Merge branch 'master' of /home/davem/src/GIT/linux-2.6/
[linux-2.6] / drivers / net / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61     NETIF_MSG_TX_QUEUED |
62     NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = 0x00007fff;  /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
79         /* required last entry */
80         {0,}
81 };
82
83 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84
85 /* This hardware semaphore causes exclusive access to
86  * resources shared between the NIC driver, MPI firmware,
87  * FCOE firmware and the FC driver.
88  */
89 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90 {
91         u32 sem_bits = 0;
92
93         switch (sem_mask) {
94         case SEM_XGMAC0_MASK:
95                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96                 break;
97         case SEM_XGMAC1_MASK:
98                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99                 break;
100         case SEM_ICB_MASK:
101                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
102                 break;
103         case SEM_MAC_ADDR_MASK:
104                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105                 break;
106         case SEM_FLASH_MASK:
107                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108                 break;
109         case SEM_PROBE_MASK:
110                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111                 break;
112         case SEM_RT_IDX_MASK:
113                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114                 break;
115         case SEM_PROC_REG_MASK:
116                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117                 break;
118         default:
119                 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120                 return -EINVAL;
121         }
122
123         ql_write32(qdev, SEM, sem_bits | sem_mask);
124         return !(ql_read32(qdev, SEM) & sem_bits);
125 }
126
127 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128 {
129         unsigned int wait_count = 30;
130         do {
131                 if (!ql_sem_trylock(qdev, sem_mask))
132                         return 0;
133                 udelay(100);
134         } while (--wait_count);
135         return -ETIMEDOUT;
136 }
137
138 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139 {
140         ql_write32(qdev, SEM, sem_mask);
141         ql_read32(qdev, SEM);   /* flush */
142 }
143
144 /* This function waits for a specific bit to come ready
145  * in a given register.  It is used mostly by the initialize
146  * process, but is also used in kernel thread API such as
147  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148  */
149 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150 {
151         u32 temp;
152         int count = UDELAY_COUNT;
153
154         while (count) {
155                 temp = ql_read32(qdev, reg);
156
157                 /* check for errors */
158                 if (temp & err_bit) {
159                         QPRINTK(qdev, PROBE, ALERT,
160                                 "register 0x%.08x access error, value = 0x%.08x!.\n",
161                                 reg, temp);
162                         return -EIO;
163                 } else if (temp & bit)
164                         return 0;
165                 udelay(UDELAY_DELAY);
166                 count--;
167         }
168         QPRINTK(qdev, PROBE, ALERT,
169                 "Timed out waiting for reg %x to come ready.\n", reg);
170         return -ETIMEDOUT;
171 }
172
173 /* The CFG register is used to download TX and RX control blocks
174  * to the chip. This function waits for an operation to complete.
175  */
176 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177 {
178         int count = UDELAY_COUNT;
179         u32 temp;
180
181         while (count) {
182                 temp = ql_read32(qdev, CFG);
183                 if (temp & CFG_LE)
184                         return -EIO;
185                 if (!(temp & bit))
186                         return 0;
187                 udelay(UDELAY_DELAY);
188                 count--;
189         }
190         return -ETIMEDOUT;
191 }
192
193
194 /* Used to issue init control blocks to hw. Maps control block,
195  * sets address, triggers download, waits for completion.
196  */
197 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198                  u16 q_id)
199 {
200         u64 map;
201         int status = 0;
202         int direction;
203         u32 mask;
204         u32 value;
205
206         direction =
207             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208             PCI_DMA_FROMDEVICE;
209
210         map = pci_map_single(qdev->pdev, ptr, size, direction);
211         if (pci_dma_mapping_error(qdev->pdev, map)) {
212                 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213                 return -ENOMEM;
214         }
215
216         status = ql_wait_cfg(qdev, bit);
217         if (status) {
218                 QPRINTK(qdev, IFUP, ERR,
219                         "Timed out waiting for CFG to come ready.\n");
220                 goto exit;
221         }
222
223         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
224         if (status)
225                 goto exit;
226         ql_write32(qdev, ICB_L, (u32) map);
227         ql_write32(qdev, ICB_H, (u32) (map >> 32));
228         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
229
230         mask = CFG_Q_MASK | (bit << 16);
231         value = bit | (q_id << CFG_Q_SHIFT);
232         ql_write32(qdev, CFG, (mask | value));
233
234         /*
235          * Wait for the bit to clear after signaling hw.
236          */
237         status = ql_wait_cfg(qdev, bit);
238 exit:
239         pci_unmap_single(qdev->pdev, map, size, direction);
240         return status;
241 }
242
243 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
244 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
245                         u32 *value)
246 {
247         u32 offset = 0;
248         int status;
249
250         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
251         if (status)
252                 return status;
253         switch (type) {
254         case MAC_ADDR_TYPE_MULTI_MAC:
255         case MAC_ADDR_TYPE_CAM_MAC:
256                 {
257                         status =
258                             ql_wait_reg_rdy(qdev,
259                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
260                         if (status)
261                                 goto exit;
262                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
263                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
264                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
265                         status =
266                             ql_wait_reg_rdy(qdev,
267                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
268                         if (status)
269                                 goto exit;
270                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
271                         status =
272                             ql_wait_reg_rdy(qdev,
273                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
274                         if (status)
275                                 goto exit;
276                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
277                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
278                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
279                         status =
280                             ql_wait_reg_rdy(qdev,
281                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
282                         if (status)
283                                 goto exit;
284                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
285                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
286                                 status =
287                                     ql_wait_reg_rdy(qdev,
288                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
289                                 if (status)
290                                         goto exit;
291                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
293                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294                                 status =
295                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
296                                                     MAC_ADDR_MR, 0);
297                                 if (status)
298                                         goto exit;
299                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300                         }
301                         break;
302                 }
303         case MAC_ADDR_TYPE_VLAN:
304         case MAC_ADDR_TYPE_MULTI_FLTR:
305         default:
306                 QPRINTK(qdev, IFUP, CRIT,
307                         "Address type %d not yet supported.\n", type);
308                 status = -EPERM;
309         }
310 exit:
311         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
312         return status;
313 }
314
315 /* Set up a MAC, multicast or VLAN address for the
316  * inbound frame matching.
317  */
318 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
319                                u16 index)
320 {
321         u32 offset = 0;
322         int status = 0;
323
324         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
325         if (status)
326                 return status;
327         switch (type) {
328         case MAC_ADDR_TYPE_MULTI_MAC:
329         case MAC_ADDR_TYPE_CAM_MAC:
330                 {
331                         u32 cam_output;
332                         u32 upper = (addr[0] << 8) | addr[1];
333                         u32 lower =
334                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
335                             (addr[5]);
336
337                         QPRINTK(qdev, IFUP, INFO,
338                                 "Adding %s address %pM"
339                                 " at index %d in the CAM.\n",
340                                 ((type ==
341                                   MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
342                                  "UNICAST"), addr, index);
343
344                         status =
345                             ql_wait_reg_rdy(qdev,
346                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
347                         if (status)
348                                 goto exit;
349                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
350                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
351                                    type);       /* type */
352                         ql_write32(qdev, MAC_ADDR_DATA, lower);
353                         status =
354                             ql_wait_reg_rdy(qdev,
355                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
356                         if (status)
357                                 goto exit;
358                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
359                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
360                                    type);       /* type */
361                         ql_write32(qdev, MAC_ADDR_DATA, upper);
362                         status =
363                             ql_wait_reg_rdy(qdev,
364                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
365                         if (status)
366                                 goto exit;
367                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
368                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
369                                    type);       /* type */
370                         /* This field should also include the queue id
371                            and possibly the function id.  Right now we hardcode
372                            the route field to NIC core.
373                          */
374                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
375                                 cam_output = (CAM_OUT_ROUTE_NIC |
376                                               (qdev->
377                                                func << CAM_OUT_FUNC_SHIFT) |
378                                               (qdev->
379                                                rss_ring_first_cq_id <<
380                                                CAM_OUT_CQ_ID_SHIFT));
381                                 if (qdev->vlgrp)
382                                         cam_output |= CAM_OUT_RV;
383                                 /* route to NIC core */
384                                 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
385                         }
386                         break;
387                 }
388         case MAC_ADDR_TYPE_VLAN:
389                 {
390                         u32 enable_bit = *((u32 *) &addr[0]);
391                         /* For VLAN, the addr actually holds a bit that
392                          * either enables or disables the vlan id we are
393                          * addressing. It's either MAC_ADDR_E on or off.
394                          * That's bit-27 we're talking about.
395                          */
396                         QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
397                                 (enable_bit ? "Adding" : "Removing"),
398                                 index, (enable_bit ? "to" : "from"));
399
400                         status =
401                             ql_wait_reg_rdy(qdev,
402                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
403                         if (status)
404                                 goto exit;
405                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
406                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
407                                    type |       /* type */
408                                    enable_bit); /* enable/disable */
409                         break;
410                 }
411         case MAC_ADDR_TYPE_MULTI_FLTR:
412         default:
413                 QPRINTK(qdev, IFUP, CRIT,
414                         "Address type %d not yet supported.\n", type);
415                 status = -EPERM;
416         }
417 exit:
418         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
419         return status;
420 }
421
422 /* Get a specific frame routing value from the CAM.
423  * Used for debug and reg dump.
424  */
425 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
426 {
427         int status = 0;
428
429         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
430         if (status)
431                 goto exit;
432
433         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
434         if (status)
435                 goto exit;
436
437         ql_write32(qdev, RT_IDX,
438                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
439         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
440         if (status)
441                 goto exit;
442         *value = ql_read32(qdev, RT_DATA);
443 exit:
444         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
445         return status;
446 }
447
448 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
449  * to route different frame types to various inbound queues.  We send broadcast/
450  * multicast/error frames to the default queue for slow handling,
451  * and CAM hit/RSS frames to the fast handling queues.
452  */
453 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
454                               int enable)
455 {
456         int status;
457         u32 value = 0;
458
459         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
460         if (status)
461                 return status;
462
463         QPRINTK(qdev, IFUP, DEBUG,
464                 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
465                 (enable ? "Adding" : "Removing"),
466                 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
467                 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
468                 ((index ==
469                   RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
470                 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
471                 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
472                 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
473                 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
474                 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
475                 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
476                 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
477                 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
478                 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
479                 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
480                 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
481                 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
482                 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
483                 (enable ? "to" : "from"));
484
485         switch (mask) {
486         case RT_IDX_CAM_HIT:
487                 {
488                         value = RT_IDX_DST_CAM_Q |      /* dest */
489                             RT_IDX_TYPE_NICQ |  /* type */
490                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
491                         break;
492                 }
493         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
494                 {
495                         value = RT_IDX_DST_DFLT_Q |     /* dest */
496                             RT_IDX_TYPE_NICQ |  /* type */
497                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
498                         break;
499                 }
500         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
501                 {
502                         value = RT_IDX_DST_DFLT_Q |     /* dest */
503                             RT_IDX_TYPE_NICQ |  /* type */
504                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
505                         break;
506                 }
507         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
508                 {
509                         value = RT_IDX_DST_DFLT_Q |     /* dest */
510                             RT_IDX_TYPE_NICQ |  /* type */
511                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
512                         break;
513                 }
514         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
515                 {
516                         value = RT_IDX_DST_CAM_Q |      /* dest */
517                             RT_IDX_TYPE_NICQ |  /* type */
518                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
519                         break;
520                 }
521         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
522                 {
523                         value = RT_IDX_DST_CAM_Q |      /* dest */
524                             RT_IDX_TYPE_NICQ |  /* type */
525                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
526                         break;
527                 }
528         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
529                 {
530                         value = RT_IDX_DST_RSS |        /* dest */
531                             RT_IDX_TYPE_NICQ |  /* type */
532                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
533                         break;
534                 }
535         case 0:         /* Clear the E-bit on an entry. */
536                 {
537                         value = RT_IDX_DST_DFLT_Q |     /* dest */
538                             RT_IDX_TYPE_NICQ |  /* type */
539                             (index << RT_IDX_IDX_SHIFT);/* index */
540                         break;
541                 }
542         default:
543                 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
544                         mask);
545                 status = -EPERM;
546                 goto exit;
547         }
548
549         if (value) {
550                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
551                 if (status)
552                         goto exit;
553                 value |= (enable ? RT_IDX_E : 0);
554                 ql_write32(qdev, RT_IDX, value);
555                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
556         }
557 exit:
558         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
559         return status;
560 }
561
562 static void ql_enable_interrupts(struct ql_adapter *qdev)
563 {
564         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
565 }
566
567 static void ql_disable_interrupts(struct ql_adapter *qdev)
568 {
569         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
570 }
571
572 /* If we're running with multiple MSI-X vectors then we enable on the fly.
573  * Otherwise, we may have multiple outstanding workers and don't want to
574  * enable until the last one finishes. In this case, the irq_cnt gets
575  * incremented everytime we queue a worker and decremented everytime
576  * a worker finishes.  Once it hits zero we enable the interrupt.
577  */
578 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
579 {
580         u32 var = 0;
581         unsigned long hw_flags = 0;
582         struct intr_context *ctx = qdev->intr_context + intr;
583
584         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
585                 /* Always enable if we're MSIX multi interrupts and
586                  * it's not the default (zeroeth) interrupt.
587                  */
588                 ql_write32(qdev, INTR_EN,
589                            ctx->intr_en_mask);
590                 var = ql_read32(qdev, STS);
591                 return var;
592         }
593
594         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
595         if (atomic_dec_and_test(&ctx->irq_cnt)) {
596                 ql_write32(qdev, INTR_EN,
597                            ctx->intr_en_mask);
598                 var = ql_read32(qdev, STS);
599         }
600         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
601         return var;
602 }
603
604 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
605 {
606         u32 var = 0;
607         unsigned long hw_flags;
608         struct intr_context *ctx;
609
610         /* HW disables for us if we're MSIX multi interrupts and
611          * it's not the default (zeroeth) interrupt.
612          */
613         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
614                 return 0;
615
616         ctx = qdev->intr_context + intr;
617         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
618         if (!atomic_read(&ctx->irq_cnt)) {
619                 ql_write32(qdev, INTR_EN,
620                 ctx->intr_dis_mask);
621                 var = ql_read32(qdev, STS);
622         }
623         atomic_inc(&ctx->irq_cnt);
624         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
625         return var;
626 }
627
628 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
629 {
630         int i;
631         for (i = 0; i < qdev->intr_count; i++) {
632                 /* The enable call does a atomic_dec_and_test
633                  * and enables only if the result is zero.
634                  * So we precharge it here.
635                  */
636                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
637                         i == 0))
638                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
639                 ql_enable_completion_interrupt(qdev, i);
640         }
641
642 }
643
644 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
645 {
646         int status = 0;
647         /* wait for reg to come ready */
648         status = ql_wait_reg_rdy(qdev,
649                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
650         if (status)
651                 goto exit;
652         /* set up for reg read */
653         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
654         /* wait for reg to come ready */
655         status = ql_wait_reg_rdy(qdev,
656                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
657         if (status)
658                 goto exit;
659          /* This data is stored on flash as an array of
660          * __le32.  Since ql_read32() returns cpu endian
661          * we need to swap it back.
662          */
663         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
664 exit:
665         return status;
666 }
667
668 static int ql_get_flash_params(struct ql_adapter *qdev)
669 {
670         int i;
671         int status;
672         __le32 *p = (__le32 *)&qdev->flash;
673         u32 offset = 0;
674
675         /* Second function's parameters follow the first
676          * function's.
677          */
678         if (qdev->func)
679                 offset = sizeof(qdev->flash) / sizeof(u32);
680
681         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
682                 return -ETIMEDOUT;
683
684         for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
685                 status = ql_read_flash_word(qdev, i+offset, p);
686                 if (status) {
687                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
688                         goto exit;
689                 }
690
691         }
692 exit:
693         ql_sem_unlock(qdev, SEM_FLASH_MASK);
694         return status;
695 }
696
697 /* xgmac register are located behind the xgmac_addr and xgmac_data
698  * register pair.  Each read/write requires us to wait for the ready
699  * bit before reading/writing the data.
700  */
701 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
702 {
703         int status;
704         /* wait for reg to come ready */
705         status = ql_wait_reg_rdy(qdev,
706                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
707         if (status)
708                 return status;
709         /* write the data to the data reg */
710         ql_write32(qdev, XGMAC_DATA, data);
711         /* trigger the write */
712         ql_write32(qdev, XGMAC_ADDR, reg);
713         return status;
714 }
715
716 /* xgmac register are located behind the xgmac_addr and xgmac_data
717  * register pair.  Each read/write requires us to wait for the ready
718  * bit before reading/writing the data.
719  */
720 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
721 {
722         int status = 0;
723         /* wait for reg to come ready */
724         status = ql_wait_reg_rdy(qdev,
725                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
726         if (status)
727                 goto exit;
728         /* set up for reg read */
729         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
730         /* wait for reg to come ready */
731         status = ql_wait_reg_rdy(qdev,
732                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
733         if (status)
734                 goto exit;
735         /* get the data */
736         *data = ql_read32(qdev, XGMAC_DATA);
737 exit:
738         return status;
739 }
740
741 /* This is used for reading the 64-bit statistics regs. */
742 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
743 {
744         int status = 0;
745         u32 hi = 0;
746         u32 lo = 0;
747
748         status = ql_read_xgmac_reg(qdev, reg, &lo);
749         if (status)
750                 goto exit;
751
752         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
753         if (status)
754                 goto exit;
755
756         *data = (u64) lo | ((u64) hi << 32);
757
758 exit:
759         return status;
760 }
761
762 /* Take the MAC Core out of reset.
763  * Enable statistics counting.
764  * Take the transmitter/receiver out of reset.
765  * This functionality may be done in the MPI firmware at a
766  * later date.
767  */
768 static int ql_port_initialize(struct ql_adapter *qdev)
769 {
770         int status = 0;
771         u32 data;
772
773         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
774                 /* Another function has the semaphore, so
775                  * wait for the port init bit to come ready.
776                  */
777                 QPRINTK(qdev, LINK, INFO,
778                         "Another function has the semaphore, so wait for the port init bit to come ready.\n");
779                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
780                 if (status) {
781                         QPRINTK(qdev, LINK, CRIT,
782                                 "Port initialize timed out.\n");
783                 }
784                 return status;
785         }
786
787         QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
788         /* Set the core reset. */
789         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
790         if (status)
791                 goto end;
792         data |= GLOBAL_CFG_RESET;
793         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
794         if (status)
795                 goto end;
796
797         /* Clear the core reset and turn on jumbo for receiver. */
798         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
799         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
800         data |= GLOBAL_CFG_TX_STAT_EN;
801         data |= GLOBAL_CFG_RX_STAT_EN;
802         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
803         if (status)
804                 goto end;
805
806         /* Enable transmitter, and clear it's reset. */
807         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
808         if (status)
809                 goto end;
810         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
811         data |= TX_CFG_EN;      /* Enable the transmitter. */
812         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
813         if (status)
814                 goto end;
815
816         /* Enable receiver and clear it's reset. */
817         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
818         if (status)
819                 goto end;
820         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
821         data |= RX_CFG_EN;      /* Enable the receiver. */
822         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
823         if (status)
824                 goto end;
825
826         /* Turn on jumbo. */
827         status =
828             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
829         if (status)
830                 goto end;
831         status =
832             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
833         if (status)
834                 goto end;
835
836         /* Signal to the world that the port is enabled.        */
837         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
838 end:
839         ql_sem_unlock(qdev, qdev->xg_sem_mask);
840         return status;
841 }
842
843 /* Get the next large buffer. */
844 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
845 {
846         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
847         rx_ring->lbq_curr_idx++;
848         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
849                 rx_ring->lbq_curr_idx = 0;
850         rx_ring->lbq_free_cnt++;
851         return lbq_desc;
852 }
853
854 /* Get the next small buffer. */
855 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
856 {
857         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
858         rx_ring->sbq_curr_idx++;
859         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
860                 rx_ring->sbq_curr_idx = 0;
861         rx_ring->sbq_free_cnt++;
862         return sbq_desc;
863 }
864
865 /* Update an rx ring index. */
866 static void ql_update_cq(struct rx_ring *rx_ring)
867 {
868         rx_ring->cnsmr_idx++;
869         rx_ring->curr_entry++;
870         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
871                 rx_ring->cnsmr_idx = 0;
872                 rx_ring->curr_entry = rx_ring->cq_base;
873         }
874 }
875
876 static void ql_write_cq_idx(struct rx_ring *rx_ring)
877 {
878         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
879 }
880
881 /* Process (refill) a large buffer queue. */
882 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
883 {
884         int clean_idx = rx_ring->lbq_clean_idx;
885         struct bq_desc *lbq_desc;
886         u64 map;
887         int i;
888
889         while (rx_ring->lbq_free_cnt > 16) {
890                 for (i = 0; i < 16; i++) {
891                         QPRINTK(qdev, RX_STATUS, DEBUG,
892                                 "lbq: try cleaning clean_idx = %d.\n",
893                                 clean_idx);
894                         lbq_desc = &rx_ring->lbq[clean_idx];
895                         if (lbq_desc->p.lbq_page == NULL) {
896                                 QPRINTK(qdev, RX_STATUS, DEBUG,
897                                         "lbq: getting new page for index %d.\n",
898                                         lbq_desc->index);
899                                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
900                                 if (lbq_desc->p.lbq_page == NULL) {
901                                         rx_ring->lbq_clean_idx = clean_idx;
902                                         QPRINTK(qdev, RX_STATUS, ERR,
903                                                 "Couldn't get a page.\n");
904                                         return;
905                                 }
906                                 map = pci_map_page(qdev->pdev,
907                                                    lbq_desc->p.lbq_page,
908                                                    0, PAGE_SIZE,
909                                                    PCI_DMA_FROMDEVICE);
910                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
911                                         rx_ring->lbq_clean_idx = clean_idx;
912                                         put_page(lbq_desc->p.lbq_page);
913                                         lbq_desc->p.lbq_page = NULL;
914                                         QPRINTK(qdev, RX_STATUS, ERR,
915                                                 "PCI mapping failed.\n");
916                                         return;
917                                 }
918                                 pci_unmap_addr_set(lbq_desc, mapaddr, map);
919                                 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
920                                 *lbq_desc->addr = cpu_to_le64(map);
921                         }
922                         clean_idx++;
923                         if (clean_idx == rx_ring->lbq_len)
924                                 clean_idx = 0;
925                 }
926
927                 rx_ring->lbq_clean_idx = clean_idx;
928                 rx_ring->lbq_prod_idx += 16;
929                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
930                         rx_ring->lbq_prod_idx = 0;
931                 QPRINTK(qdev, RX_STATUS, DEBUG,
932                         "lbq: updating prod idx = %d.\n",
933                         rx_ring->lbq_prod_idx);
934                 ql_write_db_reg(rx_ring->lbq_prod_idx,
935                                 rx_ring->lbq_prod_idx_db_reg);
936                 rx_ring->lbq_free_cnt -= 16;
937         }
938 }
939
940 /* Process (refill) a small buffer queue. */
941 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
942 {
943         int clean_idx = rx_ring->sbq_clean_idx;
944         struct bq_desc *sbq_desc;
945         u64 map;
946         int i;
947
948         while (rx_ring->sbq_free_cnt > 16) {
949                 for (i = 0; i < 16; i++) {
950                         sbq_desc = &rx_ring->sbq[clean_idx];
951                         QPRINTK(qdev, RX_STATUS, DEBUG,
952                                 "sbq: try cleaning clean_idx = %d.\n",
953                                 clean_idx);
954                         if (sbq_desc->p.skb == NULL) {
955                                 QPRINTK(qdev, RX_STATUS, DEBUG,
956                                         "sbq: getting new skb for index %d.\n",
957                                         sbq_desc->index);
958                                 sbq_desc->p.skb =
959                                     netdev_alloc_skb(qdev->ndev,
960                                                      rx_ring->sbq_buf_size);
961                                 if (sbq_desc->p.skb == NULL) {
962                                         QPRINTK(qdev, PROBE, ERR,
963                                                 "Couldn't get an skb.\n");
964                                         rx_ring->sbq_clean_idx = clean_idx;
965                                         return;
966                                 }
967                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
968                                 map = pci_map_single(qdev->pdev,
969                                                      sbq_desc->p.skb->data,
970                                                      rx_ring->sbq_buf_size /
971                                                      2, PCI_DMA_FROMDEVICE);
972                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
973                                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
974                                         rx_ring->sbq_clean_idx = clean_idx;
975                                         dev_kfree_skb_any(sbq_desc->p.skb);
976                                         sbq_desc->p.skb = NULL;
977                                         return;
978                                 }
979                                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
980                                 pci_unmap_len_set(sbq_desc, maplen,
981                                                   rx_ring->sbq_buf_size / 2);
982                                 *sbq_desc->addr = cpu_to_le64(map);
983                         }
984
985                         clean_idx++;
986                         if (clean_idx == rx_ring->sbq_len)
987                                 clean_idx = 0;
988                 }
989                 rx_ring->sbq_clean_idx = clean_idx;
990                 rx_ring->sbq_prod_idx += 16;
991                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
992                         rx_ring->sbq_prod_idx = 0;
993                 QPRINTK(qdev, RX_STATUS, DEBUG,
994                         "sbq: updating prod idx = %d.\n",
995                         rx_ring->sbq_prod_idx);
996                 ql_write_db_reg(rx_ring->sbq_prod_idx,
997                                 rx_ring->sbq_prod_idx_db_reg);
998
999                 rx_ring->sbq_free_cnt -= 16;
1000         }
1001 }
1002
1003 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1004                                     struct rx_ring *rx_ring)
1005 {
1006         ql_update_sbq(qdev, rx_ring);
1007         ql_update_lbq(qdev, rx_ring);
1008 }
1009
1010 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1011  * fails at some stage, or from the interrupt when a tx completes.
1012  */
1013 static void ql_unmap_send(struct ql_adapter *qdev,
1014                           struct tx_ring_desc *tx_ring_desc, int mapped)
1015 {
1016         int i;
1017         for (i = 0; i < mapped; i++) {
1018                 if (i == 0 || (i == 7 && mapped > 7)) {
1019                         /*
1020                          * Unmap the skb->data area, or the
1021                          * external sglist (AKA the Outbound
1022                          * Address List (OAL)).
1023                          * If its the zeroeth element, then it's
1024                          * the skb->data area.  If it's the 7th
1025                          * element and there is more than 6 frags,
1026                          * then its an OAL.
1027                          */
1028                         if (i == 7) {
1029                                 QPRINTK(qdev, TX_DONE, DEBUG,
1030                                         "unmapping OAL area.\n");
1031                         }
1032                         pci_unmap_single(qdev->pdev,
1033                                          pci_unmap_addr(&tx_ring_desc->map[i],
1034                                                         mapaddr),
1035                                          pci_unmap_len(&tx_ring_desc->map[i],
1036                                                        maplen),
1037                                          PCI_DMA_TODEVICE);
1038                 } else {
1039                         QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1040                                 i);
1041                         pci_unmap_page(qdev->pdev,
1042                                        pci_unmap_addr(&tx_ring_desc->map[i],
1043                                                       mapaddr),
1044                                        pci_unmap_len(&tx_ring_desc->map[i],
1045                                                      maplen), PCI_DMA_TODEVICE);
1046                 }
1047         }
1048
1049 }
1050
1051 /* Map the buffers for this transmit.  This will return
1052  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1053  */
1054 static int ql_map_send(struct ql_adapter *qdev,
1055                        struct ob_mac_iocb_req *mac_iocb_ptr,
1056                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1057 {
1058         int len = skb_headlen(skb);
1059         dma_addr_t map;
1060         int frag_idx, err, map_idx = 0;
1061         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1062         int frag_cnt = skb_shinfo(skb)->nr_frags;
1063
1064         if (frag_cnt) {
1065                 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1066         }
1067         /*
1068          * Map the skb buffer first.
1069          */
1070         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1071
1072         err = pci_dma_mapping_error(qdev->pdev, map);
1073         if (err) {
1074                 QPRINTK(qdev, TX_QUEUED, ERR,
1075                         "PCI mapping failed with error: %d\n", err);
1076
1077                 return NETDEV_TX_BUSY;
1078         }
1079
1080         tbd->len = cpu_to_le32(len);
1081         tbd->addr = cpu_to_le64(map);
1082         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1083         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1084         map_idx++;
1085
1086         /*
1087          * This loop fills the remainder of the 8 address descriptors
1088          * in the IOCB.  If there are more than 7 fragments, then the
1089          * eighth address desc will point to an external list (OAL).
1090          * When this happens, the remainder of the frags will be stored
1091          * in this list.
1092          */
1093         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1094                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1095                 tbd++;
1096                 if (frag_idx == 6 && frag_cnt > 7) {
1097                         /* Let's tack on an sglist.
1098                          * Our control block will now
1099                          * look like this:
1100                          * iocb->seg[0] = skb->data
1101                          * iocb->seg[1] = frag[0]
1102                          * iocb->seg[2] = frag[1]
1103                          * iocb->seg[3] = frag[2]
1104                          * iocb->seg[4] = frag[3]
1105                          * iocb->seg[5] = frag[4]
1106                          * iocb->seg[6] = frag[5]
1107                          * iocb->seg[7] = ptr to OAL (external sglist)
1108                          * oal->seg[0] = frag[6]
1109                          * oal->seg[1] = frag[7]
1110                          * oal->seg[2] = frag[8]
1111                          * oal->seg[3] = frag[9]
1112                          * oal->seg[4] = frag[10]
1113                          *      etc...
1114                          */
1115                         /* Tack on the OAL in the eighth segment of IOCB. */
1116                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1117                                              sizeof(struct oal),
1118                                              PCI_DMA_TODEVICE);
1119                         err = pci_dma_mapping_error(qdev->pdev, map);
1120                         if (err) {
1121                                 QPRINTK(qdev, TX_QUEUED, ERR,
1122                                         "PCI mapping outbound address list with error: %d\n",
1123                                         err);
1124                                 goto map_error;
1125                         }
1126
1127                         tbd->addr = cpu_to_le64(map);
1128                         /*
1129                          * The length is the number of fragments
1130                          * that remain to be mapped times the length
1131                          * of our sglist (OAL).
1132                          */
1133                         tbd->len =
1134                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1135                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1136                         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1137                                            map);
1138                         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1139                                           sizeof(struct oal));
1140                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1141                         map_idx++;
1142                 }
1143
1144                 map =
1145                     pci_map_page(qdev->pdev, frag->page,
1146                                  frag->page_offset, frag->size,
1147                                  PCI_DMA_TODEVICE);
1148
1149                 err = pci_dma_mapping_error(qdev->pdev, map);
1150                 if (err) {
1151                         QPRINTK(qdev, TX_QUEUED, ERR,
1152                                 "PCI mapping frags failed with error: %d.\n",
1153                                 err);
1154                         goto map_error;
1155                 }
1156
1157                 tbd->addr = cpu_to_le64(map);
1158                 tbd->len = cpu_to_le32(frag->size);
1159                 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1160                 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1161                                   frag->size);
1162
1163         }
1164         /* Save the number of segments we've mapped. */
1165         tx_ring_desc->map_cnt = map_idx;
1166         /* Terminate the last segment. */
1167         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1168         return NETDEV_TX_OK;
1169
1170 map_error:
1171         /*
1172          * If the first frag mapping failed, then i will be zero.
1173          * This causes the unmap of the skb->data area.  Otherwise
1174          * we pass in the number of frags that mapped successfully
1175          * so they can be umapped.
1176          */
1177         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1178         return NETDEV_TX_BUSY;
1179 }
1180
1181 static void ql_realign_skb(struct sk_buff *skb, int len)
1182 {
1183         void *temp_addr = skb->data;
1184
1185         /* Undo the skb_reserve(skb,32) we did before
1186          * giving to hardware, and realign data on
1187          * a 2-byte boundary.
1188          */
1189         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1190         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1191         skb_copy_to_linear_data(skb, temp_addr,
1192                 (unsigned int)len);
1193 }
1194
1195 /*
1196  * This function builds an skb for the given inbound
1197  * completion.  It will be rewritten for readability in the near
1198  * future, but for not it works well.
1199  */
1200 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1201                                        struct rx_ring *rx_ring,
1202                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1203 {
1204         struct bq_desc *lbq_desc;
1205         struct bq_desc *sbq_desc;
1206         struct sk_buff *skb = NULL;
1207         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1208        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1209
1210         /*
1211          * Handle the header buffer if present.
1212          */
1213         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1214             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1215                 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1216                 /*
1217                  * Headers fit nicely into a small buffer.
1218                  */
1219                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1220                 pci_unmap_single(qdev->pdev,
1221                                 pci_unmap_addr(sbq_desc, mapaddr),
1222                                 pci_unmap_len(sbq_desc, maplen),
1223                                 PCI_DMA_FROMDEVICE);
1224                 skb = sbq_desc->p.skb;
1225                 ql_realign_skb(skb, hdr_len);
1226                 skb_put(skb, hdr_len);
1227                 sbq_desc->p.skb = NULL;
1228         }
1229
1230         /*
1231          * Handle the data buffer(s).
1232          */
1233         if (unlikely(!length)) {        /* Is there data too? */
1234                 QPRINTK(qdev, RX_STATUS, DEBUG,
1235                         "No Data buffer in this packet.\n");
1236                 return skb;
1237         }
1238
1239         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1240                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1241                         QPRINTK(qdev, RX_STATUS, DEBUG,
1242                                 "Headers in small, data of %d bytes in small, combine them.\n", length);
1243                         /*
1244                          * Data is less than small buffer size so it's
1245                          * stuffed in a small buffer.
1246                          * For this case we append the data
1247                          * from the "data" small buffer to the "header" small
1248                          * buffer.
1249                          */
1250                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1251                         pci_dma_sync_single_for_cpu(qdev->pdev,
1252                                                     pci_unmap_addr
1253                                                     (sbq_desc, mapaddr),
1254                                                     pci_unmap_len
1255                                                     (sbq_desc, maplen),
1256                                                     PCI_DMA_FROMDEVICE);
1257                         memcpy(skb_put(skb, length),
1258                                sbq_desc->p.skb->data, length);
1259                         pci_dma_sync_single_for_device(qdev->pdev,
1260                                                        pci_unmap_addr
1261                                                        (sbq_desc,
1262                                                         mapaddr),
1263                                                        pci_unmap_len
1264                                                        (sbq_desc,
1265                                                         maplen),
1266                                                        PCI_DMA_FROMDEVICE);
1267                 } else {
1268                         QPRINTK(qdev, RX_STATUS, DEBUG,
1269                                 "%d bytes in a single small buffer.\n", length);
1270                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1271                         skb = sbq_desc->p.skb;
1272                         ql_realign_skb(skb, length);
1273                         skb_put(skb, length);
1274                         pci_unmap_single(qdev->pdev,
1275                                          pci_unmap_addr(sbq_desc,
1276                                                         mapaddr),
1277                                          pci_unmap_len(sbq_desc,
1278                                                        maplen),
1279                                          PCI_DMA_FROMDEVICE);
1280                         sbq_desc->p.skb = NULL;
1281                 }
1282         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1283                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1284                         QPRINTK(qdev, RX_STATUS, DEBUG,
1285                                 "Header in small, %d bytes in large. Chain large to small!\n", length);
1286                         /*
1287                          * The data is in a single large buffer.  We
1288                          * chain it to the header buffer's skb and let
1289                          * it rip.
1290                          */
1291                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1292                         pci_unmap_page(qdev->pdev,
1293                                        pci_unmap_addr(lbq_desc,
1294                                                       mapaddr),
1295                                        pci_unmap_len(lbq_desc, maplen),
1296                                        PCI_DMA_FROMDEVICE);
1297                         QPRINTK(qdev, RX_STATUS, DEBUG,
1298                                 "Chaining page to skb.\n");
1299                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1300                                            0, length);
1301                         skb->len += length;
1302                         skb->data_len += length;
1303                         skb->truesize += length;
1304                         lbq_desc->p.lbq_page = NULL;
1305                 } else {
1306                         /*
1307                          * The headers and data are in a single large buffer. We
1308                          * copy it to a new skb and let it go. This can happen with
1309                          * jumbo mtu on a non-TCP/UDP frame.
1310                          */
1311                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1312                         skb = netdev_alloc_skb(qdev->ndev, length);
1313                         if (skb == NULL) {
1314                                 QPRINTK(qdev, PROBE, DEBUG,
1315                                         "No skb available, drop the packet.\n");
1316                                 return NULL;
1317                         }
1318                         pci_unmap_page(qdev->pdev,
1319                                        pci_unmap_addr(lbq_desc,
1320                                                       mapaddr),
1321                                        pci_unmap_len(lbq_desc, maplen),
1322                                        PCI_DMA_FROMDEVICE);
1323                         skb_reserve(skb, NET_IP_ALIGN);
1324                         QPRINTK(qdev, RX_STATUS, DEBUG,
1325                                 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1326                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1327                                            0, length);
1328                         skb->len += length;
1329                         skb->data_len += length;
1330                         skb->truesize += length;
1331                         length -= length;
1332                         lbq_desc->p.lbq_page = NULL;
1333                         __pskb_pull_tail(skb,
1334                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1335                                 VLAN_ETH_HLEN : ETH_HLEN);
1336                 }
1337         } else {
1338                 /*
1339                  * The data is in a chain of large buffers
1340                  * pointed to by a small buffer.  We loop
1341                  * thru and chain them to the our small header
1342                  * buffer's skb.
1343                  * frags:  There are 18 max frags and our small
1344                  *         buffer will hold 32 of them. The thing is,
1345                  *         we'll use 3 max for our 9000 byte jumbo
1346                  *         frames.  If the MTU goes up we could
1347                  *          eventually be in trouble.
1348                  */
1349                 int size, offset, i = 0;
1350                 __le64 *bq, bq_array[8];
1351                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1352                 pci_unmap_single(qdev->pdev,
1353                                  pci_unmap_addr(sbq_desc, mapaddr),
1354                                  pci_unmap_len(sbq_desc, maplen),
1355                                  PCI_DMA_FROMDEVICE);
1356                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1357                         /*
1358                          * This is an non TCP/UDP IP frame, so
1359                          * the headers aren't split into a small
1360                          * buffer.  We have to use the small buffer
1361                          * that contains our sg list as our skb to
1362                          * send upstairs. Copy the sg list here to
1363                          * a local buffer and use it to find the
1364                          * pages to chain.
1365                          */
1366                         QPRINTK(qdev, RX_STATUS, DEBUG,
1367                                 "%d bytes of headers & data in chain of large.\n", length);
1368                         skb = sbq_desc->p.skb;
1369                         bq = &bq_array[0];
1370                         memcpy(bq, skb->data, sizeof(bq_array));
1371                         sbq_desc->p.skb = NULL;
1372                         skb_reserve(skb, NET_IP_ALIGN);
1373                 } else {
1374                         QPRINTK(qdev, RX_STATUS, DEBUG,
1375                                 "Headers in small, %d bytes of data in chain of large.\n", length);
1376                         bq = (__le64 *)sbq_desc->p.skb->data;
1377                 }
1378                 while (length > 0) {
1379                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1380                         pci_unmap_page(qdev->pdev,
1381                                        pci_unmap_addr(lbq_desc,
1382                                                       mapaddr),
1383                                        pci_unmap_len(lbq_desc,
1384                                                      maplen),
1385                                        PCI_DMA_FROMDEVICE);
1386                         size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1387                         offset = 0;
1388
1389                         QPRINTK(qdev, RX_STATUS, DEBUG,
1390                                 "Adding page %d to skb for %d bytes.\n",
1391                                 i, size);
1392                         skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1393                                            offset, size);
1394                         skb->len += size;
1395                         skb->data_len += size;
1396                         skb->truesize += size;
1397                         length -= size;
1398                         lbq_desc->p.lbq_page = NULL;
1399                         bq++;
1400                         i++;
1401                 }
1402                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1403                                 VLAN_ETH_HLEN : ETH_HLEN);
1404         }
1405         return skb;
1406 }
1407
1408 /* Process an inbound completion from an rx ring. */
1409 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1410                                    struct rx_ring *rx_ring,
1411                                    struct ib_mac_iocb_rsp *ib_mac_rsp)
1412 {
1413         struct net_device *ndev = qdev->ndev;
1414         struct sk_buff *skb = NULL;
1415
1416         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1417
1418         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1419         if (unlikely(!skb)) {
1420                 QPRINTK(qdev, RX_STATUS, DEBUG,
1421                         "No skb available, drop packet.\n");
1422                 return;
1423         }
1424
1425         prefetch(skb->data);
1426         skb->dev = ndev;
1427         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1428                 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1429                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1430                         IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1431                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1432                         IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1433                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1434                         IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1435         }
1436         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1437                 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1438         }
1439         if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1440                 QPRINTK(qdev, RX_STATUS, ERR,
1441                         "Bad checksum for this %s packet.\n",
1442                         ((ib_mac_rsp->
1443                           flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1444                 skb->ip_summed = CHECKSUM_NONE;
1445         } else if (qdev->rx_csum &&
1446                    ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1447                     ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1448                      !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1449                 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1450                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1451         }
1452         qdev->stats.rx_packets++;
1453         qdev->stats.rx_bytes += skb->len;
1454         skb->protocol = eth_type_trans(skb, ndev);
1455         skb_record_rx_queue(skb, rx_ring - &qdev->rx_ring[0]);
1456         if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1457                 QPRINTK(qdev, RX_STATUS, DEBUG,
1458                         "Passing a VLAN packet upstream.\n");
1459                 vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
1460                                 le16_to_cpu(ib_mac_rsp->vlan_id));
1461         } else {
1462                 QPRINTK(qdev, RX_STATUS, DEBUG,
1463                         "Passing a normal packet upstream.\n");
1464                 netif_receive_skb(skb);
1465         }
1466 }
1467
1468 /* Process an outbound completion from an rx ring. */
1469 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1470                                    struct ob_mac_iocb_rsp *mac_rsp)
1471 {
1472         struct tx_ring *tx_ring;
1473         struct tx_ring_desc *tx_ring_desc;
1474
1475         QL_DUMP_OB_MAC_RSP(mac_rsp);
1476         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1477         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1478         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1479         qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1480         qdev->stats.tx_packets++;
1481         dev_kfree_skb(tx_ring_desc->skb);
1482         tx_ring_desc->skb = NULL;
1483
1484         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1485                                         OB_MAC_IOCB_RSP_S |
1486                                         OB_MAC_IOCB_RSP_L |
1487                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1488                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1489                         QPRINTK(qdev, TX_DONE, WARNING,
1490                                 "Total descriptor length did not match transfer length.\n");
1491                 }
1492                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1493                         QPRINTK(qdev, TX_DONE, WARNING,
1494                                 "Frame too short to be legal, not sent.\n");
1495                 }
1496                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1497                         QPRINTK(qdev, TX_DONE, WARNING,
1498                                 "Frame too long, but sent anyway.\n");
1499                 }
1500                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1501                         QPRINTK(qdev, TX_DONE, WARNING,
1502                                 "PCI backplane error. Frame not sent.\n");
1503                 }
1504         }
1505         atomic_inc(&tx_ring->tx_count);
1506 }
1507
1508 /* Fire up a handler to reset the MPI processor. */
1509 void ql_queue_fw_error(struct ql_adapter *qdev)
1510 {
1511         netif_stop_queue(qdev->ndev);
1512         netif_carrier_off(qdev->ndev);
1513         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1514 }
1515
1516 void ql_queue_asic_error(struct ql_adapter *qdev)
1517 {
1518         netif_stop_queue(qdev->ndev);
1519         netif_carrier_off(qdev->ndev);
1520         ql_disable_interrupts(qdev);
1521         /* Clear adapter up bit to signal the recovery
1522          * process that it shouldn't kill the reset worker
1523          * thread
1524          */
1525         clear_bit(QL_ADAPTER_UP, &qdev->flags);
1526         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1527 }
1528
1529 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1530                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
1531 {
1532         switch (ib_ae_rsp->event) {
1533         case MGMT_ERR_EVENT:
1534                 QPRINTK(qdev, RX_ERR, ERR,
1535                         "Management Processor Fatal Error.\n");
1536                 ql_queue_fw_error(qdev);
1537                 return;
1538
1539         case CAM_LOOKUP_ERR_EVENT:
1540                 QPRINTK(qdev, LINK, ERR,
1541                         "Multiple CAM hits lookup occurred.\n");
1542                 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1543                 ql_queue_asic_error(qdev);
1544                 return;
1545
1546         case SOFT_ECC_ERROR_EVENT:
1547                 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1548                 ql_queue_asic_error(qdev);
1549                 break;
1550
1551         case PCI_ERR_ANON_BUF_RD:
1552                 QPRINTK(qdev, RX_ERR, ERR,
1553                         "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1554                         ib_ae_rsp->q_id);
1555                 ql_queue_asic_error(qdev);
1556                 break;
1557
1558         default:
1559                 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1560                         ib_ae_rsp->event);
1561                 ql_queue_asic_error(qdev);
1562                 break;
1563         }
1564 }
1565
1566 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1567 {
1568         struct ql_adapter *qdev = rx_ring->qdev;
1569         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1570         struct ob_mac_iocb_rsp *net_rsp = NULL;
1571         int count = 0;
1572
1573         /* While there are entries in the completion queue. */
1574         while (prod != rx_ring->cnsmr_idx) {
1575
1576                 QPRINTK(qdev, RX_STATUS, DEBUG,
1577                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1578                         prod, rx_ring->cnsmr_idx);
1579
1580                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1581                 rmb();
1582                 switch (net_rsp->opcode) {
1583
1584                 case OPCODE_OB_MAC_TSO_IOCB:
1585                 case OPCODE_OB_MAC_IOCB:
1586                         ql_process_mac_tx_intr(qdev, net_rsp);
1587                         break;
1588                 default:
1589                         QPRINTK(qdev, RX_STATUS, DEBUG,
1590                                 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1591                                 net_rsp->opcode);
1592                 }
1593                 count++;
1594                 ql_update_cq(rx_ring);
1595                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1596         }
1597         ql_write_cq_idx(rx_ring);
1598         if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1599                 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1600                 if (atomic_read(&tx_ring->queue_stopped) &&
1601                     (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1602                         /*
1603                          * The queue got stopped because the tx_ring was full.
1604                          * Wake it up, because it's now at least 25% empty.
1605                          */
1606                         netif_wake_queue(qdev->ndev);
1607         }
1608
1609         return count;
1610 }
1611
1612 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1613 {
1614         struct ql_adapter *qdev = rx_ring->qdev;
1615         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1616         struct ql_net_rsp_iocb *net_rsp;
1617         int count = 0;
1618
1619         /* While there are entries in the completion queue. */
1620         while (prod != rx_ring->cnsmr_idx) {
1621
1622                 QPRINTK(qdev, RX_STATUS, DEBUG,
1623                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1624                         prod, rx_ring->cnsmr_idx);
1625
1626                 net_rsp = rx_ring->curr_entry;
1627                 rmb();
1628                 switch (net_rsp->opcode) {
1629                 case OPCODE_IB_MAC_IOCB:
1630                         ql_process_mac_rx_intr(qdev, rx_ring,
1631                                                (struct ib_mac_iocb_rsp *)
1632                                                net_rsp);
1633                         break;
1634
1635                 case OPCODE_IB_AE_IOCB:
1636                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1637                                                 net_rsp);
1638                         break;
1639                 default:
1640                         {
1641                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1642                                         "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1643                                         net_rsp->opcode);
1644                         }
1645                 }
1646                 count++;
1647                 ql_update_cq(rx_ring);
1648                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1649                 if (count == budget)
1650                         break;
1651         }
1652         ql_update_buffer_queues(qdev, rx_ring);
1653         ql_write_cq_idx(rx_ring);
1654         return count;
1655 }
1656
1657 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1658 {
1659         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1660         struct ql_adapter *qdev = rx_ring->qdev;
1661         int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1662
1663         QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1664                 rx_ring->cq_id);
1665
1666         if (work_done < budget) {
1667                 __napi_complete(napi);
1668                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1669         }
1670         return work_done;
1671 }
1672
1673 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1674 {
1675         struct ql_adapter *qdev = netdev_priv(ndev);
1676
1677         qdev->vlgrp = grp;
1678         if (grp) {
1679                 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1680                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1681                            NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1682         } else {
1683                 QPRINTK(qdev, IFUP, DEBUG,
1684                         "Turning off VLAN in NIC_RCV_CFG.\n");
1685                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1686         }
1687 }
1688
1689 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1690 {
1691         struct ql_adapter *qdev = netdev_priv(ndev);
1692         u32 enable_bit = MAC_ADDR_E;
1693
1694         spin_lock(&qdev->hw_lock);
1695         if (ql_set_mac_addr_reg
1696             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1697                 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1698         }
1699         spin_unlock(&qdev->hw_lock);
1700 }
1701
1702 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1703 {
1704         struct ql_adapter *qdev = netdev_priv(ndev);
1705         u32 enable_bit = 0;
1706
1707         spin_lock(&qdev->hw_lock);
1708         if (ql_set_mac_addr_reg
1709             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1710                 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1711         }
1712         spin_unlock(&qdev->hw_lock);
1713
1714 }
1715
1716 /* Worker thread to process a given rx_ring that is dedicated
1717  * to outbound completions.
1718  */
1719 static void ql_tx_clean(struct work_struct *work)
1720 {
1721         struct rx_ring *rx_ring =
1722             container_of(work, struct rx_ring, rx_work.work);
1723         ql_clean_outbound_rx_ring(rx_ring);
1724         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1725
1726 }
1727
1728 /* Worker thread to process a given rx_ring that is dedicated
1729  * to inbound completions.
1730  */
1731 static void ql_rx_clean(struct work_struct *work)
1732 {
1733         struct rx_ring *rx_ring =
1734             container_of(work, struct rx_ring, rx_work.work);
1735         ql_clean_inbound_rx_ring(rx_ring, 64);
1736         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1737 }
1738
1739 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1740 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1741 {
1742         struct rx_ring *rx_ring = dev_id;
1743         queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1744                               &rx_ring->rx_work, 0);
1745         return IRQ_HANDLED;
1746 }
1747
1748 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1749 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1750 {
1751         struct rx_ring *rx_ring = dev_id;
1752         napi_schedule(&rx_ring->napi);
1753         return IRQ_HANDLED;
1754 }
1755
1756 /* This handles a fatal error, MPI activity, and the default
1757  * rx_ring in an MSI-X multiple vector environment.
1758  * In MSI/Legacy environment it also process the rest of
1759  * the rx_rings.
1760  */
1761 static irqreturn_t qlge_isr(int irq, void *dev_id)
1762 {
1763         struct rx_ring *rx_ring = dev_id;
1764         struct ql_adapter *qdev = rx_ring->qdev;
1765         struct intr_context *intr_context = &qdev->intr_context[0];
1766         u32 var;
1767         int i;
1768         int work_done = 0;
1769
1770         spin_lock(&qdev->hw_lock);
1771         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1772                 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1773                 spin_unlock(&qdev->hw_lock);
1774                 return IRQ_NONE;
1775         }
1776         spin_unlock(&qdev->hw_lock);
1777
1778         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1779
1780         /*
1781          * Check for fatal error.
1782          */
1783         if (var & STS_FE) {
1784                 ql_queue_asic_error(qdev);
1785                 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1786                 var = ql_read32(qdev, ERR_STS);
1787                 QPRINTK(qdev, INTR, ERR,
1788                         "Resetting chip. Error Status Register = 0x%x\n", var);
1789                 return IRQ_HANDLED;
1790         }
1791
1792         /*
1793          * Check MPI processor activity.
1794          */
1795         if (var & STS_PI) {
1796                 /*
1797                  * We've got an async event or mailbox completion.
1798                  * Handle it and clear the source of the interrupt.
1799                  */
1800                 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1801                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1802                 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1803                                       &qdev->mpi_work, 0);
1804                 work_done++;
1805         }
1806
1807         /*
1808          * Check the default queue and wake handler if active.
1809          */
1810         rx_ring = &qdev->rx_ring[0];
1811         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1812                 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1813                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1814                 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1815                                       &rx_ring->rx_work, 0);
1816                 work_done++;
1817         }
1818
1819         if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1820                 /*
1821                  * Start the DPC for each active queue.
1822                  */
1823                 for (i = 1; i < qdev->rx_ring_count; i++) {
1824                         rx_ring = &qdev->rx_ring[i];
1825                         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1826                             rx_ring->cnsmr_idx) {
1827                                 QPRINTK(qdev, INTR, INFO,
1828                                         "Waking handler for rx_ring[%d].\n", i);
1829                                 ql_disable_completion_interrupt(qdev,
1830                                                                 intr_context->
1831                                                                 intr);
1832                                 if (i < qdev->rss_ring_first_cq_id)
1833                                         queue_delayed_work_on(rx_ring->cpu,
1834                                                               qdev->q_workqueue,
1835                                                               &rx_ring->rx_work,
1836                                                               0);
1837                                 else
1838                                         napi_schedule(&rx_ring->napi);
1839                                 work_done++;
1840                         }
1841                 }
1842         }
1843         ql_enable_completion_interrupt(qdev, intr_context->intr);
1844         return work_done ? IRQ_HANDLED : IRQ_NONE;
1845 }
1846
1847 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1848 {
1849
1850         if (skb_is_gso(skb)) {
1851                 int err;
1852                 if (skb_header_cloned(skb)) {
1853                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1854                         if (err)
1855                                 return err;
1856                 }
1857
1858                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1859                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1860                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1861                 mac_iocb_ptr->total_hdrs_len =
1862                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1863                 mac_iocb_ptr->net_trans_offset =
1864                     cpu_to_le16(skb_network_offset(skb) |
1865                                 skb_transport_offset(skb)
1866                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
1867                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1868                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1869                 if (likely(skb->protocol == htons(ETH_P_IP))) {
1870                         struct iphdr *iph = ip_hdr(skb);
1871                         iph->check = 0;
1872                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1873                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1874                                                                  iph->daddr, 0,
1875                                                                  IPPROTO_TCP,
1876                                                                  0);
1877                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1878                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1879                         tcp_hdr(skb)->check =
1880                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1881                                              &ipv6_hdr(skb)->daddr,
1882                                              0, IPPROTO_TCP, 0);
1883                 }
1884                 return 1;
1885         }
1886         return 0;
1887 }
1888
1889 static void ql_hw_csum_setup(struct sk_buff *skb,
1890                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1891 {
1892         int len;
1893         struct iphdr *iph = ip_hdr(skb);
1894         __sum16 *check;
1895         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1896         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1897         mac_iocb_ptr->net_trans_offset =
1898                 cpu_to_le16(skb_network_offset(skb) |
1899                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1900
1901         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1902         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1903         if (likely(iph->protocol == IPPROTO_TCP)) {
1904                 check = &(tcp_hdr(skb)->check);
1905                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1906                 mac_iocb_ptr->total_hdrs_len =
1907                     cpu_to_le16(skb_transport_offset(skb) +
1908                                 (tcp_hdr(skb)->doff << 2));
1909         } else {
1910                 check = &(udp_hdr(skb)->check);
1911                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1912                 mac_iocb_ptr->total_hdrs_len =
1913                     cpu_to_le16(skb_transport_offset(skb) +
1914                                 sizeof(struct udphdr));
1915         }
1916         *check = ~csum_tcpudp_magic(iph->saddr,
1917                                     iph->daddr, len, iph->protocol, 0);
1918 }
1919
1920 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1921 {
1922         struct tx_ring_desc *tx_ring_desc;
1923         struct ob_mac_iocb_req *mac_iocb_ptr;
1924         struct ql_adapter *qdev = netdev_priv(ndev);
1925         int tso;
1926         struct tx_ring *tx_ring;
1927         u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1928
1929         tx_ring = &qdev->tx_ring[tx_ring_idx];
1930
1931         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1932                 QPRINTK(qdev, TX_QUEUED, INFO,
1933                         "%s: shutting down tx queue %d du to lack of resources.\n",
1934                         __func__, tx_ring_idx);
1935                 netif_stop_queue(ndev);
1936                 atomic_inc(&tx_ring->queue_stopped);
1937                 return NETDEV_TX_BUSY;
1938         }
1939         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1940         mac_iocb_ptr = tx_ring_desc->queue_entry;
1941         memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1942
1943         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1944         mac_iocb_ptr->tid = tx_ring_desc->index;
1945         /* We use the upper 32-bits to store the tx queue for this IO.
1946          * When we get the completion we can use it to establish the context.
1947          */
1948         mac_iocb_ptr->txq_idx = tx_ring_idx;
1949         tx_ring_desc->skb = skb;
1950
1951         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1952
1953         if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1954                 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1955                         vlan_tx_tag_get(skb));
1956                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1957                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1958         }
1959         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1960         if (tso < 0) {
1961                 dev_kfree_skb_any(skb);
1962                 return NETDEV_TX_OK;
1963         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1964                 ql_hw_csum_setup(skb,
1965                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1966         }
1967         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
1968                         NETDEV_TX_OK) {
1969                 QPRINTK(qdev, TX_QUEUED, ERR,
1970                                 "Could not map the segments.\n");
1971                 return NETDEV_TX_BUSY;
1972         }
1973         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1974         tx_ring->prod_idx++;
1975         if (tx_ring->prod_idx == tx_ring->wq_len)
1976                 tx_ring->prod_idx = 0;
1977         wmb();
1978
1979         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1980         ndev->trans_start = jiffies;
1981         QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1982                 tx_ring->prod_idx, skb->len);
1983
1984         atomic_dec(&tx_ring->tx_count);
1985         return NETDEV_TX_OK;
1986 }
1987
1988 static void ql_free_shadow_space(struct ql_adapter *qdev)
1989 {
1990         if (qdev->rx_ring_shadow_reg_area) {
1991                 pci_free_consistent(qdev->pdev,
1992                                     PAGE_SIZE,
1993                                     qdev->rx_ring_shadow_reg_area,
1994                                     qdev->rx_ring_shadow_reg_dma);
1995                 qdev->rx_ring_shadow_reg_area = NULL;
1996         }
1997         if (qdev->tx_ring_shadow_reg_area) {
1998                 pci_free_consistent(qdev->pdev,
1999                                     PAGE_SIZE,
2000                                     qdev->tx_ring_shadow_reg_area,
2001                                     qdev->tx_ring_shadow_reg_dma);
2002                 qdev->tx_ring_shadow_reg_area = NULL;
2003         }
2004 }
2005
2006 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2007 {
2008         qdev->rx_ring_shadow_reg_area =
2009             pci_alloc_consistent(qdev->pdev,
2010                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2011         if (qdev->rx_ring_shadow_reg_area == NULL) {
2012                 QPRINTK(qdev, IFUP, ERR,
2013                         "Allocation of RX shadow space failed.\n");
2014                 return -ENOMEM;
2015         }
2016         qdev->tx_ring_shadow_reg_area =
2017             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2018                                  &qdev->tx_ring_shadow_reg_dma);
2019         if (qdev->tx_ring_shadow_reg_area == NULL) {
2020                 QPRINTK(qdev, IFUP, ERR,
2021                         "Allocation of TX shadow space failed.\n");
2022                 goto err_wqp_sh_area;
2023         }
2024         return 0;
2025
2026 err_wqp_sh_area:
2027         pci_free_consistent(qdev->pdev,
2028                             PAGE_SIZE,
2029                             qdev->rx_ring_shadow_reg_area,
2030                             qdev->rx_ring_shadow_reg_dma);
2031         return -ENOMEM;
2032 }
2033
2034 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2035 {
2036         struct tx_ring_desc *tx_ring_desc;
2037         int i;
2038         struct ob_mac_iocb_req *mac_iocb_ptr;
2039
2040         mac_iocb_ptr = tx_ring->wq_base;
2041         tx_ring_desc = tx_ring->q;
2042         for (i = 0; i < tx_ring->wq_len; i++) {
2043                 tx_ring_desc->index = i;
2044                 tx_ring_desc->skb = NULL;
2045                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2046                 mac_iocb_ptr++;
2047                 tx_ring_desc++;
2048         }
2049         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2050         atomic_set(&tx_ring->queue_stopped, 0);
2051 }
2052
2053 static void ql_free_tx_resources(struct ql_adapter *qdev,
2054                                  struct tx_ring *tx_ring)
2055 {
2056         if (tx_ring->wq_base) {
2057                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2058                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2059                 tx_ring->wq_base = NULL;
2060         }
2061         kfree(tx_ring->q);
2062         tx_ring->q = NULL;
2063 }
2064
2065 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2066                                  struct tx_ring *tx_ring)
2067 {
2068         tx_ring->wq_base =
2069             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2070                                  &tx_ring->wq_base_dma);
2071
2072         if ((tx_ring->wq_base == NULL)
2073             || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2074                 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2075                 return -ENOMEM;
2076         }
2077         tx_ring->q =
2078             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2079         if (tx_ring->q == NULL)
2080                 goto err;
2081
2082         return 0;
2083 err:
2084         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2085                             tx_ring->wq_base, tx_ring->wq_base_dma);
2086         return -ENOMEM;
2087 }
2088
2089 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2090 {
2091         int i;
2092         struct bq_desc *lbq_desc;
2093
2094         for (i = 0; i < rx_ring->lbq_len; i++) {
2095                 lbq_desc = &rx_ring->lbq[i];
2096                 if (lbq_desc->p.lbq_page) {
2097                         pci_unmap_page(qdev->pdev,
2098                                        pci_unmap_addr(lbq_desc, mapaddr),
2099                                        pci_unmap_len(lbq_desc, maplen),
2100                                        PCI_DMA_FROMDEVICE);
2101
2102                         put_page(lbq_desc->p.lbq_page);
2103                         lbq_desc->p.lbq_page = NULL;
2104                 }
2105         }
2106 }
2107
2108 /*
2109  * Allocate and map a page for each element of the lbq.
2110  */
2111 static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2112                                 struct rx_ring *rx_ring)
2113 {
2114         int i;
2115         struct bq_desc *lbq_desc;
2116         u64 map;
2117         __le64 *bq = rx_ring->lbq_base;
2118
2119         for (i = 0; i < rx_ring->lbq_len; i++) {
2120                 lbq_desc = &rx_ring->lbq[i];
2121                 memset(lbq_desc, 0, sizeof(lbq_desc));
2122                 lbq_desc->addr = bq;
2123                 lbq_desc->index = i;
2124                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2125                 if (unlikely(!lbq_desc->p.lbq_page)) {
2126                         QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2127                         goto mem_error;
2128                 } else {
2129                         map = pci_map_page(qdev->pdev,
2130                                            lbq_desc->p.lbq_page,
2131                                            0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2132                         if (pci_dma_mapping_error(qdev->pdev, map)) {
2133                                 QPRINTK(qdev, IFUP, ERR,
2134                                         "PCI mapping failed.\n");
2135                                 goto mem_error;
2136                         }
2137                         pci_unmap_addr_set(lbq_desc, mapaddr, map);
2138                         pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2139                         *lbq_desc->addr = cpu_to_le64(map);
2140                 }
2141                 bq++;
2142         }
2143         return 0;
2144 mem_error:
2145         ql_free_lbq_buffers(qdev, rx_ring);
2146         return -ENOMEM;
2147 }
2148
2149 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2150 {
2151         int i;
2152         struct bq_desc *sbq_desc;
2153
2154         for (i = 0; i < rx_ring->sbq_len; i++) {
2155                 sbq_desc = &rx_ring->sbq[i];
2156                 if (sbq_desc == NULL) {
2157                         QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2158                         return;
2159                 }
2160                 if (sbq_desc->p.skb) {
2161                         pci_unmap_single(qdev->pdev,
2162                                          pci_unmap_addr(sbq_desc, mapaddr),
2163                                          pci_unmap_len(sbq_desc, maplen),
2164                                          PCI_DMA_FROMDEVICE);
2165                         dev_kfree_skb(sbq_desc->p.skb);
2166                         sbq_desc->p.skb = NULL;
2167                 }
2168         }
2169 }
2170
2171 /* Allocate and map an skb for each element of the sbq. */
2172 static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2173                                 struct rx_ring *rx_ring)
2174 {
2175         int i;
2176         struct bq_desc *sbq_desc;
2177         struct sk_buff *skb;
2178         u64 map;
2179         __le64 *bq = rx_ring->sbq_base;
2180
2181         for (i = 0; i < rx_ring->sbq_len; i++) {
2182                 sbq_desc = &rx_ring->sbq[i];
2183                 memset(sbq_desc, 0, sizeof(sbq_desc));
2184                 sbq_desc->index = i;
2185                 sbq_desc->addr = bq;
2186                 skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2187                 if (unlikely(!skb)) {
2188                         /* Better luck next round */
2189                         QPRINTK(qdev, IFUP, ERR,
2190                                 "small buff alloc failed for %d bytes at index %d.\n",
2191                                 rx_ring->sbq_buf_size, i);
2192                         goto mem_err;
2193                 }
2194                 skb_reserve(skb, QLGE_SB_PAD);
2195                 sbq_desc->p.skb = skb;
2196                 /*
2197                  * Map only half the buffer. Because the
2198                  * other half may get some data copied to it
2199                  * when the completion arrives.
2200                  */
2201                 map = pci_map_single(qdev->pdev,
2202                                      skb->data,
2203                                      rx_ring->sbq_buf_size / 2,
2204                                      PCI_DMA_FROMDEVICE);
2205                 if (pci_dma_mapping_error(qdev->pdev, map)) {
2206                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2207                         goto mem_err;
2208                 }
2209                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
2210                 pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2211                 *sbq_desc->addr = cpu_to_le64(map);
2212                 bq++;
2213         }
2214         return 0;
2215 mem_err:
2216         ql_free_sbq_buffers(qdev, rx_ring);
2217         return -ENOMEM;
2218 }
2219
2220 static void ql_free_rx_resources(struct ql_adapter *qdev,
2221                                  struct rx_ring *rx_ring)
2222 {
2223         if (rx_ring->sbq_len)
2224                 ql_free_sbq_buffers(qdev, rx_ring);
2225         if (rx_ring->lbq_len)
2226                 ql_free_lbq_buffers(qdev, rx_ring);
2227
2228         /* Free the small buffer queue. */
2229         if (rx_ring->sbq_base) {
2230                 pci_free_consistent(qdev->pdev,
2231                                     rx_ring->sbq_size,
2232                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2233                 rx_ring->sbq_base = NULL;
2234         }
2235
2236         /* Free the small buffer queue control blocks. */
2237         kfree(rx_ring->sbq);
2238         rx_ring->sbq = NULL;
2239
2240         /* Free the large buffer queue. */
2241         if (rx_ring->lbq_base) {
2242                 pci_free_consistent(qdev->pdev,
2243                                     rx_ring->lbq_size,
2244                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2245                 rx_ring->lbq_base = NULL;
2246         }
2247
2248         /* Free the large buffer queue control blocks. */
2249         kfree(rx_ring->lbq);
2250         rx_ring->lbq = NULL;
2251
2252         /* Free the rx queue. */
2253         if (rx_ring->cq_base) {
2254                 pci_free_consistent(qdev->pdev,
2255                                     rx_ring->cq_size,
2256                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2257                 rx_ring->cq_base = NULL;
2258         }
2259 }
2260
2261 /* Allocate queues and buffers for this completions queue based
2262  * on the values in the parameter structure. */
2263 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2264                                  struct rx_ring *rx_ring)
2265 {
2266
2267         /*
2268          * Allocate the completion queue for this rx_ring.
2269          */
2270         rx_ring->cq_base =
2271             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2272                                  &rx_ring->cq_base_dma);
2273
2274         if (rx_ring->cq_base == NULL) {
2275                 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2276                 return -ENOMEM;
2277         }
2278
2279         if (rx_ring->sbq_len) {
2280                 /*
2281                  * Allocate small buffer queue.
2282                  */
2283                 rx_ring->sbq_base =
2284                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2285                                          &rx_ring->sbq_base_dma);
2286
2287                 if (rx_ring->sbq_base == NULL) {
2288                         QPRINTK(qdev, IFUP, ERR,
2289                                 "Small buffer queue allocation failed.\n");
2290                         goto err_mem;
2291                 }
2292
2293                 /*
2294                  * Allocate small buffer queue control blocks.
2295                  */
2296                 rx_ring->sbq =
2297                     kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2298                             GFP_KERNEL);
2299                 if (rx_ring->sbq == NULL) {
2300                         QPRINTK(qdev, IFUP, ERR,
2301                                 "Small buffer queue control block allocation failed.\n");
2302                         goto err_mem;
2303                 }
2304
2305                 if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2306                         QPRINTK(qdev, IFUP, ERR,
2307                                 "Small buffer allocation failed.\n");
2308                         goto err_mem;
2309                 }
2310         }
2311
2312         if (rx_ring->lbq_len) {
2313                 /*
2314                  * Allocate large buffer queue.
2315                  */
2316                 rx_ring->lbq_base =
2317                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2318                                          &rx_ring->lbq_base_dma);
2319
2320                 if (rx_ring->lbq_base == NULL) {
2321                         QPRINTK(qdev, IFUP, ERR,
2322                                 "Large buffer queue allocation failed.\n");
2323                         goto err_mem;
2324                 }
2325                 /*
2326                  * Allocate large buffer queue control blocks.
2327                  */
2328                 rx_ring->lbq =
2329                     kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2330                             GFP_KERNEL);
2331                 if (rx_ring->lbq == NULL) {
2332                         QPRINTK(qdev, IFUP, ERR,
2333                                 "Large buffer queue control block allocation failed.\n");
2334                         goto err_mem;
2335                 }
2336
2337                 /*
2338                  * Allocate the buffers.
2339                  */
2340                 if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2341                         QPRINTK(qdev, IFUP, ERR,
2342                                 "Large buffer allocation failed.\n");
2343                         goto err_mem;
2344                 }
2345         }
2346
2347         return 0;
2348
2349 err_mem:
2350         ql_free_rx_resources(qdev, rx_ring);
2351         return -ENOMEM;
2352 }
2353
2354 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2355 {
2356         struct tx_ring *tx_ring;
2357         struct tx_ring_desc *tx_ring_desc;
2358         int i, j;
2359
2360         /*
2361          * Loop through all queues and free
2362          * any resources.
2363          */
2364         for (j = 0; j < qdev->tx_ring_count; j++) {
2365                 tx_ring = &qdev->tx_ring[j];
2366                 for (i = 0; i < tx_ring->wq_len; i++) {
2367                         tx_ring_desc = &tx_ring->q[i];
2368                         if (tx_ring_desc && tx_ring_desc->skb) {
2369                                 QPRINTK(qdev, IFDOWN, ERR,
2370                                 "Freeing lost SKB %p, from queue %d, index %d.\n",
2371                                         tx_ring_desc->skb, j,
2372                                         tx_ring_desc->index);
2373                                 ql_unmap_send(qdev, tx_ring_desc,
2374                                               tx_ring_desc->map_cnt);
2375                                 dev_kfree_skb(tx_ring_desc->skb);
2376                                 tx_ring_desc->skb = NULL;
2377                         }
2378                 }
2379         }
2380 }
2381
2382 static void ql_free_mem_resources(struct ql_adapter *qdev)
2383 {
2384         int i;
2385
2386         for (i = 0; i < qdev->tx_ring_count; i++)
2387                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2388         for (i = 0; i < qdev->rx_ring_count; i++)
2389                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2390         ql_free_shadow_space(qdev);
2391 }
2392
2393 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2394 {
2395         int i;
2396
2397         /* Allocate space for our shadow registers and such. */
2398         if (ql_alloc_shadow_space(qdev))
2399                 return -ENOMEM;
2400
2401         for (i = 0; i < qdev->rx_ring_count; i++) {
2402                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2403                         QPRINTK(qdev, IFUP, ERR,
2404                                 "RX resource allocation failed.\n");
2405                         goto err_mem;
2406                 }
2407         }
2408         /* Allocate tx queue resources */
2409         for (i = 0; i < qdev->tx_ring_count; i++) {
2410                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2411                         QPRINTK(qdev, IFUP, ERR,
2412                                 "TX resource allocation failed.\n");
2413                         goto err_mem;
2414                 }
2415         }
2416         return 0;
2417
2418 err_mem:
2419         ql_free_mem_resources(qdev);
2420         return -ENOMEM;
2421 }
2422
2423 /* Set up the rx ring control block and pass it to the chip.
2424  * The control block is defined as
2425  * "Completion Queue Initialization Control Block", or cqicb.
2426  */
2427 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2428 {
2429         struct cqicb *cqicb = &rx_ring->cqicb;
2430         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2431             (rx_ring->cq_id * sizeof(u64) * 4);
2432         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2433             (rx_ring->cq_id * sizeof(u64) * 4);
2434         void __iomem *doorbell_area =
2435             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2436         int err = 0;
2437         u16 bq_len;
2438
2439         /* Set up the shadow registers for this ring. */
2440         rx_ring->prod_idx_sh_reg = shadow_reg;
2441         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2442         shadow_reg += sizeof(u64);
2443         shadow_reg_dma += sizeof(u64);
2444         rx_ring->lbq_base_indirect = shadow_reg;
2445         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2446         shadow_reg += sizeof(u64);
2447         shadow_reg_dma += sizeof(u64);
2448         rx_ring->sbq_base_indirect = shadow_reg;
2449         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2450
2451         /* PCI doorbell mem area + 0x00 for consumer index register */
2452         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2453         rx_ring->cnsmr_idx = 0;
2454         rx_ring->curr_entry = rx_ring->cq_base;
2455
2456         /* PCI doorbell mem area + 0x04 for valid register */
2457         rx_ring->valid_db_reg = doorbell_area + 0x04;
2458
2459         /* PCI doorbell mem area + 0x18 for large buffer consumer */
2460         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2461
2462         /* PCI doorbell mem area + 0x1c */
2463         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2464
2465         memset((void *)cqicb, 0, sizeof(struct cqicb));
2466         cqicb->msix_vect = rx_ring->irq;
2467
2468         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2469         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2470
2471         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2472
2473         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2474
2475         /*
2476          * Set up the control block load flags.
2477          */
2478         cqicb->flags = FLAGS_LC |       /* Load queue base address */
2479             FLAGS_LV |          /* Load MSI-X vector */
2480             FLAGS_LI;           /* Load irq delay values */
2481         if (rx_ring->lbq_len) {
2482                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
2483                 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2484                 cqicb->lbq_addr =
2485                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2486                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2487                         (u16) rx_ring->lbq_buf_size;
2488                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2489                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2490                         (u16) rx_ring->lbq_len;
2491                 cqicb->lbq_len = cpu_to_le16(bq_len);
2492                 rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2493                 rx_ring->lbq_curr_idx = 0;
2494                 rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2495                 rx_ring->lbq_free_cnt = 16;
2496         }
2497         if (rx_ring->sbq_len) {
2498                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
2499                 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2500                 cqicb->sbq_addr =
2501                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2502                 cqicb->sbq_buf_size =
2503                     cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2504                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2505                         (u16) rx_ring->sbq_len;
2506                 cqicb->sbq_len = cpu_to_le16(bq_len);
2507                 rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2508                 rx_ring->sbq_curr_idx = 0;
2509                 rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2510                 rx_ring->sbq_free_cnt = 16;
2511         }
2512         switch (rx_ring->type) {
2513         case TX_Q:
2514                 /* If there's only one interrupt, then we use
2515                  * worker threads to process the outbound
2516                  * completion handling rx_rings. We do this so
2517                  * they can be run on multiple CPUs. There is
2518                  * room to play with this more where we would only
2519                  * run in a worker if there are more than x number
2520                  * of outbound completions on the queue and more
2521                  * than one queue active.  Some threshold that
2522                  * would indicate a benefit in spite of the cost
2523                  * of a context switch.
2524                  * If there's more than one interrupt, then the
2525                  * outbound completions are processed in the ISR.
2526                  */
2527                 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2528                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2529                 else {
2530                         /* With all debug warnings on we see a WARN_ON message
2531                          * when we free the skb in the interrupt context.
2532                          */
2533                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2534                 }
2535                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2536                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2537                 break;
2538         case DEFAULT_Q:
2539                 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2540                 cqicb->irq_delay = 0;
2541                 cqicb->pkt_delay = 0;
2542                 break;
2543         case RX_Q:
2544                 /* Inbound completion handling rx_rings run in
2545                  * separate NAPI contexts.
2546                  */
2547                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2548                                64);
2549                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2550                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2551                 break;
2552         default:
2553                 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2554                         rx_ring->type);
2555         }
2556         QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2557         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2558                            CFG_LCQ, rx_ring->cq_id);
2559         if (err) {
2560                 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2561                 return err;
2562         }
2563         QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2564         /*
2565          * Advance the producer index for the buffer queues.
2566          */
2567         wmb();
2568         if (rx_ring->lbq_len)
2569                 ql_write_db_reg(rx_ring->lbq_prod_idx,
2570                                 rx_ring->lbq_prod_idx_db_reg);
2571         if (rx_ring->sbq_len)
2572                 ql_write_db_reg(rx_ring->sbq_prod_idx,
2573                                 rx_ring->sbq_prod_idx_db_reg);
2574         return err;
2575 }
2576
2577 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2578 {
2579         struct wqicb *wqicb = (struct wqicb *)tx_ring;
2580         void __iomem *doorbell_area =
2581             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2582         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2583             (tx_ring->wq_id * sizeof(u64));
2584         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2585             (tx_ring->wq_id * sizeof(u64));
2586         int err = 0;
2587
2588         /*
2589          * Assign doorbell registers for this tx_ring.
2590          */
2591         /* TX PCI doorbell mem area for tx producer index */
2592         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2593         tx_ring->prod_idx = 0;
2594         /* TX PCI doorbell mem area + 0x04 */
2595         tx_ring->valid_db_reg = doorbell_area + 0x04;
2596
2597         /*
2598          * Assign shadow registers for this tx_ring.
2599          */
2600         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2601         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2602
2603         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2604         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2605                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2606         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2607         wqicb->rid = 0;
2608         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2609
2610         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2611
2612         ql_init_tx_ring(qdev, tx_ring);
2613
2614         err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2615                            (u16) tx_ring->wq_id);
2616         if (err) {
2617                 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2618                 return err;
2619         }
2620         QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2621         return err;
2622 }
2623
2624 static void ql_disable_msix(struct ql_adapter *qdev)
2625 {
2626         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2627                 pci_disable_msix(qdev->pdev);
2628                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2629                 kfree(qdev->msi_x_entry);
2630                 qdev->msi_x_entry = NULL;
2631         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2632                 pci_disable_msi(qdev->pdev);
2633                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2634         }
2635 }
2636
2637 static void ql_enable_msix(struct ql_adapter *qdev)
2638 {
2639         int i;
2640
2641         qdev->intr_count = 1;
2642         /* Get the MSIX vectors. */
2643         if (irq_type == MSIX_IRQ) {
2644                 /* Try to alloc space for the msix struct,
2645                  * if it fails then go to MSI/legacy.
2646                  */
2647                 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2648                                             sizeof(struct msix_entry),
2649                                             GFP_KERNEL);
2650                 if (!qdev->msi_x_entry) {
2651                         irq_type = MSI_IRQ;
2652                         goto msi;
2653                 }
2654
2655                 for (i = 0; i < qdev->rx_ring_count; i++)
2656                         qdev->msi_x_entry[i].entry = i;
2657
2658                 if (!pci_enable_msix
2659                     (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2660                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
2661                         qdev->intr_count = qdev->rx_ring_count;
2662                         QPRINTK(qdev, IFUP, INFO,
2663                                 "MSI-X Enabled, got %d vectors.\n",
2664                                 qdev->intr_count);
2665                         return;
2666                 } else {
2667                         kfree(qdev->msi_x_entry);
2668                         qdev->msi_x_entry = NULL;
2669                         QPRINTK(qdev, IFUP, WARNING,
2670                                 "MSI-X Enable failed, trying MSI.\n");
2671                         irq_type = MSI_IRQ;
2672                 }
2673         }
2674 msi:
2675         if (irq_type == MSI_IRQ) {
2676                 if (!pci_enable_msi(qdev->pdev)) {
2677                         set_bit(QL_MSI_ENABLED, &qdev->flags);
2678                         QPRINTK(qdev, IFUP, INFO,
2679                                 "Running with MSI interrupts.\n");
2680                         return;
2681                 }
2682         }
2683         irq_type = LEG_IRQ;
2684         QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2685 }
2686
2687 /*
2688  * Here we build the intr_context structures based on
2689  * our rx_ring count and intr vector count.
2690  * The intr_context structure is used to hook each vector
2691  * to possibly different handlers.
2692  */
2693 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2694 {
2695         int i = 0;
2696         struct intr_context *intr_context = &qdev->intr_context[0];
2697
2698         ql_enable_msix(qdev);
2699
2700         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2701                 /* Each rx_ring has it's
2702                  * own intr_context since we have separate
2703                  * vectors for each queue.
2704                  * This only true when MSI-X is enabled.
2705                  */
2706                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2707                         qdev->rx_ring[i].irq = i;
2708                         intr_context->intr = i;
2709                         intr_context->qdev = qdev;
2710                         /*
2711                          * We set up each vectors enable/disable/read bits so
2712                          * there's no bit/mask calculations in the critical path.
2713                          */
2714                         intr_context->intr_en_mask =
2715                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2716                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2717                             | i;
2718                         intr_context->intr_dis_mask =
2719                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2720                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2721                             INTR_EN_IHD | i;
2722                         intr_context->intr_read_mask =
2723                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2724                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2725                             i;
2726
2727                         if (i == 0) {
2728                                 /*
2729                                  * Default queue handles bcast/mcast plus
2730                                  * async events.  Needs buffers.
2731                                  */
2732                                 intr_context->handler = qlge_isr;
2733                                 sprintf(intr_context->name, "%s-default-queue",
2734                                         qdev->ndev->name);
2735                         } else if (i < qdev->rss_ring_first_cq_id) {
2736                                 /*
2737                                  * Outbound queue is for outbound completions only.
2738                                  */
2739                                 intr_context->handler = qlge_msix_tx_isr;
2740                                 sprintf(intr_context->name, "%s-tx-%d",
2741                                         qdev->ndev->name, i);
2742                         } else {
2743                                 /*
2744                                  * Inbound queues handle unicast frames only.
2745                                  */
2746                                 intr_context->handler = qlge_msix_rx_isr;
2747                                 sprintf(intr_context->name, "%s-rx-%d",
2748                                         qdev->ndev->name, i);
2749                         }
2750                 }
2751         } else {
2752                 /*
2753                  * All rx_rings use the same intr_context since
2754                  * there is only one vector.
2755                  */
2756                 intr_context->intr = 0;
2757                 intr_context->qdev = qdev;
2758                 /*
2759                  * We set up each vectors enable/disable/read bits so
2760                  * there's no bit/mask calculations in the critical path.
2761                  */
2762                 intr_context->intr_en_mask =
2763                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2764                 intr_context->intr_dis_mask =
2765                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2766                     INTR_EN_TYPE_DISABLE;
2767                 intr_context->intr_read_mask =
2768                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2769                 /*
2770                  * Single interrupt means one handler for all rings.
2771                  */
2772                 intr_context->handler = qlge_isr;
2773                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2774                 for (i = 0; i < qdev->rx_ring_count; i++)
2775                         qdev->rx_ring[i].irq = 0;
2776         }
2777 }
2778
2779 static void ql_free_irq(struct ql_adapter *qdev)
2780 {
2781         int i;
2782         struct intr_context *intr_context = &qdev->intr_context[0];
2783
2784         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2785                 if (intr_context->hooked) {
2786                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2787                                 free_irq(qdev->msi_x_entry[i].vector,
2788                                          &qdev->rx_ring[i]);
2789                                 QPRINTK(qdev, IFDOWN, ERR,
2790                                         "freeing msix interrupt %d.\n", i);
2791                         } else {
2792                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2793                                 QPRINTK(qdev, IFDOWN, ERR,
2794                                         "freeing msi interrupt %d.\n", i);
2795                         }
2796                 }
2797         }
2798         ql_disable_msix(qdev);
2799 }
2800
2801 static int ql_request_irq(struct ql_adapter *qdev)
2802 {
2803         int i;
2804         int status = 0;
2805         struct pci_dev *pdev = qdev->pdev;
2806         struct intr_context *intr_context = &qdev->intr_context[0];
2807
2808         ql_resolve_queues_to_irqs(qdev);
2809
2810         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2811                 atomic_set(&intr_context->irq_cnt, 0);
2812                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2813                         status = request_irq(qdev->msi_x_entry[i].vector,
2814                                              intr_context->handler,
2815                                              0,
2816                                              intr_context->name,
2817                                              &qdev->rx_ring[i]);
2818                         if (status) {
2819                                 QPRINTK(qdev, IFUP, ERR,
2820                                         "Failed request for MSIX interrupt %d.\n",
2821                                         i);
2822                                 goto err_irq;
2823                         } else {
2824                                 QPRINTK(qdev, IFUP, INFO,
2825                                         "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2826                                         i,
2827                                         qdev->rx_ring[i].type ==
2828                                         DEFAULT_Q ? "DEFAULT_Q" : "",
2829                                         qdev->rx_ring[i].type ==
2830                                         TX_Q ? "TX_Q" : "",
2831                                         qdev->rx_ring[i].type ==
2832                                         RX_Q ? "RX_Q" : "", intr_context->name);
2833                         }
2834                 } else {
2835                         QPRINTK(qdev, IFUP, DEBUG,
2836                                 "trying msi or legacy interrupts.\n");
2837                         QPRINTK(qdev, IFUP, DEBUG,
2838                                 "%s: irq = %d.\n", __func__, pdev->irq);
2839                         QPRINTK(qdev, IFUP, DEBUG,
2840                                 "%s: context->name = %s.\n", __func__,
2841                                intr_context->name);
2842                         QPRINTK(qdev, IFUP, DEBUG,
2843                                 "%s: dev_id = 0x%p.\n", __func__,
2844                                &qdev->rx_ring[0]);
2845                         status =
2846                             request_irq(pdev->irq, qlge_isr,
2847                                         test_bit(QL_MSI_ENABLED,
2848                                                  &qdev->
2849                                                  flags) ? 0 : IRQF_SHARED,
2850                                         intr_context->name, &qdev->rx_ring[0]);
2851                         if (status)
2852                                 goto err_irq;
2853
2854                         QPRINTK(qdev, IFUP, ERR,
2855                                 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2856                                 i,
2857                                 qdev->rx_ring[0].type ==
2858                                 DEFAULT_Q ? "DEFAULT_Q" : "",
2859                                 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2860                                 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2861                                 intr_context->name);
2862                 }
2863                 intr_context->hooked = 1;
2864         }
2865         return status;
2866 err_irq:
2867         QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2868         ql_free_irq(qdev);
2869         return status;
2870 }
2871
2872 static int ql_start_rss(struct ql_adapter *qdev)
2873 {
2874         struct ricb *ricb = &qdev->ricb;
2875         int status = 0;
2876         int i;
2877         u8 *hash_id = (u8 *) ricb->hash_cq_id;
2878
2879         memset((void *)ricb, 0, sizeof(ricb));
2880
2881         ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2882         ricb->flags =
2883             (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2884              RSS_RT6);
2885         ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2886
2887         /*
2888          * Fill out the Indirection Table.
2889          */
2890         for (i = 0; i < 256; i++)
2891                 hash_id[i] = i & (qdev->rss_ring_count - 1);
2892
2893         /*
2894          * Random values for the IPv6 and IPv4 Hash Keys.
2895          */
2896         get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2897         get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2898
2899         QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2900
2901         status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2902         if (status) {
2903                 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2904                 return status;
2905         }
2906         QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2907         return status;
2908 }
2909
2910 /* Initialize the frame-to-queue routing. */
2911 static int ql_route_initialize(struct ql_adapter *qdev)
2912 {
2913         int status = 0;
2914         int i;
2915
2916         /* Clear all the entries in the routing table. */
2917         for (i = 0; i < 16; i++) {
2918                 status = ql_set_routing_reg(qdev, i, 0, 0);
2919                 if (status) {
2920                         QPRINTK(qdev, IFUP, ERR,
2921                                 "Failed to init routing register for CAM packets.\n");
2922                         return status;
2923                 }
2924         }
2925
2926         status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2927         if (status) {
2928                 QPRINTK(qdev, IFUP, ERR,
2929                         "Failed to init routing register for error packets.\n");
2930                 return status;
2931         }
2932         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2933         if (status) {
2934                 QPRINTK(qdev, IFUP, ERR,
2935                         "Failed to init routing register for broadcast packets.\n");
2936                 return status;
2937         }
2938         /* If we have more than one inbound queue, then turn on RSS in the
2939          * routing block.
2940          */
2941         if (qdev->rss_ring_count > 1) {
2942                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2943                                         RT_IDX_RSS_MATCH, 1);
2944                 if (status) {
2945                         QPRINTK(qdev, IFUP, ERR,
2946                                 "Failed to init routing register for MATCH RSS packets.\n");
2947                         return status;
2948                 }
2949         }
2950
2951         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2952                                     RT_IDX_CAM_HIT, 1);
2953         if (status) {
2954                 QPRINTK(qdev, IFUP, ERR,
2955                         "Failed to init routing register for CAM packets.\n");
2956                 return status;
2957         }
2958         return status;
2959 }
2960
2961 static int ql_adapter_initialize(struct ql_adapter *qdev)
2962 {
2963         u32 value, mask;
2964         int i;
2965         int status = 0;
2966
2967         /*
2968          * Set up the System register to halt on errors.
2969          */
2970         value = SYS_EFE | SYS_FAE;
2971         mask = value << 16;
2972         ql_write32(qdev, SYS, mask | value);
2973
2974         /* Set the default queue. */
2975         value = NIC_RCV_CFG_DFQ;
2976         mask = NIC_RCV_CFG_DFQ_MASK;
2977         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
2978
2979         /* Set the MPI interrupt to enabled. */
2980         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
2981
2982         /* Enable the function, set pagesize, enable error checking. */
2983         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
2984             FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
2985
2986         /* Set/clear header splitting. */
2987         mask = FSC_VM_PAGESIZE_MASK |
2988             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
2989         ql_write32(qdev, FSC, mask | value);
2990
2991         ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
2992                 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
2993
2994         /* Start up the rx queues. */
2995         for (i = 0; i < qdev->rx_ring_count; i++) {
2996                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
2997                 if (status) {
2998                         QPRINTK(qdev, IFUP, ERR,
2999                                 "Failed to start rx ring[%d].\n", i);
3000                         return status;
3001                 }
3002         }
3003
3004         /* If there is more than one inbound completion queue
3005          * then download a RICB to configure RSS.
3006          */
3007         if (qdev->rss_ring_count > 1) {
3008                 status = ql_start_rss(qdev);
3009                 if (status) {
3010                         QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3011                         return status;
3012                 }
3013         }
3014
3015         /* Start up the tx queues. */
3016         for (i = 0; i < qdev->tx_ring_count; i++) {
3017                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3018                 if (status) {
3019                         QPRINTK(qdev, IFUP, ERR,
3020                                 "Failed to start tx ring[%d].\n", i);
3021                         return status;
3022                 }
3023         }
3024
3025         status = ql_port_initialize(qdev);
3026         if (status) {
3027                 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3028                 return status;
3029         }
3030
3031         status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3032                                      MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3033         if (status) {
3034                 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3035                 return status;
3036         }
3037
3038         status = ql_route_initialize(qdev);
3039         if (status) {
3040                 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3041                 return status;
3042         }
3043
3044         /* Start NAPI for the RSS queues. */
3045         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3046                 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3047                         i);
3048                 napi_enable(&qdev->rx_ring[i].napi);
3049         }
3050
3051         return status;
3052 }
3053
3054 /* Issue soft reset to chip. */
3055 static int ql_adapter_reset(struct ql_adapter *qdev)
3056 {
3057         u32 value;
3058         int max_wait_time;
3059         int status = 0;
3060         int resetCnt = 0;
3061
3062 #define MAX_RESET_CNT   1
3063 issueReset:
3064         resetCnt++;
3065         QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3066         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3067         /* Wait for reset to complete. */
3068         max_wait_time = 3;
3069         QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3070                 max_wait_time);
3071         do {
3072                 value = ql_read32(qdev, RST_FO);
3073                 if ((value & RST_FO_FR) == 0)
3074                         break;
3075
3076                 ssleep(1);
3077         } while ((--max_wait_time));
3078         if (value & RST_FO_FR) {
3079                 QPRINTK(qdev, IFDOWN, ERR,
3080                         "Stuck in SoftReset:  FSC_SR:0x%08x\n", value);
3081                 if (resetCnt < MAX_RESET_CNT)
3082                         goto issueReset;
3083         }
3084         if (max_wait_time == 0) {
3085                 status = -ETIMEDOUT;
3086                 QPRINTK(qdev, IFDOWN, ERR,
3087                         "ETIMEOUT!!! errored out of resetting the chip!\n");
3088         }
3089
3090         return status;
3091 }
3092
3093 static void ql_display_dev_info(struct net_device *ndev)
3094 {
3095         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3096
3097         QPRINTK(qdev, PROBE, INFO,
3098                 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3099                 "XG Roll = %d, XG Rev = %d.\n",
3100                 qdev->func,
3101                 qdev->chip_rev_id & 0x0000000f,
3102                 qdev->chip_rev_id >> 4 & 0x0000000f,
3103                 qdev->chip_rev_id >> 8 & 0x0000000f,
3104                 qdev->chip_rev_id >> 12 & 0x0000000f);
3105         QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3106 }
3107
3108 static int ql_adapter_down(struct ql_adapter *qdev)
3109 {
3110         struct net_device *ndev = qdev->ndev;
3111         int i, status = 0;
3112         struct rx_ring *rx_ring;
3113
3114         netif_stop_queue(ndev);
3115         netif_carrier_off(ndev);
3116
3117         /* Don't kill the reset worker thread if we
3118          * are in the process of recovery.
3119          */
3120         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3121                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3122         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3123         cancel_delayed_work_sync(&qdev->mpi_work);
3124
3125         /* The default queue at index 0 is always processed in
3126          * a workqueue.
3127          */
3128         cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3129
3130         /* The rest of the rx_rings are processed in
3131          * a workqueue only if it's a single interrupt
3132          * environment (MSI/Legacy).
3133          */
3134         for (i = 1; i < qdev->rx_ring_count; i++) {
3135                 rx_ring = &qdev->rx_ring[i];
3136                 /* Only the RSS rings use NAPI on multi irq
3137                  * environment.  Outbound completion processing
3138                  * is done in interrupt context.
3139                  */
3140                 if (i >= qdev->rss_ring_first_cq_id) {
3141                         napi_disable(&rx_ring->napi);
3142                 } else {
3143                         cancel_delayed_work_sync(&rx_ring->rx_work);
3144                 }
3145         }
3146
3147         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3148
3149         ql_disable_interrupts(qdev);
3150
3151         ql_tx_ring_clean(qdev);
3152
3153         spin_lock(&qdev->hw_lock);
3154         status = ql_adapter_reset(qdev);
3155         if (status)
3156                 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3157                         qdev->func);
3158         spin_unlock(&qdev->hw_lock);
3159         return status;
3160 }
3161
3162 static int ql_adapter_up(struct ql_adapter *qdev)
3163 {
3164         int err = 0;
3165
3166         spin_lock(&qdev->hw_lock);
3167         err = ql_adapter_initialize(qdev);
3168         if (err) {
3169                 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3170                 spin_unlock(&qdev->hw_lock);
3171                 goto err_init;
3172         }
3173         spin_unlock(&qdev->hw_lock);
3174         set_bit(QL_ADAPTER_UP, &qdev->flags);
3175         ql_enable_interrupts(qdev);
3176         ql_enable_all_completion_interrupts(qdev);
3177         if ((ql_read32(qdev, STS) & qdev->port_init)) {
3178                 netif_carrier_on(qdev->ndev);
3179                 netif_start_queue(qdev->ndev);
3180         }
3181
3182         return 0;
3183 err_init:
3184         ql_adapter_reset(qdev);
3185         return err;
3186 }
3187
3188 static int ql_cycle_adapter(struct ql_adapter *qdev)
3189 {
3190         int status;
3191
3192         status = ql_adapter_down(qdev);
3193         if (status)
3194                 goto error;
3195
3196         status = ql_adapter_up(qdev);
3197         if (status)
3198                 goto error;
3199
3200         return status;
3201 error:
3202         QPRINTK(qdev, IFUP, ALERT,
3203                 "Driver up/down cycle failed, closing device\n");
3204         rtnl_lock();
3205         dev_close(qdev->ndev);
3206         rtnl_unlock();
3207         return status;
3208 }
3209
3210 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3211 {
3212         ql_free_mem_resources(qdev);
3213         ql_free_irq(qdev);
3214 }
3215
3216 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3217 {
3218         int status = 0;
3219
3220         if (ql_alloc_mem_resources(qdev)) {
3221                 QPRINTK(qdev, IFUP, ERR, "Unable to  allocate memory.\n");
3222                 return -ENOMEM;
3223         }
3224         status = ql_request_irq(qdev);
3225         if (status)
3226                 goto err_irq;
3227         return status;
3228 err_irq:
3229         ql_free_mem_resources(qdev);
3230         return status;
3231 }
3232
3233 static int qlge_close(struct net_device *ndev)
3234 {
3235         struct ql_adapter *qdev = netdev_priv(ndev);
3236
3237         /*
3238          * Wait for device to recover from a reset.
3239          * (Rarely happens, but possible.)
3240          */
3241         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3242                 msleep(1);
3243         ql_adapter_down(qdev);
3244         ql_release_adapter_resources(qdev);
3245         return 0;
3246 }
3247
3248 static int ql_configure_rings(struct ql_adapter *qdev)
3249 {
3250         int i;
3251         struct rx_ring *rx_ring;
3252         struct tx_ring *tx_ring;
3253         int cpu_cnt = num_online_cpus();
3254
3255         /*
3256          * For each processor present we allocate one
3257          * rx_ring for outbound completions, and one
3258          * rx_ring for inbound completions.  Plus there is
3259          * always the one default queue.  For the CPU
3260          * counts we end up with the following rx_rings:
3261          * rx_ring count =
3262          *  one default queue +
3263          *  (CPU count * outbound completion rx_ring) +
3264          *  (CPU count * inbound (RSS) completion rx_ring)
3265          * To keep it simple we limit the total number of
3266          * queues to < 32, so we truncate CPU to 8.
3267          * This limitation can be removed when requested.
3268          */
3269
3270         if (cpu_cnt > MAX_CPUS)
3271                 cpu_cnt = MAX_CPUS;
3272
3273         /*
3274          * rx_ring[0] is always the default queue.
3275          */
3276         /* Allocate outbound completion ring for each CPU. */
3277         qdev->tx_ring_count = cpu_cnt;
3278         /* Allocate inbound completion (RSS) ring for each CPU. */
3279         qdev->rss_ring_count = cpu_cnt;
3280         /* cq_id for the first inbound ring handler. */
3281         qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3282         /*
3283          * qdev->rx_ring_count:
3284          * Total number of rx_rings.  This includes the one
3285          * default queue, a number of outbound completion
3286          * handler rx_rings, and the number of inbound
3287          * completion handler rx_rings.
3288          */
3289         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3290
3291         for (i = 0; i < qdev->tx_ring_count; i++) {
3292                 tx_ring = &qdev->tx_ring[i];
3293                 memset((void *)tx_ring, 0, sizeof(tx_ring));
3294                 tx_ring->qdev = qdev;
3295                 tx_ring->wq_id = i;
3296                 tx_ring->wq_len = qdev->tx_ring_size;
3297                 tx_ring->wq_size =
3298                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3299
3300                 /*
3301                  * The completion queue ID for the tx rings start
3302                  * immediately after the default Q ID, which is zero.
3303                  */
3304                 tx_ring->cq_id = i + 1;
3305         }
3306
3307         for (i = 0; i < qdev->rx_ring_count; i++) {
3308                 rx_ring = &qdev->rx_ring[i];
3309                 memset((void *)rx_ring, 0, sizeof(rx_ring));
3310                 rx_ring->qdev = qdev;
3311                 rx_ring->cq_id = i;
3312                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
3313                 if (i == 0) {   /* Default queue at index 0. */
3314                         /*
3315                          * Default queue handles bcast/mcast plus
3316                          * async events.  Needs buffers.
3317                          */
3318                         rx_ring->cq_len = qdev->rx_ring_size;
3319                         rx_ring->cq_size =
3320                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3321                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3322                         rx_ring->lbq_size =
3323                             rx_ring->lbq_len * sizeof(__le64);
3324                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3325                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3326                         rx_ring->sbq_size =
3327                             rx_ring->sbq_len * sizeof(__le64);
3328                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3329                         rx_ring->type = DEFAULT_Q;
3330                 } else if (i < qdev->rss_ring_first_cq_id) {
3331                         /*
3332                          * Outbound queue handles outbound completions only.
3333                          */
3334                         /* outbound cq is same size as tx_ring it services. */
3335                         rx_ring->cq_len = qdev->tx_ring_size;
3336                         rx_ring->cq_size =
3337                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3338                         rx_ring->lbq_len = 0;
3339                         rx_ring->lbq_size = 0;
3340                         rx_ring->lbq_buf_size = 0;
3341                         rx_ring->sbq_len = 0;
3342                         rx_ring->sbq_size = 0;
3343                         rx_ring->sbq_buf_size = 0;
3344                         rx_ring->type = TX_Q;
3345                 } else {        /* Inbound completions (RSS) queues */
3346                         /*
3347                          * Inbound queues handle unicast frames only.
3348                          */
3349                         rx_ring->cq_len = qdev->rx_ring_size;
3350                         rx_ring->cq_size =
3351                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3352                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3353                         rx_ring->lbq_size =
3354                             rx_ring->lbq_len * sizeof(__le64);
3355                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3356                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3357                         rx_ring->sbq_size =
3358                             rx_ring->sbq_len * sizeof(__le64);
3359                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3360                         rx_ring->type = RX_Q;
3361                 }
3362         }
3363         return 0;
3364 }
3365
3366 static int qlge_open(struct net_device *ndev)
3367 {
3368         int err = 0;
3369         struct ql_adapter *qdev = netdev_priv(ndev);
3370
3371         err = ql_configure_rings(qdev);
3372         if (err)
3373                 return err;
3374
3375         err = ql_get_adapter_resources(qdev);
3376         if (err)
3377                 goto error_up;
3378
3379         err = ql_adapter_up(qdev);
3380         if (err)
3381                 goto error_up;
3382
3383         return err;
3384
3385 error_up:
3386         ql_release_adapter_resources(qdev);
3387         return err;
3388 }
3389
3390 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3391 {
3392         struct ql_adapter *qdev = netdev_priv(ndev);
3393
3394         if (ndev->mtu == 1500 && new_mtu == 9000) {
3395                 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3396         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3397                 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3398         } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3399                    (ndev->mtu == 9000 && new_mtu == 9000)) {
3400                 return 0;
3401         } else
3402                 return -EINVAL;
3403         ndev->mtu = new_mtu;
3404         return 0;
3405 }
3406
3407 static struct net_device_stats *qlge_get_stats(struct net_device
3408                                                *ndev)
3409 {
3410         struct ql_adapter *qdev = netdev_priv(ndev);
3411         return &qdev->stats;
3412 }
3413
3414 static void qlge_set_multicast_list(struct net_device *ndev)
3415 {
3416         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3417         struct dev_mc_list *mc_ptr;
3418         int i;
3419
3420         spin_lock(&qdev->hw_lock);
3421         /*
3422          * Set or clear promiscuous mode if a
3423          * transition is taking place.
3424          */
3425         if (ndev->flags & IFF_PROMISC) {
3426                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3427                         if (ql_set_routing_reg
3428                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3429                                 QPRINTK(qdev, HW, ERR,
3430                                         "Failed to set promiscous mode.\n");
3431                         } else {
3432                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
3433                         }
3434                 }
3435         } else {
3436                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3437                         if (ql_set_routing_reg
3438                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3439                                 QPRINTK(qdev, HW, ERR,
3440                                         "Failed to clear promiscous mode.\n");
3441                         } else {
3442                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3443                         }
3444                 }
3445         }
3446
3447         /*
3448          * Set or clear all multicast mode if a
3449          * transition is taking place.
3450          */
3451         if ((ndev->flags & IFF_ALLMULTI) ||
3452             (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3453                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3454                         if (ql_set_routing_reg
3455                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3456                                 QPRINTK(qdev, HW, ERR,
3457                                         "Failed to set all-multi mode.\n");
3458                         } else {
3459                                 set_bit(QL_ALLMULTI, &qdev->flags);
3460                         }
3461                 }
3462         } else {
3463                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3464                         if (ql_set_routing_reg
3465                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3466                                 QPRINTK(qdev, HW, ERR,
3467                                         "Failed to clear all-multi mode.\n");
3468                         } else {
3469                                 clear_bit(QL_ALLMULTI, &qdev->flags);
3470                         }
3471                 }
3472         }
3473
3474         if (ndev->mc_count) {
3475                 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3476                      i++, mc_ptr = mc_ptr->next)
3477                         if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3478                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3479                                 QPRINTK(qdev, HW, ERR,
3480                                         "Failed to loadmulticast address.\n");
3481                                 goto exit;
3482                         }
3483                 if (ql_set_routing_reg
3484                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3485                         QPRINTK(qdev, HW, ERR,
3486                                 "Failed to set multicast match mode.\n");
3487                 } else {
3488                         set_bit(QL_ALLMULTI, &qdev->flags);
3489                 }
3490         }
3491 exit:
3492         spin_unlock(&qdev->hw_lock);
3493 }
3494
3495 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3496 {
3497         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3498         struct sockaddr *addr = p;
3499         int ret = 0;
3500
3501         if (netif_running(ndev))
3502                 return -EBUSY;
3503
3504         if (!is_valid_ether_addr(addr->sa_data))
3505                 return -EADDRNOTAVAIL;
3506         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3507
3508         spin_lock(&qdev->hw_lock);
3509         if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3510                         MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3511                 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3512                 ret = -1;
3513         }
3514         spin_unlock(&qdev->hw_lock);
3515
3516         return ret;
3517 }
3518
3519 static void qlge_tx_timeout(struct net_device *ndev)
3520 {
3521         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3522         ql_queue_asic_error(qdev);
3523 }
3524
3525 static void ql_asic_reset_work(struct work_struct *work)
3526 {
3527         struct ql_adapter *qdev =
3528             container_of(work, struct ql_adapter, asic_reset_work.work);
3529         ql_cycle_adapter(qdev);
3530 }
3531
3532 static void ql_get_board_info(struct ql_adapter *qdev)
3533 {
3534         qdev->func =
3535             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3536         if (qdev->func) {
3537                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3538                 qdev->port_link_up = STS_PL1;
3539                 qdev->port_init = STS_PI1;
3540                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3541                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3542         } else {
3543                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3544                 qdev->port_link_up = STS_PL0;
3545                 qdev->port_init = STS_PI0;
3546                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3547                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3548         }
3549         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3550 }
3551
3552 static void ql_release_all(struct pci_dev *pdev)
3553 {
3554         struct net_device *ndev = pci_get_drvdata(pdev);
3555         struct ql_adapter *qdev = netdev_priv(ndev);
3556
3557         if (qdev->workqueue) {
3558                 destroy_workqueue(qdev->workqueue);
3559                 qdev->workqueue = NULL;
3560         }
3561         if (qdev->q_workqueue) {
3562                 destroy_workqueue(qdev->q_workqueue);
3563                 qdev->q_workqueue = NULL;
3564         }
3565         if (qdev->reg_base)
3566                 iounmap(qdev->reg_base);
3567         if (qdev->doorbell_area)
3568                 iounmap(qdev->doorbell_area);
3569         pci_release_regions(pdev);
3570         pci_set_drvdata(pdev, NULL);
3571 }
3572
3573 static int __devinit ql_init_device(struct pci_dev *pdev,
3574                                     struct net_device *ndev, int cards_found)
3575 {
3576         struct ql_adapter *qdev = netdev_priv(ndev);
3577         int pos, err = 0;
3578         u16 val16;
3579
3580         memset((void *)qdev, 0, sizeof(qdev));
3581         err = pci_enable_device(pdev);
3582         if (err) {
3583                 dev_err(&pdev->dev, "PCI device enable failed.\n");
3584                 return err;
3585         }
3586
3587         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3588         if (pos <= 0) {
3589                 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3590                         "aborting.\n");
3591                 goto err_out;
3592         } else {
3593                 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3594                 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3595                 val16 |= (PCI_EXP_DEVCTL_CERE |
3596                           PCI_EXP_DEVCTL_NFERE |
3597                           PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3598                 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3599         }
3600
3601         err = pci_request_regions(pdev, DRV_NAME);
3602         if (err) {
3603                 dev_err(&pdev->dev, "PCI region request failed.\n");
3604                 goto err_out;
3605         }
3606
3607         pci_set_master(pdev);
3608         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3609                 set_bit(QL_DMA64, &qdev->flags);
3610                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3611         } else {
3612                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3613                 if (!err)
3614                        err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3615         }
3616
3617         if (err) {
3618                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3619                 goto err_out;
3620         }
3621
3622         pci_set_drvdata(pdev, ndev);
3623         qdev->reg_base =
3624             ioremap_nocache(pci_resource_start(pdev, 1),
3625                             pci_resource_len(pdev, 1));
3626         if (!qdev->reg_base) {
3627                 dev_err(&pdev->dev, "Register mapping failed.\n");
3628                 err = -ENOMEM;
3629                 goto err_out;
3630         }
3631
3632         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3633         qdev->doorbell_area =
3634             ioremap_nocache(pci_resource_start(pdev, 3),
3635                             pci_resource_len(pdev, 3));
3636         if (!qdev->doorbell_area) {
3637                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3638                 err = -ENOMEM;
3639                 goto err_out;
3640         }
3641
3642         ql_get_board_info(qdev);
3643         qdev->ndev = ndev;
3644         qdev->pdev = pdev;
3645         qdev->msg_enable = netif_msg_init(debug, default_msg);
3646         spin_lock_init(&qdev->hw_lock);
3647         spin_lock_init(&qdev->stats_lock);
3648
3649         /* make sure the EEPROM is good */
3650         err = ql_get_flash_params(qdev);
3651         if (err) {
3652                 dev_err(&pdev->dev, "Invalid FLASH.\n");
3653                 goto err_out;
3654         }
3655
3656         if (!is_valid_ether_addr(qdev->flash.mac_addr))
3657                 goto err_out;
3658
3659         memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3660         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3661
3662         /* Set up the default ring sizes. */
3663         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3664         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3665
3666         /* Set up the coalescing parameters. */
3667         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3668         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3669         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3670         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3671
3672         /*
3673          * Set up the operating parameters.
3674          */
3675         qdev->rx_csum = 1;
3676
3677         qdev->q_workqueue = create_workqueue(ndev->name);
3678         qdev->workqueue = create_singlethread_workqueue(ndev->name);
3679         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3680         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3681         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3682
3683         if (!cards_found) {
3684                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3685                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3686                          DRV_NAME, DRV_VERSION);
3687         }
3688         return 0;
3689 err_out:
3690         ql_release_all(pdev);
3691         pci_disable_device(pdev);
3692         return err;
3693 }
3694
3695
3696 static const struct net_device_ops qlge_netdev_ops = {
3697         .ndo_open               = qlge_open,
3698         .ndo_stop               = qlge_close,
3699         .ndo_start_xmit         = qlge_send,
3700         .ndo_change_mtu         = qlge_change_mtu,
3701         .ndo_get_stats          = qlge_get_stats,
3702         .ndo_set_multicast_list = qlge_set_multicast_list,
3703         .ndo_set_mac_address    = qlge_set_mac_address,
3704         .ndo_validate_addr      = eth_validate_addr,
3705         .ndo_tx_timeout         = qlge_tx_timeout,
3706         .ndo_vlan_rx_register   = ql_vlan_rx_register,
3707         .ndo_vlan_rx_add_vid    = ql_vlan_rx_add_vid,
3708         .ndo_vlan_rx_kill_vid   = ql_vlan_rx_kill_vid,
3709 };
3710
3711 static int __devinit qlge_probe(struct pci_dev *pdev,
3712                                 const struct pci_device_id *pci_entry)
3713 {
3714         struct net_device *ndev = NULL;
3715         struct ql_adapter *qdev = NULL;
3716         static int cards_found = 0;
3717         int err = 0;
3718
3719         ndev = alloc_etherdev(sizeof(struct ql_adapter));
3720         if (!ndev)
3721                 return -ENOMEM;
3722
3723         err = ql_init_device(pdev, ndev, cards_found);
3724         if (err < 0) {
3725                 free_netdev(ndev);
3726                 return err;
3727         }
3728
3729         qdev = netdev_priv(ndev);
3730         SET_NETDEV_DEV(ndev, &pdev->dev);
3731         ndev->features = (0
3732                           | NETIF_F_IP_CSUM
3733                           | NETIF_F_SG
3734                           | NETIF_F_TSO
3735                           | NETIF_F_TSO6
3736                           | NETIF_F_TSO_ECN
3737                           | NETIF_F_HW_VLAN_TX
3738                           | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3739
3740         if (test_bit(QL_DMA64, &qdev->flags))
3741                 ndev->features |= NETIF_F_HIGHDMA;
3742
3743         /*
3744          * Set up net_device structure.
3745          */
3746         ndev->tx_queue_len = qdev->tx_ring_size;
3747         ndev->irq = pdev->irq;
3748
3749         ndev->netdev_ops = &qlge_netdev_ops;
3750         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3751         ndev->watchdog_timeo = 10 * HZ;
3752
3753         err = register_netdev(ndev);
3754         if (err) {
3755                 dev_err(&pdev->dev, "net device registration failed.\n");
3756                 ql_release_all(pdev);
3757                 pci_disable_device(pdev);
3758                 return err;
3759         }
3760         netif_carrier_off(ndev);
3761         netif_stop_queue(ndev);
3762         ql_display_dev_info(ndev);
3763         cards_found++;
3764         return 0;
3765 }
3766
3767 static void __devexit qlge_remove(struct pci_dev *pdev)
3768 {
3769         struct net_device *ndev = pci_get_drvdata(pdev);
3770         unregister_netdev(ndev);
3771         ql_release_all(pdev);
3772         pci_disable_device(pdev);
3773         free_netdev(ndev);
3774 }
3775
3776 /*
3777  * This callback is called by the PCI subsystem whenever
3778  * a PCI bus error is detected.
3779  */
3780 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3781                                                enum pci_channel_state state)
3782 {
3783         struct net_device *ndev = pci_get_drvdata(pdev);
3784         struct ql_adapter *qdev = netdev_priv(ndev);
3785
3786         if (netif_running(ndev))
3787                 ql_adapter_down(qdev);
3788
3789         pci_disable_device(pdev);
3790
3791         /* Request a slot reset. */
3792         return PCI_ERS_RESULT_NEED_RESET;
3793 }
3794
3795 /*
3796  * This callback is called after the PCI buss has been reset.
3797  * Basically, this tries to restart the card from scratch.
3798  * This is a shortened version of the device probe/discovery code,
3799  * it resembles the first-half of the () routine.
3800  */
3801 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3802 {
3803         struct net_device *ndev = pci_get_drvdata(pdev);
3804         struct ql_adapter *qdev = netdev_priv(ndev);
3805
3806         if (pci_enable_device(pdev)) {
3807                 QPRINTK(qdev, IFUP, ERR,
3808                         "Cannot re-enable PCI device after reset.\n");
3809                 return PCI_ERS_RESULT_DISCONNECT;
3810         }
3811
3812         pci_set_master(pdev);
3813
3814         netif_carrier_off(ndev);
3815         netif_stop_queue(ndev);
3816         ql_adapter_reset(qdev);
3817
3818         /* Make sure the EEPROM is good */
3819         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3820
3821         if (!is_valid_ether_addr(ndev->perm_addr)) {
3822                 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3823                 return PCI_ERS_RESULT_DISCONNECT;
3824         }
3825
3826         return PCI_ERS_RESULT_RECOVERED;
3827 }
3828
3829 static void qlge_io_resume(struct pci_dev *pdev)
3830 {
3831         struct net_device *ndev = pci_get_drvdata(pdev);
3832         struct ql_adapter *qdev = netdev_priv(ndev);
3833
3834         pci_set_master(pdev);
3835
3836         if (netif_running(ndev)) {
3837                 if (ql_adapter_up(qdev)) {
3838                         QPRINTK(qdev, IFUP, ERR,
3839                                 "Device initialization failed after reset.\n");
3840                         return;
3841                 }
3842         }
3843
3844         netif_device_attach(ndev);
3845 }
3846
3847 static struct pci_error_handlers qlge_err_handler = {
3848         .error_detected = qlge_io_error_detected,
3849         .slot_reset = qlge_io_slot_reset,
3850         .resume = qlge_io_resume,
3851 };
3852
3853 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3854 {
3855         struct net_device *ndev = pci_get_drvdata(pdev);
3856         struct ql_adapter *qdev = netdev_priv(ndev);
3857         int err, i;
3858
3859         netif_device_detach(ndev);
3860
3861         if (netif_running(ndev)) {
3862                 err = ql_adapter_down(qdev);
3863                 if (!err)
3864                         return err;
3865         }
3866
3867         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3868                 netif_napi_del(&qdev->rx_ring[i].napi);
3869
3870         err = pci_save_state(pdev);
3871         if (err)
3872                 return err;
3873
3874         pci_disable_device(pdev);
3875
3876         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3877
3878         return 0;
3879 }
3880
3881 #ifdef CONFIG_PM
3882 static int qlge_resume(struct pci_dev *pdev)
3883 {
3884         struct net_device *ndev = pci_get_drvdata(pdev);
3885         struct ql_adapter *qdev = netdev_priv(ndev);
3886         int err;
3887
3888         pci_set_power_state(pdev, PCI_D0);
3889         pci_restore_state(pdev);
3890         err = pci_enable_device(pdev);
3891         if (err) {
3892                 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3893                 return err;
3894         }
3895         pci_set_master(pdev);
3896
3897         pci_enable_wake(pdev, PCI_D3hot, 0);
3898         pci_enable_wake(pdev, PCI_D3cold, 0);
3899
3900         if (netif_running(ndev)) {
3901                 err = ql_adapter_up(qdev);
3902                 if (err)
3903                         return err;
3904         }
3905
3906         netif_device_attach(ndev);
3907
3908         return 0;
3909 }
3910 #endif /* CONFIG_PM */
3911
3912 static void qlge_shutdown(struct pci_dev *pdev)
3913 {
3914         qlge_suspend(pdev, PMSG_SUSPEND);
3915 }
3916
3917 static struct pci_driver qlge_driver = {
3918         .name = DRV_NAME,
3919         .id_table = qlge_pci_tbl,
3920         .probe = qlge_probe,
3921         .remove = __devexit_p(qlge_remove),
3922 #ifdef CONFIG_PM
3923         .suspend = qlge_suspend,
3924         .resume = qlge_resume,
3925 #endif
3926         .shutdown = qlge_shutdown,
3927         .err_handler = &qlge_err_handler
3928 };
3929
3930 static int __init qlge_init_module(void)
3931 {
3932         return pci_register_driver(&qlge_driver);
3933 }
3934
3935 static void __exit qlge_exit(void)
3936 {
3937         pci_unregister_driver(&qlge_driver);
3938 }
3939
3940 module_init(qlge_init_module);
3941 module_exit(qlge_exit);