Merge branch 'for-linus' of git://git.o-hand.com/linux-mfd
[linux-2.6] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55
56 #include <asm/pgalloc.h>
57 #include <asm/uaccess.h>
58 #include <asm/tlb.h>
59 #include <asm/tlbflush.h>
60 #include <asm/pgtable.h>
61
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64
65 #include "internal.h"
66
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75
76 unsigned long num_physpages;
77 /*
78  * A number of key systems in x86 including ioremap() rely on the assumption
79  * that high_memory defines the upper bound on direct map memory, then end
80  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82  * and ZONE_HIGHMEM.
83  */
84 void * high_memory;
85
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88
89 /*
90  * Randomize the address space (stacks, mmaps, brk, etc.).
91  *
92  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93  *   as ancient (libc5 based) binaries can segfault. )
94  */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97                                         1;
98 #else
99                                         2;
100 #endif
101
102 static int __init disable_randmaps(char *s)
103 {
104         randomize_va_space = 0;
105         return 1;
106 }
107 __setup("norandmaps", disable_randmaps);
108
109
110 /*
111  * If a p?d_bad entry is found while walking page tables, report
112  * the error, before resetting entry to p?d_none.  Usually (but
113  * very seldom) called out from the p?d_none_or_clear_bad macros.
114  */
115
116 void pgd_clear_bad(pgd_t *pgd)
117 {
118         pgd_ERROR(*pgd);
119         pgd_clear(pgd);
120 }
121
122 void pud_clear_bad(pud_t *pud)
123 {
124         pud_ERROR(*pud);
125         pud_clear(pud);
126 }
127
128 void pmd_clear_bad(pmd_t *pmd)
129 {
130         pmd_ERROR(*pmd);
131         pmd_clear(pmd);
132 }
133
134 /*
135  * Note: this doesn't free the actual pages themselves. That
136  * has been handled earlier when unmapping all the memory regions.
137  */
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 {
140         pgtable_t token = pmd_pgtable(*pmd);
141         pmd_clear(pmd);
142         pte_free_tlb(tlb, token);
143         tlb->mm->nr_ptes--;
144 }
145
146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147                                 unsigned long addr, unsigned long end,
148                                 unsigned long floor, unsigned long ceiling)
149 {
150         pmd_t *pmd;
151         unsigned long next;
152         unsigned long start;
153
154         start = addr;
155         pmd = pmd_offset(pud, addr);
156         do {
157                 next = pmd_addr_end(addr, end);
158                 if (pmd_none_or_clear_bad(pmd))
159                         continue;
160                 free_pte_range(tlb, pmd);
161         } while (pmd++, addr = next, addr != end);
162
163         start &= PUD_MASK;
164         if (start < floor)
165                 return;
166         if (ceiling) {
167                 ceiling &= PUD_MASK;
168                 if (!ceiling)
169                         return;
170         }
171         if (end - 1 > ceiling - 1)
172                 return;
173
174         pmd = pmd_offset(pud, start);
175         pud_clear(pud);
176         pmd_free_tlb(tlb, pmd);
177 }
178
179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180                                 unsigned long addr, unsigned long end,
181                                 unsigned long floor, unsigned long ceiling)
182 {
183         pud_t *pud;
184         unsigned long next;
185         unsigned long start;
186
187         start = addr;
188         pud = pud_offset(pgd, addr);
189         do {
190                 next = pud_addr_end(addr, end);
191                 if (pud_none_or_clear_bad(pud))
192                         continue;
193                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194         } while (pud++, addr = next, addr != end);
195
196         start &= PGDIR_MASK;
197         if (start < floor)
198                 return;
199         if (ceiling) {
200                 ceiling &= PGDIR_MASK;
201                 if (!ceiling)
202                         return;
203         }
204         if (end - 1 > ceiling - 1)
205                 return;
206
207         pud = pud_offset(pgd, start);
208         pgd_clear(pgd);
209         pud_free_tlb(tlb, pud);
210 }
211
212 /*
213  * This function frees user-level page tables of a process.
214  *
215  * Must be called with pagetable lock held.
216  */
217 void free_pgd_range(struct mmu_gather *tlb,
218                         unsigned long addr, unsigned long end,
219                         unsigned long floor, unsigned long ceiling)
220 {
221         pgd_t *pgd;
222         unsigned long next;
223         unsigned long start;
224
225         /*
226          * The next few lines have given us lots of grief...
227          *
228          * Why are we testing PMD* at this top level?  Because often
229          * there will be no work to do at all, and we'd prefer not to
230          * go all the way down to the bottom just to discover that.
231          *
232          * Why all these "- 1"s?  Because 0 represents both the bottom
233          * of the address space and the top of it (using -1 for the
234          * top wouldn't help much: the masks would do the wrong thing).
235          * The rule is that addr 0 and floor 0 refer to the bottom of
236          * the address space, but end 0 and ceiling 0 refer to the top
237          * Comparisons need to use "end - 1" and "ceiling - 1" (though
238          * that end 0 case should be mythical).
239          *
240          * Wherever addr is brought up or ceiling brought down, we must
241          * be careful to reject "the opposite 0" before it confuses the
242          * subsequent tests.  But what about where end is brought down
243          * by PMD_SIZE below? no, end can't go down to 0 there.
244          *
245          * Whereas we round start (addr) and ceiling down, by different
246          * masks at different levels, in order to test whether a table
247          * now has no other vmas using it, so can be freed, we don't
248          * bother to round floor or end up - the tests don't need that.
249          */
250
251         addr &= PMD_MASK;
252         if (addr < floor) {
253                 addr += PMD_SIZE;
254                 if (!addr)
255                         return;
256         }
257         if (ceiling) {
258                 ceiling &= PMD_MASK;
259                 if (!ceiling)
260                         return;
261         }
262         if (end - 1 > ceiling - 1)
263                 end -= PMD_SIZE;
264         if (addr > end - 1)
265                 return;
266
267         start = addr;
268         pgd = pgd_offset(tlb->mm, addr);
269         do {
270                 next = pgd_addr_end(addr, end);
271                 if (pgd_none_or_clear_bad(pgd))
272                         continue;
273                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274         } while (pgd++, addr = next, addr != end);
275 }
276
277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278                 unsigned long floor, unsigned long ceiling)
279 {
280         while (vma) {
281                 struct vm_area_struct *next = vma->vm_next;
282                 unsigned long addr = vma->vm_start;
283
284                 /*
285                  * Hide vma from rmap and vmtruncate before freeing pgtables
286                  */
287                 anon_vma_unlink(vma);
288                 unlink_file_vma(vma);
289
290                 if (is_vm_hugetlb_page(vma)) {
291                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292                                 floor, next? next->vm_start: ceiling);
293                 } else {
294                         /*
295                          * Optimization: gather nearby vmas into one call down
296                          */
297                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298                                && !is_vm_hugetlb_page(next)) {
299                                 vma = next;
300                                 next = vma->vm_next;
301                                 anon_vma_unlink(vma);
302                                 unlink_file_vma(vma);
303                         }
304                         free_pgd_range(tlb, addr, vma->vm_end,
305                                 floor, next? next->vm_start: ceiling);
306                 }
307                 vma = next;
308         }
309 }
310
311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 {
313         pgtable_t new = pte_alloc_one(mm, address);
314         if (!new)
315                 return -ENOMEM;
316
317         /*
318          * Ensure all pte setup (eg. pte page lock and page clearing) are
319          * visible before the pte is made visible to other CPUs by being
320          * put into page tables.
321          *
322          * The other side of the story is the pointer chasing in the page
323          * table walking code (when walking the page table without locking;
324          * ie. most of the time). Fortunately, these data accesses consist
325          * of a chain of data-dependent loads, meaning most CPUs (alpha
326          * being the notable exception) will already guarantee loads are
327          * seen in-order. See the alpha page table accessors for the
328          * smp_read_barrier_depends() barriers in page table walking code.
329          */
330         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331
332         spin_lock(&mm->page_table_lock);
333         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
334                 mm->nr_ptes++;
335                 pmd_populate(mm, pmd, new);
336                 new = NULL;
337         }
338         spin_unlock(&mm->page_table_lock);
339         if (new)
340                 pte_free(mm, new);
341         return 0;
342 }
343
344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 {
346         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347         if (!new)
348                 return -ENOMEM;
349
350         smp_wmb(); /* See comment in __pte_alloc */
351
352         spin_lock(&init_mm.page_table_lock);
353         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
354                 pmd_populate_kernel(&init_mm, pmd, new);
355                 new = NULL;
356         }
357         spin_unlock(&init_mm.page_table_lock);
358         if (new)
359                 pte_free_kernel(&init_mm, new);
360         return 0;
361 }
362
363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364 {
365         if (file_rss)
366                 add_mm_counter(mm, file_rss, file_rss);
367         if (anon_rss)
368                 add_mm_counter(mm, anon_rss, anon_rss);
369 }
370
371 /*
372  * This function is called to print an error when a bad pte
373  * is found. For example, we might have a PFN-mapped pte in
374  * a region that doesn't allow it.
375  *
376  * The calling function must still handle the error.
377  */
378 static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
379                           unsigned long vaddr)
380 {
381         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
382                         "vm_flags = %lx, vaddr = %lx\n",
383                 (long long)pte_val(pte),
384                 (vma->vm_mm == current->mm ? current->comm : "???"),
385                 vma->vm_flags, vaddr);
386         dump_stack();
387 }
388
389 static inline int is_cow_mapping(unsigned int flags)
390 {
391         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
392 }
393
394 /*
395  * vm_normal_page -- This function gets the "struct page" associated with a pte.
396  *
397  * "Special" mappings do not wish to be associated with a "struct page" (either
398  * it doesn't exist, or it exists but they don't want to touch it). In this
399  * case, NULL is returned here. "Normal" mappings do have a struct page.
400  *
401  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
402  * pte bit, in which case this function is trivial. Secondly, an architecture
403  * may not have a spare pte bit, which requires a more complicated scheme,
404  * described below.
405  *
406  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
407  * special mapping (even if there are underlying and valid "struct pages").
408  * COWed pages of a VM_PFNMAP are always normal.
409  *
410  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
411  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
412  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
413  * mapping will always honor the rule
414  *
415  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
416  *
417  * And for normal mappings this is false.
418  *
419  * This restricts such mappings to be a linear translation from virtual address
420  * to pfn. To get around this restriction, we allow arbitrary mappings so long
421  * as the vma is not a COW mapping; in that case, we know that all ptes are
422  * special (because none can have been COWed).
423  *
424  *
425  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
426  *
427  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
428  * page" backing, however the difference is that _all_ pages with a struct
429  * page (that is, those where pfn_valid is true) are refcounted and considered
430  * normal pages by the VM. The disadvantage is that pages are refcounted
431  * (which can be slower and simply not an option for some PFNMAP users). The
432  * advantage is that we don't have to follow the strict linearity rule of
433  * PFNMAP mappings in order to support COWable mappings.
434  *
435  */
436 #ifdef __HAVE_ARCH_PTE_SPECIAL
437 # define HAVE_PTE_SPECIAL 1
438 #else
439 # define HAVE_PTE_SPECIAL 0
440 #endif
441 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
442                                 pte_t pte)
443 {
444         unsigned long pfn;
445
446         if (HAVE_PTE_SPECIAL) {
447                 if (likely(!pte_special(pte))) {
448                         VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
449                         return pte_page(pte);
450                 }
451                 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
452                 return NULL;
453         }
454
455         /* !HAVE_PTE_SPECIAL case follows: */
456
457         pfn = pte_pfn(pte);
458
459         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
460                 if (vma->vm_flags & VM_MIXEDMAP) {
461                         if (!pfn_valid(pfn))
462                                 return NULL;
463                         goto out;
464                 } else {
465                         unsigned long off;
466                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
467                         if (pfn == vma->vm_pgoff + off)
468                                 return NULL;
469                         if (!is_cow_mapping(vma->vm_flags))
470                                 return NULL;
471                 }
472         }
473
474         VM_BUG_ON(!pfn_valid(pfn));
475
476         /*
477          * NOTE! We still have PageReserved() pages in the page tables.
478          *
479          * eg. VDSO mappings can cause them to exist.
480          */
481 out:
482         return pfn_to_page(pfn);
483 }
484
485 /*
486  * copy one vm_area from one task to the other. Assumes the page tables
487  * already present in the new task to be cleared in the whole range
488  * covered by this vma.
489  */
490
491 static inline void
492 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
493                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
494                 unsigned long addr, int *rss)
495 {
496         unsigned long vm_flags = vma->vm_flags;
497         pte_t pte = *src_pte;
498         struct page *page;
499
500         /* pte contains position in swap or file, so copy. */
501         if (unlikely(!pte_present(pte))) {
502                 if (!pte_file(pte)) {
503                         swp_entry_t entry = pte_to_swp_entry(pte);
504
505                         swap_duplicate(entry);
506                         /* make sure dst_mm is on swapoff's mmlist. */
507                         if (unlikely(list_empty(&dst_mm->mmlist))) {
508                                 spin_lock(&mmlist_lock);
509                                 if (list_empty(&dst_mm->mmlist))
510                                         list_add(&dst_mm->mmlist,
511                                                  &src_mm->mmlist);
512                                 spin_unlock(&mmlist_lock);
513                         }
514                         if (is_write_migration_entry(entry) &&
515                                         is_cow_mapping(vm_flags)) {
516                                 /*
517                                  * COW mappings require pages in both parent
518                                  * and child to be set to read.
519                                  */
520                                 make_migration_entry_read(&entry);
521                                 pte = swp_entry_to_pte(entry);
522                                 set_pte_at(src_mm, addr, src_pte, pte);
523                         }
524                 }
525                 goto out_set_pte;
526         }
527
528         /*
529          * If it's a COW mapping, write protect it both
530          * in the parent and the child
531          */
532         if (is_cow_mapping(vm_flags)) {
533                 ptep_set_wrprotect(src_mm, addr, src_pte);
534                 pte = pte_wrprotect(pte);
535         }
536
537         /*
538          * If it's a shared mapping, mark it clean in
539          * the child
540          */
541         if (vm_flags & VM_SHARED)
542                 pte = pte_mkclean(pte);
543         pte = pte_mkold(pte);
544
545         page = vm_normal_page(vma, addr, pte);
546         if (page) {
547                 get_page(page);
548                 page_dup_rmap(page, vma, addr);
549                 rss[!!PageAnon(page)]++;
550         }
551
552 out_set_pte:
553         set_pte_at(dst_mm, addr, dst_pte, pte);
554 }
555
556 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
557                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
558                 unsigned long addr, unsigned long end)
559 {
560         pte_t *src_pte, *dst_pte;
561         spinlock_t *src_ptl, *dst_ptl;
562         int progress = 0;
563         int rss[2];
564
565 again:
566         rss[1] = rss[0] = 0;
567         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
568         if (!dst_pte)
569                 return -ENOMEM;
570         src_pte = pte_offset_map_nested(src_pmd, addr);
571         src_ptl = pte_lockptr(src_mm, src_pmd);
572         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
573         arch_enter_lazy_mmu_mode();
574
575         do {
576                 /*
577                  * We are holding two locks at this point - either of them
578                  * could generate latencies in another task on another CPU.
579                  */
580                 if (progress >= 32) {
581                         progress = 0;
582                         if (need_resched() ||
583                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
584                                 break;
585                 }
586                 if (pte_none(*src_pte)) {
587                         progress++;
588                         continue;
589                 }
590                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
591                 progress += 8;
592         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
593
594         arch_leave_lazy_mmu_mode();
595         spin_unlock(src_ptl);
596         pte_unmap_nested(src_pte - 1);
597         add_mm_rss(dst_mm, rss[0], rss[1]);
598         pte_unmap_unlock(dst_pte - 1, dst_ptl);
599         cond_resched();
600         if (addr != end)
601                 goto again;
602         return 0;
603 }
604
605 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
606                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
607                 unsigned long addr, unsigned long end)
608 {
609         pmd_t *src_pmd, *dst_pmd;
610         unsigned long next;
611
612         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
613         if (!dst_pmd)
614                 return -ENOMEM;
615         src_pmd = pmd_offset(src_pud, addr);
616         do {
617                 next = pmd_addr_end(addr, end);
618                 if (pmd_none_or_clear_bad(src_pmd))
619                         continue;
620                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
621                                                 vma, addr, next))
622                         return -ENOMEM;
623         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
624         return 0;
625 }
626
627 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
628                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
629                 unsigned long addr, unsigned long end)
630 {
631         pud_t *src_pud, *dst_pud;
632         unsigned long next;
633
634         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
635         if (!dst_pud)
636                 return -ENOMEM;
637         src_pud = pud_offset(src_pgd, addr);
638         do {
639                 next = pud_addr_end(addr, end);
640                 if (pud_none_or_clear_bad(src_pud))
641                         continue;
642                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
643                                                 vma, addr, next))
644                         return -ENOMEM;
645         } while (dst_pud++, src_pud++, addr = next, addr != end);
646         return 0;
647 }
648
649 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650                 struct vm_area_struct *vma)
651 {
652         pgd_t *src_pgd, *dst_pgd;
653         unsigned long next;
654         unsigned long addr = vma->vm_start;
655         unsigned long end = vma->vm_end;
656         int ret;
657
658         /*
659          * Don't copy ptes where a page fault will fill them correctly.
660          * Fork becomes much lighter when there are big shared or private
661          * readonly mappings. The tradeoff is that copy_page_range is more
662          * efficient than faulting.
663          */
664         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
665                 if (!vma->anon_vma)
666                         return 0;
667         }
668
669         if (is_vm_hugetlb_page(vma))
670                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
671
672         /*
673          * We need to invalidate the secondary MMU mappings only when
674          * there could be a permission downgrade on the ptes of the
675          * parent mm. And a permission downgrade will only happen if
676          * is_cow_mapping() returns true.
677          */
678         if (is_cow_mapping(vma->vm_flags))
679                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
680
681         ret = 0;
682         dst_pgd = pgd_offset(dst_mm, addr);
683         src_pgd = pgd_offset(src_mm, addr);
684         do {
685                 next = pgd_addr_end(addr, end);
686                 if (pgd_none_or_clear_bad(src_pgd))
687                         continue;
688                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
689                                             vma, addr, next))) {
690                         ret = -ENOMEM;
691                         break;
692                 }
693         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
694
695         if (is_cow_mapping(vma->vm_flags))
696                 mmu_notifier_invalidate_range_end(src_mm,
697                                                   vma->vm_start, end);
698         return ret;
699 }
700
701 static unsigned long zap_pte_range(struct mmu_gather *tlb,
702                                 struct vm_area_struct *vma, pmd_t *pmd,
703                                 unsigned long addr, unsigned long end,
704                                 long *zap_work, struct zap_details *details)
705 {
706         struct mm_struct *mm = tlb->mm;
707         pte_t *pte;
708         spinlock_t *ptl;
709         int file_rss = 0;
710         int anon_rss = 0;
711
712         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
713         arch_enter_lazy_mmu_mode();
714         do {
715                 pte_t ptent = *pte;
716                 if (pte_none(ptent)) {
717                         (*zap_work)--;
718                         continue;
719                 }
720
721                 (*zap_work) -= PAGE_SIZE;
722
723                 if (pte_present(ptent)) {
724                         struct page *page;
725
726                         page = vm_normal_page(vma, addr, ptent);
727                         if (unlikely(details) && page) {
728                                 /*
729                                  * unmap_shared_mapping_pages() wants to
730                                  * invalidate cache without truncating:
731                                  * unmap shared but keep private pages.
732                                  */
733                                 if (details->check_mapping &&
734                                     details->check_mapping != page->mapping)
735                                         continue;
736                                 /*
737                                  * Each page->index must be checked when
738                                  * invalidating or truncating nonlinear.
739                                  */
740                                 if (details->nonlinear_vma &&
741                                     (page->index < details->first_index ||
742                                      page->index > details->last_index))
743                                         continue;
744                         }
745                         ptent = ptep_get_and_clear_full(mm, addr, pte,
746                                                         tlb->fullmm);
747                         tlb_remove_tlb_entry(tlb, pte, addr);
748                         if (unlikely(!page))
749                                 continue;
750                         if (unlikely(details) && details->nonlinear_vma
751                             && linear_page_index(details->nonlinear_vma,
752                                                 addr) != page->index)
753                                 set_pte_at(mm, addr, pte,
754                                            pgoff_to_pte(page->index));
755                         if (PageAnon(page))
756                                 anon_rss--;
757                         else {
758                                 if (pte_dirty(ptent))
759                                         set_page_dirty(page);
760                                 if (pte_young(ptent))
761                                         SetPageReferenced(page);
762                                 file_rss--;
763                         }
764                         page_remove_rmap(page, vma);
765                         tlb_remove_page(tlb, page);
766                         continue;
767                 }
768                 /*
769                  * If details->check_mapping, we leave swap entries;
770                  * if details->nonlinear_vma, we leave file entries.
771                  */
772                 if (unlikely(details))
773                         continue;
774                 if (!pte_file(ptent))
775                         free_swap_and_cache(pte_to_swp_entry(ptent));
776                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
777         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
778
779         add_mm_rss(mm, file_rss, anon_rss);
780         arch_leave_lazy_mmu_mode();
781         pte_unmap_unlock(pte - 1, ptl);
782
783         return addr;
784 }
785
786 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
787                                 struct vm_area_struct *vma, pud_t *pud,
788                                 unsigned long addr, unsigned long end,
789                                 long *zap_work, struct zap_details *details)
790 {
791         pmd_t *pmd;
792         unsigned long next;
793
794         pmd = pmd_offset(pud, addr);
795         do {
796                 next = pmd_addr_end(addr, end);
797                 if (pmd_none_or_clear_bad(pmd)) {
798                         (*zap_work)--;
799                         continue;
800                 }
801                 next = zap_pte_range(tlb, vma, pmd, addr, next,
802                                                 zap_work, details);
803         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
804
805         return addr;
806 }
807
808 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
809                                 struct vm_area_struct *vma, pgd_t *pgd,
810                                 unsigned long addr, unsigned long end,
811                                 long *zap_work, struct zap_details *details)
812 {
813         pud_t *pud;
814         unsigned long next;
815
816         pud = pud_offset(pgd, addr);
817         do {
818                 next = pud_addr_end(addr, end);
819                 if (pud_none_or_clear_bad(pud)) {
820                         (*zap_work)--;
821                         continue;
822                 }
823                 next = zap_pmd_range(tlb, vma, pud, addr, next,
824                                                 zap_work, details);
825         } while (pud++, addr = next, (addr != end && *zap_work > 0));
826
827         return addr;
828 }
829
830 static unsigned long unmap_page_range(struct mmu_gather *tlb,
831                                 struct vm_area_struct *vma,
832                                 unsigned long addr, unsigned long end,
833                                 long *zap_work, struct zap_details *details)
834 {
835         pgd_t *pgd;
836         unsigned long next;
837
838         if (details && !details->check_mapping && !details->nonlinear_vma)
839                 details = NULL;
840
841         BUG_ON(addr >= end);
842         tlb_start_vma(tlb, vma);
843         pgd = pgd_offset(vma->vm_mm, addr);
844         do {
845                 next = pgd_addr_end(addr, end);
846                 if (pgd_none_or_clear_bad(pgd)) {
847                         (*zap_work)--;
848                         continue;
849                 }
850                 next = zap_pud_range(tlb, vma, pgd, addr, next,
851                                                 zap_work, details);
852         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
853         tlb_end_vma(tlb, vma);
854
855         return addr;
856 }
857
858 #ifdef CONFIG_PREEMPT
859 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
860 #else
861 /* No preempt: go for improved straight-line efficiency */
862 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
863 #endif
864
865 /**
866  * unmap_vmas - unmap a range of memory covered by a list of vma's
867  * @tlbp: address of the caller's struct mmu_gather
868  * @vma: the starting vma
869  * @start_addr: virtual address at which to start unmapping
870  * @end_addr: virtual address at which to end unmapping
871  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
872  * @details: details of nonlinear truncation or shared cache invalidation
873  *
874  * Returns the end address of the unmapping (restart addr if interrupted).
875  *
876  * Unmap all pages in the vma list.
877  *
878  * We aim to not hold locks for too long (for scheduling latency reasons).
879  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
880  * return the ending mmu_gather to the caller.
881  *
882  * Only addresses between `start' and `end' will be unmapped.
883  *
884  * The VMA list must be sorted in ascending virtual address order.
885  *
886  * unmap_vmas() assumes that the caller will flush the whole unmapped address
887  * range after unmap_vmas() returns.  So the only responsibility here is to
888  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
889  * drops the lock and schedules.
890  */
891 unsigned long unmap_vmas(struct mmu_gather **tlbp,
892                 struct vm_area_struct *vma, unsigned long start_addr,
893                 unsigned long end_addr, unsigned long *nr_accounted,
894                 struct zap_details *details)
895 {
896         long zap_work = ZAP_BLOCK_SIZE;
897         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
898         int tlb_start_valid = 0;
899         unsigned long start = start_addr;
900         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
901         int fullmm = (*tlbp)->fullmm;
902         struct mm_struct *mm = vma->vm_mm;
903
904         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
905         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
906                 unsigned long end;
907
908                 start = max(vma->vm_start, start_addr);
909                 if (start >= vma->vm_end)
910                         continue;
911                 end = min(vma->vm_end, end_addr);
912                 if (end <= vma->vm_start)
913                         continue;
914
915                 if (vma->vm_flags & VM_ACCOUNT)
916                         *nr_accounted += (end - start) >> PAGE_SHIFT;
917
918                 while (start != end) {
919                         if (!tlb_start_valid) {
920                                 tlb_start = start;
921                                 tlb_start_valid = 1;
922                         }
923
924                         if (unlikely(is_vm_hugetlb_page(vma))) {
925                                 /*
926                                  * It is undesirable to test vma->vm_file as it
927                                  * should be non-null for valid hugetlb area.
928                                  * However, vm_file will be NULL in the error
929                                  * cleanup path of do_mmap_pgoff. When
930                                  * hugetlbfs ->mmap method fails,
931                                  * do_mmap_pgoff() nullifies vma->vm_file
932                                  * before calling this function to clean up.
933                                  * Since no pte has actually been setup, it is
934                                  * safe to do nothing in this case.
935                                  */
936                                 if (vma->vm_file) {
937                                         unmap_hugepage_range(vma, start, end, NULL);
938                                         zap_work -= (end - start) /
939                                         pages_per_huge_page(hstate_vma(vma));
940                                 }
941
942                                 start = end;
943                         } else
944                                 start = unmap_page_range(*tlbp, vma,
945                                                 start, end, &zap_work, details);
946
947                         if (zap_work > 0) {
948                                 BUG_ON(start != end);
949                                 break;
950                         }
951
952                         tlb_finish_mmu(*tlbp, tlb_start, start);
953
954                         if (need_resched() ||
955                                 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
956                                 if (i_mmap_lock) {
957                                         *tlbp = NULL;
958                                         goto out;
959                                 }
960                                 cond_resched();
961                         }
962
963                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
964                         tlb_start_valid = 0;
965                         zap_work = ZAP_BLOCK_SIZE;
966                 }
967         }
968 out:
969         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
970         return start;   /* which is now the end (or restart) address */
971 }
972
973 /**
974  * zap_page_range - remove user pages in a given range
975  * @vma: vm_area_struct holding the applicable pages
976  * @address: starting address of pages to zap
977  * @size: number of bytes to zap
978  * @details: details of nonlinear truncation or shared cache invalidation
979  */
980 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
981                 unsigned long size, struct zap_details *details)
982 {
983         struct mm_struct *mm = vma->vm_mm;
984         struct mmu_gather *tlb;
985         unsigned long end = address + size;
986         unsigned long nr_accounted = 0;
987
988         lru_add_drain();
989         tlb = tlb_gather_mmu(mm, 0);
990         update_hiwater_rss(mm);
991         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
992         if (tlb)
993                 tlb_finish_mmu(tlb, address, end);
994         return end;
995 }
996
997 /*
998  * Do a quick page-table lookup for a single page.
999  */
1000 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1001                         unsigned int flags)
1002 {
1003         pgd_t *pgd;
1004         pud_t *pud;
1005         pmd_t *pmd;
1006         pte_t *ptep, pte;
1007         spinlock_t *ptl;
1008         struct page *page;
1009         struct mm_struct *mm = vma->vm_mm;
1010
1011         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1012         if (!IS_ERR(page)) {
1013                 BUG_ON(flags & FOLL_GET);
1014                 goto out;
1015         }
1016
1017         page = NULL;
1018         pgd = pgd_offset(mm, address);
1019         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1020                 goto no_page_table;
1021
1022         pud = pud_offset(pgd, address);
1023         if (pud_none(*pud))
1024                 goto no_page_table;
1025         if (pud_huge(*pud)) {
1026                 BUG_ON(flags & FOLL_GET);
1027                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1028                 goto out;
1029         }
1030         if (unlikely(pud_bad(*pud)))
1031                 goto no_page_table;
1032
1033         pmd = pmd_offset(pud, address);
1034         if (pmd_none(*pmd))
1035                 goto no_page_table;
1036         if (pmd_huge(*pmd)) {
1037                 BUG_ON(flags & FOLL_GET);
1038                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1039                 goto out;
1040         }
1041         if (unlikely(pmd_bad(*pmd)))
1042                 goto no_page_table;
1043
1044         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1045
1046         pte = *ptep;
1047         if (!pte_present(pte))
1048                 goto no_page;
1049         if ((flags & FOLL_WRITE) && !pte_write(pte))
1050                 goto unlock;
1051         page = vm_normal_page(vma, address, pte);
1052         if (unlikely(!page))
1053                 goto bad_page;
1054
1055         if (flags & FOLL_GET)
1056                 get_page(page);
1057         if (flags & FOLL_TOUCH) {
1058                 if ((flags & FOLL_WRITE) &&
1059                     !pte_dirty(pte) && !PageDirty(page))
1060                         set_page_dirty(page);
1061                 mark_page_accessed(page);
1062         }
1063 unlock:
1064         pte_unmap_unlock(ptep, ptl);
1065 out:
1066         return page;
1067
1068 bad_page:
1069         pte_unmap_unlock(ptep, ptl);
1070         return ERR_PTR(-EFAULT);
1071
1072 no_page:
1073         pte_unmap_unlock(ptep, ptl);
1074         if (!pte_none(pte))
1075                 return page;
1076         /* Fall through to ZERO_PAGE handling */
1077 no_page_table:
1078         /*
1079          * When core dumping an enormous anonymous area that nobody
1080          * has touched so far, we don't want to allocate page tables.
1081          */
1082         if (flags & FOLL_ANON) {
1083                 page = ZERO_PAGE(0);
1084                 if (flags & FOLL_GET)
1085                         get_page(page);
1086                 BUG_ON(flags & FOLL_WRITE);
1087         }
1088         return page;
1089 }
1090
1091 /* Can we do the FOLL_ANON optimization? */
1092 static inline int use_zero_page(struct vm_area_struct *vma)
1093 {
1094         /*
1095          * We don't want to optimize FOLL_ANON for make_pages_present()
1096          * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1097          * we want to get the page from the page tables to make sure
1098          * that we serialize and update with any other user of that
1099          * mapping.
1100          */
1101         if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1102                 return 0;
1103         /*
1104          * And if we have a fault routine, it's not an anonymous region.
1105          */
1106         return !vma->vm_ops || !vma->vm_ops->fault;
1107 }
1108
1109 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1110                 unsigned long start, int len, int write, int force,
1111                 struct page **pages, struct vm_area_struct **vmas)
1112 {
1113         int i;
1114         unsigned int vm_flags;
1115
1116         if (len <= 0)
1117                 return 0;
1118         /* 
1119          * Require read or write permissions.
1120          * If 'force' is set, we only require the "MAY" flags.
1121          */
1122         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1123         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1124         i = 0;
1125
1126         do {
1127                 struct vm_area_struct *vma;
1128                 unsigned int foll_flags;
1129
1130                 vma = find_extend_vma(mm, start);
1131                 if (!vma && in_gate_area(tsk, start)) {
1132                         unsigned long pg = start & PAGE_MASK;
1133                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1134                         pgd_t *pgd;
1135                         pud_t *pud;
1136                         pmd_t *pmd;
1137                         pte_t *pte;
1138                         if (write) /* user gate pages are read-only */
1139                                 return i ? : -EFAULT;
1140                         if (pg > TASK_SIZE)
1141                                 pgd = pgd_offset_k(pg);
1142                         else
1143                                 pgd = pgd_offset_gate(mm, pg);
1144                         BUG_ON(pgd_none(*pgd));
1145                         pud = pud_offset(pgd, pg);
1146                         BUG_ON(pud_none(*pud));
1147                         pmd = pmd_offset(pud, pg);
1148                         if (pmd_none(*pmd))
1149                                 return i ? : -EFAULT;
1150                         pte = pte_offset_map(pmd, pg);
1151                         if (pte_none(*pte)) {
1152                                 pte_unmap(pte);
1153                                 return i ? : -EFAULT;
1154                         }
1155                         if (pages) {
1156                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1157                                 pages[i] = page;
1158                                 if (page)
1159                                         get_page(page);
1160                         }
1161                         pte_unmap(pte);
1162                         if (vmas)
1163                                 vmas[i] = gate_vma;
1164                         i++;
1165                         start += PAGE_SIZE;
1166                         len--;
1167                         continue;
1168                 }
1169
1170                 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1171                                 || !(vm_flags & vma->vm_flags))
1172                         return i ? : -EFAULT;
1173
1174                 if (is_vm_hugetlb_page(vma)) {
1175                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1176                                                 &start, &len, i, write);
1177                         continue;
1178                 }
1179
1180                 foll_flags = FOLL_TOUCH;
1181                 if (pages)
1182                         foll_flags |= FOLL_GET;
1183                 if (!write && use_zero_page(vma))
1184                         foll_flags |= FOLL_ANON;
1185
1186                 do {
1187                         struct page *page;
1188
1189                         /*
1190                          * If tsk is ooming, cut off its access to large memory
1191                          * allocations. It has a pending SIGKILL, but it can't
1192                          * be processed until returning to user space.
1193                          */
1194                         if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1195                                 return i ? i : -ENOMEM;
1196
1197                         if (write)
1198                                 foll_flags |= FOLL_WRITE;
1199
1200                         cond_resched();
1201                         while (!(page = follow_page(vma, start, foll_flags))) {
1202                                 int ret;
1203                                 ret = handle_mm_fault(mm, vma, start,
1204                                                 foll_flags & FOLL_WRITE);
1205                                 if (ret & VM_FAULT_ERROR) {
1206                                         if (ret & VM_FAULT_OOM)
1207                                                 return i ? i : -ENOMEM;
1208                                         else if (ret & VM_FAULT_SIGBUS)
1209                                                 return i ? i : -EFAULT;
1210                                         BUG();
1211                                 }
1212                                 if (ret & VM_FAULT_MAJOR)
1213                                         tsk->maj_flt++;
1214                                 else
1215                                         tsk->min_flt++;
1216
1217                                 /*
1218                                  * The VM_FAULT_WRITE bit tells us that
1219                                  * do_wp_page has broken COW when necessary,
1220                                  * even if maybe_mkwrite decided not to set
1221                                  * pte_write. We can thus safely do subsequent
1222                                  * page lookups as if they were reads.
1223                                  */
1224                                 if (ret & VM_FAULT_WRITE)
1225                                         foll_flags &= ~FOLL_WRITE;
1226
1227                                 cond_resched();
1228                         }
1229                         if (IS_ERR(page))
1230                                 return i ? i : PTR_ERR(page);
1231                         if (pages) {
1232                                 pages[i] = page;
1233
1234                                 flush_anon_page(vma, page, start);
1235                                 flush_dcache_page(page);
1236                         }
1237                         if (vmas)
1238                                 vmas[i] = vma;
1239                         i++;
1240                         start += PAGE_SIZE;
1241                         len--;
1242                 } while (len && start < vma->vm_end);
1243         } while (len);
1244         return i;
1245 }
1246 EXPORT_SYMBOL(get_user_pages);
1247
1248 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1249                         spinlock_t **ptl)
1250 {
1251         pgd_t * pgd = pgd_offset(mm, addr);
1252         pud_t * pud = pud_alloc(mm, pgd, addr);
1253         if (pud) {
1254                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1255                 if (pmd)
1256                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1257         }
1258         return NULL;
1259 }
1260
1261 /*
1262  * This is the old fallback for page remapping.
1263  *
1264  * For historical reasons, it only allows reserved pages. Only
1265  * old drivers should use this, and they needed to mark their
1266  * pages reserved for the old functions anyway.
1267  */
1268 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1269                         struct page *page, pgprot_t prot)
1270 {
1271         struct mm_struct *mm = vma->vm_mm;
1272         int retval;
1273         pte_t *pte;
1274         spinlock_t *ptl;
1275
1276         retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1277         if (retval)
1278                 goto out;
1279
1280         retval = -EINVAL;
1281         if (PageAnon(page))
1282                 goto out_uncharge;
1283         retval = -ENOMEM;
1284         flush_dcache_page(page);
1285         pte = get_locked_pte(mm, addr, &ptl);
1286         if (!pte)
1287                 goto out_uncharge;
1288         retval = -EBUSY;
1289         if (!pte_none(*pte))
1290                 goto out_unlock;
1291
1292         /* Ok, finally just insert the thing.. */
1293         get_page(page);
1294         inc_mm_counter(mm, file_rss);
1295         page_add_file_rmap(page);
1296         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1297
1298         retval = 0;
1299         pte_unmap_unlock(pte, ptl);
1300         return retval;
1301 out_unlock:
1302         pte_unmap_unlock(pte, ptl);
1303 out_uncharge:
1304         mem_cgroup_uncharge_page(page);
1305 out:
1306         return retval;
1307 }
1308
1309 /**
1310  * vm_insert_page - insert single page into user vma
1311  * @vma: user vma to map to
1312  * @addr: target user address of this page
1313  * @page: source kernel page
1314  *
1315  * This allows drivers to insert individual pages they've allocated
1316  * into a user vma.
1317  *
1318  * The page has to be a nice clean _individual_ kernel allocation.
1319  * If you allocate a compound page, you need to have marked it as
1320  * such (__GFP_COMP), or manually just split the page up yourself
1321  * (see split_page()).
1322  *
1323  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1324  * took an arbitrary page protection parameter. This doesn't allow
1325  * that. Your vma protection will have to be set up correctly, which
1326  * means that if you want a shared writable mapping, you'd better
1327  * ask for a shared writable mapping!
1328  *
1329  * The page does not need to be reserved.
1330  */
1331 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1332                         struct page *page)
1333 {
1334         if (addr < vma->vm_start || addr >= vma->vm_end)
1335                 return -EFAULT;
1336         if (!page_count(page))
1337                 return -EINVAL;
1338         vma->vm_flags |= VM_INSERTPAGE;
1339         return insert_page(vma, addr, page, vma->vm_page_prot);
1340 }
1341 EXPORT_SYMBOL(vm_insert_page);
1342
1343 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1344                         unsigned long pfn, pgprot_t prot)
1345 {
1346         struct mm_struct *mm = vma->vm_mm;
1347         int retval;
1348         pte_t *pte, entry;
1349         spinlock_t *ptl;
1350
1351         retval = -ENOMEM;
1352         pte = get_locked_pte(mm, addr, &ptl);
1353         if (!pte)
1354                 goto out;
1355         retval = -EBUSY;
1356         if (!pte_none(*pte))
1357                 goto out_unlock;
1358
1359         /* Ok, finally just insert the thing.. */
1360         entry = pte_mkspecial(pfn_pte(pfn, prot));
1361         set_pte_at(mm, addr, pte, entry);
1362         update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1363
1364         retval = 0;
1365 out_unlock:
1366         pte_unmap_unlock(pte, ptl);
1367 out:
1368         return retval;
1369 }
1370
1371 /**
1372  * vm_insert_pfn - insert single pfn into user vma
1373  * @vma: user vma to map to
1374  * @addr: target user address of this page
1375  * @pfn: source kernel pfn
1376  *
1377  * Similar to vm_inert_page, this allows drivers to insert individual pages
1378  * they've allocated into a user vma. Same comments apply.
1379  *
1380  * This function should only be called from a vm_ops->fault handler, and
1381  * in that case the handler should return NULL.
1382  *
1383  * vma cannot be a COW mapping.
1384  *
1385  * As this is called only for pages that do not currently exist, we
1386  * do not need to flush old virtual caches or the TLB.
1387  */
1388 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1389                         unsigned long pfn)
1390 {
1391         /*
1392          * Technically, architectures with pte_special can avoid all these
1393          * restrictions (same for remap_pfn_range).  However we would like
1394          * consistency in testing and feature parity among all, so we should
1395          * try to keep these invariants in place for everybody.
1396          */
1397         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1398         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1399                                                 (VM_PFNMAP|VM_MIXEDMAP));
1400         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1401         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1402
1403         if (addr < vma->vm_start || addr >= vma->vm_end)
1404                 return -EFAULT;
1405         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1406 }
1407 EXPORT_SYMBOL(vm_insert_pfn);
1408
1409 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1410                         unsigned long pfn)
1411 {
1412         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1413
1414         if (addr < vma->vm_start || addr >= vma->vm_end)
1415                 return -EFAULT;
1416
1417         /*
1418          * If we don't have pte special, then we have to use the pfn_valid()
1419          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1420          * refcount the page if pfn_valid is true (hence insert_page rather
1421          * than insert_pfn).
1422          */
1423         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1424                 struct page *page;
1425
1426                 page = pfn_to_page(pfn);
1427                 return insert_page(vma, addr, page, vma->vm_page_prot);
1428         }
1429         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1430 }
1431 EXPORT_SYMBOL(vm_insert_mixed);
1432
1433 /*
1434  * maps a range of physical memory into the requested pages. the old
1435  * mappings are removed. any references to nonexistent pages results
1436  * in null mappings (currently treated as "copy-on-access")
1437  */
1438 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1439                         unsigned long addr, unsigned long end,
1440                         unsigned long pfn, pgprot_t prot)
1441 {
1442         pte_t *pte;
1443         spinlock_t *ptl;
1444
1445         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1446         if (!pte)
1447                 return -ENOMEM;
1448         arch_enter_lazy_mmu_mode();
1449         do {
1450                 BUG_ON(!pte_none(*pte));
1451                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1452                 pfn++;
1453         } while (pte++, addr += PAGE_SIZE, addr != end);
1454         arch_leave_lazy_mmu_mode();
1455         pte_unmap_unlock(pte - 1, ptl);
1456         return 0;
1457 }
1458
1459 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1460                         unsigned long addr, unsigned long end,
1461                         unsigned long pfn, pgprot_t prot)
1462 {
1463         pmd_t *pmd;
1464         unsigned long next;
1465
1466         pfn -= addr >> PAGE_SHIFT;
1467         pmd = pmd_alloc(mm, pud, addr);
1468         if (!pmd)
1469                 return -ENOMEM;
1470         do {
1471                 next = pmd_addr_end(addr, end);
1472                 if (remap_pte_range(mm, pmd, addr, next,
1473                                 pfn + (addr >> PAGE_SHIFT), prot))
1474                         return -ENOMEM;
1475         } while (pmd++, addr = next, addr != end);
1476         return 0;
1477 }
1478
1479 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1480                         unsigned long addr, unsigned long end,
1481                         unsigned long pfn, pgprot_t prot)
1482 {
1483         pud_t *pud;
1484         unsigned long next;
1485
1486         pfn -= addr >> PAGE_SHIFT;
1487         pud = pud_alloc(mm, pgd, addr);
1488         if (!pud)
1489                 return -ENOMEM;
1490         do {
1491                 next = pud_addr_end(addr, end);
1492                 if (remap_pmd_range(mm, pud, addr, next,
1493                                 pfn + (addr >> PAGE_SHIFT), prot))
1494                         return -ENOMEM;
1495         } while (pud++, addr = next, addr != end);
1496         return 0;
1497 }
1498
1499 /**
1500  * remap_pfn_range - remap kernel memory to userspace
1501  * @vma: user vma to map to
1502  * @addr: target user address to start at
1503  * @pfn: physical address of kernel memory
1504  * @size: size of map area
1505  * @prot: page protection flags for this mapping
1506  *
1507  *  Note: this is only safe if the mm semaphore is held when called.
1508  */
1509 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1510                     unsigned long pfn, unsigned long size, pgprot_t prot)
1511 {
1512         pgd_t *pgd;
1513         unsigned long next;
1514         unsigned long end = addr + PAGE_ALIGN(size);
1515         struct mm_struct *mm = vma->vm_mm;
1516         int err;
1517
1518         /*
1519          * Physically remapped pages are special. Tell the
1520          * rest of the world about it:
1521          *   VM_IO tells people not to look at these pages
1522          *      (accesses can have side effects).
1523          *   VM_RESERVED is specified all over the place, because
1524          *      in 2.4 it kept swapout's vma scan off this vma; but
1525          *      in 2.6 the LRU scan won't even find its pages, so this
1526          *      flag means no more than count its pages in reserved_vm,
1527          *      and omit it from core dump, even when VM_IO turned off.
1528          *   VM_PFNMAP tells the core MM that the base pages are just
1529          *      raw PFN mappings, and do not have a "struct page" associated
1530          *      with them.
1531          *
1532          * There's a horrible special case to handle copy-on-write
1533          * behaviour that some programs depend on. We mark the "original"
1534          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1535          */
1536         if (is_cow_mapping(vma->vm_flags)) {
1537                 if (addr != vma->vm_start || end != vma->vm_end)
1538                         return -EINVAL;
1539                 vma->vm_pgoff = pfn;
1540         }
1541
1542         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1543
1544         BUG_ON(addr >= end);
1545         pfn -= addr >> PAGE_SHIFT;
1546         pgd = pgd_offset(mm, addr);
1547         flush_cache_range(vma, addr, end);
1548         do {
1549                 next = pgd_addr_end(addr, end);
1550                 err = remap_pud_range(mm, pgd, addr, next,
1551                                 pfn + (addr >> PAGE_SHIFT), prot);
1552                 if (err)
1553                         break;
1554         } while (pgd++, addr = next, addr != end);
1555         return err;
1556 }
1557 EXPORT_SYMBOL(remap_pfn_range);
1558
1559 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1560                                      unsigned long addr, unsigned long end,
1561                                      pte_fn_t fn, void *data)
1562 {
1563         pte_t *pte;
1564         int err;
1565         pgtable_t token;
1566         spinlock_t *uninitialized_var(ptl);
1567
1568         pte = (mm == &init_mm) ?
1569                 pte_alloc_kernel(pmd, addr) :
1570                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1571         if (!pte)
1572                 return -ENOMEM;
1573
1574         BUG_ON(pmd_huge(*pmd));
1575
1576         token = pmd_pgtable(*pmd);
1577
1578         do {
1579                 err = fn(pte, token, addr, data);
1580                 if (err)
1581                         break;
1582         } while (pte++, addr += PAGE_SIZE, addr != end);
1583
1584         if (mm != &init_mm)
1585                 pte_unmap_unlock(pte-1, ptl);
1586         return err;
1587 }
1588
1589 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1590                                      unsigned long addr, unsigned long end,
1591                                      pte_fn_t fn, void *data)
1592 {
1593         pmd_t *pmd;
1594         unsigned long next;
1595         int err;
1596
1597         BUG_ON(pud_huge(*pud));
1598
1599         pmd = pmd_alloc(mm, pud, addr);
1600         if (!pmd)
1601                 return -ENOMEM;
1602         do {
1603                 next = pmd_addr_end(addr, end);
1604                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1605                 if (err)
1606                         break;
1607         } while (pmd++, addr = next, addr != end);
1608         return err;
1609 }
1610
1611 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1612                                      unsigned long addr, unsigned long end,
1613                                      pte_fn_t fn, void *data)
1614 {
1615         pud_t *pud;
1616         unsigned long next;
1617         int err;
1618
1619         pud = pud_alloc(mm, pgd, addr);
1620         if (!pud)
1621                 return -ENOMEM;
1622         do {
1623                 next = pud_addr_end(addr, end);
1624                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1625                 if (err)
1626                         break;
1627         } while (pud++, addr = next, addr != end);
1628         return err;
1629 }
1630
1631 /*
1632  * Scan a region of virtual memory, filling in page tables as necessary
1633  * and calling a provided function on each leaf page table.
1634  */
1635 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1636                         unsigned long size, pte_fn_t fn, void *data)
1637 {
1638         pgd_t *pgd;
1639         unsigned long next;
1640         unsigned long start = addr, end = addr + size;
1641         int err;
1642
1643         BUG_ON(addr >= end);
1644         mmu_notifier_invalidate_range_start(mm, start, end);
1645         pgd = pgd_offset(mm, addr);
1646         do {
1647                 next = pgd_addr_end(addr, end);
1648                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1649                 if (err)
1650                         break;
1651         } while (pgd++, addr = next, addr != end);
1652         mmu_notifier_invalidate_range_end(mm, start, end);
1653         return err;
1654 }
1655 EXPORT_SYMBOL_GPL(apply_to_page_range);
1656
1657 /*
1658  * handle_pte_fault chooses page fault handler according to an entry
1659  * which was read non-atomically.  Before making any commitment, on
1660  * those architectures or configurations (e.g. i386 with PAE) which
1661  * might give a mix of unmatched parts, do_swap_page and do_file_page
1662  * must check under lock before unmapping the pte and proceeding
1663  * (but do_wp_page is only called after already making such a check;
1664  * and do_anonymous_page and do_no_page can safely check later on).
1665  */
1666 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1667                                 pte_t *page_table, pte_t orig_pte)
1668 {
1669         int same = 1;
1670 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1671         if (sizeof(pte_t) > sizeof(unsigned long)) {
1672                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1673                 spin_lock(ptl);
1674                 same = pte_same(*page_table, orig_pte);
1675                 spin_unlock(ptl);
1676         }
1677 #endif
1678         pte_unmap(page_table);
1679         return same;
1680 }
1681
1682 /*
1683  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1684  * servicing faults for write access.  In the normal case, do always want
1685  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1686  * that do not have writing enabled, when used by access_process_vm.
1687  */
1688 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1689 {
1690         if (likely(vma->vm_flags & VM_WRITE))
1691                 pte = pte_mkwrite(pte);
1692         return pte;
1693 }
1694
1695 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1696 {
1697         /*
1698          * If the source page was a PFN mapping, we don't have
1699          * a "struct page" for it. We do a best-effort copy by
1700          * just copying from the original user address. If that
1701          * fails, we just zero-fill it. Live with it.
1702          */
1703         if (unlikely(!src)) {
1704                 void *kaddr = kmap_atomic(dst, KM_USER0);
1705                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1706
1707                 /*
1708                  * This really shouldn't fail, because the page is there
1709                  * in the page tables. But it might just be unreadable,
1710                  * in which case we just give up and fill the result with
1711                  * zeroes.
1712                  */
1713                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1714                         memset(kaddr, 0, PAGE_SIZE);
1715                 kunmap_atomic(kaddr, KM_USER0);
1716                 flush_dcache_page(dst);
1717         } else
1718                 copy_user_highpage(dst, src, va, vma);
1719 }
1720
1721 /*
1722  * This routine handles present pages, when users try to write
1723  * to a shared page. It is done by copying the page to a new address
1724  * and decrementing the shared-page counter for the old page.
1725  *
1726  * Note that this routine assumes that the protection checks have been
1727  * done by the caller (the low-level page fault routine in most cases).
1728  * Thus we can safely just mark it writable once we've done any necessary
1729  * COW.
1730  *
1731  * We also mark the page dirty at this point even though the page will
1732  * change only once the write actually happens. This avoids a few races,
1733  * and potentially makes it more efficient.
1734  *
1735  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1736  * but allow concurrent faults), with pte both mapped and locked.
1737  * We return with mmap_sem still held, but pte unmapped and unlocked.
1738  */
1739 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1740                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1741                 spinlock_t *ptl, pte_t orig_pte)
1742 {
1743         struct page *old_page, *new_page;
1744         pte_t entry;
1745         int reuse = 0, ret = 0;
1746         int page_mkwrite = 0;
1747         struct page *dirty_page = NULL;
1748
1749         old_page = vm_normal_page(vma, address, orig_pte);
1750         if (!old_page) {
1751                 /*
1752                  * VM_MIXEDMAP !pfn_valid() case
1753                  *
1754                  * We should not cow pages in a shared writeable mapping.
1755                  * Just mark the pages writable as we can't do any dirty
1756                  * accounting on raw pfn maps.
1757                  */
1758                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1759                                      (VM_WRITE|VM_SHARED))
1760                         goto reuse;
1761                 goto gotten;
1762         }
1763
1764         /*
1765          * Take out anonymous pages first, anonymous shared vmas are
1766          * not dirty accountable.
1767          */
1768         if (PageAnon(old_page)) {
1769                 if (!TestSetPageLocked(old_page)) {
1770                         reuse = can_share_swap_page(old_page);
1771                         unlock_page(old_page);
1772                 }
1773         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1774                                         (VM_WRITE|VM_SHARED))) {
1775                 /*
1776                  * Only catch write-faults on shared writable pages,
1777                  * read-only shared pages can get COWed by
1778                  * get_user_pages(.write=1, .force=1).
1779                  */
1780                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1781                         /*
1782                          * Notify the address space that the page is about to
1783                          * become writable so that it can prohibit this or wait
1784                          * for the page to get into an appropriate state.
1785                          *
1786                          * We do this without the lock held, so that it can
1787                          * sleep if it needs to.
1788                          */
1789                         page_cache_get(old_page);
1790                         pte_unmap_unlock(page_table, ptl);
1791
1792                         if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1793                                 goto unwritable_page;
1794
1795                         /*
1796                          * Since we dropped the lock we need to revalidate
1797                          * the PTE as someone else may have changed it.  If
1798                          * they did, we just return, as we can count on the
1799                          * MMU to tell us if they didn't also make it writable.
1800                          */
1801                         page_table = pte_offset_map_lock(mm, pmd, address,
1802                                                          &ptl);
1803                         page_cache_release(old_page);
1804                         if (!pte_same(*page_table, orig_pte))
1805                                 goto unlock;
1806
1807                         page_mkwrite = 1;
1808                 }
1809                 dirty_page = old_page;
1810                 get_page(dirty_page);
1811                 reuse = 1;
1812         }
1813
1814         if (reuse) {
1815 reuse:
1816                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1817                 entry = pte_mkyoung(orig_pte);
1818                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1819                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1820                         update_mmu_cache(vma, address, entry);
1821                 ret |= VM_FAULT_WRITE;
1822                 goto unlock;
1823         }
1824
1825         /*
1826          * Ok, we need to copy. Oh, well..
1827          */
1828         page_cache_get(old_page);
1829 gotten:
1830         pte_unmap_unlock(page_table, ptl);
1831
1832         if (unlikely(anon_vma_prepare(vma)))
1833                 goto oom;
1834         VM_BUG_ON(old_page == ZERO_PAGE(0));
1835         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1836         if (!new_page)
1837                 goto oom;
1838         cow_user_page(new_page, old_page, address, vma);
1839         __SetPageUptodate(new_page);
1840
1841         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1842                 goto oom_free_new;
1843
1844         /*
1845          * Re-check the pte - we dropped the lock
1846          */
1847         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1848         if (likely(pte_same(*page_table, orig_pte))) {
1849                 if (old_page) {
1850                         if (!PageAnon(old_page)) {
1851                                 dec_mm_counter(mm, file_rss);
1852                                 inc_mm_counter(mm, anon_rss);
1853                         }
1854                 } else
1855                         inc_mm_counter(mm, anon_rss);
1856                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1857                 entry = mk_pte(new_page, vma->vm_page_prot);
1858                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1859                 /*
1860                  * Clear the pte entry and flush it first, before updating the
1861                  * pte with the new entry. This will avoid a race condition
1862                  * seen in the presence of one thread doing SMC and another
1863                  * thread doing COW.
1864                  */
1865                 ptep_clear_flush_notify(vma, address, page_table);
1866                 set_pte_at(mm, address, page_table, entry);
1867                 update_mmu_cache(vma, address, entry);
1868                 lru_cache_add_active(new_page);
1869                 page_add_new_anon_rmap(new_page, vma, address);
1870
1871                 if (old_page) {
1872                         /*
1873                          * Only after switching the pte to the new page may
1874                          * we remove the mapcount here. Otherwise another
1875                          * process may come and find the rmap count decremented
1876                          * before the pte is switched to the new page, and
1877                          * "reuse" the old page writing into it while our pte
1878                          * here still points into it and can be read by other
1879                          * threads.
1880                          *
1881                          * The critical issue is to order this
1882                          * page_remove_rmap with the ptp_clear_flush above.
1883                          * Those stores are ordered by (if nothing else,)
1884                          * the barrier present in the atomic_add_negative
1885                          * in page_remove_rmap.
1886                          *
1887                          * Then the TLB flush in ptep_clear_flush ensures that
1888                          * no process can access the old page before the
1889                          * decremented mapcount is visible. And the old page
1890                          * cannot be reused until after the decremented
1891                          * mapcount is visible. So transitively, TLBs to
1892                          * old page will be flushed before it can be reused.
1893                          */
1894                         page_remove_rmap(old_page, vma);
1895                 }
1896
1897                 /* Free the old page.. */
1898                 new_page = old_page;
1899                 ret |= VM_FAULT_WRITE;
1900         } else
1901                 mem_cgroup_uncharge_page(new_page);
1902
1903         if (new_page)
1904                 page_cache_release(new_page);
1905         if (old_page)
1906                 page_cache_release(old_page);
1907 unlock:
1908         pte_unmap_unlock(page_table, ptl);
1909         if (dirty_page) {
1910                 if (vma->vm_file)
1911                         file_update_time(vma->vm_file);
1912
1913                 /*
1914                  * Yes, Virginia, this is actually required to prevent a race
1915                  * with clear_page_dirty_for_io() from clearing the page dirty
1916                  * bit after it clear all dirty ptes, but before a racing
1917                  * do_wp_page installs a dirty pte.
1918                  *
1919                  * do_no_page is protected similarly.
1920                  */
1921                 wait_on_page_locked(dirty_page);
1922                 set_page_dirty_balance(dirty_page, page_mkwrite);
1923                 put_page(dirty_page);
1924         }
1925         return ret;
1926 oom_free_new:
1927         page_cache_release(new_page);
1928 oom:
1929         if (old_page)
1930                 page_cache_release(old_page);
1931         return VM_FAULT_OOM;
1932
1933 unwritable_page:
1934         page_cache_release(old_page);
1935         return VM_FAULT_SIGBUS;
1936 }
1937
1938 /*
1939  * Helper functions for unmap_mapping_range().
1940  *
1941  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1942  *
1943  * We have to restart searching the prio_tree whenever we drop the lock,
1944  * since the iterator is only valid while the lock is held, and anyway
1945  * a later vma might be split and reinserted earlier while lock dropped.
1946  *
1947  * The list of nonlinear vmas could be handled more efficiently, using
1948  * a placeholder, but handle it in the same way until a need is shown.
1949  * It is important to search the prio_tree before nonlinear list: a vma
1950  * may become nonlinear and be shifted from prio_tree to nonlinear list
1951  * while the lock is dropped; but never shifted from list to prio_tree.
1952  *
1953  * In order to make forward progress despite restarting the search,
1954  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1955  * quickly skip it next time around.  Since the prio_tree search only
1956  * shows us those vmas affected by unmapping the range in question, we
1957  * can't efficiently keep all vmas in step with mapping->truncate_count:
1958  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1959  * mapping->truncate_count and vma->vm_truncate_count are protected by
1960  * i_mmap_lock.
1961  *
1962  * In order to make forward progress despite repeatedly restarting some
1963  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1964  * and restart from that address when we reach that vma again.  It might
1965  * have been split or merged, shrunk or extended, but never shifted: so
1966  * restart_addr remains valid so long as it remains in the vma's range.
1967  * unmap_mapping_range forces truncate_count to leap over page-aligned
1968  * values so we can save vma's restart_addr in its truncate_count field.
1969  */
1970 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1971
1972 static void reset_vma_truncate_counts(struct address_space *mapping)
1973 {
1974         struct vm_area_struct *vma;
1975         struct prio_tree_iter iter;
1976
1977         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1978                 vma->vm_truncate_count = 0;
1979         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1980                 vma->vm_truncate_count = 0;
1981 }
1982
1983 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1984                 unsigned long start_addr, unsigned long end_addr,
1985                 struct zap_details *details)
1986 {
1987         unsigned long restart_addr;
1988         int need_break;
1989
1990         /*
1991          * files that support invalidating or truncating portions of the
1992          * file from under mmaped areas must have their ->fault function
1993          * return a locked page (and set VM_FAULT_LOCKED in the return).
1994          * This provides synchronisation against concurrent unmapping here.
1995          */
1996
1997 again:
1998         restart_addr = vma->vm_truncate_count;
1999         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2000                 start_addr = restart_addr;
2001                 if (start_addr >= end_addr) {
2002                         /* Top of vma has been split off since last time */
2003                         vma->vm_truncate_count = details->truncate_count;
2004                         return 0;
2005                 }
2006         }
2007
2008         restart_addr = zap_page_range(vma, start_addr,
2009                                         end_addr - start_addr, details);
2010         need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2011
2012         if (restart_addr >= end_addr) {
2013                 /* We have now completed this vma: mark it so */
2014                 vma->vm_truncate_count = details->truncate_count;
2015                 if (!need_break)
2016                         return 0;
2017         } else {
2018                 /* Note restart_addr in vma's truncate_count field */
2019                 vma->vm_truncate_count = restart_addr;
2020                 if (!need_break)
2021                         goto again;
2022         }
2023
2024         spin_unlock(details->i_mmap_lock);
2025         cond_resched();
2026         spin_lock(details->i_mmap_lock);
2027         return -EINTR;
2028 }
2029
2030 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2031                                             struct zap_details *details)
2032 {
2033         struct vm_area_struct *vma;
2034         struct prio_tree_iter iter;
2035         pgoff_t vba, vea, zba, zea;
2036
2037 restart:
2038         vma_prio_tree_foreach(vma, &iter, root,
2039                         details->first_index, details->last_index) {
2040                 /* Skip quickly over those we have already dealt with */
2041                 if (vma->vm_truncate_count == details->truncate_count)
2042                         continue;
2043
2044                 vba = vma->vm_pgoff;
2045                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2046                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2047                 zba = details->first_index;
2048                 if (zba < vba)
2049                         zba = vba;
2050                 zea = details->last_index;
2051                 if (zea > vea)
2052                         zea = vea;
2053
2054                 if (unmap_mapping_range_vma(vma,
2055                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2056                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2057                                 details) < 0)
2058                         goto restart;
2059         }
2060 }
2061
2062 static inline void unmap_mapping_range_list(struct list_head *head,
2063                                             struct zap_details *details)
2064 {
2065         struct vm_area_struct *vma;
2066
2067         /*
2068          * In nonlinear VMAs there is no correspondence between virtual address
2069          * offset and file offset.  So we must perform an exhaustive search
2070          * across *all* the pages in each nonlinear VMA, not just the pages
2071          * whose virtual address lies outside the file truncation point.
2072          */
2073 restart:
2074         list_for_each_entry(vma, head, shared.vm_set.list) {
2075                 /* Skip quickly over those we have already dealt with */
2076                 if (vma->vm_truncate_count == details->truncate_count)
2077                         continue;
2078                 details->nonlinear_vma = vma;
2079                 if (unmap_mapping_range_vma(vma, vma->vm_start,
2080                                         vma->vm_end, details) < 0)
2081                         goto restart;
2082         }
2083 }
2084
2085 /**
2086  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2087  * @mapping: the address space containing mmaps to be unmapped.
2088  * @holebegin: byte in first page to unmap, relative to the start of
2089  * the underlying file.  This will be rounded down to a PAGE_SIZE
2090  * boundary.  Note that this is different from vmtruncate(), which
2091  * must keep the partial page.  In contrast, we must get rid of
2092  * partial pages.
2093  * @holelen: size of prospective hole in bytes.  This will be rounded
2094  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2095  * end of the file.
2096  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2097  * but 0 when invalidating pagecache, don't throw away private data.
2098  */
2099 void unmap_mapping_range(struct address_space *mapping,
2100                 loff_t const holebegin, loff_t const holelen, int even_cows)
2101 {
2102         struct zap_details details;
2103         pgoff_t hba = holebegin >> PAGE_SHIFT;
2104         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2105
2106         /* Check for overflow. */
2107         if (sizeof(holelen) > sizeof(hlen)) {
2108                 long long holeend =
2109                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2110                 if (holeend & ~(long long)ULONG_MAX)
2111                         hlen = ULONG_MAX - hba + 1;
2112         }
2113
2114         details.check_mapping = even_cows? NULL: mapping;
2115         details.nonlinear_vma = NULL;
2116         details.first_index = hba;
2117         details.last_index = hba + hlen - 1;
2118         if (details.last_index < details.first_index)
2119                 details.last_index = ULONG_MAX;
2120         details.i_mmap_lock = &mapping->i_mmap_lock;
2121
2122         spin_lock(&mapping->i_mmap_lock);
2123
2124         /* Protect against endless unmapping loops */
2125         mapping->truncate_count++;
2126         if (unlikely(is_restart_addr(mapping->truncate_count))) {
2127                 if (mapping->truncate_count == 0)
2128                         reset_vma_truncate_counts(mapping);
2129                 mapping->truncate_count++;
2130         }
2131         details.truncate_count = mapping->truncate_count;
2132
2133         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2134                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2135         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2136                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2137         spin_unlock(&mapping->i_mmap_lock);
2138 }
2139 EXPORT_SYMBOL(unmap_mapping_range);
2140
2141 /**
2142  * vmtruncate - unmap mappings "freed" by truncate() syscall
2143  * @inode: inode of the file used
2144  * @offset: file offset to start truncating
2145  *
2146  * NOTE! We have to be ready to update the memory sharing
2147  * between the file and the memory map for a potential last
2148  * incomplete page.  Ugly, but necessary.
2149  */
2150 int vmtruncate(struct inode * inode, loff_t offset)
2151 {
2152         if (inode->i_size < offset) {
2153                 unsigned long limit;
2154
2155                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2156                 if (limit != RLIM_INFINITY && offset > limit)
2157                         goto out_sig;
2158                 if (offset > inode->i_sb->s_maxbytes)
2159                         goto out_big;
2160                 i_size_write(inode, offset);
2161         } else {
2162                 struct address_space *mapping = inode->i_mapping;
2163
2164                 /*
2165                  * truncation of in-use swapfiles is disallowed - it would
2166                  * cause subsequent swapout to scribble on the now-freed
2167                  * blocks.
2168                  */
2169                 if (IS_SWAPFILE(inode))
2170                         return -ETXTBSY;
2171                 i_size_write(inode, offset);
2172
2173                 /*
2174                  * unmap_mapping_range is called twice, first simply for
2175                  * efficiency so that truncate_inode_pages does fewer
2176                  * single-page unmaps.  However after this first call, and
2177                  * before truncate_inode_pages finishes, it is possible for
2178                  * private pages to be COWed, which remain after
2179                  * truncate_inode_pages finishes, hence the second
2180                  * unmap_mapping_range call must be made for correctness.
2181                  */
2182                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2183                 truncate_inode_pages(mapping, offset);
2184                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2185         }
2186
2187         if (inode->i_op && inode->i_op->truncate)
2188                 inode->i_op->truncate(inode);
2189         return 0;
2190
2191 out_sig:
2192         send_sig(SIGXFSZ, current, 0);
2193 out_big:
2194         return -EFBIG;
2195 }
2196 EXPORT_SYMBOL(vmtruncate);
2197
2198 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2199 {
2200         struct address_space *mapping = inode->i_mapping;
2201
2202         /*
2203          * If the underlying filesystem is not going to provide
2204          * a way to truncate a range of blocks (punch a hole) -
2205          * we should return failure right now.
2206          */
2207         if (!inode->i_op || !inode->i_op->truncate_range)
2208                 return -ENOSYS;
2209
2210         mutex_lock(&inode->i_mutex);
2211         down_write(&inode->i_alloc_sem);
2212         unmap_mapping_range(mapping, offset, (end - offset), 1);
2213         truncate_inode_pages_range(mapping, offset, end);
2214         unmap_mapping_range(mapping, offset, (end - offset), 1);
2215         inode->i_op->truncate_range(inode, offset, end);
2216         up_write(&inode->i_alloc_sem);
2217         mutex_unlock(&inode->i_mutex);
2218
2219         return 0;
2220 }
2221
2222 /*
2223  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2224  * but allow concurrent faults), and pte mapped but not yet locked.
2225  * We return with mmap_sem still held, but pte unmapped and unlocked.
2226  */
2227 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2228                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2229                 int write_access, pte_t orig_pte)
2230 {
2231         spinlock_t *ptl;
2232         struct page *page;
2233         swp_entry_t entry;
2234         pte_t pte;
2235         int ret = 0;
2236
2237         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2238                 goto out;
2239
2240         entry = pte_to_swp_entry(orig_pte);
2241         if (is_migration_entry(entry)) {
2242                 migration_entry_wait(mm, pmd, address);
2243                 goto out;
2244         }
2245         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2246         page = lookup_swap_cache(entry);
2247         if (!page) {
2248                 grab_swap_token(); /* Contend for token _before_ read-in */
2249                 page = swapin_readahead(entry,
2250                                         GFP_HIGHUSER_MOVABLE, vma, address);
2251                 if (!page) {
2252                         /*
2253                          * Back out if somebody else faulted in this pte
2254                          * while we released the pte lock.
2255                          */
2256                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2257                         if (likely(pte_same(*page_table, orig_pte)))
2258                                 ret = VM_FAULT_OOM;
2259                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2260                         goto unlock;
2261                 }
2262
2263                 /* Had to read the page from swap area: Major fault */
2264                 ret = VM_FAULT_MAJOR;
2265                 count_vm_event(PGMAJFAULT);
2266         }
2267
2268         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2269                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2270                 ret = VM_FAULT_OOM;
2271                 goto out;
2272         }
2273
2274         mark_page_accessed(page);
2275         lock_page(page);
2276         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2277
2278         /*
2279          * Back out if somebody else already faulted in this pte.
2280          */
2281         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2282         if (unlikely(!pte_same(*page_table, orig_pte)))
2283                 goto out_nomap;
2284
2285         if (unlikely(!PageUptodate(page))) {
2286                 ret = VM_FAULT_SIGBUS;
2287                 goto out_nomap;
2288         }
2289
2290         /* The page isn't present yet, go ahead with the fault. */
2291
2292         inc_mm_counter(mm, anon_rss);
2293         pte = mk_pte(page, vma->vm_page_prot);
2294         if (write_access && can_share_swap_page(page)) {
2295                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2296                 write_access = 0;
2297         }
2298
2299         flush_icache_page(vma, page);
2300         set_pte_at(mm, address, page_table, pte);
2301         page_add_anon_rmap(page, vma, address);
2302
2303         swap_free(entry);
2304         if (vm_swap_full())
2305                 remove_exclusive_swap_page(page);
2306         unlock_page(page);
2307
2308         if (write_access) {
2309                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2310                 if (ret & VM_FAULT_ERROR)
2311                         ret &= VM_FAULT_ERROR;
2312                 goto out;
2313         }
2314
2315         /* No need to invalidate - it was non-present before */
2316         update_mmu_cache(vma, address, pte);
2317 unlock:
2318         pte_unmap_unlock(page_table, ptl);
2319 out:
2320         return ret;
2321 out_nomap:
2322         mem_cgroup_uncharge_page(page);
2323         pte_unmap_unlock(page_table, ptl);
2324         unlock_page(page);
2325         page_cache_release(page);
2326         return ret;
2327 }
2328
2329 /*
2330  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2331  * but allow concurrent faults), and pte mapped but not yet locked.
2332  * We return with mmap_sem still held, but pte unmapped and unlocked.
2333  */
2334 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2335                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2336                 int write_access)
2337 {
2338         struct page *page;
2339         spinlock_t *ptl;
2340         pte_t entry;
2341
2342         /* Allocate our own private page. */
2343         pte_unmap(page_table);
2344
2345         if (unlikely(anon_vma_prepare(vma)))
2346                 goto oom;
2347         page = alloc_zeroed_user_highpage_movable(vma, address);
2348         if (!page)
2349                 goto oom;
2350         __SetPageUptodate(page);
2351
2352         if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2353                 goto oom_free_page;
2354
2355         entry = mk_pte(page, vma->vm_page_prot);
2356         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2357
2358         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2359         if (!pte_none(*page_table))
2360                 goto release;
2361         inc_mm_counter(mm, anon_rss);
2362         lru_cache_add_active(page);
2363         page_add_new_anon_rmap(page, vma, address);
2364         set_pte_at(mm, address, page_table, entry);
2365
2366         /* No need to invalidate - it was non-present before */
2367         update_mmu_cache(vma, address, entry);
2368 unlock:
2369         pte_unmap_unlock(page_table, ptl);
2370         return 0;
2371 release:
2372         mem_cgroup_uncharge_page(page);
2373         page_cache_release(page);
2374         goto unlock;
2375 oom_free_page:
2376         page_cache_release(page);
2377 oom:
2378         return VM_FAULT_OOM;
2379 }
2380
2381 /*
2382  * __do_fault() tries to create a new page mapping. It aggressively
2383  * tries to share with existing pages, but makes a separate copy if
2384  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2385  * the next page fault.
2386  *
2387  * As this is called only for pages that do not currently exist, we
2388  * do not need to flush old virtual caches or the TLB.
2389  *
2390  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2391  * but allow concurrent faults), and pte neither mapped nor locked.
2392  * We return with mmap_sem still held, but pte unmapped and unlocked.
2393  */
2394 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2395                 unsigned long address, pmd_t *pmd,
2396                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2397 {
2398         pte_t *page_table;
2399         spinlock_t *ptl;
2400         struct page *page;
2401         pte_t entry;
2402         int anon = 0;
2403         struct page *dirty_page = NULL;
2404         struct vm_fault vmf;
2405         int ret;
2406         int page_mkwrite = 0;
2407
2408         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2409         vmf.pgoff = pgoff;
2410         vmf.flags = flags;
2411         vmf.page = NULL;
2412
2413         ret = vma->vm_ops->fault(vma, &vmf);
2414         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2415                 return ret;
2416
2417         /*
2418          * For consistency in subsequent calls, make the faulted page always
2419          * locked.
2420          */
2421         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2422                 lock_page(vmf.page);
2423         else
2424                 VM_BUG_ON(!PageLocked(vmf.page));
2425
2426         /*
2427          * Should we do an early C-O-W break?
2428          */
2429         page = vmf.page;
2430         if (flags & FAULT_FLAG_WRITE) {
2431                 if (!(vma->vm_flags & VM_SHARED)) {
2432                         anon = 1;
2433                         if (unlikely(anon_vma_prepare(vma))) {
2434                                 ret = VM_FAULT_OOM;
2435                                 goto out;
2436                         }
2437                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2438                                                 vma, address);
2439                         if (!page) {
2440                                 ret = VM_FAULT_OOM;
2441                                 goto out;
2442                         }
2443                         copy_user_highpage(page, vmf.page, address, vma);
2444                         __SetPageUptodate(page);
2445                 } else {
2446                         /*
2447                          * If the page will be shareable, see if the backing
2448                          * address space wants to know that the page is about
2449                          * to become writable
2450                          */
2451                         if (vma->vm_ops->page_mkwrite) {
2452                                 unlock_page(page);
2453                                 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2454                                         ret = VM_FAULT_SIGBUS;
2455                                         anon = 1; /* no anon but release vmf.page */
2456                                         goto out_unlocked;
2457                                 }
2458                                 lock_page(page);
2459                                 /*
2460                                  * XXX: this is not quite right (racy vs
2461                                  * invalidate) to unlock and relock the page
2462                                  * like this, however a better fix requires
2463                                  * reworking page_mkwrite locking API, which
2464                                  * is better done later.
2465                                  */
2466                                 if (!page->mapping) {
2467                                         ret = 0;
2468                                         anon = 1; /* no anon but release vmf.page */
2469                                         goto out;
2470                                 }
2471                                 page_mkwrite = 1;
2472                         }
2473                 }
2474
2475         }
2476
2477         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2478                 ret = VM_FAULT_OOM;
2479                 goto out;
2480         }
2481
2482         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2483
2484         /*
2485          * This silly early PAGE_DIRTY setting removes a race
2486          * due to the bad i386 page protection. But it's valid
2487          * for other architectures too.
2488          *
2489          * Note that if write_access is true, we either now have
2490          * an exclusive copy of the page, or this is a shared mapping,
2491          * so we can make it writable and dirty to avoid having to
2492          * handle that later.
2493          */
2494         /* Only go through if we didn't race with anybody else... */
2495         if (likely(pte_same(*page_table, orig_pte))) {
2496                 flush_icache_page(vma, page);
2497                 entry = mk_pte(page, vma->vm_page_prot);
2498                 if (flags & FAULT_FLAG_WRITE)
2499                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2500                 set_pte_at(mm, address, page_table, entry);
2501                 if (anon) {
2502                         inc_mm_counter(mm, anon_rss);
2503                         lru_cache_add_active(page);
2504                         page_add_new_anon_rmap(page, vma, address);
2505                 } else {
2506                         inc_mm_counter(mm, file_rss);
2507                         page_add_file_rmap(page);
2508                         if (flags & FAULT_FLAG_WRITE) {
2509                                 dirty_page = page;
2510                                 get_page(dirty_page);
2511                         }
2512                 }
2513
2514                 /* no need to invalidate: a not-present page won't be cached */
2515                 update_mmu_cache(vma, address, entry);
2516         } else {
2517                 mem_cgroup_uncharge_page(page);
2518                 if (anon)
2519                         page_cache_release(page);
2520                 else
2521                         anon = 1; /* no anon but release faulted_page */
2522         }
2523
2524         pte_unmap_unlock(page_table, ptl);
2525
2526 out:
2527         unlock_page(vmf.page);
2528 out_unlocked:
2529         if (anon)
2530                 page_cache_release(vmf.page);
2531         else if (dirty_page) {
2532                 if (vma->vm_file)
2533                         file_update_time(vma->vm_file);
2534
2535                 set_page_dirty_balance(dirty_page, page_mkwrite);
2536                 put_page(dirty_page);
2537         }
2538
2539         return ret;
2540 }
2541
2542 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2543                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2544                 int write_access, pte_t orig_pte)
2545 {
2546         pgoff_t pgoff = (((address & PAGE_MASK)
2547                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2548         unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2549
2550         pte_unmap(page_table);
2551         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2552 }
2553
2554 /*
2555  * Fault of a previously existing named mapping. Repopulate the pte
2556  * from the encoded file_pte if possible. This enables swappable
2557  * nonlinear vmas.
2558  *
2559  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2560  * but allow concurrent faults), and pte mapped but not yet locked.
2561  * We return with mmap_sem still held, but pte unmapped and unlocked.
2562  */
2563 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2564                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2565                 int write_access, pte_t orig_pte)
2566 {
2567         unsigned int flags = FAULT_FLAG_NONLINEAR |
2568                                 (write_access ? FAULT_FLAG_WRITE : 0);
2569         pgoff_t pgoff;
2570
2571         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2572                 return 0;
2573
2574         if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2575                         !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2576                 /*
2577                  * Page table corrupted: show pte and kill process.
2578                  */
2579                 print_bad_pte(vma, orig_pte, address);
2580                 return VM_FAULT_OOM;
2581         }
2582
2583         pgoff = pte_to_pgoff(orig_pte);
2584         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2585 }
2586
2587 /*
2588  * These routines also need to handle stuff like marking pages dirty
2589  * and/or accessed for architectures that don't do it in hardware (most
2590  * RISC architectures).  The early dirtying is also good on the i386.
2591  *
2592  * There is also a hook called "update_mmu_cache()" that architectures
2593  * with external mmu caches can use to update those (ie the Sparc or
2594  * PowerPC hashed page tables that act as extended TLBs).
2595  *
2596  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2597  * but allow concurrent faults), and pte mapped but not yet locked.
2598  * We return with mmap_sem still held, but pte unmapped and unlocked.
2599  */
2600 static inline int handle_pte_fault(struct mm_struct *mm,
2601                 struct vm_area_struct *vma, unsigned long address,
2602                 pte_t *pte, pmd_t *pmd, int write_access)
2603 {
2604         pte_t entry;
2605         spinlock_t *ptl;
2606
2607         entry = *pte;
2608         if (!pte_present(entry)) {
2609                 if (pte_none(entry)) {
2610                         if (vma->vm_ops) {
2611                                 if (likely(vma->vm_ops->fault))
2612                                         return do_linear_fault(mm, vma, address,
2613                                                 pte, pmd, write_access, entry);
2614                         }
2615                         return do_anonymous_page(mm, vma, address,
2616                                                  pte, pmd, write_access);
2617                 }
2618                 if (pte_file(entry))
2619                         return do_nonlinear_fault(mm, vma, address,
2620                                         pte, pmd, write_access, entry);
2621                 return do_swap_page(mm, vma, address,
2622                                         pte, pmd, write_access, entry);
2623         }
2624
2625         ptl = pte_lockptr(mm, pmd);
2626         spin_lock(ptl);
2627         if (unlikely(!pte_same(*pte, entry)))
2628                 goto unlock;
2629         if (write_access) {
2630                 if (!pte_write(entry))
2631                         return do_wp_page(mm, vma, address,
2632                                         pte, pmd, ptl, entry);
2633                 entry = pte_mkdirty(entry);
2634         }
2635         entry = pte_mkyoung(entry);
2636         if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2637                 update_mmu_cache(vma, address, entry);
2638         } else {
2639                 /*
2640                  * This is needed only for protection faults but the arch code
2641                  * is not yet telling us if this is a protection fault or not.
2642                  * This still avoids useless tlb flushes for .text page faults
2643                  * with threads.
2644                  */
2645                 if (write_access)
2646                         flush_tlb_page(vma, address);
2647         }
2648 unlock:
2649         pte_unmap_unlock(pte, ptl);
2650         return 0;
2651 }
2652
2653 /*
2654  * By the time we get here, we already hold the mm semaphore
2655  */
2656 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2657                 unsigned long address, int write_access)
2658 {
2659         pgd_t *pgd;
2660         pud_t *pud;
2661         pmd_t *pmd;
2662         pte_t *pte;
2663
2664         __set_current_state(TASK_RUNNING);
2665
2666         count_vm_event(PGFAULT);
2667
2668         if (unlikely(is_vm_hugetlb_page(vma)))
2669                 return hugetlb_fault(mm, vma, address, write_access);
2670
2671         pgd = pgd_offset(mm, address);
2672         pud = pud_alloc(mm, pgd, address);
2673         if (!pud)
2674                 return VM_FAULT_OOM;
2675         pmd = pmd_alloc(mm, pud, address);
2676         if (!pmd)
2677                 return VM_FAULT_OOM;
2678         pte = pte_alloc_map(mm, pmd, address);
2679         if (!pte)
2680                 return VM_FAULT_OOM;
2681
2682         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2683 }
2684
2685 #ifndef __PAGETABLE_PUD_FOLDED
2686 /*
2687  * Allocate page upper directory.
2688  * We've already handled the fast-path in-line.
2689  */
2690 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2691 {
2692         pud_t *new = pud_alloc_one(mm, address);
2693         if (!new)
2694                 return -ENOMEM;
2695
2696         smp_wmb(); /* See comment in __pte_alloc */
2697
2698         spin_lock(&mm->page_table_lock);
2699         if (pgd_present(*pgd))          /* Another has populated it */
2700                 pud_free(mm, new);
2701         else
2702                 pgd_populate(mm, pgd, new);
2703         spin_unlock(&mm->page_table_lock);
2704         return 0;
2705 }
2706 #endif /* __PAGETABLE_PUD_FOLDED */
2707
2708 #ifndef __PAGETABLE_PMD_FOLDED
2709 /*
2710  * Allocate page middle directory.
2711  * We've already handled the fast-path in-line.
2712  */
2713 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2714 {
2715         pmd_t *new = pmd_alloc_one(mm, address);
2716         if (!new)
2717                 return -ENOMEM;
2718
2719         smp_wmb(); /* See comment in __pte_alloc */
2720
2721         spin_lock(&mm->page_table_lock);
2722 #ifndef __ARCH_HAS_4LEVEL_HACK
2723         if (pud_present(*pud))          /* Another has populated it */
2724                 pmd_free(mm, new);
2725         else
2726                 pud_populate(mm, pud, new);
2727 #else
2728         if (pgd_present(*pud))          /* Another has populated it */
2729                 pmd_free(mm, new);
2730         else
2731                 pgd_populate(mm, pud, new);
2732 #endif /* __ARCH_HAS_4LEVEL_HACK */
2733         spin_unlock(&mm->page_table_lock);
2734         return 0;
2735 }
2736 #endif /* __PAGETABLE_PMD_FOLDED */
2737
2738 int make_pages_present(unsigned long addr, unsigned long end)
2739 {
2740         int ret, len, write;
2741         struct vm_area_struct * vma;
2742
2743         vma = find_vma(current->mm, addr);
2744         if (!vma)
2745                 return -1;
2746         write = (vma->vm_flags & VM_WRITE) != 0;
2747         BUG_ON(addr >= end);
2748         BUG_ON(end > vma->vm_end);
2749         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2750         ret = get_user_pages(current, current->mm, addr,
2751                         len, write, 0, NULL, NULL);
2752         if (ret < 0)
2753                 return ret;
2754         return ret == len ? 0 : -1;
2755 }
2756
2757 #if !defined(__HAVE_ARCH_GATE_AREA)
2758
2759 #if defined(AT_SYSINFO_EHDR)
2760 static struct vm_area_struct gate_vma;
2761
2762 static int __init gate_vma_init(void)
2763 {
2764         gate_vma.vm_mm = NULL;
2765         gate_vma.vm_start = FIXADDR_USER_START;
2766         gate_vma.vm_end = FIXADDR_USER_END;
2767         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2768         gate_vma.vm_page_prot = __P101;
2769         /*
2770          * Make sure the vDSO gets into every core dump.
2771          * Dumping its contents makes post-mortem fully interpretable later
2772          * without matching up the same kernel and hardware config to see
2773          * what PC values meant.
2774          */
2775         gate_vma.vm_flags |= VM_ALWAYSDUMP;
2776         return 0;
2777 }
2778 __initcall(gate_vma_init);
2779 #endif
2780
2781 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2782 {
2783 #ifdef AT_SYSINFO_EHDR
2784         return &gate_vma;
2785 #else
2786         return NULL;
2787 #endif
2788 }
2789
2790 int in_gate_area_no_task(unsigned long addr)
2791 {
2792 #ifdef AT_SYSINFO_EHDR
2793         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2794                 return 1;
2795 #endif
2796         return 0;
2797 }
2798
2799 #endif  /* __HAVE_ARCH_GATE_AREA */
2800
2801 #ifdef CONFIG_HAVE_IOREMAP_PROT
2802 static resource_size_t follow_phys(struct vm_area_struct *vma,
2803                         unsigned long address, unsigned int flags,
2804                         unsigned long *prot)
2805 {
2806         pgd_t *pgd;
2807         pud_t *pud;
2808         pmd_t *pmd;
2809         pte_t *ptep, pte;
2810         spinlock_t *ptl;
2811         resource_size_t phys_addr = 0;
2812         struct mm_struct *mm = vma->vm_mm;
2813
2814         VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2815
2816         pgd = pgd_offset(mm, address);
2817         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2818                 goto no_page_table;
2819
2820         pud = pud_offset(pgd, address);
2821         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2822                 goto no_page_table;
2823
2824         pmd = pmd_offset(pud, address);
2825         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2826                 goto no_page_table;
2827
2828         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2829         if (pmd_huge(*pmd))
2830                 goto no_page_table;
2831
2832         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2833         if (!ptep)
2834                 goto out;
2835
2836         pte = *ptep;
2837         if (!pte_present(pte))
2838                 goto unlock;
2839         if ((flags & FOLL_WRITE) && !pte_write(pte))
2840                 goto unlock;
2841         phys_addr = pte_pfn(pte);
2842         phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2843
2844         *prot = pgprot_val(pte_pgprot(pte));
2845
2846 unlock:
2847         pte_unmap_unlock(ptep, ptl);
2848 out:
2849         return phys_addr;
2850 no_page_table:
2851         return 0;
2852 }
2853
2854 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2855                         void *buf, int len, int write)
2856 {
2857         resource_size_t phys_addr;
2858         unsigned long prot = 0;
2859         void *maddr;
2860         int offset = addr & (PAGE_SIZE-1);
2861
2862         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2863                 return -EINVAL;
2864
2865         phys_addr = follow_phys(vma, addr, write, &prot);
2866
2867         if (!phys_addr)
2868                 return -EINVAL;
2869
2870         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2871         if (write)
2872                 memcpy_toio(maddr + offset, buf, len);
2873         else
2874                 memcpy_fromio(buf, maddr + offset, len);
2875         iounmap(maddr);
2876
2877         return len;
2878 }
2879 #endif
2880
2881 /*
2882  * Access another process' address space.
2883  * Source/target buffer must be kernel space,
2884  * Do not walk the page table directly, use get_user_pages
2885  */
2886 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2887 {
2888         struct mm_struct *mm;
2889         struct vm_area_struct *vma;
2890         void *old_buf = buf;
2891
2892         mm = get_task_mm(tsk);
2893         if (!mm)
2894                 return 0;
2895
2896         down_read(&mm->mmap_sem);
2897         /* ignore errors, just check how much was successfully transferred */
2898         while (len) {
2899                 int bytes, ret, offset;
2900                 void *maddr;
2901                 struct page *page = NULL;
2902
2903                 ret = get_user_pages(tsk, mm, addr, 1,
2904                                 write, 1, &page, &vma);
2905                 if (ret <= 0) {
2906                         /*
2907                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
2908                          * we can access using slightly different code.
2909                          */
2910 #ifdef CONFIG_HAVE_IOREMAP_PROT
2911                         vma = find_vma(mm, addr);
2912                         if (!vma)
2913                                 break;
2914                         if (vma->vm_ops && vma->vm_ops->access)
2915                                 ret = vma->vm_ops->access(vma, addr, buf,
2916                                                           len, write);
2917                         if (ret <= 0)
2918 #endif
2919                                 break;
2920                         bytes = ret;
2921                 } else {
2922                         bytes = len;
2923                         offset = addr & (PAGE_SIZE-1);
2924                         if (bytes > PAGE_SIZE-offset)
2925                                 bytes = PAGE_SIZE-offset;
2926
2927                         maddr = kmap(page);
2928                         if (write) {
2929                                 copy_to_user_page(vma, page, addr,
2930                                                   maddr + offset, buf, bytes);
2931                                 set_page_dirty_lock(page);
2932                         } else {
2933                                 copy_from_user_page(vma, page, addr,
2934                                                     buf, maddr + offset, bytes);
2935                         }
2936                         kunmap(page);
2937                         page_cache_release(page);
2938                 }
2939                 len -= bytes;
2940                 buf += bytes;
2941                 addr += bytes;
2942         }
2943         up_read(&mm->mmap_sem);
2944         mmput(mm);
2945
2946         return buf - old_buf;
2947 }
2948
2949 /*
2950  * Print the name of a VMA.
2951  */
2952 void print_vma_addr(char *prefix, unsigned long ip)
2953 {
2954         struct mm_struct *mm = current->mm;
2955         struct vm_area_struct *vma;
2956
2957         /*
2958          * Do not print if we are in atomic
2959          * contexts (in exception stacks, etc.):
2960          */
2961         if (preempt_count())
2962                 return;
2963
2964         down_read(&mm->mmap_sem);
2965         vma = find_vma(mm, ip);
2966         if (vma && vma->vm_file) {
2967                 struct file *f = vma->vm_file;
2968                 char *buf = (char *)__get_free_page(GFP_KERNEL);
2969                 if (buf) {
2970                         char *p, *s;
2971
2972                         p = d_path(&f->f_path, buf, PAGE_SIZE);
2973                         if (IS_ERR(p))
2974                                 p = "?";
2975                         s = strrchr(p, '/');
2976                         if (s)
2977                                 p = s+1;
2978                         printk("%s%s[%lx+%lx]", prefix, p,
2979                                         vma->vm_start,
2980                                         vma->vm_end - vma->vm_start);
2981                         free_page((unsigned long)buf);
2982                 }
2983         }
2984         up_read(&current->mm->mmap_sem);
2985 }