firewire: sbp2: fix DMA mapping leak on the failure path
[linux-2.6] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/delay.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/kernel.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/scatterlist.h>
41 #include <linux/string.h>
42 #include <linux/stringify.h>
43 #include <linux/timer.h>
44 #include <linux/workqueue.h>
45 #include <asm/system.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
50 #include <scsi/scsi_host.h>
51
52 #include "fw-device.h"
53 #include "fw-topology.h"
54 #include "fw-transaction.h"
55
56 /*
57  * So far only bridges from Oxford Semiconductor are known to support
58  * concurrent logins. Depending on firmware, four or two concurrent logins
59  * are possible on OXFW911 and newer Oxsemi bridges.
60  *
61  * Concurrent logins are useful together with cluster filesystems.
62  */
63 static int sbp2_param_exclusive_login = 1;
64 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
65 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
66                  "(default = Y, use N for concurrent initiators)");
67
68 /*
69  * Flags for firmware oddities
70  *
71  * - 128kB max transfer
72  *   Limit transfer size. Necessary for some old bridges.
73  *
74  * - 36 byte inquiry
75  *   When scsi_mod probes the device, let the inquiry command look like that
76  *   from MS Windows.
77  *
78  * - skip mode page 8
79  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
80  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
81  *
82  * - fix capacity
83  *   Tell sd_mod to correct the last sector number reported by read_capacity.
84  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
85  *   Don't use this with devices which don't have this bug.
86  *
87  * - delay inquiry
88  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
89  *
90  * - power condition
91  *   Set the power condition field in the START STOP UNIT commands sent by
92  *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
93  *   Some disks need this to spin down or to resume properly.
94  *
95  * - override internal blacklist
96  *   Instead of adding to the built-in blacklist, use only the workarounds
97  *   specified in the module load parameter.
98  *   Useful if a blacklist entry interfered with a non-broken device.
99  */
100 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
101 #define SBP2_WORKAROUND_INQUIRY_36      0x2
102 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
103 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
104 #define SBP2_WORKAROUND_DELAY_INQUIRY   0x10
105 #define SBP2_INQUIRY_DELAY              12
106 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
107 #define SBP2_WORKAROUND_OVERRIDE        0x100
108
109 static int sbp2_param_workarounds;
110 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
111 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
112         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
113         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
114         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
115         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
116         ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
117         ", set power condition in start stop unit = "
118                                   __stringify(SBP2_WORKAROUND_POWER_CONDITION)
119         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
120         ", or a combination)");
121
122 /* I don't know why the SCSI stack doesn't define something like this... */
123 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
124
125 static const char sbp2_driver_name[] = "sbp2";
126
127 /*
128  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
129  * and one struct scsi_device per sbp2_logical_unit.
130  */
131 struct sbp2_logical_unit {
132         struct sbp2_target *tgt;
133         struct list_head link;
134         struct fw_address_handler address_handler;
135         struct list_head orb_list;
136
137         u64 command_block_agent_address;
138         u16 lun;
139         int login_id;
140
141         /*
142          * The generation is updated once we've logged in or reconnected
143          * to the logical unit.  Thus, I/O to the device will automatically
144          * fail and get retried if it happens in a window where the device
145          * is not ready, e.g. after a bus reset but before we reconnect.
146          */
147         int generation;
148         int retries;
149         struct delayed_work work;
150         bool has_sdev;
151         bool blocked;
152 };
153
154 /*
155  * We create one struct sbp2_target per IEEE 1212 Unit Directory
156  * and one struct Scsi_Host per sbp2_target.
157  */
158 struct sbp2_target {
159         struct kref kref;
160         struct fw_unit *unit;
161         const char *bus_id;
162         struct list_head lu_list;
163
164         u64 management_agent_address;
165         u64 guid;
166         int directory_id;
167         int node_id;
168         int address_high;
169         unsigned int workarounds;
170         unsigned int mgt_orb_timeout;
171         unsigned int max_payload;
172
173         int dont_block; /* counter for each logical unit */
174         int blocked;    /* ditto */
175 };
176
177 /* Impossible login_id, to detect logout attempt before successful login */
178 #define INVALID_LOGIN_ID 0x10000
179
180 /*
181  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
182  * provided in the config rom. Most devices do provide a value, which
183  * we'll use for login management orbs, but with some sane limits.
184  */
185 #define SBP2_MIN_LOGIN_ORB_TIMEOUT      5000U   /* Timeout in ms */
186 #define SBP2_MAX_LOGIN_ORB_TIMEOUT      40000U  /* Timeout in ms */
187 #define SBP2_ORB_TIMEOUT                2000U   /* Timeout in ms */
188 #define SBP2_ORB_NULL                   0x80000000
189 #define SBP2_RETRY_LIMIT                0xf             /* 15 retries */
190 #define SBP2_CYCLE_LIMIT                (0xc8 << 12)    /* 200 125us cycles */
191
192 /*
193  * The default maximum s/g segment size of a FireWire controller is
194  * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
195  * be quadlet-aligned, we set the length limit to 0xffff & ~3.
196  */
197 #define SBP2_MAX_SEG_SIZE               0xfffc
198
199 /* Unit directory keys */
200 #define SBP2_CSR_UNIT_CHARACTERISTICS   0x3a
201 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
202 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
203 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
204
205 /* Management orb opcodes */
206 #define SBP2_LOGIN_REQUEST              0x0
207 #define SBP2_QUERY_LOGINS_REQUEST       0x1
208 #define SBP2_RECONNECT_REQUEST          0x3
209 #define SBP2_SET_PASSWORD_REQUEST       0x4
210 #define SBP2_LOGOUT_REQUEST             0x7
211 #define SBP2_ABORT_TASK_REQUEST         0xb
212 #define SBP2_ABORT_TASK_SET             0xc
213 #define SBP2_LOGICAL_UNIT_RESET         0xe
214 #define SBP2_TARGET_RESET_REQUEST       0xf
215
216 /* Offsets for command block agent registers */
217 #define SBP2_AGENT_STATE                0x00
218 #define SBP2_AGENT_RESET                0x04
219 #define SBP2_ORB_POINTER                0x08
220 #define SBP2_DOORBELL                   0x10
221 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
222
223 /* Status write response codes */
224 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
225 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
226 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
227 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
228
229 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
230 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
231 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
232 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
233 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
234 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
235 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
236 #define STATUS_GET_DATA(v)              ((v).data)
237
238 struct sbp2_status {
239         u32 status;
240         u32 orb_low;
241         u8 data[24];
242 };
243
244 struct sbp2_pointer {
245         __be32 high;
246         __be32 low;
247 };
248
249 struct sbp2_orb {
250         struct fw_transaction t;
251         struct kref kref;
252         dma_addr_t request_bus;
253         int rcode;
254         struct sbp2_pointer pointer;
255         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
256         struct list_head link;
257 };
258
259 #define MANAGEMENT_ORB_LUN(v)                   ((v))
260 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
261 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
262 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
263 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
264 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
265
266 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
267 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
268
269 struct sbp2_management_orb {
270         struct sbp2_orb base;
271         struct {
272                 struct sbp2_pointer password;
273                 struct sbp2_pointer response;
274                 __be32 misc;
275                 __be32 length;
276                 struct sbp2_pointer status_fifo;
277         } request;
278         __be32 response[4];
279         dma_addr_t response_bus;
280         struct completion done;
281         struct sbp2_status status;
282 };
283
284 struct sbp2_login_response {
285         __be32 misc;
286         struct sbp2_pointer command_block_agent;
287         __be32 reconnect_hold;
288 };
289 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
290 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
291 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
292 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
293 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
294 #define COMMAND_ORB_DIRECTION           ((1) << 27)
295 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
296 #define COMMAND_ORB_NOTIFY              ((1) << 31)
297
298 struct sbp2_command_orb {
299         struct sbp2_orb base;
300         struct {
301                 struct sbp2_pointer next;
302                 struct sbp2_pointer data_descriptor;
303                 __be32 misc;
304                 u8 command_block[12];
305         } request;
306         struct scsi_cmnd *cmd;
307         scsi_done_fn_t done;
308         struct sbp2_logical_unit *lu;
309
310         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
311         dma_addr_t page_table_bus;
312 };
313
314 #define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
315 #define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
316
317 /*
318  * List of devices with known bugs.
319  *
320  * The firmware_revision field, masked with 0xffff00, is the best
321  * indicator for the type of bridge chip of a device.  It yields a few
322  * false positives but this did not break correctly behaving devices
323  * so far.
324  */
325 static const struct {
326         u32 firmware_revision;
327         u32 model;
328         unsigned int workarounds;
329 } sbp2_workarounds_table[] = {
330         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
331                 .firmware_revision      = 0x002800,
332                 .model                  = 0x001010,
333                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
334                                           SBP2_WORKAROUND_MODE_SENSE_8 |
335                                           SBP2_WORKAROUND_POWER_CONDITION,
336         },
337         /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
338                 .firmware_revision      = 0x002800,
339                 .model                  = 0x000000,
340                 .workarounds            = SBP2_WORKAROUND_DELAY_INQUIRY |
341                                           SBP2_WORKAROUND_POWER_CONDITION,
342         },
343         /* Initio bridges, actually only needed for some older ones */ {
344                 .firmware_revision      = 0x000200,
345                 .model                  = SBP2_ROM_VALUE_WILDCARD,
346                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
347         },
348         /* PL-3507 bridge with Prolific firmware */ {
349                 .firmware_revision      = 0x012800,
350                 .model                  = SBP2_ROM_VALUE_WILDCARD,
351                 .workarounds            = SBP2_WORKAROUND_POWER_CONDITION,
352         },
353         /* Symbios bridge */ {
354                 .firmware_revision      = 0xa0b800,
355                 .model                  = SBP2_ROM_VALUE_WILDCARD,
356                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
357         },
358         /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
359                 .firmware_revision      = 0x002600,
360                 .model                  = SBP2_ROM_VALUE_WILDCARD,
361                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
362         },
363
364         /*
365          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
366          * these iPods do not feature the read_capacity bug according
367          * to one report.  Read_capacity behaviour as well as model_id
368          * could change due to Apple-supplied firmware updates though.
369          */
370
371         /* iPod 4th generation. */ {
372                 .firmware_revision      = 0x0a2700,
373                 .model                  = 0x000021,
374                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
375         },
376         /* iPod mini */ {
377                 .firmware_revision      = 0x0a2700,
378                 .model                  = 0x000022,
379                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
380         },
381         /* iPod mini */ {
382                 .firmware_revision      = 0x0a2700,
383                 .model                  = 0x000023,
384                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
385         },
386         /* iPod Photo */ {
387                 .firmware_revision      = 0x0a2700,
388                 .model                  = 0x00007e,
389                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
390         }
391 };
392
393 static void
394 free_orb(struct kref *kref)
395 {
396         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
397
398         kfree(orb);
399 }
400
401 static void
402 sbp2_status_write(struct fw_card *card, struct fw_request *request,
403                   int tcode, int destination, int source,
404                   int generation, int speed,
405                   unsigned long long offset,
406                   void *payload, size_t length, void *callback_data)
407 {
408         struct sbp2_logical_unit *lu = callback_data;
409         struct sbp2_orb *orb;
410         struct sbp2_status status;
411         size_t header_size;
412         unsigned long flags;
413
414         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
415             length == 0 || length > sizeof(status)) {
416                 fw_send_response(card, request, RCODE_TYPE_ERROR);
417                 return;
418         }
419
420         header_size = min(length, 2 * sizeof(u32));
421         fw_memcpy_from_be32(&status, payload, header_size);
422         if (length > header_size)
423                 memcpy(status.data, payload + 8, length - header_size);
424         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
425                 fw_notify("non-orb related status write, not handled\n");
426                 fw_send_response(card, request, RCODE_COMPLETE);
427                 return;
428         }
429
430         /* Lookup the orb corresponding to this status write. */
431         spin_lock_irqsave(&card->lock, flags);
432         list_for_each_entry(orb, &lu->orb_list, link) {
433                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
434                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
435                         orb->rcode = RCODE_COMPLETE;
436                         list_del(&orb->link);
437                         break;
438                 }
439         }
440         spin_unlock_irqrestore(&card->lock, flags);
441
442         if (&orb->link != &lu->orb_list)
443                 orb->callback(orb, &status);
444         else
445                 fw_error("status write for unknown orb\n");
446
447         kref_put(&orb->kref, free_orb);
448
449         fw_send_response(card, request, RCODE_COMPLETE);
450 }
451
452 static void
453 complete_transaction(struct fw_card *card, int rcode,
454                      void *payload, size_t length, void *data)
455 {
456         struct sbp2_orb *orb = data;
457         unsigned long flags;
458
459         /*
460          * This is a little tricky.  We can get the status write for
461          * the orb before we get this callback.  The status write
462          * handler above will assume the orb pointer transaction was
463          * successful and set the rcode to RCODE_COMPLETE for the orb.
464          * So this callback only sets the rcode if it hasn't already
465          * been set and only does the cleanup if the transaction
466          * failed and we didn't already get a status write.
467          */
468         spin_lock_irqsave(&card->lock, flags);
469
470         if (orb->rcode == -1)
471                 orb->rcode = rcode;
472         if (orb->rcode != RCODE_COMPLETE) {
473                 list_del(&orb->link);
474                 spin_unlock_irqrestore(&card->lock, flags);
475                 orb->callback(orb, NULL);
476         } else {
477                 spin_unlock_irqrestore(&card->lock, flags);
478         }
479
480         kref_put(&orb->kref, free_orb);
481 }
482
483 static void
484 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
485               int node_id, int generation, u64 offset)
486 {
487         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
488         unsigned long flags;
489
490         orb->pointer.high = 0;
491         orb->pointer.low = cpu_to_be32(orb->request_bus);
492
493         spin_lock_irqsave(&device->card->lock, flags);
494         list_add_tail(&orb->link, &lu->orb_list);
495         spin_unlock_irqrestore(&device->card->lock, flags);
496
497         /* Take a ref for the orb list and for the transaction callback. */
498         kref_get(&orb->kref);
499         kref_get(&orb->kref);
500
501         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
502                         node_id, generation, device->max_speed, offset,
503                         &orb->pointer, sizeof(orb->pointer),
504                         complete_transaction, orb);
505 }
506
507 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
508 {
509         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
510         struct sbp2_orb *orb, *next;
511         struct list_head list;
512         unsigned long flags;
513         int retval = -ENOENT;
514
515         INIT_LIST_HEAD(&list);
516         spin_lock_irqsave(&device->card->lock, flags);
517         list_splice_init(&lu->orb_list, &list);
518         spin_unlock_irqrestore(&device->card->lock, flags);
519
520         list_for_each_entry_safe(orb, next, &list, link) {
521                 retval = 0;
522                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
523                         continue;
524
525                 orb->rcode = RCODE_CANCELLED;
526                 orb->callback(orb, NULL);
527         }
528
529         return retval;
530 }
531
532 static void
533 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
534 {
535         struct sbp2_management_orb *orb =
536                 container_of(base_orb, struct sbp2_management_orb, base);
537
538         if (status)
539                 memcpy(&orb->status, status, sizeof(*status));
540         complete(&orb->done);
541 }
542
543 static int
544 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
545                          int generation, int function, int lun_or_login_id,
546                          void *response)
547 {
548         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
549         struct sbp2_management_orb *orb;
550         unsigned int timeout;
551         int retval = -ENOMEM;
552
553         if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
554                 return 0;
555
556         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
557         if (orb == NULL)
558                 return -ENOMEM;
559
560         kref_init(&orb->base.kref);
561         orb->response_bus =
562                 dma_map_single(device->card->device, &orb->response,
563                                sizeof(orb->response), DMA_FROM_DEVICE);
564         if (dma_mapping_error(device->card->device, orb->response_bus))
565                 goto fail_mapping_response;
566
567         orb->request.response.high = 0;
568         orb->request.response.low  = cpu_to_be32(orb->response_bus);
569
570         orb->request.misc = cpu_to_be32(
571                 MANAGEMENT_ORB_NOTIFY |
572                 MANAGEMENT_ORB_FUNCTION(function) |
573                 MANAGEMENT_ORB_LUN(lun_or_login_id));
574         orb->request.length = cpu_to_be32(
575                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
576
577         orb->request.status_fifo.high =
578                 cpu_to_be32(lu->address_handler.offset >> 32);
579         orb->request.status_fifo.low  =
580                 cpu_to_be32(lu->address_handler.offset);
581
582         if (function == SBP2_LOGIN_REQUEST) {
583                 /* Ask for 2^2 == 4 seconds reconnect grace period */
584                 orb->request.misc |= cpu_to_be32(
585                         MANAGEMENT_ORB_RECONNECT(2) |
586                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
587                 timeout = lu->tgt->mgt_orb_timeout;
588         } else {
589                 timeout = SBP2_ORB_TIMEOUT;
590         }
591
592         init_completion(&orb->done);
593         orb->base.callback = complete_management_orb;
594
595         orb->base.request_bus =
596                 dma_map_single(device->card->device, &orb->request,
597                                sizeof(orb->request), DMA_TO_DEVICE);
598         if (dma_mapping_error(device->card->device, orb->base.request_bus))
599                 goto fail_mapping_request;
600
601         sbp2_send_orb(&orb->base, lu, node_id, generation,
602                       lu->tgt->management_agent_address);
603
604         wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
605
606         retval = -EIO;
607         if (sbp2_cancel_orbs(lu) == 0) {
608                 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
609                          lu->tgt->bus_id, orb->base.rcode);
610                 goto out;
611         }
612
613         if (orb->base.rcode != RCODE_COMPLETE) {
614                 fw_error("%s: management write failed, rcode 0x%02x\n",
615                          lu->tgt->bus_id, orb->base.rcode);
616                 goto out;
617         }
618
619         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
620             STATUS_GET_SBP_STATUS(orb->status) != 0) {
621                 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
622                          STATUS_GET_RESPONSE(orb->status),
623                          STATUS_GET_SBP_STATUS(orb->status));
624                 goto out;
625         }
626
627         retval = 0;
628  out:
629         dma_unmap_single(device->card->device, orb->base.request_bus,
630                          sizeof(orb->request), DMA_TO_DEVICE);
631  fail_mapping_request:
632         dma_unmap_single(device->card->device, orb->response_bus,
633                          sizeof(orb->response), DMA_FROM_DEVICE);
634  fail_mapping_response:
635         if (response)
636                 memcpy(response, orb->response, sizeof(orb->response));
637         kref_put(&orb->base.kref, free_orb);
638
639         return retval;
640 }
641
642 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
643 {
644         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
645         __be32 d = 0;
646
647         fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
648                            lu->tgt->node_id, lu->generation, device->max_speed,
649                            lu->command_block_agent_address + SBP2_AGENT_RESET,
650                            &d, sizeof(d));
651 }
652
653 static void
654 complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
655                                    void *payload, size_t length, void *data)
656 {
657         kfree(data);
658 }
659
660 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
661 {
662         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
663         struct fw_transaction *t;
664         static __be32 d;
665
666         t = kmalloc(sizeof(*t), GFP_ATOMIC);
667         if (t == NULL)
668                 return;
669
670         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
671                         lu->tgt->node_id, lu->generation, device->max_speed,
672                         lu->command_block_agent_address + SBP2_AGENT_RESET,
673                         &d, sizeof(d), complete_agent_reset_write_no_wait, t);
674 }
675
676 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
677 {
678         /*
679          * We may access dont_block without taking card->lock here:
680          * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
681          * are currently serialized against each other.
682          * And a wrong result in sbp2_conditionally_block()'s access of
683          * dont_block is rather harmless, it simply misses its first chance.
684          */
685         --lu->tgt->dont_block;
686 }
687
688 /*
689  * Blocks lu->tgt if all of the following conditions are met:
690  *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
691  *     logical units have been finished (indicated by dont_block == 0).
692  *   - lu->generation is stale.
693  *
694  * Note, scsi_block_requests() must be called while holding card->lock,
695  * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
696  * unblock the target.
697  */
698 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
699 {
700         struct sbp2_target *tgt = lu->tgt;
701         struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
702         struct Scsi_Host *shost =
703                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
704         unsigned long flags;
705
706         spin_lock_irqsave(&card->lock, flags);
707         if (!tgt->dont_block && !lu->blocked &&
708             lu->generation != card->generation) {
709                 lu->blocked = true;
710                 if (++tgt->blocked == 1)
711                         scsi_block_requests(shost);
712         }
713         spin_unlock_irqrestore(&card->lock, flags);
714 }
715
716 /*
717  * Unblocks lu->tgt as soon as all its logical units can be unblocked.
718  * Note, it is harmless to run scsi_unblock_requests() outside the
719  * card->lock protected section.  On the other hand, running it inside
720  * the section might clash with shost->host_lock.
721  */
722 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
723 {
724         struct sbp2_target *tgt = lu->tgt;
725         struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
726         struct Scsi_Host *shost =
727                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
728         unsigned long flags;
729         bool unblock = false;
730
731         spin_lock_irqsave(&card->lock, flags);
732         if (lu->blocked && lu->generation == card->generation) {
733                 lu->blocked = false;
734                 unblock = --tgt->blocked == 0;
735         }
736         spin_unlock_irqrestore(&card->lock, flags);
737
738         if (unblock)
739                 scsi_unblock_requests(shost);
740 }
741
742 /*
743  * Prevents future blocking of tgt and unblocks it.
744  * Note, it is harmless to run scsi_unblock_requests() outside the
745  * card->lock protected section.  On the other hand, running it inside
746  * the section might clash with shost->host_lock.
747  */
748 static void sbp2_unblock(struct sbp2_target *tgt)
749 {
750         struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
751         struct Scsi_Host *shost =
752                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
753         unsigned long flags;
754
755         spin_lock_irqsave(&card->lock, flags);
756         ++tgt->dont_block;
757         spin_unlock_irqrestore(&card->lock, flags);
758
759         scsi_unblock_requests(shost);
760 }
761
762 static int sbp2_lun2int(u16 lun)
763 {
764         struct scsi_lun eight_bytes_lun;
765
766         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
767         eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
768         eight_bytes_lun.scsi_lun[1] = lun & 0xff;
769
770         return scsilun_to_int(&eight_bytes_lun);
771 }
772
773 static void sbp2_release_target(struct kref *kref)
774 {
775         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
776         struct sbp2_logical_unit *lu, *next;
777         struct Scsi_Host *shost =
778                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
779         struct scsi_device *sdev;
780         struct fw_device *device = fw_device(tgt->unit->device.parent);
781
782         /* prevent deadlocks */
783         sbp2_unblock(tgt);
784
785         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
786                 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
787                 if (sdev) {
788                         scsi_remove_device(sdev);
789                         scsi_device_put(sdev);
790                 }
791                 if (lu->login_id != INVALID_LOGIN_ID) {
792                         int generation, node_id;
793                         /*
794                          * tgt->node_id may be obsolete here if we failed
795                          * during initial login or after a bus reset where
796                          * the topology changed.
797                          */
798                         generation = device->generation;
799                         smp_rmb(); /* node_id vs. generation */
800                         node_id    = device->node_id;
801                         sbp2_send_management_orb(lu, node_id, generation,
802                                                  SBP2_LOGOUT_REQUEST,
803                                                  lu->login_id, NULL);
804                 }
805                 fw_core_remove_address_handler(&lu->address_handler);
806                 list_del(&lu->link);
807                 kfree(lu);
808         }
809         scsi_remove_host(shost);
810         fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
811
812         fw_unit_put(tgt->unit);
813         scsi_host_put(shost);
814         fw_device_put(device);
815 }
816
817 static struct workqueue_struct *sbp2_wq;
818
819 static void sbp2_target_put(struct sbp2_target *tgt)
820 {
821         kref_put(&tgt->kref, sbp2_release_target);
822 }
823
824 /*
825  * Always get the target's kref when scheduling work on one its units.
826  * Each workqueue job is responsible to call sbp2_target_put() upon return.
827  */
828 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
829 {
830         kref_get(&lu->tgt->kref);
831         if (!queue_delayed_work(sbp2_wq, &lu->work, delay))
832                 sbp2_target_put(lu->tgt);
833 }
834
835 /*
836  * Write retransmit retry values into the BUSY_TIMEOUT register.
837  * - The single-phase retry protocol is supported by all SBP-2 devices, but the
838  *   default retry_limit value is 0 (i.e. never retry transmission). We write a
839  *   saner value after logging into the device.
840  * - The dual-phase retry protocol is optional to implement, and if not
841  *   supported, writes to the dual-phase portion of the register will be
842  *   ignored. We try to write the original 1394-1995 default here.
843  * - In the case of devices that are also SBP-3-compliant, all writes are
844  *   ignored, as the register is read-only, but contains single-phase retry of
845  *   15, which is what we're trying to set for all SBP-2 device anyway, so this
846  *   write attempt is safe and yields more consistent behavior for all devices.
847  *
848  * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
849  * and section 6.4 of the SBP-3 spec for further details.
850  */
851 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
852 {
853         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
854         __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
855
856         fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
857                            lu->tgt->node_id, lu->generation, device->max_speed,
858                            CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT,
859                            &d, sizeof(d));
860 }
861
862 static void sbp2_reconnect(struct work_struct *work);
863
864 static void sbp2_login(struct work_struct *work)
865 {
866         struct sbp2_logical_unit *lu =
867                 container_of(work, struct sbp2_logical_unit, work.work);
868         struct sbp2_target *tgt = lu->tgt;
869         struct fw_device *device = fw_device(tgt->unit->device.parent);
870         struct Scsi_Host *shost;
871         struct scsi_device *sdev;
872         struct sbp2_login_response response;
873         int generation, node_id, local_node_id;
874
875         if (fw_device_is_shutdown(device))
876                 goto out;
877
878         generation    = device->generation;
879         smp_rmb();    /* node IDs must not be older than generation */
880         node_id       = device->node_id;
881         local_node_id = device->card->node_id;
882
883         /* If this is a re-login attempt, log out, or we might be rejected. */
884         if (lu->has_sdev)
885                 sbp2_send_management_orb(lu, device->node_id, generation,
886                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
887
888         if (sbp2_send_management_orb(lu, node_id, generation,
889                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
890                 if (lu->retries++ < 5) {
891                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
892                 } else {
893                         fw_error("%s: failed to login to LUN %04x\n",
894                                  tgt->bus_id, lu->lun);
895                         /* Let any waiting I/O fail from now on. */
896                         sbp2_unblock(lu->tgt);
897                 }
898                 goto out;
899         }
900
901         tgt->node_id      = node_id;
902         tgt->address_high = local_node_id << 16;
903         smp_wmb();        /* node IDs must not be older than generation */
904         lu->generation    = generation;
905
906         lu->command_block_agent_address =
907                 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
908                       << 32) | be32_to_cpu(response.command_block_agent.low);
909         lu->login_id = be32_to_cpu(response.misc) & 0xffff;
910
911         fw_notify("%s: logged in to LUN %04x (%d retries)\n",
912                   tgt->bus_id, lu->lun, lu->retries);
913
914         /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
915         sbp2_set_busy_timeout(lu);
916
917         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
918         sbp2_agent_reset(lu);
919
920         /* This was a re-login. */
921         if (lu->has_sdev) {
922                 sbp2_cancel_orbs(lu);
923                 sbp2_conditionally_unblock(lu);
924                 goto out;
925         }
926
927         if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
928                 ssleep(SBP2_INQUIRY_DELAY);
929
930         shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
931         sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
932         /*
933          * FIXME:  We are unable to perform reconnects while in sbp2_login().
934          * Therefore __scsi_add_device() will get into trouble if a bus reset
935          * happens in parallel.  It will either fail or leave us with an
936          * unusable sdev.  As a workaround we check for this and retry the
937          * whole login and SCSI probing.
938          */
939
940         /* Reported error during __scsi_add_device() */
941         if (IS_ERR(sdev))
942                 goto out_logout_login;
943
944         /* Unreported error during __scsi_add_device() */
945         smp_rmb(); /* get current card generation */
946         if (generation != device->card->generation) {
947                 scsi_remove_device(sdev);
948                 scsi_device_put(sdev);
949                 goto out_logout_login;
950         }
951
952         /* No error during __scsi_add_device() */
953         lu->has_sdev = true;
954         scsi_device_put(sdev);
955         sbp2_allow_block(lu);
956         goto out;
957
958  out_logout_login:
959         smp_rmb(); /* generation may have changed */
960         generation = device->generation;
961         smp_rmb(); /* node_id must not be older than generation */
962
963         sbp2_send_management_orb(lu, device->node_id, generation,
964                                  SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
965         /*
966          * If a bus reset happened, sbp2_update will have requeued
967          * lu->work already.  Reset the work from reconnect to login.
968          */
969         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
970  out:
971         sbp2_target_put(tgt);
972 }
973
974 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
975 {
976         struct sbp2_logical_unit *lu;
977
978         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
979         if (!lu)
980                 return -ENOMEM;
981
982         lu->address_handler.length           = 0x100;
983         lu->address_handler.address_callback = sbp2_status_write;
984         lu->address_handler.callback_data    = lu;
985
986         if (fw_core_add_address_handler(&lu->address_handler,
987                                         &fw_high_memory_region) < 0) {
988                 kfree(lu);
989                 return -ENOMEM;
990         }
991
992         lu->tgt      = tgt;
993         lu->lun      = lun_entry & 0xffff;
994         lu->login_id = INVALID_LOGIN_ID;
995         lu->retries  = 0;
996         lu->has_sdev = false;
997         lu->blocked  = false;
998         ++tgt->dont_block;
999         INIT_LIST_HEAD(&lu->orb_list);
1000         INIT_DELAYED_WORK(&lu->work, sbp2_login);
1001
1002         list_add_tail(&lu->link, &tgt->lu_list);
1003         return 0;
1004 }
1005
1006 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
1007 {
1008         struct fw_csr_iterator ci;
1009         int key, value;
1010
1011         fw_csr_iterator_init(&ci, directory);
1012         while (fw_csr_iterator_next(&ci, &key, &value))
1013                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1014                     sbp2_add_logical_unit(tgt, value) < 0)
1015                         return -ENOMEM;
1016         return 0;
1017 }
1018
1019 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
1020                               u32 *model, u32 *firmware_revision)
1021 {
1022         struct fw_csr_iterator ci;
1023         int key, value;
1024         unsigned int timeout;
1025
1026         fw_csr_iterator_init(&ci, directory);
1027         while (fw_csr_iterator_next(&ci, &key, &value)) {
1028                 switch (key) {
1029
1030                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1031                         tgt->management_agent_address =
1032                                         CSR_REGISTER_BASE + 4 * value;
1033                         break;
1034
1035                 case CSR_DIRECTORY_ID:
1036                         tgt->directory_id = value;
1037                         break;
1038
1039                 case CSR_MODEL:
1040                         *model = value;
1041                         break;
1042
1043                 case SBP2_CSR_FIRMWARE_REVISION:
1044                         *firmware_revision = value;
1045                         break;
1046
1047                 case SBP2_CSR_UNIT_CHARACTERISTICS:
1048                         /* the timeout value is stored in 500ms units */
1049                         timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1050                         timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1051                         tgt->mgt_orb_timeout =
1052                                   min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1053
1054                         if (timeout > tgt->mgt_orb_timeout)
1055                                 fw_notify("%s: config rom contains %ds "
1056                                           "management ORB timeout, limiting "
1057                                           "to %ds\n", tgt->bus_id,
1058                                           timeout / 1000,
1059                                           tgt->mgt_orb_timeout / 1000);
1060                         break;
1061
1062                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1063                         if (sbp2_add_logical_unit(tgt, value) < 0)
1064                                 return -ENOMEM;
1065                         break;
1066
1067                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1068                         /* Adjust for the increment in the iterator */
1069                         if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1070                                 return -ENOMEM;
1071                         break;
1072                 }
1073         }
1074         return 0;
1075 }
1076
1077 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1078                                   u32 firmware_revision)
1079 {
1080         int i;
1081         unsigned int w = sbp2_param_workarounds;
1082
1083         if (w)
1084                 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1085                           "if you need the workarounds parameter for %s\n",
1086                           tgt->bus_id);
1087
1088         if (w & SBP2_WORKAROUND_OVERRIDE)
1089                 goto out;
1090
1091         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1092
1093                 if (sbp2_workarounds_table[i].firmware_revision !=
1094                     (firmware_revision & 0xffffff00))
1095                         continue;
1096
1097                 if (sbp2_workarounds_table[i].model != model &&
1098                     sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1099                         continue;
1100
1101                 w |= sbp2_workarounds_table[i].workarounds;
1102                 break;
1103         }
1104  out:
1105         if (w)
1106                 fw_notify("Workarounds for %s: 0x%x "
1107                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1108                           tgt->bus_id, w, firmware_revision, model);
1109         tgt->workarounds = w;
1110 }
1111
1112 static struct scsi_host_template scsi_driver_template;
1113
1114 static int sbp2_probe(struct device *dev)
1115 {
1116         struct fw_unit *unit = fw_unit(dev);
1117         struct fw_device *device = fw_device(unit->device.parent);
1118         struct sbp2_target *tgt;
1119         struct sbp2_logical_unit *lu;
1120         struct Scsi_Host *shost;
1121         u32 model, firmware_revision;
1122
1123         if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1124                 BUG_ON(dma_set_max_seg_size(device->card->device,
1125                                             SBP2_MAX_SEG_SIZE));
1126
1127         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1128         if (shost == NULL)
1129                 return -ENOMEM;
1130
1131         tgt = (struct sbp2_target *)shost->hostdata;
1132         unit->device.driver_data = tgt;
1133         tgt->unit = unit;
1134         kref_init(&tgt->kref);
1135         INIT_LIST_HEAD(&tgt->lu_list);
1136         tgt->bus_id = dev_name(&unit->device);
1137         tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1138
1139         if (fw_device_enable_phys_dma(device) < 0)
1140                 goto fail_shost_put;
1141
1142         if (scsi_add_host(shost, &unit->device) < 0)
1143                 goto fail_shost_put;
1144
1145         fw_device_get(device);
1146         fw_unit_get(unit);
1147
1148         /* implicit directory ID */
1149         tgt->directory_id = ((unit->directory - device->config_rom) * 4
1150                              + CSR_CONFIG_ROM) & 0xffffff;
1151
1152         firmware_revision = SBP2_ROM_VALUE_MISSING;
1153         model             = SBP2_ROM_VALUE_MISSING;
1154
1155         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1156                                &firmware_revision) < 0)
1157                 goto fail_tgt_put;
1158
1159         sbp2_init_workarounds(tgt, model, firmware_revision);
1160
1161         /*
1162          * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1163          * and so on up to 4096 bytes.  The SBP-2 max_payload field
1164          * specifies the max payload size as 2 ^ (max_payload + 2), so
1165          * if we set this to max_speed + 7, we get the right value.
1166          */
1167         tgt->max_payload = min(device->max_speed + 7, 10U);
1168         tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
1169
1170         /* Do the login in a workqueue so we can easily reschedule retries. */
1171         list_for_each_entry(lu, &tgt->lu_list, link)
1172                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1173         return 0;
1174
1175  fail_tgt_put:
1176         sbp2_target_put(tgt);
1177         return -ENOMEM;
1178
1179  fail_shost_put:
1180         scsi_host_put(shost);
1181         return -ENOMEM;
1182 }
1183
1184 static int sbp2_remove(struct device *dev)
1185 {
1186         struct fw_unit *unit = fw_unit(dev);
1187         struct sbp2_target *tgt = unit->device.driver_data;
1188
1189         sbp2_target_put(tgt);
1190         return 0;
1191 }
1192
1193 static void sbp2_reconnect(struct work_struct *work)
1194 {
1195         struct sbp2_logical_unit *lu =
1196                 container_of(work, struct sbp2_logical_unit, work.work);
1197         struct sbp2_target *tgt = lu->tgt;
1198         struct fw_device *device = fw_device(tgt->unit->device.parent);
1199         int generation, node_id, local_node_id;
1200
1201         if (fw_device_is_shutdown(device))
1202                 goto out;
1203
1204         generation    = device->generation;
1205         smp_rmb();    /* node IDs must not be older than generation */
1206         node_id       = device->node_id;
1207         local_node_id = device->card->node_id;
1208
1209         if (sbp2_send_management_orb(lu, node_id, generation,
1210                                      SBP2_RECONNECT_REQUEST,
1211                                      lu->login_id, NULL) < 0) {
1212                 /*
1213                  * If reconnect was impossible even though we are in the
1214                  * current generation, fall back and try to log in again.
1215                  *
1216                  * We could check for "Function rejected" status, but
1217                  * looking at the bus generation as simpler and more general.
1218                  */
1219                 smp_rmb(); /* get current card generation */
1220                 if (generation == device->card->generation ||
1221                     lu->retries++ >= 5) {
1222                         fw_error("%s: failed to reconnect\n", tgt->bus_id);
1223                         lu->retries = 0;
1224                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1225                 }
1226                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1227                 goto out;
1228         }
1229
1230         tgt->node_id      = node_id;
1231         tgt->address_high = local_node_id << 16;
1232         smp_wmb();        /* node IDs must not be older than generation */
1233         lu->generation    = generation;
1234
1235         fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1236                   tgt->bus_id, lu->lun, lu->retries);
1237
1238         sbp2_agent_reset(lu);
1239         sbp2_cancel_orbs(lu);
1240         sbp2_conditionally_unblock(lu);
1241  out:
1242         sbp2_target_put(tgt);
1243 }
1244
1245 static void sbp2_update(struct fw_unit *unit)
1246 {
1247         struct sbp2_target *tgt = unit->device.driver_data;
1248         struct sbp2_logical_unit *lu;
1249
1250         fw_device_enable_phys_dma(fw_device(unit->device.parent));
1251
1252         /*
1253          * Fw-core serializes sbp2_update() against sbp2_remove().
1254          * Iteration over tgt->lu_list is therefore safe here.
1255          */
1256         list_for_each_entry(lu, &tgt->lu_list, link) {
1257                 sbp2_conditionally_block(lu);
1258                 lu->retries = 0;
1259                 sbp2_queue_work(lu, 0);
1260         }
1261 }
1262
1263 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1264 #define SBP2_SW_VERSION_ENTRY   0x00010483
1265
1266 static const struct fw_device_id sbp2_id_table[] = {
1267         {
1268                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1269                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1270                 .version      = SBP2_SW_VERSION_ENTRY,
1271         },
1272         { }
1273 };
1274
1275 static struct fw_driver sbp2_driver = {
1276         .driver   = {
1277                 .owner  = THIS_MODULE,
1278                 .name   = sbp2_driver_name,
1279                 .bus    = &fw_bus_type,
1280                 .probe  = sbp2_probe,
1281                 .remove = sbp2_remove,
1282         },
1283         .update   = sbp2_update,
1284         .id_table = sbp2_id_table,
1285 };
1286
1287 static void sbp2_unmap_scatterlist(struct device *card_device,
1288                                    struct sbp2_command_orb *orb)
1289 {
1290         if (scsi_sg_count(orb->cmd))
1291                 dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1292                              scsi_sg_count(orb->cmd),
1293                              orb->cmd->sc_data_direction);
1294
1295         if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1296                 dma_unmap_single(card_device, orb->page_table_bus,
1297                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1298 }
1299
1300 static unsigned int
1301 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1302 {
1303         int sam_status;
1304
1305         sense_data[0] = 0x70;
1306         sense_data[1] = 0x0;
1307         sense_data[2] = sbp2_status[1];
1308         sense_data[3] = sbp2_status[4];
1309         sense_data[4] = sbp2_status[5];
1310         sense_data[5] = sbp2_status[6];
1311         sense_data[6] = sbp2_status[7];
1312         sense_data[7] = 10;
1313         sense_data[8] = sbp2_status[8];
1314         sense_data[9] = sbp2_status[9];
1315         sense_data[10] = sbp2_status[10];
1316         sense_data[11] = sbp2_status[11];
1317         sense_data[12] = sbp2_status[2];
1318         sense_data[13] = sbp2_status[3];
1319         sense_data[14] = sbp2_status[12];
1320         sense_data[15] = sbp2_status[13];
1321
1322         sam_status = sbp2_status[0] & 0x3f;
1323
1324         switch (sam_status) {
1325         case SAM_STAT_GOOD:
1326         case SAM_STAT_CHECK_CONDITION:
1327         case SAM_STAT_CONDITION_MET:
1328         case SAM_STAT_BUSY:
1329         case SAM_STAT_RESERVATION_CONFLICT:
1330         case SAM_STAT_COMMAND_TERMINATED:
1331                 return DID_OK << 16 | sam_status;
1332
1333         default:
1334                 return DID_ERROR << 16;
1335         }
1336 }
1337
1338 static void
1339 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1340 {
1341         struct sbp2_command_orb *orb =
1342                 container_of(base_orb, struct sbp2_command_orb, base);
1343         struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1344         int result;
1345
1346         if (status != NULL) {
1347                 if (STATUS_GET_DEAD(*status))
1348                         sbp2_agent_reset_no_wait(orb->lu);
1349
1350                 switch (STATUS_GET_RESPONSE(*status)) {
1351                 case SBP2_STATUS_REQUEST_COMPLETE:
1352                         result = DID_OK << 16;
1353                         break;
1354                 case SBP2_STATUS_TRANSPORT_FAILURE:
1355                         result = DID_BUS_BUSY << 16;
1356                         break;
1357                 case SBP2_STATUS_ILLEGAL_REQUEST:
1358                 case SBP2_STATUS_VENDOR_DEPENDENT:
1359                 default:
1360                         result = DID_ERROR << 16;
1361                         break;
1362                 }
1363
1364                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1365                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1366                                                            orb->cmd->sense_buffer);
1367         } else {
1368                 /*
1369                  * If the orb completes with status == NULL, something
1370                  * went wrong, typically a bus reset happened mid-orb
1371                  * or when sending the write (less likely).
1372                  */
1373                 result = DID_BUS_BUSY << 16;
1374                 sbp2_conditionally_block(orb->lu);
1375         }
1376
1377         dma_unmap_single(device->card->device, orb->base.request_bus,
1378                          sizeof(orb->request), DMA_TO_DEVICE);
1379         sbp2_unmap_scatterlist(device->card->device, orb);
1380
1381         orb->cmd->result = result;
1382         orb->done(orb->cmd);
1383 }
1384
1385 static int
1386 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1387                      struct sbp2_logical_unit *lu)
1388 {
1389         struct scatterlist *sg = scsi_sglist(orb->cmd);
1390         int i, n;
1391
1392         n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1393                        orb->cmd->sc_data_direction);
1394         if (n == 0)
1395                 goto fail;
1396
1397         /*
1398          * Handle the special case where there is only one element in
1399          * the scatter list by converting it to an immediate block
1400          * request. This is also a workaround for broken devices such
1401          * as the second generation iPod which doesn't support page
1402          * tables.
1403          */
1404         if (n == 1) {
1405                 orb->request.data_descriptor.high =
1406                         cpu_to_be32(lu->tgt->address_high);
1407                 orb->request.data_descriptor.low  =
1408                         cpu_to_be32(sg_dma_address(sg));
1409                 orb->request.misc |=
1410                         cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1411                 return 0;
1412         }
1413
1414         for_each_sg(sg, sg, n, i) {
1415                 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1416                 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1417         }
1418
1419         orb->page_table_bus =
1420                 dma_map_single(device->card->device, orb->page_table,
1421                                sizeof(orb->page_table), DMA_TO_DEVICE);
1422         if (dma_mapping_error(device->card->device, orb->page_table_bus))
1423                 goto fail_page_table;
1424
1425         /*
1426          * The data_descriptor pointer is the one case where we need
1427          * to fill in the node ID part of the address.  All other
1428          * pointers assume that the data referenced reside on the
1429          * initiator (i.e. us), but data_descriptor can refer to data
1430          * on other nodes so we need to put our ID in descriptor.high.
1431          */
1432         orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1433         orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1434         orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1435                                          COMMAND_ORB_DATA_SIZE(n));
1436
1437         return 0;
1438
1439  fail_page_table:
1440         dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1441                      scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1442  fail:
1443         return -ENOMEM;
1444 }
1445
1446 /* SCSI stack integration */
1447
1448 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1449 {
1450         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1451         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1452         struct sbp2_command_orb *orb;
1453         int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1454
1455         /*
1456          * Bidirectional commands are not yet implemented, and unknown
1457          * transfer direction not handled.
1458          */
1459         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1460                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1461                 cmd->result = DID_ERROR << 16;
1462                 done(cmd);
1463                 return 0;
1464         }
1465
1466         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1467         if (orb == NULL) {
1468                 fw_notify("failed to alloc orb\n");
1469                 return SCSI_MLQUEUE_HOST_BUSY;
1470         }
1471
1472         /* Initialize rcode to something not RCODE_COMPLETE. */
1473         orb->base.rcode = -1;
1474         kref_init(&orb->base.kref);
1475
1476         orb->lu   = lu;
1477         orb->done = done;
1478         orb->cmd  = cmd;
1479
1480         orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1481         orb->request.misc = cpu_to_be32(
1482                 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1483                 COMMAND_ORB_SPEED(device->max_speed) |
1484                 COMMAND_ORB_NOTIFY);
1485
1486         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1487                 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1488
1489         generation = device->generation;
1490         smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1491
1492         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1493                 goto out;
1494
1495         memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1496
1497         orb->base.callback = complete_command_orb;
1498         orb->base.request_bus =
1499                 dma_map_single(device->card->device, &orb->request,
1500                                sizeof(orb->request), DMA_TO_DEVICE);
1501         if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1502                 sbp2_unmap_scatterlist(device->card->device, orb);
1503                 goto out;
1504         }
1505
1506         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1507                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1508         retval = 0;
1509  out:
1510         kref_put(&orb->base.kref, free_orb);
1511         return retval;
1512 }
1513
1514 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1515 {
1516         struct sbp2_logical_unit *lu = sdev->hostdata;
1517
1518         /* (Re-)Adding logical units via the SCSI stack is not supported. */
1519         if (!lu)
1520                 return -ENOSYS;
1521
1522         sdev->allow_restart = 1;
1523
1524         /* SBP-2 requires quadlet alignment of the data buffers. */
1525         blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1526
1527         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1528                 sdev->inquiry_len = 36;
1529
1530         return 0;
1531 }
1532
1533 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1534 {
1535         struct sbp2_logical_unit *lu = sdev->hostdata;
1536
1537         sdev->use_10_for_rw = 1;
1538
1539         if (sbp2_param_exclusive_login)
1540                 sdev->manage_start_stop = 1;
1541
1542         if (sdev->type == TYPE_ROM)
1543                 sdev->use_10_for_ms = 1;
1544
1545         if (sdev->type == TYPE_DISK &&
1546             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1547                 sdev->skip_ms_page_8 = 1;
1548
1549         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1550                 sdev->fix_capacity = 1;
1551
1552         if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1553                 sdev->start_stop_pwr_cond = 1;
1554
1555         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1556                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1557
1558         blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1559
1560         return 0;
1561 }
1562
1563 /*
1564  * Called by scsi stack when something has really gone wrong.  Usually
1565  * called when a command has timed-out for some reason.
1566  */
1567 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1568 {
1569         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1570
1571         fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1572         sbp2_agent_reset(lu);
1573         sbp2_cancel_orbs(lu);
1574
1575         return SUCCESS;
1576 }
1577
1578 /*
1579  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1580  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1581  *
1582  * This is the concatenation of target port identifier and logical unit
1583  * identifier as per SAM-2...SAM-4 annex A.
1584  */
1585 static ssize_t
1586 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1587                             char *buf)
1588 {
1589         struct scsi_device *sdev = to_scsi_device(dev);
1590         struct sbp2_logical_unit *lu;
1591
1592         if (!sdev)
1593                 return 0;
1594
1595         lu = sdev->hostdata;
1596
1597         return sprintf(buf, "%016llx:%06x:%04x\n",
1598                         (unsigned long long)lu->tgt->guid,
1599                         lu->tgt->directory_id, lu->lun);
1600 }
1601
1602 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1603
1604 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1605         &dev_attr_ieee1394_id,
1606         NULL
1607 };
1608
1609 static struct scsi_host_template scsi_driver_template = {
1610         .module                 = THIS_MODULE,
1611         .name                   = "SBP-2 IEEE-1394",
1612         .proc_name              = sbp2_driver_name,
1613         .queuecommand           = sbp2_scsi_queuecommand,
1614         .slave_alloc            = sbp2_scsi_slave_alloc,
1615         .slave_configure        = sbp2_scsi_slave_configure,
1616         .eh_abort_handler       = sbp2_scsi_abort,
1617         .this_id                = -1,
1618         .sg_tablesize           = SG_ALL,
1619         .use_clustering         = ENABLE_CLUSTERING,
1620         .cmd_per_lun            = 1,
1621         .can_queue              = 1,
1622         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1623 };
1624
1625 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1626 MODULE_DESCRIPTION("SCSI over IEEE1394");
1627 MODULE_LICENSE("GPL");
1628 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1629
1630 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1631 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1632 MODULE_ALIAS("sbp2");
1633 #endif
1634
1635 static int __init sbp2_init(void)
1636 {
1637         sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1638         if (!sbp2_wq)
1639                 return -ENOMEM;
1640
1641         return driver_register(&sbp2_driver.driver);
1642 }
1643
1644 static void __exit sbp2_cleanup(void)
1645 {
1646         driver_unregister(&sbp2_driver.driver);
1647         destroy_workqueue(sbp2_wq);
1648 }
1649
1650 module_init(sbp2_init);
1651 module_exit(sbp2_cleanup);