
254
255 static void raid10_end_read_request(struct bio *bio, int error)
256 {
257         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
258         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
259         int slot, dev;
260         conf_t *conf = mddev_to_conf(r10_bio->mddev);
261
262
263         slot = r10_bio->read_slot;
264         dev = r10_bio->devs[slot].devnum;
265         /*
266          * this branch is our 'one mirror IO has finished' event handler:
267          */
268         update_head_pos(slot, r10_bio);
269
270         if (uptodate) {
271                 /*
272                  * Set R10BIO_Uptodate in our master bio, so that
273                  * we will return a good error code to the higher
274                  * levels even if IO on some other mirrored buffer fails.
275                  *
276                  * The 'master' represents the composite IO operation to
277                  * user-side. So if something waits for IO, then it will
278                  * wait for the 'master' bio.
279                  */
280                 set_bit(R10BIO_Uptodate, &r10_bio->state);
281                 raid_end_bio_io(r10_bio);
282         } else {
283                 /*
284                  * oops, read error:
285                  */
286                 char b[BDEVNAME_SIZE];
287                 if (printk_ratelimit())
288                         printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
289                                bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
290                 reschedule_retry(r10_bio);
291         }
292
293         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
294 }
295
296 static void raid10_end_write_request(struct bio *bio, int error)
297 {
298         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
299         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
300         int slot, dev;
301         conf_t *conf = mddev_to_conf(r10_bio->mddev);
302
303         for (slot = 0; slot < conf->copies; slot++)
304                 if (r10_bio->devs[slot].bio == bio)
305                         break;
306         dev = r10_bio->devs[slot].devnum;
307
308         /*
309          * this branch is our 'one mirror IO has finished' event handler:
310          */
311         if (!uptodate) {
312                 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
313                 /* an I/O failed, we can't clear the bitmap */
314                 set_bit(R10BIO_Degraded, &r10_bio->state);
315         } else
316                 /*
317                  * Set R10BIO_Uptodate in our master bio, so that
318                  * we will return a good error code for to the higher
319                  * levels even if IO on some other mirrored buffer fails.
320                  *
321                  * The 'master' represents the composite IO operation to
322                  * user-side. So if something waits for IO, then it will
323                  * wait for the 'master' bio.
324                  */
325                 set_bit(R10BIO_Uptodate, &r10_bio->state);
326
327         update_head_pos(slot, r10_bio);
328
329         /*
330          *
331          * Let's see if all mirrored write operations have finished
332          * already.
333          */
334         if (atomic_dec_and_test(&r10_bio->remaining)) {
335                 /* clear the bitmap if all writes complete successfully */
336                 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
337                                 r10_bio->sectors,
338                                 !test_bit(R10BIO_Degraded, &r10_bio->state),
339                                 0);
340                 md_write_end(r10_bio->mddev);
341                 raid_end_bio_io(r10_bio);
342         }
343
344         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
345 }
346
347
348 /*
349  * RAID10 layout manager
350  * Aswell as the chunksize and raid_disks count, there are two
351  * parameters: near_copies and far_copies.
352  * near_copies * far_copies must be <= raid_disks.
353  * Normally one of these will be 1.
354  * If both are 1, we get raid0.
355  * If near_copies == raid_disks, we get raid1.
356  *
357  * Chunks are layed out in raid0 style with near_copies copies of the
358  * first chunk, followed by near_copies copies of the next chunk and
359  * so on.
360  * If far_copies > 1, then after 1/far_copies of the array has been assigned
361  * as described above, we start again with a device offset of near_copies.
362  * So we effectively have another copy of the whole array further down all
363  * the drives, but with blocks on different drives.
364  * With this layout, and block is never stored twice on the one device.
365  *
366  * raid10_find_phys finds the sector offset of a given virtual sector
367  * on each device that it is on.
368  *
369  * raid10_find_virt does the reverse mapping, from a device and a
370  * sector offset to a virtual address
371  */
372
373 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
374 {
375         int n,f;
376         sector_t sector;
377         sector_t chunk;
378         sector_t stripe;
379         int dev;
380
381         int slot = 0;
382
383         /* now calculate first sector/dev */
384         chunk = r10bio->sector >> conf->chunk_shift;
385         sector = r10bio->sector & conf->chunk_mask;
386
387         chunk *= conf->near_copies;
388         stripe = chunk;
389         dev = sector_div(stripe, conf->raid_disks);
390         if (conf->far_offset)
391                 stripe *= conf->far_copies;
392
393         sector += stripe << conf->chunk_shift;
394
395         /* and calculate all the others */
396         for (n=0; n < conf->near_copies; n++) {
397                 int d = dev;
398                 sector_t s = sector;
399                 r10bio->devs[slot].addr = sector;
400                 r10bio->devs[slot].devnum = d;
401                 slot++;
402
403                 for (f = 1; f < conf->far_copies; f++) {
404                         d += conf->near_copies;
405                         if (d >= conf->raid_disks)
406                                 d -= conf->raid_disks;
407                         s += conf->stride;
408                         r10bio->devs[slot].devnum = d;
409                         r10bio->devs[slot].addr = s;
410                         slot++;
411                 }
412                 dev++;
413                 if (dev >= conf->raid_disks) {
414                         dev = 0;
415                         sector += (conf->chunk_mask + 1);
416                 }
417         }
418         BUG_ON(slot != conf->copies);
419 }
420
421 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
422 {
423         sector_t offset, chunk, vchunk;
424
425         offset = sector & conf->chunk_mask;
426         if (conf->far_offset) {
427                 int fc;
428                 chunk = sector >> conf->chunk_shift;
429                 fc = sector_div(chunk, conf->far_copies);
430                 dev -= fc * conf->near_copies;
431                 if (dev < 0)
432                         dev += conf->raid_disks;
433         } else {
434                 while (sector >= conf->stride) {
435                         sector -= conf->stride;
436                         if (dev < conf->near_copies)
437                                 dev += conf->raid_disks - conf->near_copies;
438                         else
439                                 dev -= conf->near_copies;
440                 }
441                 chunk = sector >> conf->chunk_shift;
442         }
443         vchunk = chunk * conf->raid_disks + dev;
444         sector_div(vchunk, conf->near_copies);
445         return (vchunk << conf->chunk_shift) + offset;
446 }
447
448 /**
449  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
450  *      @q: request queue
451  *      @bvm: properties of new bio
452  *      @biovec: the request that could be merged to it.
453  *
454  *      Return amount of bytes we can accept at this offset
455  *      If near_copies == raid_disk, there are no striping issues,
456  *      but in that case, the function isn't called at all.
457  */
458 static int raid10_mergeable_bvec(struct request_queue *q,
459                                  struct bvec_merge_data *bvm,
460                                  struct bio_vec *biovec)
461 {
462         mddev_t *mddev = q->queuedata;
463         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
464         int max;
465         unsigned int chunk_sectors = mddev->chunk_size >> 9;
466         unsigned int bio_sectors = bvm->bi_size >> 9;
467
468         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
469         if (max < 0) max = 0; /* bio_add cannot handle a negative return */
470         if (max <= biovec->bv_len && bio_sectors == 0)
471                 return biovec->bv_len;
472         else
473                 return max;
474 }
475
476 /*
477  * This routine returns the disk from which the requested read should
478  * be done. There is a per-array 'next expected sequential IO' sector
479  * number - if this matches on the next IO then we use the last disk.
480  * There is also a per-disk 'last know head position' sector that is
481  * maintained from IRQ contexts, both the normal and the resync IO
482  * completion handlers update this position correctly. If there is no
483  * perfect sequential match then we pick the disk whose head is closest.
484  *
485  * If there are 2 mirrors in the same 2 devices, performance degrades
486  * because position is mirror, not device based.
487  *
488  * The rdev for the device selected will have nr_pending incremented.
489  */
490
491 /*
492  * FIXME: possibly should rethink readbalancing and do it differently
493  * depending on near_copies / far_copies geometry.
494  */
495 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
496 {
497         const unsigned long this_sector = r10_bio->sector;
498         int disk, slot, nslot;
499         const int sectors = r10_bio->sectors;
500         sector_t new_distance, current_distance;
501         mdk_rdev_t *rdev;
502
503         raid10_find_phys(conf, r10_bio);
504         rcu_read_lock();
505         /*
506          * Check if we can balance. We can balance on the whole
507          * device if no resync is going on (recovery is ok), or below
508          * the resync window. We take the first readable disk when
509          * above the resync window.
510          */
511         if (conf->mddev->recovery_cp < MaxSector
512             && (this_sector + sectors >= conf->next_resync)) {
513                 /* make sure that disk is operational */
514                 slot = 0;
515                 disk = r10_bio->devs[slot].devnum;
516
517                 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
518                        r10_bio->devs[slot].bio == IO_BLOCKED ||
519                        !test_bit(In_sync, &rdev->flags)) {
520                         slot++;
521                         if (slot == conf->copies) {
522                                 slot = 0;
523                                 disk = -1;
524                                 break;
525                         }
526                         disk = r10_bio->devs[slot].devnum;
527                 }
528                 goto rb_out;
529         }
530
531
532         /* make sure the disk is operational */
533         slot = 0;
534         disk = r10_bio->devs[slot].devnum;
535         while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
536                r10_bio->devs[slot].bio == IO_BLOCKED ||
537                !test_bit(In_sync, &rdev->flags)) {
538                 slot ++;
539                 if (slot == conf->copies) {
540                         disk = -1;
541                         goto rb_out;
542                 }
543                 disk = r10_bio->devs[slot].devnum;
544         }
545
546
547         current_distance = abs(r10_bio->devs[slot].addr -
548                                conf->mirrors[disk].head_position);
549
550         /* Find the disk whose head is closest,
551          * or - for far > 1 - find the closest to partition beginning */
552
553         for (nslot = slot; nslot < conf->copies; nslot++) {
554                 int ndisk = r10_bio->devs[nslot].devnum;
555
556
557                 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
558                     r10_bio->devs[nslot].bio == IO_BLOCKED ||
559                     !test_bit(In_sync, &rdev->flags))
560                         continue;
561
562                 /* This optimisation is debatable, and completely destroys
563                  * sequential read speed for 'far copies' arrays.  So only
564                  * keep it for 'near' arrays, and review those later.
565                  */
566                 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
567                         disk = ndisk;
568                         slot = nslot;
569                         break;
570                 }
571
572                 /* for far > 1 always use the lowest address */
573                 if (conf->far_copies > 1)
574                         new_distance = r10_bio->devs[nslot].addr;
575                 else
576                         new_distance = abs(r10_bio->devs[nslot].addr -
577                                            conf->mirrors[ndisk].head_position);
578                 if (new_distance < current_distance) {
579                         current_distance = new_distance;
580                         disk = ndisk;
581                         slot = nslot;
582                 }
583         }
584
585 rb_out:
586         r10_bio->read_slot = slot;
587 /*      conf->next_seq_sect = this_sector + sectors;*/
588
589         if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
590                 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
591         else
592                 disk = -1;
593         rcu_read_unlock();
594
595         return disk;
596 }
597
598 static void unplug_slaves(mddev_t *mddev)
599 {
600         conf_t *conf = mddev_to_conf(mddev);
601         int i;
602
603         rcu_read_lock();
604         for (i=0; i<mddev->raid_disks; i++) {
605                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
606                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
607                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
608
609                         atomic_inc(&rdev->nr_pending);
610                         rcu_read_unlock();
611
612                         blk_unplug(r_queue);
613
614                         rdev_dec_pending(rdev, mddev);
615                         rcu_read_lock();
616                 }
617         }
618         rcu_read_unlock();
619 }
620
621 static void raid10_unplug(struct request_queue *q)
622 {
623         mddev_t *mddev = q->queuedata;
624
625         unplug_slaves(q->queuedata);
626         md_wakeup_thread(mddev->thread);
627 }
628
629 static int raid10_congested(void *data, int bits)
630 {
631         mddev_t *mddev = data;
632         conf_t *conf = mddev_to_conf(mddev);
633         int i, ret = 0;
634
635         rcu_read_lock();
636         for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
637                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
638                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
639                         struct request_queue *q = bdev_get_queue(rdev->bdev);
640
641                         ret |= bdi_congested(&q->backing_dev_info, bits);
642                 }
643         }
644         rcu_read_unlock();
645         return ret;
646 }
647
648 static int flush_pending_writes(conf_t *conf)
649 {
650         /* Any writes that have been queued but are awaiting
651          * bitmap updates get flushed here.
652          * We return 1 if any requests were actually submitted.
653          */
654         int rv = 0;
655
656         spin_lock_irq(&conf->device_lock);
657
658         if (conf->pending_bio_list.head) {
659                 struct bio *bio;
660                 bio = bio_list_get(&conf->pending_bio_list);
661                 blk_remove_plug(conf->mddev->queue);
662                 spin_unlock_irq(&conf->device_lock);
663                 /* flush any pending bitmap writes to disk
664                  * before proceeding w/ I/O */
665                 bitmap_unplug(conf->mddev->bitmap);
666
667                 while (bio) { /* submit pending writes */
668                         struct bio *next = bio->bi_next;
669                         bio->bi_next = NULL;
670                         generic_make_request(bio);
671                         bio = next;
672                 }
673                 rv = 1;
674         } else
675                 spin_unlock_irq(&conf->device_lock);
676         return rv;
677 }
678 /* Barriers....
679  * Sometimes we need to suspend IO while we do something else,
680  * either some resync/recovery, or reconfigure the array.
681  * To do this we raise a 'barrier'.
682  * The 'barrier' is a counter that can be raised multiple times
683  * to count how many activities are happening which preclude
684  * normal IO.
685  * We can only raise the barrier if there is no pending IO.
686  * i.e. if nr_pending == 0.
687  * We choose only to raise the barrier if no-one is waiting for the
688  * barrier to go down.  This means that as soon as an IO request
689  * is ready, no other operations which require a barrier will start
690  * until the IO request has had a chance.
691  *
692  * So: regular IO calls 'wait_barrier'.  When that returns there
693  *    is no backgroup IO happening,  It must arrange to call
694  *    allow_barrier when it has finished its IO.
695  * backgroup IO calls must call raise_barrier.  Once that returns
696  *    there is no normal IO happeing.  It must arrange to call
697  *    lower_barrier when the particular background IO completes.
698  */
699
700 static void raise_barrier(conf_t *conf, int force)
701 {
702         BUG_ON(force && !conf->barrier);
703         spin_lock_irq(&conf->resync_lock);
704
705         /* Wait until no block IO is waiting (unless 'force') */
706         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
707                             conf->resync_lock,
708                             raid10_unplug(conf->mddev->queue));
709
710         /* block any new IO from starting */
711         conf->barrier++;
712
713         /* No wait for all pending IO to complete */
714         wait_event_lock_irq(conf->wait_barrier,
715                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
716                             conf->resync_lock,
717                             raid10_unplug(conf->mddev->queue));
718
719         spin_unlock_irq(&conf->resync_lock);
720 }
721
722 static void lower_barrier(conf_t *conf)
723 {
724         unsigned long flags;
725         spin_lock_irqsave(&conf->resync_lock, flags);
726         conf->barrier--;
727         spin_unlock_irqrestore(&conf->resync_lock, flags);
728         wake_up(&conf->wait_barrier);
729 }
730
731 static void wait_barrier(conf_t *conf)
732 {
733         spin_lock_irq(&conf->resync_lock);
734         if (conf->barrier) {
735                 conf->nr_waiting++;
736                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
737                                     conf->resync_lock,
738                                     raid10_unplug(conf->mddev->queue));
739                 conf->nr_waiting--;
740         }
741         conf->nr_pending++;
742         spin_unlock_irq(&conf->resync_lock);
743 }
744
745 static void allow_barrier(conf_t *conf)
746 {
747         unsigned long flags;
748         spin_lock_irqsave(&conf->resync_lock, flags);
749         conf->nr_pending--;
750         spin_unlock_irqrestore(&conf->resync_lock, flags);
751         wake_up(&conf->wait_barrier);
752 }
753
754 static void freeze_array(conf_t *conf)
755 {
756         /* stop syncio and normal IO and wait for everything to
757          * go quiet.
758          * We increment barrier and nr_waiting, and then
759          * wait until nr_pending match nr_queued+1
760          * This is called in the context of one normal IO request
761          * that has failed. Thus any sync request that might be pending
762          * will be blocked by nr_pending, and we need to wait for
763          * pending IO requests to complete or be queued for re-try.
764          * Thus the number queued (nr_queued) plus this request (1)
765          * must match the number of pending IOs (nr_pending) before
766          * we continue.
767          */
768         spin_lock_irq(&conf->resync_lock);
769         conf->barrier++;
770         conf->nr_waiting++;
771         wait_event_lock_irq(conf->wait_barrier,
772                             conf->nr_pending == conf->nr_queued+1,
773                             conf->resync_lock,
774                             ({ flush_pending_writes(conf);
775                                raid10_unplug(conf->mddev->queue); }));
776         spin_unlock_irq(&conf->resync_lock);
777 }
778
779 static void unfreeze_array(conf_t *conf)
780 {
781         /* reverse the effect of the freeze */
782         spin_lock_irq(&conf->resync_lock);
783         conf->barrier--;
784         conf->nr_waiting--;
785         wake_up(&conf->wait_barrier);
786         spin_unlock_irq(&conf->resync_lock);
787 }
788
789 static int make_request(struct request_queue *q, struct bio * bio)
790 {
791         mddev_t *mddev = q->queuedata;
792         conf_t *conf = mddev_to_conf(mddev);
793         mirror_info_t *mirror;
794         r10bio_t *r10_bio;
795         struct bio *read_bio;
796         int cpu;
797         int i;
798         int chunk_sects = conf->chunk_mask + 1;
799         const int rw = bio_data_dir(bio);
800         const int do_sync = bio_sync(bio);
801         struct bio_list bl;
802         unsigned long flags;
803         mdk_rdev_t *blocked_rdev;
804
805         if (unlikely(bio_barrier(bio))) {
806                 bio_endio(bio, -EOPNOTSUPP);
807                 return 0;
808         }
809
810         /* If this request crosses a chunk boundary, we need to
811          * split it.  This will only happen for 1 PAGE (or less) requests.
812          */
813         if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
814                       > chunk_sects &&
815                     conf->near_copies < conf->raid_disks)) {
816                 struct bio_pair *bp;
817                 /* Sanity check -- queue functions should prevent this happening */
818                 if (bio->bi_vcnt != 1 ||
819                     bio->bi_idx != 0)
820                         goto bad_map;
821                 /* This is a one page bio that upper layers
822                  * refuse to split for us, so we need to split it.
823                  */
824                 bp = bio_split(bio,
825                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
826                 if (make_request(q, &bp->bio1))
827                         generic_make_request(&bp->bio1);
828                 if (make_request(q, &bp->bio2))
829                         generic_make_request(&bp->bio2);
830
831                 bio_pair_release(bp);
832                 return 0;
833         bad_map:
834                 printk("raid10_make_request bug: can't convert block across chunks"
835                        " or bigger than %dk %llu %d\n", chunk_sects/2,
836                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
837
838                 bio_io_error(bio);
839                 return 0;
840         }
841
842         md_write_start(mddev, bio);
843
844         /*
845          * Register the new request and wait if the reconstruction
846          * thread has put up a bar for new requests.
847          * Continue immediately if no resync is active currently.
848          */
849         wait_barrier(conf);
850
851         cpu = part_stat_lock();
852         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
853         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
854                       bio_sectors(bio));
855         part_stat_unlock();
856
857         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
858
859         r10_bio->master_bio = bio;
860         r10_bio->sectors = bio->bi_size >> 9;
861
862         r10_bio->mddev = mddev;
863         r10_bio->sector = bio->bi_sector;
864         r10_bio->state = 0;
865
866         if (rw == READ) {
867                 /*
868                  * read balancing logic:
869                  */
870                 int disk = read_balance(conf, r10_bio);
871                 int slot = r10_bio->read_slot;
872                 if (disk < 0) {
873                         raid_end_bio_io(r10_bio);
874                         return 0;
875                 }
876                 mirror = conf->mirrors + disk;
877
878                 read_bio = bio_clone(bio, GFP_NOIO);
879
880                 r10_bio->devs[slot].bio = read_bio;
881
882                 read_bio->bi_sector = r10_bio->devs[slot].addr +
883                         mirror->rdev->data_offset;
884                 read_bio->bi_bdev = mirror->rdev->bdev;
885                 read_bio->bi_end_io = raid10_end_read_request;
886                 read_bio->bi_rw = READ | do_sync;
887                 read_bio->bi_private = r10_bio;
888
889                 generic_make_request(read_bio);
890                 return 0;
891         }
892
893         /*
894          * WRITE:
895          */
896         /* first select target devices under rcu_lock and
897          * inc refcount on their rdev.  Record them by setting
898          * bios[x] to bio
899          */
900         raid10_find_phys(conf, r10_bio);
901  retry_write:
902         blocked_rdev = NULL;
903         rcu_read_lock();
904         for (i = 0;  i < conf->copies; i++) {
905                 int d = r10_bio->devs[i].devnum;
906                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
907                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
908                         atomic_inc(&rdev->nr_pending);
909                         blocked_rdev = rdev;
910                         break;
911                 }
912                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
913                         atomic_inc(&rdev->nr_pending);
914                         r10_bio->devs[i].bio = bio;
915                 } else {
916                         r10_bio->devs[i].bio = NULL;
917                         set_bit(R10BIO_Degraded, &r10_bio->state);
918                 }
919         }
920         rcu_read_unlock();
921
922         if (unlikely(blocked_rdev)) {
923                 /* Have to wait for this device to get unblocked, then retry */
924                 int j;
925                 int d;
926
927                 for (j = 0; j < i; j++)
928                         if (r10_bio->devs[j].bio) {
929                                 d = r10_bio->devs[j].devnum;
930                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
931                         }
932                 allow_barrier(conf);
933                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
934                 wait_barrier(conf);
935                 goto retry_write;
936         }
937
938         atomic_set(&r10_bio->remaining, 0);
939
940         bio_list_init(&bl);
941         for (i = 0; i < conf->copies; i++) {
942                 struct bio *mbio;
943                 int d = r10_bio->devs[i].devnum;
944                 if (!r10_bio->devs[i].bio)
945                         continue;
946
947                 mbio = bio_clone(bio, GFP_NOIO);
948                 r10_bio->devs[i].bio = mbio;
949
950                 mbio->bi_sector = r10_bio->devs[i].addr+
951                         conf->mirrors[d].rdev->data_offset;
952                 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
953                 mbio->bi_end_io = raid10_end_write_request;
954                 mbio->bi_rw = WRITE | do_sync;
955                 mbio->bi_private = r10_bio;
956
957                 atomic_inc(&r10_bio->remaining);
958                 bio_list_add(&bl, mbio);
959         }
960
961         if (unlikely(!atomic_read(&r10_bio->remaining))) {
962                 /* the array is dead */
963                 md_write_end(mddev);
964                 raid_end_bio_io(r10_bio);
965                 return 0;
966         }
967
968         bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
969         spin_lock_irqsave(&conf->device_lock, flags);
970         bio_list_merge(&conf->pending_bio_list, &bl);
971         blk_plug_device(mddev->queue);
972         spin_unlock_irqrestore(&conf->device_lock, flags);
973
974         /* In case raid10d snuck in to freeze_array */
975         wake_up(&conf->wait_barrier);
976
977         if (do_sync)
978                 md_wakeup_thread(mddev->thread);
979
980         return 0;
981 }
982
983 static void status(struct seq_file *seq, mddev_t *mddev)
984 {
985         conf_t *conf = mddev_to_conf(mddev);
986         int i;
987
988         if (conf->near_copies < conf->raid_disks)
989                 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
990         if (conf->near_copies > 1)
991                 seq_printf(seq, " %d near-copies", conf->near_copies);
992         if (conf->far_copies > 1) {
993                 if (conf->far_offset)
994                         seq_printf(seq, " %d offset-copies", conf->far_copies);
995                 else
996                         seq_printf(seq, " %d far-copies", conf->far_copies);
997         }
998         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
999                                         conf->raid_disks - mddev->degraded);
1000         for (i = 0; i < conf->raid_disks; i++)
1001                 seq_printf(seq, "%s",
1002                               conf->mirrors[i].rdev &&
1003                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1004         seq_printf(seq, "]");
1005 }
1006
1007 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1008 {
1009         char b[BDEVNAME_SIZE];
1010         conf_t *conf = mddev_to_conf(mddev);
1011
1012         /*
1013          * If it is not operational, then we have already marked it as dead
1014          * else if it is the last working disks, ignore the error, let the
1015          * next level up know.
1016          * else mark the drive as failed
1017          */
1018         if (test_bit(In_sync, &rdev->flags)
1019             && conf->raid_disks-mddev->degraded == 1)
1020                 /*
1021                  * Don't fail the drive, just return an IO error.
1022                  * The test should really be more sophisticated than
1023                  * "working_disks == 1", but it isn't critical, and
1024                  * can wait until we do more sophisticated "is the drive
1025                  * really dead" tests...
1026                  */
1027                 return;
1028         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1029                 unsigned long flags;
1030                 spin_lock_irqsave(&conf->device_lock, flags);
1031                 mddev->degraded++;
1032                 spin_unlock_irqrestore(&conf->device_lock, flags);
1033                 /*
1034                  * if recovery is running, make sure it aborts.
1035                  */
1036                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1037         }
1038         set_bit(Faulty, &rdev->flags);
1039         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1040         printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1041                 "raid10: Operation continuing on %d devices.\n",
1042                 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1043 }
1044
1045 static void print_conf(conf_t *conf)
1046 {
1047         int i;
1048         mirror_info_t *tmp;
1049
1050         printk("RAID10 conf printout:\n");
1051         if (!conf) {
1052                 printk("(!conf)\n");
1053                 return;
1054         }
1055         printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1056                 conf->raid_disks);
1057
1058         for (i = 0; i < conf->raid_disks; i++) {
1059                 char b[BDEVNAME_SIZE];
1060                 tmp = conf->mirrors + i;
1061                 if (tmp->rdev)
1062                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1063                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1064                                 !test_bit(Faulty, &tmp->rdev->flags),
1065                                 bdevname(tmp->rdev->bdev,b));
1066         }
1067 }
1068
1069 static void close_sync(conf_t *conf)
1070 {
1071         wait_barrier(conf);
1072         allow_barrier(conf);
1073
1074         mempool_destroy(conf->r10buf_pool);
1075         conf->r10buf_pool = NULL;
1076 }
1077
1078 /* check if there are enough drives for
1079  * every block to appear on atleast one
1080  */
1081 static int enough(conf_t *conf)
1082 {
1083         int first = 0;
1084
1085         do {
1086                 int n = conf->copies;
1087                 int cnt = 0;
1088                 while (n--) {
1089                         if (conf->mirrors[first].rdev)
1090                                 cnt++;
1091                         first = (first+1) % conf->raid_disks;
1092                 }
1093                 if (cnt == 0)
1094                         return 0;
1095         } while (first != 0);
1096         return 1;
1097 }
1098
1099 static int raid10_spare_active(mddev_t *mddev)
1100 {
1101         int i;
1102         conf_t *conf = mddev->private;
1103         mirror_info_t *tmp;
1104
1105         /*
1106          * Find all non-in_sync disks within the RAID10 configuration
1107          * and mark them in_sync
1108          */
1109         for (i = 0; i < conf->raid_disks; i++) {
1110                 tmp = conf->mirrors + i;
1111                 if (tmp->rdev
1112                     && !test_bit(Faulty, &tmp->rdev->flags)
1113                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1114                         unsigned long flags;
1115                         spin_lock_irqsave(&conf->device_lock, flags);
1116                         mddev->degraded--;
1117                         spin_unlock_irqrestore(&conf->device_lock, flags);
1118                 }
1119         }
1120
1121         print_conf(conf);
1122         return 0;
1123 }
1124
1125
1126 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1127 {
1128         conf_t *conf = mddev->private;
1129         int err = -EEXIST;
1130         int mirror;
1131         mirror_info_t *p;
1132         int first = 0;
1133         int last = mddev->raid_disks - 1;
1134
1135         if (mddev->recovery_cp < MaxSector)
1136                 /* only hot-add to in-sync arrays, as recovery is
1137                  * very different from resync
1138                  */
1139                 return -EBUSY;
1140         if (!enough(conf))
1141                 return -EINVAL;
1142
1143         if (rdev->raid_disk >= 0)
1144                 first = last = rdev->raid_disk;
1145
1146         if (rdev->saved_raid_disk >= 0 &&
1147             rdev->saved_raid_disk >= first &&
1148             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1149                 mirror = rdev->saved_raid_disk;
1150         else
1151                 mirror = first;
1152         for ( ; mirror <= last ; mirror++)
1153                 if ( !(p=conf->mirrors+mirror)->rdev) {
1154
1155                         blk_queue_stack_limits(mddev->queue,
1156                                                rdev->bdev->bd_disk->queue);
1157                         /* as we don't honour merge_bvec_fn, we must never risk
1158                          * violating it, so limit ->max_sector to one PAGE, as
1159                          * a one page request is never in violation.
1160                          */
1161                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1162                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
1163                                 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1164
1165                         p->head_position = 0;
1166                         rdev->raid_disk = mirror;
1167                         err = 0;
1168                         if (rdev->saved_raid_disk != mirror)
1169                                 conf->fullsync = 1;
1170                         rcu_assign_pointer(p->rdev, rdev);
1171                         break;
1172                 }
1173
1174         print_conf(conf);
1175         return err;
1176 }
1177
1178 static int raid10_remove_disk(mddev_t *mddev, int number)
1179 {
1180         conf_t *conf = mddev->private;
1181         int err = 0;
1182         mdk_rdev_t *rdev;
1183         mirror_info_t *p = conf->mirrors+ number;
1184
1185         print_conf(conf);
1186         rdev = p->rdev;
1187         if (rdev) {
1188                 if (test_bit(In_sync, &rdev->flags) ||
1189                     atomic_read(&rdev->nr_pending)) {
1190                         err = -EBUSY;
1191                         goto abort;
1192                 }
1193                 /* Only remove faulty devices in recovery
1194                  * is not possible.
1195                  */
1196                 if (!test_bit(Faulty, &rdev->flags) &&
1197                     enough(conf)) {
1198                         err = -EBUSY;
1199                         goto abort;
1200                 }
1201                 p->rdev = NULL;
1202                 synchronize_rcu();
1203                 if (atomic_read(&rdev->nr_pending)) {
1204                         /* lost the race, try later */
1205                         err = -EBUSY;
1206                         p->rdev = rdev;
1207                 }
1208         }
1209 abort:
1210
1211         print_conf(conf);
1212         return err;
1213 }
1214
1215
1216 static void end_sync_read(struct bio *bio, int error)
1217 {
1218         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1219         conf_t *conf = mddev_to_conf(r10_bio->mddev);
1220         int i,d;
1221
1222         for (i=0; i<conf->copies; i++)
1223                 if (r10_bio->devs[i].bio == bio)
1224                         break;
1225         BUG_ON(i == conf->copies);
1226         update_head_pos(i, r10_bio);
1227         d = r10_bio->devs[i].devnum;
1228
1229         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1230                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1231         else {
1232                 atomic_add(r10_bio->sectors,
1233                            &conf->mirrors[d].rdev->corrected_errors);
1234                 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1235                         md_error(r10_bio->mddev,
1236                                  conf->mirrors[d].rdev);
1237         }
1238
1239         /* for reconstruct, we always reschedule after a read.
1240          * for resync, only after all reads
1241          */
1242         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1243         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1244             atomic_dec_and_test(&r10_bio->remaining)) {
1245                 /* we have read all the blocks,
1246                  * do the comparison in process context in raid10d
1247                  */
1248                 reschedule_retry(r10_bio);
1249         }
1250 }
1251
1252 static void end_sync_write(struct bio *bio, int error)
1253 {
1254         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1255         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1256         mddev_t *mddev = r10_bio->mddev;
1257         conf_t *conf = mddev_to_conf(mddev);
1258         int i,d;
1259
1260         for (i = 0; i < conf->copies; i++)
1261                 if (r10_bio->devs[i].bio == bio)
1262                         break;
1263         d = r10_bio->devs[i].devnum;
1264
1265         if (!uptodate)
1266                 md_error(mddev, conf->mirrors[d].rdev);
1267
1268         update_head_pos(i, r10_bio);
1269
1270         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1271         while (atomic_dec_and_test(&r10_bio->remaining)) {
1272                 if (r10_bio->master_bio == NULL) {
1273                         /* the primary of several recovery bios */
1274                         sector_t s = r10_bio->sectors;
1275                         put_buf(r10_bio);
1276                         md_done_sync(mddev, s, 1);
1277                         break;
1278                 } else {
1279                         r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1280                         put_buf(r10_bio);
1281                         r10_bio = r10_bio2;
1282                 }
1283         }
1284 }
1285
1286 /*
1287  * Note: sync and recover and handled very differently for raid10
1288  * This code is for resync.
1289  * For resync, we read through virtual addresses and read all blocks.
1290  * If there is any error, we schedule a write.  The lowest numbered
1291  * drive is authoritative.
1292  * However requests come for physical address, so we need to map.
1293  * For every physical address there are raid_disks/copies virtual addresses,
1294  * which is always are least one, but is not necessarly an integer.
1295  * This means that a physical address can span multiple chunks, so we may
1296  * have to submit multiple io requests for a single sync request.
1297  */
1298 /*
1299  * We check if all blocks are in-sync and only write to blocks that
1300  * aren't in sync
1301  */
1302 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1303 {
1304         conf_t *conf = mddev_to_conf(mddev);
1305         int i, first;
1306         struct bio *tbio, *fbio;
1307
1308         atomic_set(&r10_bio->remaining, 1);
1309
1310         /* find the first device with a block */
1311         for (i=0; i<conf->copies; i++)
1312                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1313                         break;
1314
1315         if (i == conf->copies)
1316                 goto done;
1317
1318         first = i;
1319         fbio = r10_bio->devs[i].bio;
1320
1321         /* now find blocks with errors */
1322         for (i=0 ; i < conf->copies ; i++) {
1323                 int  j, d;
1324                 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1325
1326                 tbio = r10_bio->devs[i].bio;
1327
1328                 if (tbio->bi_end_io != end_sync_read)
1329                         continue;
1330                 if (i == first)
1331                         continue;
1332                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1333                         /* We know that the bi_io_vec layout is the same for
1334                          * both 'first' and 'i', so we just compare them.
1335                          * All vec entries are PAGE_SIZE;
1336                          */
1337                         for (j = 0; j < vcnt; j++)
1338                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1339                                            page_address(tbio->bi_io_vec[j].bv_page),
1340                                            PAGE_SIZE))
1341                                         break;
1342                         if (j == vcnt)
1343                                 continue;
1344                         mddev->resync_mismatches += r10_bio->sectors;
1345                 }
1346                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1347                         /* Don't fix anything. */
1348                         continue;
1349                 /* Ok, we need to write this bio
1350                  * First we need to fixup bv_offset, bv_len and
1351                  * bi_vecs, as the read request might have corrupted these
1352                  */
1353                 tbio->bi_vcnt = vcnt;
1354                 tbio->bi_size = r10_bio->sectors << 9;
1355                 tbio->bi_idx = 0;
1356                 tbio->bi_phys_segments = 0;
1357                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1358                 tbio->bi_flags |= 1 << BIO_UPTODATE;
1359                 tbio->bi_next = NULL;
1360                 tbio->bi_rw = WRITE;
1361                 tbio->bi_private = r10_bio;
1362                 tbio->bi_sector = r10_bio->devs[i].addr;
1363
1364                 for (j=0; j < vcnt ; j++) {
1365                         tbio->bi_io_vec[j].bv_offset = 0;
1366                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1367
1368                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1369                                page_address(fbio->bi_io_vec[j].bv_page),
1370                                PAGE_SIZE);
1371                 }
1372                 tbio->bi_end_io = end_sync_write;
1373
1374                 d = r10_bio->devs[i].devnum;
1375                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1376                 atomic_inc(&r10_bio->remaining);
1377                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1378
1379                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1380                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1381                 generic_make_request(tbio);
1382         }
1383
1384 done:
1385         if (atomic_dec_and_test(&r10_bio->remaining)) {
1386                 md_done_sync(mddev, r10_bio->sectors, 1);
1387                 put_buf(r10_bio);
1388         }
1389 }
1390
1391 /*
1392  * Now for the recovery code.
1393  * Recovery happens across physical sectors.
1394  * We recover all non-is_sync drives by finding the virtual address of
1395  * each, and then choose a working drive that also has that virt address.
1396  * There is a separate r10_bio for each non-in_sync drive.
1397  * Only the first two slots are in use. The first for reading,
1398  * The second for writing.
1399  *
1400  */
1401
1402 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1403 {
1404         conf_t *conf = mddev_to_conf(mddev);
1405         int i, d;
1406         struct bio *bio, *wbio;
1407
1408
1409         /* move the pages across to the second bio
1410          * and submit the write request
1411          */
1412         bio = r10_bio->devs[0].bio;
1413         wbio = r10_bio->devs[1].bio;
1414         for (i=0; i < wbio->bi_vcnt; i++) {
1415                 struct page *p = bio->bi_io_vec[i].bv_page;
1416                 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1417                 wbio->bi_io_vec[i].bv_page = p;
1418         }
1419         d = r10_bio->devs[1].devnum;
1420
1421         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1422         md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1423         if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1424                 generic_make_request(wbio);
1425         else
1426                 bio_endio(wbio, -EIO);
1427 }
1428
1429
1430 /*
1431  * This is a kernel thread which:
1432  *
1433  *      1.      Retries failed read operations on working mirrors.
1434  *      2.      Updates the raid superblock when problems encounter.
1435  *      3.      Performs writes following reads for array synchronising.
1436  */
1437
1438 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1439 {
1440         int sect = 0; /* Offset from r10_bio->sector */
1441         int sectors = r10_bio->sectors;
1442         mdk_rdev_t*rdev;
1443         while(sectors) {
1444                 int s = sectors;
1445                 int sl = r10_bio->read_slot;
1446                 int success = 0;
1447                 int start;
1448
1449                 if (s > (PAGE_SIZE>>9))
1450                         s = PAGE_SIZE >> 9;
1451
1452                 rcu_read_lock();
1453                 do {
1454                         int d = r10_bio->devs[sl].devnum;
1455                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1456                         if (rdev &&
1457                             test_bit(In_sync, &rdev->flags)) {
1458                                 atomic_inc(&rdev->nr_pending);
1459                                 rcu_read_unlock();
1460                                 success = sync_page_io(rdev->bdev,
1461                                                        r10_bio->devs[sl].addr +
1462                                                        sect + rdev->data_offset,
1463                                                        s<<9,
1464                                                        conf->tmppage, READ);
1465                                 rdev_dec_pending(rdev, mddev);
1466                                 rcu_read_lock();
1467                                 if (success)
1468                                         break;
1469                         }
1470                         sl++;
1471                         if (sl == conf->copies)
1472                                 sl = 0;
1473                 } while (!success && sl != r10_bio->read_slot);
1474                 rcu_read_unlock();
1475
1476                 if (!success) {
1477                         /* Cannot read from anywhere -- bye bye array */
1478                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1479                         md_error(mddev, conf->mirrors[dn].rdev);
1480                         break;
1481                 }
1482
1483                 start = sl;
1484                 /* write it back and re-read */
1485                 rcu_read_lock();
1486                 while (sl != r10_bio->read_slot) {
1487                         int d;
1488                         if (sl==0)
1489                                 sl = conf->copies;
1490                         sl--;
1491                         d = r10_bio->devs[sl].devnum;
1492                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1493                         if (rdev &&
1494                             test_bit(In_sync, &rdev->flags)) {
1495                                 atomic_inc(&rdev->nr_pending);
1496                                 rcu_read_unlock();
1497                                 atomic_add(s, &rdev->corrected_errors);
1498                                 if (sync_page_io(rdev->bdev,
1499                                                  r10_bio->devs[sl].addr +
1500                                                  sect + rdev->data_offset,
1501                                                  s<<9, conf->tmppage, WRITE)
1502                                     == 0)
1503                                         /* Well, this device is dead */
1504                                         md_error(mddev, rdev);
1505                                 rdev_dec_pending(rdev, mddev);
1506                                 rcu_read_lock();
1507                         }
1508                 }
1509                 sl = start;
1510                 while (sl != r10_bio->read_slot) {
1511                         int d;
1512                         if (sl==0)
1513                                 sl = conf->copies;
1514                         sl--;
1515                         d = r10_bio->devs[sl].devnum;
1516                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1517                         if (rdev &&
1518                             test_bit(In_sync, &rdev->flags)) {
1519                                 char b[BDEVNAME_SIZE];
1520                                 atomic_inc(&rdev->nr_pending);
1521                                 rcu_read_unlock();
1522                                 if (sync_page_io(rdev->bdev,
1523                                                  r10_bio->devs[sl].addr +
1524                                                  sect + rdev->data_offset,
1525                                                  s<<9, conf->tmppage, READ) == 0)
1526                                         /* Well, this device is dead */
1527                                         md_error(mddev, rdev);
1528                                 else
1529                                         printk(KERN_INFO
1530                                                "raid10:%s: read error corrected"
1531                                                " (%d sectors at %llu on %s)\n",
1532                                                mdname(mddev), s,
1533                                                (unsigned long long)(sect+
1534                                                     rdev->data_offset),
1535                                                bdevname(rdev->bdev, b));
1536
1537                                 rdev_dec_pending(rdev, mddev);
1538                                 rcu_read_lock();
1539                         }
1540                 }
1541                 rcu_read_unlock();
1542
1543                 sectors -= s;
1544                 sect += s;
1545         }
1546 }
1547
1548 static void raid10d(mddev_t *mddev)
1549 {
1550         r10bio_t *r10_bio;
1551         struct bio *bio;
1552         unsigned long flags;
1553         conf_t *conf = mddev_to_conf(mddev);
1554         struct list_head *head = &conf->retry_list;
1555         int unplug=0;
1556         mdk_rdev_t *rdev;
1557
1558         md_check_recovery(mddev);
1559
1560         for (;;) {
1561                 char b[BDEVNAME_SIZE];
1562
1563                 unplug += flush_pending_writes(conf);
1564
1565                 spin_lock_irqsave(&conf->device_lock, flags);
1566                 if (list_empty(head)) {
1567                         spin_unlock_irqrestore(&conf->device_lock, flags);
1568                         break;
1569                 }
1570                 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1571                 list_del(head->prev);
1572                 conf->nr_queued--;
1573                 spin_unlock_irqrestore(&conf->device_lock, flags);
1574
1575                 mddev = r10_bio->mddev;
1576                 conf = mddev_to_conf(mddev);
1577                 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1578                         sync_request_write(mddev, r10_bio);
1579                         unplug = 1;
1580                 } else  if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1581                         recovery_request_write(mddev, r10_bio);
1582                         unplug = 1;
1583                 } else {
1584                         int mirror;
1585                         /* we got a read error. Maybe the drive is bad.  Maybe just
1586                          * the block and we can fix it.
1587                          * We freeze all other IO, and try reading the block from
1588                          * other devices.  When we find one, we re-write
1589                          * and check it that fixes the read error.
1590                          * This is all done synchronously while the array is
1591                          * frozen.
1592                          */
1593                         if (mddev->ro == 0) {
1594                                 freeze_array(conf);
1595                                 fix_read_error(conf, mddev, r10_bio);
1596                                 unfreeze_array(conf);
1597                         }
1598
1599                         bio = r10_bio->devs[r10_bio->read_slot].bio;
1600                         r10_bio->devs[r10_bio->read_slot].bio =
1601                                 mddev->ro ? IO_BLOCKED : NULL;
1602                         mirror = read_balance(conf, r10_bio);
1603                         if (mirror == -1) {
1604                                 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1605                                        " read error for block %llu\n",
1606                                        bdevname(bio->bi_bdev,b),
1607                                        (unsigned long long)r10_bio->sector);
1608                                 raid_end_bio_io(r10_bio);
1609                                 bio_put(bio);
1610                         } else {
1611                                 const int do_sync = bio_sync(r10_bio->master_bio);
1612                                 bio_put(bio);
1613                                 rdev = conf->mirrors[mirror].rdev;
1614                                 if (printk_ratelimit())
1615                                         printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1616                                                " another mirror\n",
1617                                                bdevname(rdev->bdev,b),
1618                                                (unsigned long long)r10_bio->sector);
1619                                 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1620                                 r10_bio->devs[r10_bio->read_slot].bio = bio;
1621                                 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1622                                         + rdev->data_offset;
1623                                 bio->bi_bdev = rdev->bdev;
1624                                 bio->bi_rw = READ | do_sync;
1625                                 bio->bi_private = r10_bio;
1626                                 bio->bi_end_io = raid10_end_read_request;
1627                                 unplug = 1;
1628                                 generic_make_request(bio);
1629                         }
1630                 }
1631         }
1632         if (unplug)
1633                 unplug_slaves(mddev);
1634 }
1635
1636
1637 static int init_resync(conf_t *conf)
1638 {
1639         int buffs;
1640
1641         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1642         BUG_ON(conf->r10buf_pool);
1643         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1644         if (!conf->r10buf_pool)
1645                 return -ENOMEM;
1646         conf->next_resync = 0;
1647         return 0;
1648 }
1649
1650 /*
1651  * perform a "sync" on one "block"
1652  *
1653  * We need to make sure that no normal I/O request - particularly write
1654  * requests - conflict with active sync requests.
1655  *
1656  * This is achieved by tracking pending requests and a 'barrier' concept
1657  * that can be installed to exclude normal IO requests.
1658  *
1659  * Resync and recovery are handled very differently.
1660  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1661  *
1662  * For resync, we iterate over virtual addresses, read all copies,
1663  * and update if there are differences.  If only one copy is live,
1664  * skip it.
1665  * For recovery, we iterate over physical addresses, read a good
1666  * value for each non-in_sync drive, and over-write.
1667  *
1668  * So, for recovery we may have several outstanding complex requests for a
1669  * given address, one for each out-of-sync device.  We model this by allocating
1670  * a number of r10_bio structures, one for each out-of-sync device.
1671  * As we setup these structures, we collect all bio's together into a list
1672  * which we then process collectively to add pages, and then process again
1673  * to pass to generic_make_request.
1674  *
1675  * The r10_bio structures are linked using a borrowed master_bio pointer.
1676  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1677  * has its remaining count decremented to 0, the whole complex operation
1678  * is complete.
1679  *
1680  */
1681
1682 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1683 {
1684         conf_t *conf = mddev_to_conf(mddev);
1685         r10bio_t *r10_bio;
1686         struct bio *biolist = NULL, *bio;
1687         sector_t max_sector, nr_sectors;
1688         int disk;
1689         int i;
1690         int max_sync;
1691         int sync_blocks;
1692
1693         sector_t sectors_skipped = 0;
1694         int chunks_skipped = 0;
1695
1696         if (!conf->r10buf_pool)
1697                 if (init_resync(conf))
1698                         return 0;
1699
1700  skipped:
1701         max_sector = mddev->dev_sectors;
1702         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1703                 max_sector = mddev->resync_max_sectors;
1704         if (sector_nr >= max_sector) {
1705                 /* If we aborted, we need to abort the
1706                  * sync on the 'current' bitmap chucks (there can
1707                  * be several when recovering multiple devices).
1708                  * as we may have started syncing it but not finished.
1709                  * We can find the current address in
1710                  * mddev->curr_resync, but for recovery,
1711                  * we need to convert that to several
1712                  * virtual addresses.
1713                  */
1714                 if (mddev->curr_resync < max_sector) { /* aborted */
1715                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1716                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1717                                                 &sync_blocks, 1);
1718                         else for (i=0; i<conf->raid_disks; i++) {
1719                                 sector_t sect =
1720                                         raid10_find_virt(conf, mddev->curr_resync, i);
1721                                 bitmap_end_sync(mddev->bitmap, sect,
1722                                                 &sync_blocks, 1);
1723                         }
1724                 } else /* completed sync */
1725                         conf->fullsync = 0;
1726
1727                 bitmap_close_sync(mddev->bitmap);
1728                 close_sync(conf);
1729                 *skipped = 1;
1730                 return sectors_skipped;
1731         }
1732         if (chunks_skipped >= conf->raid_disks) {
1733                 /* if there has been nothing to do on any drive,
1734                  * then there is nothing to do at all..
1735                  */
1736                 *skipped = 1;
1737                 return (max_sector - sector_nr) + sectors_skipped;
1738         }
1739
1740         if (max_sector > mddev->resync_max)
1741                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1742
1743         /* make sure whole request will fit in a chunk - if chunks
1744          * are meaningful
1745          */
1746         if (conf->near_copies < conf->raid_disks &&
1747             max_sector > (sector_nr | conf->chunk_mask))
1748                 max_sector = (sector_nr | conf->chunk_mask) + 1;
1749         /*
1750          * If there is non-resync activity waiting for us then
1751          * put in a delay to throttle resync.
1752          */
1753         if (!go_faster && conf->nr_waiting)
1754                 msleep_interruptible(1000);
1755
1756         /* Again, very different code for resync and recovery.
1757          * Both must result in an r10bio with a list of bios that
1758          * have bi_end_io, bi_sector, bi_bdev set,
1759          * and bi_private set to the r10bio.
1760          * For recovery, we may actually create several r10bios
1761          * with 2 bios in each, that correspond to the bios in the main one.
1762          * In this case, the subordinate r10bios link back through a
1763          * borrowed master_bio pointer, and the counter in the master
1764          * includes a ref from each subordinate.
1765          */
1766         /* First, we decide what to do and set ->bi_end_io
1767          * To end_sync_read if we want to read, and
1768          * end_sync_write if we will want to write.
1769          */
1770
1771         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1772         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1773                 /* recovery... the complicated one */
1774                 int i, j, k;
1775                 r10_bio = NULL;
1776
1777                 for (i=0 ; i<conf->raid_disks; i++)
1778                         if (conf->mirrors[i].rdev &&
1779                             !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1780                                 int still_degraded = 0;
1781                                 /* want to reconstruct this device */
1782                                 r10bio_t *rb2 = r10_bio;
1783                                 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1784                                 int must_sync;
1785                                 /* Unless we are doing a full sync, we only need
1786                                  * to recover the block if it is set in the bitmap
1787                                  */
1788                                 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1789                                                               &sync_blocks, 1);
1790                                 if (sync_blocks < max_sync)
1791                                         max_sync = sync_blocks;
1792                                 if (!must_sync &&
1793                                     !conf->fullsync) {
1794                                         /* yep, skip the sync_blocks here, but don't assume
1795                                          * that there will never be anything to do here
1796                                          */
1797                                         chunks_skipped = -1;
1798                                         continue;
1799                                 }
1800
1801                                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1802                                 raise_barrier(conf, rb2 != NULL);
1803                                 atomic_set(&r10_bio->remaining, 0);
1804
1805                                 r10_bio->master_bio = (struct bio*)rb2;
1806                                 if (rb2)
1807                                         atomic_inc(&rb2->remaining);
1808                                 r10_bio->mddev = mddev;
1809                                 set_bit(R10BIO_IsRecover, &r10_bio->state);
1810                                 r10_bio->sector = sect;
1811
1812                                 raid10_find_phys(conf, r10_bio);
1813                                 /* Need to check if this section will still be
1814                                  * degraded
1815                                  */
1816                                 for (j=0; j<conf->copies;j++) {
1817                                         int d = r10_bio->devs[j].devnum;
1818                                         if (conf->mirrors[d].rdev == NULL ||
1819                                             test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1820                                                 still_degraded = 1;
1821                                                 break;
1822                                         }
1823                                 }
1824                                 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1825                                                               &sync_blocks, still_degraded);
1826
1827                                 for (j=0; j<conf->copies;j++) {
1828                                         int d = r10_bio->devs[j].devnum;
1829                                         if (conf->mirrors[d].rdev &&
1830                                             test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1831                                                 /* This is where we read from */
1832                                                 bio = r10_bio->devs[0].bio;
1833                                                 bio->bi_next = biolist;
1834                                                 biolist = bio;
1835                                                 bio->bi_private = r10_bio;
1836                                                 bio->bi_end_io = end_sync_read;
1837                                                 bio->bi_rw = READ;
1838                                                 bio->bi_sector = r10_bio->devs[j].addr +
1839                                                         conf->mirrors[d].rdev->data_offset;
1840                                                 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1841                                                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1842                                                 atomic_inc(&r10_bio->remaining);
1843                                                 /* and we write to 'i' */
1844
1845                                                 for (k=0; k<conf->copies; k++)
1846                                                         if (r10_bio->devs[k].devnum == i)
1847                                                                 break;
1848                                                 BUG_ON(k == conf->copies);
1849                                                 bio = r10_bio->devs[1].bio;
1850                                                 bio->bi_next = biolist;
1851                                                 biolist = bio;
1852                                                 bio->bi_private = r10_bio;
1853                                                 bio->bi_end_io = end_sync_write;
1854                                                 bio->bi_rw = WRITE;
1855                                                 bio->bi_sector = r10_bio->devs[k].addr +
1856                                                         conf->mirrors[i].rdev->data_offset;
1857                                                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1858
1859                                                 r10_bio->devs[0].devnum = d;
1860                                                 r10_bio->devs[1].devnum = i;
1861
1862                                                 break;
1863                                         }
1864                                 }
1865                                 if (j == conf->copies) {
1866                                         /* Cannot recover, so abort the recovery */
1867                                         put_buf(r10_bio);
1868                                         if (rb2)
1869                                                 atomic_dec(&rb2->remaining);
1870                                         r10_bio = rb2;
1871                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
1872                                                               &mddev->recovery))
1873                                                 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1874                                                        mdname(mddev));
1875                                         break;
1876                                 }
1877                         }
1878                 if (biolist == NULL) {
1879                         while (r10_bio) {
1880                                 r10bio_t *rb2 = r10_bio;
1881                                 r10_bio = (r10bio_t*) rb2->master_bio;
1882                                 rb2->master_bio = NULL;
1883                                 put_buf(rb2);
1884                         }
1885                         goto giveup;
1886                 }
1887         } else {
1888                 /* resync. Schedule a read for every block at this virt offset */
1889                 int count = 0;
1890
1891                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1892
1893                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1894                                        &sync_blocks, mddev->degraded) &&
1895                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1896                         /* We can skip this block */
1897                         *skipped = 1;
1898                         return sync_blocks + sectors_skipped;
1899                 }
1900                 if (sync_blocks < max_sync)
1901                         max_sync = sync_blocks;
1902                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1903
1904                 r10_bio->mddev = mddev;
1905                 atomic_set(&r10_bio->remaining, 0);
1906                 raise_barrier(conf, 0);
1907                 conf->next_resync = sector_nr;
1908
1909                 r10_bio->master_bio = NULL;
1910                 r10_bio->sector = sector_nr;
1911                 set_bit(R10BIO_IsSync, &r10_bio->state);
1912                 raid10_find_phys(conf, r10_bio);
1913                 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1914
1915                 for (i=0; i<conf->copies; i++) {
1916                         int d = r10_bio->devs[i].devnum;
1917                         bio = r10_bio->devs[i].bio;
1918                         bio->bi_end_io = NULL;
1919                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
1920                         if (conf->mirrors[d].rdev == NULL ||
1921                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1922                                 continue;
1923                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1924                         atomic_inc(&r10_bio->remaining);
1925                         bio->bi_next = biolist;
1926                         biolist = bio;
1927                         bio->bi_private = r10_bio;
1928                         bio->bi_end_io = end_sync_read;
1929                         bio->bi_rw = READ;
1930                         bio->bi_sector = r10_bio->devs[i].addr +
1931                                 conf->mirrors[d].rdev->data_offset;
1932                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1933                         count++;
1934                 }
1935
1936                 if (count < 2) {
1937                         for (i=0; i<conf->copies; i++) {
1938                                 int d = r10_bio->devs[i].devnum;
1939                                 if (r10_bio->devs[i].bio->bi_end_io)
1940                                         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1941                         }
1942                         put_buf(r10_bio);
1943                         biolist = NULL;
1944                         goto giveup;
1945                 }
1946         }
1947
1948         for (bio = biolist; bio ; bio=bio->bi_next) {
1949
1950                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1951                 if (bio->bi_end_io)
1952                         bio->bi_flags |= 1 << BIO_UPTODATE;
1953                 bio->bi_vcnt = 0;
1954                 bio->bi_idx = 0;
1955                 bio->bi_phys_segments = 0;
1956                 bio->bi_size = 0;
1957         }
1958
1959         nr_sectors = 0;
1960         if (sector_nr + max_sync < max_sector)
1961                 max_sector = sector_nr + max_sync;
1962         do {
1963                 struct page *page;
1964                 int len = PAGE_SIZE;
1965                 disk = 0;
1966                 if (sector_nr + (len>>9) > max_sector)
1967                         len = (max_sector - sector_nr) << 9;
1968                 if (len == 0)
1969                         break;
1970                 for (bio= biolist ; bio ; bio=bio->bi_next) {
1971                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1972                         if (bio_add_page(bio, page, len, 0) == 0) {
1973                                 /* stop here */
1974                                 struct bio *bio2;
1975                                 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1976                                 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1977                                         /* remove last page from this bio */
1978                                         bio2->bi_vcnt--;
1979                                         bio2->bi_size -= len;
1980                                         bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1981                                 }
1982                                 goto bio_full;
1983                         }
1984                         disk = i;
1985                 }
1986                 nr_sectors += len>>9;
1987                 sector_nr += len>>9;
1988         } while (biolist->bi_vcnt < RESYNC_PAGES);
1989  bio_full:
1990         r10_bio->sectors = nr_sectors;
1991
1992         while (biolist) {
1993                 bio = biolist;
1994                 biolist = biolist->bi_next;
1995
1996                 bio->bi_next = NULL;
1997                 r10_bio = bio->bi_private;
1998                 r10_bio->sectors = nr_sectors;
1999
2000                 if (bio->bi_end_io == end_sync_read) {
2001                         md_sync_acct(bio->bi_bdev, nr_sectors);
2002                         generic_make_request(bio);
2003                 }
2004         }
2005
2006         if (sectors_skipped)
2007                 /* pretend they weren't skipped, it makes
2008                  * no important difference in this case
2009                  */
2010                 md_done_sync(mddev, sectors_skipped, 1);
2011
2012         return sectors_skipped + nr_sectors;
2013  giveup:
2014         /* There is nowhere to write, so all non-sync
2015          * drives must be failed, so try the next chunk...
2016          */
2017         if (sector_nr + max_sync < max_sector)
2018                 max_sector = sector_nr + max_sync;
2019
2020         sectors_skipped += (max_sector - sector_nr);
2021         chunks_skipped ++;
2022         sector_nr = max_sector;
2023         goto skipped;
2024 }
2025
2026 static sector_t
2027 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2028 {
2029         sector_t size;
2030         conf_t *conf = mddev_to_conf(mddev);
2031
2032         if (!raid_disks)
2033                 raid_disks = mddev->raid_disks;
2034         if (!sectors)
2035                 sectors = mddev->dev_sectors;
2036
2037         size = sectors >> conf->chunk_shift;
2038         sector_div(size, conf->far_copies);
2039         size = size * raid_disks;
2040         sector_div(size, conf->near_copies);
2041
2042         return size << conf->chunk_shift;
2043 }
2044
2045 static int run(mddev_t *mddev)
2046 {
2047         conf_t *conf;
2048         int i, disk_idx;
2049         mirror_info_t *disk;
2050         mdk_rdev_t *rdev;
2051         int nc, fc, fo;
2052         sector_t stride, size;
2053
2054         if (mddev->chunk_size < PAGE_SIZE) {
2055                 printk(KERN_ERR "md/raid10: chunk size must be "
2056                        "at least PAGE_SIZE(%ld).\n", PAGE_SIZE);
2057                 return -EINVAL;
2058         }
2059
2060         nc = mddev->layout & 255;
2061         fc = (mddev->layout >> 8) & 255;
2062         fo = mddev->layout & (1<<16);
2063         if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2064             (mddev->layout >> 17)) {
2065                 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2066                        mdname(mddev), mddev->layout);
2067                 goto out;
2068         }
2069         /*
2070          * copy the already verified devices into our private RAID10
2071          * bookkeeping area. [whatever we allocate in run(),
2072          * should be freed in stop()]
2073          */
2074         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2075         mddev->private = conf;
2076         if (!conf) {
2077                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2078                         mdname(mddev));
2079                 goto out;
2080         }
2081         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2082                                  GFP_KERNEL);
2083         if (!conf->mirrors) {
2084                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2085                        mdname(mddev));
2086                 goto out_free_conf;
2087         }
2088
2089         conf->tmppage = alloc_page(GFP_KERNEL);
2090         if (!conf->tmppage)
2091                 goto out_free_conf;
2092
2093         conf->mddev = mddev;
2094         conf->raid_disks = mddev->raid_disks;
2095         conf->near_copies = nc;
2096         conf->far_copies = fc;
2097         conf->copies = nc*fc;
2098         conf->far_offset = fo;
2099         conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2100         conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2101         size = mddev->dev_sectors >> conf->chunk_shift;
2102         sector_div(size, fc);
2103         size = size * conf->raid_disks;
2104         sector_div(size, nc);
2105         /* 'size' is now the number of chunks in the array */
2106         /* calculate "used chunks per device" in 'stride' */
2107         stride = size * conf->copies;
2108
2109         /* We need to round up when dividing by raid_disks to
2110          * get the stride size.
2111          */
2112         stride += conf->raid_disks - 1;
2113         sector_div(stride, conf->raid_disks);
2114         mddev->dev_sectors = stride << conf->chunk_shift;
2115
2116         if (fo)
2117                 stride = 1;
2118         else
2119                 sector_div(stride, fc);
2120         conf->stride = stride << conf->chunk_shift;
2121
2122         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2123                                                 r10bio_pool_free, conf);
2124         if (!conf->r10bio_pool) {
2125                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2126                         mdname(mddev));
2127                 goto out_free_conf;
2128         }
2129
2130         spin_lock_init(&conf->device_lock);
2131         mddev->queue->queue_lock = &conf->device_lock;
2132
2133         list_for_each_entry(rdev, &mddev->disks, same_set) {
2134                 disk_idx = rdev->raid_disk;
2135                 if (disk_idx >= mddev->raid_disks
2136                     || disk_idx < 0)
2137                         continue;
2138                 disk = conf->mirrors + disk_idx;
2139
2140                 disk->rdev = rdev;
2141
2142                 blk_queue_stack_limits(mddev->queue,
2143                                        rdev->bdev->bd_disk->queue);
2144                 /* as we don't honour merge_bvec_fn, we must never risk
2145                  * violating it, so limit ->max_sector to one PAGE, as
2146                  * a one page request is never in violation.
2147                  */
2148                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2149                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
2150                         mddev->queue->max_sectors = (PAGE_SIZE>>9);
2151
2152                 disk->head_position = 0;
2153         }
2154         INIT_LIST_HEAD(&conf->retry_list);
2155
2156         spin_lock_init(&conf->resync_lock);
2157         init_waitqueue_head(&conf->wait_barrier);
2158
2159         /* need to check that every block has at least one working mirror */
2160         if (!enough(conf)) {
2161                 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2162                        mdname(mddev));
2163                 goto out_free_conf;
2164         }
2165
2166         mddev->degraded = 0;
2167         for (i = 0; i < conf->raid_disks; i++) {
2168
2169                 disk = conf->mirrors + i;
2170
2171                 if (!disk->rdev ||
2172                     !test_bit(In_sync, &disk->rdev->flags)) {
2173                         disk->head_position = 0;
2174                         mddev->degraded++;
2175                         if (disk->rdev)
2176                                 conf->fullsync = 1;
2177                 }
2178         }
2179
2180
2181         mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2182         if (!mddev->thread) {
2183                 printk(KERN_ERR
2184                        "raid10: couldn't allocate thread for %s\n",
2185                        mdname(mddev));
2186                 goto out_free_conf;
2187         }
2188
2189         printk(KERN_INFO
2190                 "raid10: raid set %s active with %d out of %d devices\n",
2191                 mdname(mddev), mddev->raid_disks - mddev->degraded,
2192                 mddev->raid_disks);
2193         /*
2194          * Ok, everything is just fine now
2195          */
2196         md_set_array_sectors(mddev, raid10_size(mddev, 0, 0));
2197         mddev->resync_max_sectors = raid10_size(mddev, 0, 0);
2198
2199         mddev->queue->unplug_fn = raid10_unplug;
2200         mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2201         mddev->queue->backing_dev_info.congested_data = mddev;
2202
2203         /* Calculate max read-ahead size.
2204          * We need to readahead at least twice a whole stripe....
2205          * maybe...
2206          */
2207         {
2208                 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2209                 stripe /= conf->near_copies;
2210                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2211                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2212         }
2213
2214         if (conf->near_copies < mddev->raid_disks)
2215                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2216         return 0;
2217
2218 out_free_conf:
2219         if (conf->r10bio_pool)
2220                 mempool_destroy(conf->r10bio_pool);
2221         safe_put_page(conf->tmppage);
2222         kfree(conf->mirrors);
2223         kfree(conf);
2224         mddev->private = NULL;
2225 out:
2226         return -EIO;
2227 }
2228
2229 static int stop(mddev_t *mddev)
2230 {
2231         conf_t *conf = mddev_to_conf(mddev);
2232
2233         raise_barrier(conf, 0);
2234         lower_barrier(conf);
2235
2236         md_unregister_thread(mddev->thread);
2237         mddev->thread = NULL;
2238         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2239         if (conf->r10bio_pool)
2240                 mempool_destroy(conf->r10bio_pool);
2241         kfree(conf->mirrors);
2242         kfree(conf);
2243         mddev->private = NULL;
2244         return 0;
2245 }
2246
2247 static void raid10_quiesce(mddev_t *mddev, int state)
2248 {
2249         conf_t *conf = mddev_to_conf(mddev);
2250
2251         switch(state) {
2252         case 1:
2253                 raise_barrier(conf, 0);
2254                 break;
2255         case 0:
2256                 lower_barrier(conf);
2257                 break;
2258         }
2259         if (mddev->thread) {
2260                 if (mddev->bitmap)
2261                         mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2262                 else
2263                         mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2264                 md_wakeup_thread(mddev->thread);
2265         }
2266 }
2267
2268 static struct mdk_personality raid10_personality =
2269 {
2270         .name           = "raid10",
2271         .level          = 10,
2272         .owner          = THIS_MODULE,
2273         .make_request   = make_request,
2274         .run            = run,
2275         .stop           = stop,
2276         .status         = status,
2277         .error_handler  = error,
2278         .hot_add_disk   = raid10_add_disk,
2279         .hot_remove_disk= raid10_remove_disk,
2280         .spare_active   = raid10_spare_active,
2281         .sync_request   = sync_request,
2282         .quiesce        = raid10_quiesce,
2283         .size           = raid10_size,
2284 };
2285
2286 static int __init raid_init(void)
2287 {
2288         return register_md_personality(&raid10_personality);
2289 }
2290
2291 static void raid_exit(void)
2292 {
2293         unregister_md_personality(&raid10_personality);
2294 }
2295
2296 module_init(raid_init);
2297 module_exit(raid_exit);
2298 MODULE_LICENSE("GPL");
2299 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2300 MODULE_ALIAS("md-raid10");
2301 MODULE_ALIAS("md-level-10");