2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
26 * These routines are used by both DMA-remapping and Interrupt-remapping
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
38 #define PREFIX "DMAR:"
40 /* No locks are needed as DMA remapping hardware unit
41 * list is constructed at boot time and hotplug of
42 * these units are not supported by the architecture.
44 LIST_HEAD(dmar_drhd_units);
46 static struct acpi_table_header * __initdata dmar_tbl;
47 static acpi_size dmar_tbl_size;
49 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
52 * add INCLUDE_ALL at the tail, so scan the list will find it at
55 if (drhd->include_all)
56 list_add_tail(&drhd->list, &dmar_drhd_units);
58 list_add(&drhd->list, &dmar_drhd_units);
61 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
62 struct pci_dev **dev, u16 segment)
65 struct pci_dev *pdev = NULL;
66 struct acpi_dmar_pci_path *path;
69 bus = pci_find_bus(segment, scope->bus);
70 path = (struct acpi_dmar_pci_path *)(scope + 1);
71 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
72 / sizeof(struct acpi_dmar_pci_path);
78 * Some BIOSes list non-exist devices in DMAR table, just
83 PREFIX "Device scope bus [%d] not found\n",
87 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
89 printk(KERN_WARNING PREFIX
90 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
91 segment, bus->number, path->dev, path->fn);
96 bus = pdev->subordinate;
99 printk(KERN_WARNING PREFIX
100 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
101 segment, scope->bus, path->dev, path->fn);
105 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
106 pdev->subordinate) || (scope->entry_type == \
107 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
109 printk(KERN_WARNING PREFIX
110 "Device scope type does not match for %s\n",
118 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
119 struct pci_dev ***devices, u16 segment)
121 struct acpi_dmar_device_scope *scope;
127 while (start < end) {
129 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
130 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
133 printk(KERN_WARNING PREFIX
134 "Unsupported device scope\n");
135 start += scope->length;
140 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
146 while (start < end) {
148 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
149 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
150 ret = dmar_parse_one_dev_scope(scope,
151 &(*devices)[index], segment);
158 start += scope->length;
165 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
166 * structure which uniquely represent one DMA remapping hardware unit
167 * present in the platform
170 dmar_parse_one_drhd(struct acpi_dmar_header *header)
172 struct acpi_dmar_hardware_unit *drhd;
173 struct dmar_drhd_unit *dmaru;
176 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
181 drhd = (struct acpi_dmar_hardware_unit *)header;
182 dmaru->reg_base_addr = drhd->address;
183 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
185 ret = alloc_iommu(dmaru);
190 dmar_register_drhd_unit(dmaru);
194 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
196 struct acpi_dmar_hardware_unit *drhd;
199 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
201 if (dmaru->include_all)
204 ret = dmar_parse_dev_scope((void *)(drhd + 1),
205 ((void *)drhd) + drhd->header.length,
206 &dmaru->devices_cnt, &dmaru->devices,
209 list_del(&dmaru->list);
216 LIST_HEAD(dmar_rmrr_units);
218 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
220 list_add(&rmrr->list, &dmar_rmrr_units);
225 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
227 struct acpi_dmar_reserved_memory *rmrr;
228 struct dmar_rmrr_unit *rmrru;
230 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
235 rmrr = (struct acpi_dmar_reserved_memory *)header;
236 rmrru->base_address = rmrr->base_address;
237 rmrru->end_address = rmrr->end_address;
239 dmar_register_rmrr_unit(rmrru);
244 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
246 struct acpi_dmar_reserved_memory *rmrr;
249 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
250 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
251 ((void *)rmrr) + rmrr->header.length,
252 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
254 if (ret || (rmrru->devices_cnt == 0)) {
255 list_del(&rmrru->list);
263 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
265 struct acpi_dmar_hardware_unit *drhd;
266 struct acpi_dmar_reserved_memory *rmrr;
268 switch (header->type) {
269 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
270 drhd = (struct acpi_dmar_hardware_unit *)header;
271 printk (KERN_INFO PREFIX
272 "DRHD (flags: 0x%08x)base: 0x%016Lx\n",
273 drhd->flags, (unsigned long long)drhd->address);
275 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
276 rmrr = (struct acpi_dmar_reserved_memory *)header;
278 printk (KERN_INFO PREFIX
279 "RMRR base: 0x%016Lx end: 0x%016Lx\n",
280 (unsigned long long)rmrr->base_address,
281 (unsigned long long)rmrr->end_address);
287 * dmar_table_detect - checks to see if the platform supports DMAR devices
289 static int __init dmar_table_detect(void)
291 acpi_status status = AE_OK;
293 /* if we could find DMAR table, then there are DMAR devices */
294 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
295 (struct acpi_table_header **)&dmar_tbl,
298 if (ACPI_SUCCESS(status) && !dmar_tbl) {
299 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
300 status = AE_NOT_FOUND;
303 return (ACPI_SUCCESS(status) ? 1 : 0);
307 * parse_dmar_table - parses the DMA reporting table
310 parse_dmar_table(void)
312 struct acpi_table_dmar *dmar;
313 struct acpi_dmar_header *entry_header;
317 * Do it again, earlier dmar_tbl mapping could be mapped with
322 dmar = (struct acpi_table_dmar *)dmar_tbl;
326 if (dmar->width < PAGE_SHIFT - 1) {
327 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
331 printk (KERN_INFO PREFIX "Host address width %d\n",
334 entry_header = (struct acpi_dmar_header *)(dmar + 1);
335 while (((unsigned long)entry_header) <
336 (((unsigned long)dmar) + dmar_tbl->length)) {
337 /* Avoid looping forever on bad ACPI tables */
338 if (entry_header->length == 0) {
339 printk(KERN_WARNING PREFIX
340 "Invalid 0-length structure\n");
345 dmar_table_print_dmar_entry(entry_header);
347 switch (entry_header->type) {
348 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
349 ret = dmar_parse_one_drhd(entry_header);
351 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
353 ret = dmar_parse_one_rmrr(entry_header);
357 printk(KERN_WARNING PREFIX
358 "Unknown DMAR structure type\n");
359 ret = 0; /* for forward compatibility */
365 entry_header = ((void *)entry_header + entry_header->length);
370 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
376 for (index = 0; index < cnt; index++)
377 if (dev == devices[index])
380 /* Check our parent */
381 dev = dev->bus->self;
387 struct dmar_drhd_unit *
388 dmar_find_matched_drhd_unit(struct pci_dev *dev)
390 struct dmar_drhd_unit *dmaru = NULL;
391 struct acpi_dmar_hardware_unit *drhd;
393 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
394 drhd = container_of(dmaru->hdr,
395 struct acpi_dmar_hardware_unit,
398 if (dmaru->include_all &&
399 drhd->segment == pci_domain_nr(dev->bus))
402 if (dmar_pci_device_match(dmaru->devices,
403 dmaru->devices_cnt, dev))
410 int __init dmar_dev_scope_init(void)
412 struct dmar_drhd_unit *drhd, *drhd_n;
415 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
416 ret = dmar_parse_dev(drhd);
423 struct dmar_rmrr_unit *rmrr, *rmrr_n;
424 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
425 ret = rmrr_parse_dev(rmrr);
436 int __init dmar_table_init(void)
438 static int dmar_table_initialized;
441 if (dmar_table_initialized)
444 dmar_table_initialized = 1;
446 ret = parse_dmar_table();
449 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
453 if (list_empty(&dmar_drhd_units)) {
454 printk(KERN_INFO PREFIX "No DMAR devices found\n");
459 if (list_empty(&dmar_rmrr_units))
460 printk(KERN_INFO PREFIX "No RMRR found\n");
463 #ifdef CONFIG_INTR_REMAP
464 parse_ioapics_under_ir();
469 void __init detect_intel_iommu(void)
473 ret = dmar_table_detect();
476 #ifdef CONFIG_INTR_REMAP
477 struct acpi_table_dmar *dmar;
479 * for now we will disable dma-remapping when interrupt
480 * remapping is enabled.
481 * When support for queued invalidation for IOTLB invalidation
482 * is added, we will not need this any more.
484 dmar = (struct acpi_table_dmar *) dmar_tbl;
485 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
487 "Queued invalidation will be enabled to support "
488 "x2apic and Intr-remapping.\n");
491 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
496 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
501 int alloc_iommu(struct dmar_drhd_unit *drhd)
503 struct intel_iommu *iommu;
506 static int iommu_allocated = 0;
509 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
513 iommu->seq_id = iommu_allocated++;
514 sprintf (iommu->name, "dmar%d", iommu->seq_id);
516 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
518 printk(KERN_ERR "IOMMU: can't map the region\n");
521 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
522 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
525 agaw = iommu_calculate_agaw(iommu);
528 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
535 /* the registers might be more than one page */
536 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
537 cap_max_fault_reg_offset(iommu->cap));
538 map_size = VTD_PAGE_ALIGN(map_size);
539 if (map_size > VTD_PAGE_SIZE) {
541 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
543 printk(KERN_ERR "IOMMU: can't map the region\n");
548 ver = readl(iommu->reg + DMAR_VER_REG);
549 pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
550 (unsigned long long)drhd->reg_base_addr,
551 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
552 (unsigned long long)iommu->cap,
553 (unsigned long long)iommu->ecap);
555 spin_lock_init(&iommu->register_lock);
564 void free_iommu(struct intel_iommu *iommu)
570 free_dmar_iommu(iommu);
579 * Reclaim all the submitted descriptors which have completed its work.
581 static inline void reclaim_free_desc(struct q_inval *qi)
583 while (qi->desc_status[qi->free_tail] == QI_DONE) {
584 qi->desc_status[qi->free_tail] = QI_FREE;
585 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
590 static int qi_check_fault(struct intel_iommu *iommu, int index)
594 struct q_inval *qi = iommu->qi;
595 int wait_index = (index + 1) % QI_LENGTH;
597 fault = readl(iommu->reg + DMAR_FSTS_REG);
600 * If IQE happens, the head points to the descriptor associated
601 * with the error. No new descriptors are fetched until the IQE
604 if (fault & DMA_FSTS_IQE) {
605 head = readl(iommu->reg + DMAR_IQH_REG);
606 if ((head >> 4) == index) {
607 memcpy(&qi->desc[index], &qi->desc[wait_index],
608 sizeof(struct qi_desc));
609 __iommu_flush_cache(iommu, &qi->desc[index],
610 sizeof(struct qi_desc));
611 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
620 * Submit the queued invalidation descriptor to the remapping
621 * hardware unit and wait for its completion.
623 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
626 struct q_inval *qi = iommu->qi;
627 struct qi_desc *hw, wait_desc;
628 int wait_index, index;
636 spin_lock_irqsave(&qi->q_lock, flags);
637 while (qi->free_cnt < 3) {
638 spin_unlock_irqrestore(&qi->q_lock, flags);
640 spin_lock_irqsave(&qi->q_lock, flags);
643 index = qi->free_head;
644 wait_index = (index + 1) % QI_LENGTH;
646 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
650 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
651 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
652 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
654 hw[wait_index] = wait_desc;
656 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
657 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
659 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
663 * update the HW tail register indicating the presence of
666 writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG);
668 while (qi->desc_status[wait_index] != QI_DONE) {
670 * We will leave the interrupts disabled, to prevent interrupt
671 * context to queue another cmd while a cmd is already submitted
672 * and waiting for completion on this cpu. This is to avoid
673 * a deadlock where the interrupt context can wait indefinitely
674 * for free slots in the queue.
676 rc = qi_check_fault(iommu, index);
680 spin_unlock(&qi->q_lock);
682 spin_lock(&qi->q_lock);
685 qi->desc_status[index] = qi->desc_status[wait_index] = QI_DONE;
687 reclaim_free_desc(qi);
688 spin_unlock_irqrestore(&qi->q_lock, flags);
694 * Flush the global interrupt entry cache.
696 void qi_global_iec(struct intel_iommu *iommu)
700 desc.low = QI_IEC_TYPE;
703 /* should never fail */
704 qi_submit_sync(&desc, iommu);
707 int qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
708 u64 type, int non_present_entry_flush)
712 if (non_present_entry_flush) {
713 if (!cap_caching_mode(iommu->cap))
719 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
720 | QI_CC_GRAN(type) | QI_CC_TYPE;
723 return qi_submit_sync(&desc, iommu);
726 int qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
727 unsigned int size_order, u64 type,
728 int non_present_entry_flush)
735 if (non_present_entry_flush) {
736 if (!cap_caching_mode(iommu->cap))
742 if (cap_write_drain(iommu->cap))
745 if (cap_read_drain(iommu->cap))
748 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
749 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
750 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
751 | QI_IOTLB_AM(size_order);
753 return qi_submit_sync(&desc, iommu);
757 * Disable Queued Invalidation interface.
759 void dmar_disable_qi(struct intel_iommu *iommu)
763 cycles_t start_time = get_cycles();
765 if (!ecap_qis(iommu->ecap))
768 spin_lock_irqsave(&iommu->register_lock, flags);
770 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
771 if (!(sts & DMA_GSTS_QIES))
775 * Give a chance to HW to complete the pending invalidation requests.
777 while ((readl(iommu->reg + DMAR_IQT_REG) !=
778 readl(iommu->reg + DMAR_IQH_REG)) &&
779 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
782 iommu->gcmd &= ~DMA_GCMD_QIE;
784 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
786 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
787 !(sts & DMA_GSTS_QIES), sts);
789 spin_unlock_irqrestore(&iommu->register_lock, flags);
793 * Enable Queued Invalidation interface. This is a must to support
794 * interrupt-remapping. Also used by DMA-remapping, which replaces
795 * register based IOTLB invalidation.
797 int dmar_enable_qi(struct intel_iommu *iommu)
803 if (!ecap_qis(iommu->ecap))
807 * queued invalidation is already setup and enabled.
812 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
818 qi->desc = (void *)(get_zeroed_page(GFP_ATOMIC));
825 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
826 if (!qi->desc_status) {
827 free_page((unsigned long) qi->desc);
833 qi->free_head = qi->free_tail = 0;
834 qi->free_cnt = QI_LENGTH;
836 spin_lock_init(&qi->q_lock);
838 spin_lock_irqsave(&iommu->register_lock, flags);
839 /* write zero to the tail reg */
840 writel(0, iommu->reg + DMAR_IQT_REG);
842 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
844 cmd = iommu->gcmd | DMA_GCMD_QIE;
845 iommu->gcmd |= DMA_GCMD_QIE;
846 writel(cmd, iommu->reg + DMAR_GCMD_REG);
848 /* Make sure hardware complete it */
849 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
850 spin_unlock_irqrestore(&iommu->register_lock, flags);
855 /* iommu interrupt handling. Most stuff are MSI-like. */
863 static const char *dma_remap_fault_reasons[] =
866 "Present bit in root entry is clear",
867 "Present bit in context entry is clear",
868 "Invalid context entry",
869 "Access beyond MGAW",
870 "PTE Write access is not set",
871 "PTE Read access is not set",
872 "Next page table ptr is invalid",
873 "Root table address invalid",
874 "Context table ptr is invalid",
875 "non-zero reserved fields in RTP",
876 "non-zero reserved fields in CTP",
877 "non-zero reserved fields in PTE",
880 static const char *intr_remap_fault_reasons[] =
882 "Detected reserved fields in the decoded interrupt-remapped request",
883 "Interrupt index exceeded the interrupt-remapping table size",
884 "Present field in the IRTE entry is clear",
885 "Error accessing interrupt-remapping table pointed by IRTA_REG",
886 "Detected reserved fields in the IRTE entry",
887 "Blocked a compatibility format interrupt request",
888 "Blocked an interrupt request due to source-id verification failure",
891 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
893 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
895 if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
896 ARRAY_SIZE(intr_remap_fault_reasons))) {
897 *fault_type = INTR_REMAP;
898 return intr_remap_fault_reasons[fault_reason - 0x20];
899 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
900 *fault_type = DMA_REMAP;
901 return dma_remap_fault_reasons[fault_reason];
903 *fault_type = UNKNOWN;
908 void dmar_msi_unmask(unsigned int irq)
910 struct intel_iommu *iommu = get_irq_data(irq);
914 spin_lock_irqsave(&iommu->register_lock, flag);
915 writel(0, iommu->reg + DMAR_FECTL_REG);
916 /* Read a reg to force flush the post write */
917 readl(iommu->reg + DMAR_FECTL_REG);
918 spin_unlock_irqrestore(&iommu->register_lock, flag);
921 void dmar_msi_mask(unsigned int irq)
924 struct intel_iommu *iommu = get_irq_data(irq);
927 spin_lock_irqsave(&iommu->register_lock, flag);
928 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
929 /* Read a reg to force flush the post write */
930 readl(iommu->reg + DMAR_FECTL_REG);
931 spin_unlock_irqrestore(&iommu->register_lock, flag);
934 void dmar_msi_write(int irq, struct msi_msg *msg)
936 struct intel_iommu *iommu = get_irq_data(irq);
939 spin_lock_irqsave(&iommu->register_lock, flag);
940 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
941 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
942 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
943 spin_unlock_irqrestore(&iommu->register_lock, flag);
946 void dmar_msi_read(int irq, struct msi_msg *msg)
948 struct intel_iommu *iommu = get_irq_data(irq);
951 spin_lock_irqsave(&iommu->register_lock, flag);
952 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
953 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
954 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
955 spin_unlock_irqrestore(&iommu->register_lock, flag);
958 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
959 u8 fault_reason, u16 source_id, unsigned long long addr)
964 reason = dmar_get_fault_reason(fault_reason, &fault_type);
966 if (fault_type == INTR_REMAP)
967 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
969 "INTR-REMAP:[fault reason %02d] %s\n",
970 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
971 PCI_FUNC(source_id & 0xFF), addr >> 48,
972 fault_reason, reason);
975 "DMAR:[%s] Request device [%02x:%02x.%d] "
977 "DMAR:[fault reason %02d] %s\n",
978 (type ? "DMA Read" : "DMA Write"),
979 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
980 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
984 #define PRIMARY_FAULT_REG_LEN (16)
985 irqreturn_t dmar_fault(int irq, void *dev_id)
987 struct intel_iommu *iommu = dev_id;
988 int reg, fault_index;
992 spin_lock_irqsave(&iommu->register_lock, flag);
993 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
995 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
998 /* TBD: ignore advanced fault log currently */
999 if (!(fault_status & DMA_FSTS_PPF))
1002 fault_index = dma_fsts_fault_record_index(fault_status);
1003 reg = cap_fault_reg_offset(iommu->cap);
1011 /* highest 32 bits */
1012 data = readl(iommu->reg + reg +
1013 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1014 if (!(data & DMA_FRCD_F))
1017 fault_reason = dma_frcd_fault_reason(data);
1018 type = dma_frcd_type(data);
1020 data = readl(iommu->reg + reg +
1021 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1022 source_id = dma_frcd_source_id(data);
1024 guest_addr = dmar_readq(iommu->reg + reg +
1025 fault_index * PRIMARY_FAULT_REG_LEN);
1026 guest_addr = dma_frcd_page_addr(guest_addr);
1027 /* clear the fault */
1028 writel(DMA_FRCD_F, iommu->reg + reg +
1029 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1031 spin_unlock_irqrestore(&iommu->register_lock, flag);
1033 dmar_fault_do_one(iommu, type, fault_reason,
1034 source_id, guest_addr);
1037 if (fault_index > cap_num_fault_regs(iommu->cap))
1039 spin_lock_irqsave(&iommu->register_lock, flag);
1042 /* clear all the other faults */
1043 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1044 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1046 spin_unlock_irqrestore(&iommu->register_lock, flag);
1050 int dmar_set_interrupt(struct intel_iommu *iommu)
1055 * Check if the fault interrupt is already initialized.
1062 printk(KERN_ERR "IOMMU: no free vectors\n");
1066 set_irq_data(irq, iommu);
1069 ret = arch_setup_dmar_msi(irq);
1071 set_irq_data(irq, NULL);
1077 ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1079 printk(KERN_ERR "IOMMU: can't request irq\n");
1083 int __init enable_drhd_fault_handling(void)
1085 struct dmar_drhd_unit *drhd;
1088 * Enable fault control interrupt.
1090 for_each_drhd_unit(drhd) {
1092 struct intel_iommu *iommu = drhd->iommu;
1093 ret = dmar_set_interrupt(iommu);
1096 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1097 " interrupt, ret %d\n",
1098 (unsigned long long)drhd->reg_base_addr, ret);