2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
32 /* Don't change this without changing skb_csum_unnecessary! */
33 #define CHECKSUM_NONE 0
34 #define CHECKSUM_UNNECESSARY 1
35 #define CHECKSUM_COMPLETE 2
36 #define CHECKSUM_PARTIAL 3
38 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
39 ~(SMP_CACHE_BYTES - 1))
40 #define SKB_WITH_OVERHEAD(X) \
41 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
42 #define SKB_MAX_ORDER(X, ORDER) \
43 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
44 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
45 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
47 /* A. Checksumming of received packets by device.
49 * NONE: device failed to checksum this packet.
50 * skb->csum is undefined.
52 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
53 * skb->csum is undefined.
54 * It is bad option, but, unfortunately, many of vendors do this.
55 * Apparently with secret goal to sell you new device, when you
56 * will add new protocol to your host. F.e. IPv6. 8)
58 * COMPLETE: the most generic way. Device supplied checksum of _all_
59 * the packet as seen by netif_rx in skb->csum.
60 * NOTE: Even if device supports only some protocols, but
61 * is able to produce some skb->csum, it MUST use COMPLETE,
64 * PARTIAL: identical to the case for output below. This may occur
65 * on a packet received directly from another Linux OS, e.g.,
66 * a virtualised Linux kernel on the same host. The packet can
67 * be treated in the same way as UNNECESSARY except that on
68 * output (i.e., forwarding) the checksum must be filled in
69 * by the OS or the hardware.
71 * B. Checksumming on output.
73 * NONE: skb is checksummed by protocol or csum is not required.
75 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
76 * from skb->csum_start to the end and to record the checksum
77 * at skb->csum_start + skb->csum_offset.
79 * Device must show its capabilities in dev->features, set
80 * at device setup time.
81 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
83 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
84 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
85 * TCP/UDP over IPv4. Sigh. Vendors like this
86 * way by an unknown reason. Though, see comment above
87 * about CHECKSUM_UNNECESSARY. 8)
88 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90 * Any questions? No questions, good. --ANK
95 struct pipe_inode_info;
97 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
103 #ifdef CONFIG_BRIDGE_NETFILTER
104 struct nf_bridge_info {
106 struct net_device *physindev;
107 struct net_device *physoutdev;
109 unsigned long data[32 / sizeof(unsigned long)];
113 struct sk_buff_head {
114 /* These two members must be first. */
115 struct sk_buff *next;
116 struct sk_buff *prev;
124 /* To allow 64K frame to be packed as single skb without frag_list */
125 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127 typedef struct skb_frag_struct skb_frag_t;
129 struct skb_frag_struct {
135 /* This data is invariant across clones and lives at
136 * the end of the header data, ie. at skb->end.
138 struct skb_shared_info {
140 unsigned short nr_frags;
141 unsigned short gso_size;
142 /* Warning: this field is not always filled in (UFO)! */
143 unsigned short gso_segs;
144 unsigned short gso_type;
146 #ifdef CONFIG_HAS_DMA
147 unsigned int num_dma_maps;
149 struct sk_buff *frag_list;
150 skb_frag_t frags[MAX_SKB_FRAGS];
151 #ifdef CONFIG_HAS_DMA
152 dma_addr_t dma_maps[MAX_SKB_FRAGS + 1];
156 /* We divide dataref into two halves. The higher 16 bits hold references
157 * to the payload part of skb->data. The lower 16 bits hold references to
158 * the entire skb->data. A clone of a headerless skb holds the length of
159 * the header in skb->hdr_len.
161 * All users must obey the rule that the skb->data reference count must be
162 * greater than or equal to the payload reference count.
164 * Holding a reference to the payload part means that the user does not
165 * care about modifications to the header part of skb->data.
167 #define SKB_DATAREF_SHIFT 16
168 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
172 SKB_FCLONE_UNAVAILABLE,
178 SKB_GSO_TCPV4 = 1 << 0,
179 SKB_GSO_UDP = 1 << 1,
181 /* This indicates the skb is from an untrusted source. */
182 SKB_GSO_DODGY = 1 << 2,
184 /* This indicates the tcp segment has CWR set. */
185 SKB_GSO_TCP_ECN = 1 << 3,
187 SKB_GSO_TCPV6 = 1 << 4,
190 #if BITS_PER_LONG > 32
191 #define NET_SKBUFF_DATA_USES_OFFSET 1
194 #ifdef NET_SKBUFF_DATA_USES_OFFSET
195 typedef unsigned int sk_buff_data_t;
197 typedef unsigned char *sk_buff_data_t;
201 * struct sk_buff - socket buffer
202 * @next: Next buffer in list
203 * @prev: Previous buffer in list
204 * @sk: Socket we are owned by
205 * @tstamp: Time we arrived
206 * @dev: Device we arrived on/are leaving by
207 * @transport_header: Transport layer header
208 * @network_header: Network layer header
209 * @mac_header: Link layer header
210 * @dst: destination entry
211 * @sp: the security path, used for xfrm
212 * @cb: Control buffer. Free for use by every layer. Put private vars here
213 * @len: Length of actual data
214 * @data_len: Data length
215 * @mac_len: Length of link layer header
216 * @hdr_len: writable header length of cloned skb
217 * @csum: Checksum (must include start/offset pair)
218 * @csum_start: Offset from skb->head where checksumming should start
219 * @csum_offset: Offset from csum_start where checksum should be stored
220 * @local_df: allow local fragmentation
221 * @cloned: Head may be cloned (check refcnt to be sure)
222 * @nohdr: Payload reference only, must not modify header
223 * @pkt_type: Packet class
224 * @fclone: skbuff clone status
225 * @ip_summed: Driver fed us an IP checksum
226 * @priority: Packet queueing priority
227 * @users: User count - see {datagram,tcp}.c
228 * @protocol: Packet protocol from driver
229 * @truesize: Buffer size
230 * @head: Head of buffer
231 * @data: Data head pointer
232 * @tail: Tail pointer
234 * @destructor: Destruct function
235 * @mark: Generic packet mark
236 * @nfct: Associated connection, if any
237 * @ipvs_property: skbuff is owned by ipvs
238 * @peeked: this packet has been seen already, so stats have been
239 * done for it, don't do them again
240 * @nf_trace: netfilter packet trace flag
241 * @nfctinfo: Relationship of this skb to the connection
242 * @nfct_reasm: netfilter conntrack re-assembly pointer
243 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
244 * @iif: ifindex of device we arrived on
245 * @queue_mapping: Queue mapping for multiqueue devices
246 * @tc_index: Traffic control index
247 * @tc_verd: traffic control verdict
248 * @ndisc_nodetype: router type (from link layer)
249 * @do_not_encrypt: set to prevent encryption of this frame
250 * @requeue: set to indicate that the wireless core should attempt
251 * a software retry on this frame if we failed to
252 * receive an ACK for it
253 * @dma_cookie: a cookie to one of several possible DMA operations
254 * done by skb DMA functions
255 * @secmark: security marking
256 * @vlan_tci: vlan tag control information
260 /* These two members must be first. */
261 struct sk_buff *next;
262 struct sk_buff *prev;
266 struct net_device *dev;
269 struct dst_entry *dst;
270 struct rtable *rtable;
276 * This is the control buffer. It is free to use for every
277 * layer. Please put your private variables there. If you
278 * want to keep them across layers you have to do a skb_clone()
279 * first. This is owned by whoever has the skb queued ATM.
307 void (*destructor)(struct sk_buff *skb);
308 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
309 struct nf_conntrack *nfct;
310 struct sk_buff *nfct_reasm;
312 #ifdef CONFIG_BRIDGE_NETFILTER
313 struct nf_bridge_info *nf_bridge;
318 #ifdef CONFIG_NET_SCHED
319 __u16 tc_index; /* traffic control index */
320 #ifdef CONFIG_NET_CLS_ACT
321 __u16 tc_verd; /* traffic control verdict */
324 #ifdef CONFIG_IPV6_NDISC_NODETYPE
325 __u8 ndisc_nodetype:2;
327 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
328 __u8 do_not_encrypt:1;
331 /* 0/13/14 bit hole */
333 #ifdef CONFIG_NET_DMA
334 dma_cookie_t dma_cookie;
336 #ifdef CONFIG_NETWORK_SECMARK
344 sk_buff_data_t transport_header;
345 sk_buff_data_t network_header;
346 sk_buff_data_t mac_header;
347 /* These elements must be at the end, see alloc_skb() for details. */
352 unsigned int truesize;
358 * Handling routines are only of interest to the kernel
360 #include <linux/slab.h>
362 #include <asm/system.h>
364 #ifdef CONFIG_HAS_DMA
365 #include <linux/dma-mapping.h>
366 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
367 enum dma_data_direction dir);
368 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
369 enum dma_data_direction dir);
372 extern void kfree_skb(struct sk_buff *skb);
373 extern void __kfree_skb(struct sk_buff *skb);
374 extern struct sk_buff *__alloc_skb(unsigned int size,
375 gfp_t priority, int fclone, int node);
376 static inline struct sk_buff *alloc_skb(unsigned int size,
379 return __alloc_skb(size, priority, 0, -1);
382 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
385 return __alloc_skb(size, priority, 1, -1);
388 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
390 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
391 extern struct sk_buff *skb_clone(struct sk_buff *skb,
393 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
395 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
397 extern int pskb_expand_head(struct sk_buff *skb,
398 int nhead, int ntail,
400 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
401 unsigned int headroom);
402 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
403 int newheadroom, int newtailroom,
405 extern int skb_to_sgvec(struct sk_buff *skb,
406 struct scatterlist *sg, int offset,
408 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
409 struct sk_buff **trailer);
410 extern int skb_pad(struct sk_buff *skb, int pad);
411 #define dev_kfree_skb(a) kfree_skb(a)
412 extern void skb_over_panic(struct sk_buff *skb, int len,
414 extern void skb_under_panic(struct sk_buff *skb, int len,
416 extern void skb_truesize_bug(struct sk_buff *skb);
418 static inline void skb_truesize_check(struct sk_buff *skb)
420 int len = sizeof(struct sk_buff) + skb->len;
422 if (unlikely((int)skb->truesize < len))
423 skb_truesize_bug(skb);
426 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
427 int getfrag(void *from, char *to, int offset,
428 int len,int odd, struct sk_buff *skb),
429 void *from, int length);
436 __u32 stepped_offset;
437 struct sk_buff *root_skb;
438 struct sk_buff *cur_skb;
442 extern void skb_prepare_seq_read(struct sk_buff *skb,
443 unsigned int from, unsigned int to,
444 struct skb_seq_state *st);
445 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
446 struct skb_seq_state *st);
447 extern void skb_abort_seq_read(struct skb_seq_state *st);
449 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
450 unsigned int to, struct ts_config *config,
451 struct ts_state *state);
453 #ifdef NET_SKBUFF_DATA_USES_OFFSET
454 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
456 return skb->head + skb->end;
459 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
466 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
469 * skb_queue_empty - check if a queue is empty
472 * Returns true if the queue is empty, false otherwise.
474 static inline int skb_queue_empty(const struct sk_buff_head *list)
476 return list->next == (struct sk_buff *)list;
480 * skb_queue_is_last - check if skb is the last entry in the queue
484 * Returns true if @skb is the last buffer on the list.
486 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
487 const struct sk_buff *skb)
489 return (skb->next == (struct sk_buff *) list);
493 * skb_queue_is_first - check if skb is the first entry in the queue
497 * Returns true if @skb is the first buffer on the list.
499 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
500 const struct sk_buff *skb)
502 return (skb->prev == (struct sk_buff *) list);
506 * skb_queue_next - return the next packet in the queue
508 * @skb: current buffer
510 * Return the next packet in @list after @skb. It is only valid to
511 * call this if skb_queue_is_last() evaluates to false.
513 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
514 const struct sk_buff *skb)
516 /* This BUG_ON may seem severe, but if we just return then we
517 * are going to dereference garbage.
519 BUG_ON(skb_queue_is_last(list, skb));
524 * skb_queue_prev - return the prev packet in the queue
526 * @skb: current buffer
528 * Return the prev packet in @list before @skb. It is only valid to
529 * call this if skb_queue_is_first() evaluates to false.
531 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
532 const struct sk_buff *skb)
534 /* This BUG_ON may seem severe, but if we just return then we
535 * are going to dereference garbage.
537 BUG_ON(skb_queue_is_first(list, skb));
542 * skb_get - reference buffer
543 * @skb: buffer to reference
545 * Makes another reference to a socket buffer and returns a pointer
548 static inline struct sk_buff *skb_get(struct sk_buff *skb)
550 atomic_inc(&skb->users);
555 * If users == 1, we are the only owner and are can avoid redundant
560 * skb_cloned - is the buffer a clone
561 * @skb: buffer to check
563 * Returns true if the buffer was generated with skb_clone() and is
564 * one of multiple shared copies of the buffer. Cloned buffers are
565 * shared data so must not be written to under normal circumstances.
567 static inline int skb_cloned(const struct sk_buff *skb)
569 return skb->cloned &&
570 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
574 * skb_header_cloned - is the header a clone
575 * @skb: buffer to check
577 * Returns true if modifying the header part of the buffer requires
578 * the data to be copied.
580 static inline int skb_header_cloned(const struct sk_buff *skb)
587 dataref = atomic_read(&skb_shinfo(skb)->dataref);
588 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
593 * skb_header_release - release reference to header
594 * @skb: buffer to operate on
596 * Drop a reference to the header part of the buffer. This is done
597 * by acquiring a payload reference. You must not read from the header
598 * part of skb->data after this.
600 static inline void skb_header_release(struct sk_buff *skb)
604 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
608 * skb_shared - is the buffer shared
609 * @skb: buffer to check
611 * Returns true if more than one person has a reference to this
614 static inline int skb_shared(const struct sk_buff *skb)
616 return atomic_read(&skb->users) != 1;
620 * skb_share_check - check if buffer is shared and if so clone it
621 * @skb: buffer to check
622 * @pri: priority for memory allocation
624 * If the buffer is shared the buffer is cloned and the old copy
625 * drops a reference. A new clone with a single reference is returned.
626 * If the buffer is not shared the original buffer is returned. When
627 * being called from interrupt status or with spinlocks held pri must
630 * NULL is returned on a memory allocation failure.
632 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
635 might_sleep_if(pri & __GFP_WAIT);
636 if (skb_shared(skb)) {
637 struct sk_buff *nskb = skb_clone(skb, pri);
645 * Copy shared buffers into a new sk_buff. We effectively do COW on
646 * packets to handle cases where we have a local reader and forward
647 * and a couple of other messy ones. The normal one is tcpdumping
648 * a packet thats being forwarded.
652 * skb_unshare - make a copy of a shared buffer
653 * @skb: buffer to check
654 * @pri: priority for memory allocation
656 * If the socket buffer is a clone then this function creates a new
657 * copy of the data, drops a reference count on the old copy and returns
658 * the new copy with the reference count at 1. If the buffer is not a clone
659 * the original buffer is returned. When called with a spinlock held or
660 * from interrupt state @pri must be %GFP_ATOMIC
662 * %NULL is returned on a memory allocation failure.
664 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
667 might_sleep_if(pri & __GFP_WAIT);
668 if (skb_cloned(skb)) {
669 struct sk_buff *nskb = skb_copy(skb, pri);
670 kfree_skb(skb); /* Free our shared copy */
678 * @list_: list to peek at
680 * Peek an &sk_buff. Unlike most other operations you _MUST_
681 * be careful with this one. A peek leaves the buffer on the
682 * list and someone else may run off with it. You must hold
683 * the appropriate locks or have a private queue to do this.
685 * Returns %NULL for an empty list or a pointer to the head element.
686 * The reference count is not incremented and the reference is therefore
687 * volatile. Use with caution.
689 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
691 struct sk_buff *list = ((struct sk_buff *)list_)->next;
692 if (list == (struct sk_buff *)list_)
699 * @list_: list to peek at
701 * Peek an &sk_buff. Unlike most other operations you _MUST_
702 * be careful with this one. A peek leaves the buffer on the
703 * list and someone else may run off with it. You must hold
704 * the appropriate locks or have a private queue to do this.
706 * Returns %NULL for an empty list or a pointer to the tail element.
707 * The reference count is not incremented and the reference is therefore
708 * volatile. Use with caution.
710 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
712 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
713 if (list == (struct sk_buff *)list_)
719 * skb_queue_len - get queue length
720 * @list_: list to measure
722 * Return the length of an &sk_buff queue.
724 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
730 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
731 * @list: queue to initialize
733 * This initializes only the list and queue length aspects of
734 * an sk_buff_head object. This allows to initialize the list
735 * aspects of an sk_buff_head without reinitializing things like
736 * the spinlock. It can also be used for on-stack sk_buff_head
737 * objects where the spinlock is known to not be used.
739 static inline void __skb_queue_head_init(struct sk_buff_head *list)
741 list->prev = list->next = (struct sk_buff *)list;
746 * This function creates a split out lock class for each invocation;
747 * this is needed for now since a whole lot of users of the skb-queue
748 * infrastructure in drivers have different locking usage (in hardirq)
749 * than the networking core (in softirq only). In the long run either the
750 * network layer or drivers should need annotation to consolidate the
751 * main types of usage into 3 classes.
753 static inline void skb_queue_head_init(struct sk_buff_head *list)
755 spin_lock_init(&list->lock);
756 __skb_queue_head_init(list);
759 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
760 struct lock_class_key *class)
762 skb_queue_head_init(list);
763 lockdep_set_class(&list->lock, class);
767 * Insert an sk_buff on a list.
769 * The "__skb_xxxx()" functions are the non-atomic ones that
770 * can only be called with interrupts disabled.
772 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
773 static inline void __skb_insert(struct sk_buff *newsk,
774 struct sk_buff *prev, struct sk_buff *next,
775 struct sk_buff_head *list)
779 next->prev = prev->next = newsk;
783 static inline void __skb_queue_splice(const struct sk_buff_head *list,
784 struct sk_buff *prev,
785 struct sk_buff *next)
787 struct sk_buff *first = list->next;
788 struct sk_buff *last = list->prev;
798 * skb_queue_splice - join two skb lists, this is designed for stacks
799 * @list: the new list to add
800 * @head: the place to add it in the first list
802 static inline void skb_queue_splice(const struct sk_buff_head *list,
803 struct sk_buff_head *head)
805 if (!skb_queue_empty(list)) {
806 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
807 head->qlen += list->qlen;
812 * skb_queue_splice - join two skb lists and reinitialise the emptied list
813 * @list: the new list to add
814 * @head: the place to add it in the first list
816 * The list at @list is reinitialised
818 static inline void skb_queue_splice_init(struct sk_buff_head *list,
819 struct sk_buff_head *head)
821 if (!skb_queue_empty(list)) {
822 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
823 head->qlen += list->qlen;
824 __skb_queue_head_init(list);
829 * skb_queue_splice_tail - join two skb lists, each list being a queue
830 * @list: the new list to add
831 * @head: the place to add it in the first list
833 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
834 struct sk_buff_head *head)
836 if (!skb_queue_empty(list)) {
837 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
838 head->qlen += list->qlen;
843 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
844 * @list: the new list to add
845 * @head: the place to add it in the first list
847 * Each of the lists is a queue.
848 * The list at @list is reinitialised
850 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
851 struct sk_buff_head *head)
853 if (!skb_queue_empty(list)) {
854 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
855 head->qlen += list->qlen;
856 __skb_queue_head_init(list);
861 * __skb_queue_after - queue a buffer at the list head
863 * @prev: place after this buffer
864 * @newsk: buffer to queue
866 * Queue a buffer int the middle of a list. This function takes no locks
867 * and you must therefore hold required locks before calling it.
869 * A buffer cannot be placed on two lists at the same time.
871 static inline void __skb_queue_after(struct sk_buff_head *list,
872 struct sk_buff *prev,
873 struct sk_buff *newsk)
875 __skb_insert(newsk, prev, prev->next, list);
878 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
879 struct sk_buff_head *list);
881 static inline void __skb_queue_before(struct sk_buff_head *list,
882 struct sk_buff *next,
883 struct sk_buff *newsk)
885 __skb_insert(newsk, next->prev, next, list);
889 * __skb_queue_head - queue a buffer at the list head
891 * @newsk: buffer to queue
893 * Queue a buffer at the start of a list. This function takes no locks
894 * and you must therefore hold required locks before calling it.
896 * A buffer cannot be placed on two lists at the same time.
898 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
899 static inline void __skb_queue_head(struct sk_buff_head *list,
900 struct sk_buff *newsk)
902 __skb_queue_after(list, (struct sk_buff *)list, newsk);
906 * __skb_queue_tail - queue a buffer at the list tail
908 * @newsk: buffer to queue
910 * Queue a buffer at the end of a list. This function takes no locks
911 * and you must therefore hold required locks before calling it.
913 * A buffer cannot be placed on two lists at the same time.
915 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
916 static inline void __skb_queue_tail(struct sk_buff_head *list,
917 struct sk_buff *newsk)
919 __skb_queue_before(list, (struct sk_buff *)list, newsk);
923 * remove sk_buff from list. _Must_ be called atomically, and with
926 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
927 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
929 struct sk_buff *next, *prev;
934 skb->next = skb->prev = NULL;
940 * __skb_dequeue - remove from the head of the queue
941 * @list: list to dequeue from
943 * Remove the head of the list. This function does not take any locks
944 * so must be used with appropriate locks held only. The head item is
945 * returned or %NULL if the list is empty.
947 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
948 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
950 struct sk_buff *skb = skb_peek(list);
952 __skb_unlink(skb, list);
957 * __skb_dequeue_tail - remove from the tail of the queue
958 * @list: list to dequeue from
960 * Remove the tail of the list. This function does not take any locks
961 * so must be used with appropriate locks held only. The tail item is
962 * returned or %NULL if the list is empty.
964 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
965 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
967 struct sk_buff *skb = skb_peek_tail(list);
969 __skb_unlink(skb, list);
974 static inline int skb_is_nonlinear(const struct sk_buff *skb)
976 return skb->data_len;
979 static inline unsigned int skb_headlen(const struct sk_buff *skb)
981 return skb->len - skb->data_len;
984 static inline int skb_pagelen(const struct sk_buff *skb)
988 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
989 len += skb_shinfo(skb)->frags[i].size;
990 return len + skb_headlen(skb);
993 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
994 struct page *page, int off, int size)
996 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
999 frag->page_offset = off;
1001 skb_shinfo(skb)->nr_frags = i + 1;
1004 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1007 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1008 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
1009 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1011 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1012 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1014 return skb->head + skb->tail;
1017 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1019 skb->tail = skb->data - skb->head;
1022 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1024 skb_reset_tail_pointer(skb);
1025 skb->tail += offset;
1027 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1028 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1033 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1035 skb->tail = skb->data;
1038 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1040 skb->tail = skb->data + offset;
1043 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1046 * Add data to an sk_buff
1048 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1049 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1051 unsigned char *tmp = skb_tail_pointer(skb);
1052 SKB_LINEAR_ASSERT(skb);
1058 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1059 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1066 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1067 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1070 BUG_ON(skb->len < skb->data_len);
1071 return skb->data += len;
1074 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1076 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1078 if (len > skb_headlen(skb) &&
1079 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1082 return skb->data += len;
1085 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1087 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1090 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1092 if (likely(len <= skb_headlen(skb)))
1094 if (unlikely(len > skb->len))
1096 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1100 * skb_headroom - bytes at buffer head
1101 * @skb: buffer to check
1103 * Return the number of bytes of free space at the head of an &sk_buff.
1105 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1107 return skb->data - skb->head;
1111 * skb_tailroom - bytes at buffer end
1112 * @skb: buffer to check
1114 * Return the number of bytes of free space at the tail of an sk_buff
1116 static inline int skb_tailroom(const struct sk_buff *skb)
1118 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1122 * skb_reserve - adjust headroom
1123 * @skb: buffer to alter
1124 * @len: bytes to move
1126 * Increase the headroom of an empty &sk_buff by reducing the tail
1127 * room. This is only allowed for an empty buffer.
1129 static inline void skb_reserve(struct sk_buff *skb, int len)
1135 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1136 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1138 return skb->head + skb->transport_header;
1141 static inline void skb_reset_transport_header(struct sk_buff *skb)
1143 skb->transport_header = skb->data - skb->head;
1146 static inline void skb_set_transport_header(struct sk_buff *skb,
1149 skb_reset_transport_header(skb);
1150 skb->transport_header += offset;
1153 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1155 return skb->head + skb->network_header;
1158 static inline void skb_reset_network_header(struct sk_buff *skb)
1160 skb->network_header = skb->data - skb->head;
1163 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1165 skb_reset_network_header(skb);
1166 skb->network_header += offset;
1169 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1171 return skb->head + skb->mac_header;
1174 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1176 return skb->mac_header != ~0U;
1179 static inline void skb_reset_mac_header(struct sk_buff *skb)
1181 skb->mac_header = skb->data - skb->head;
1184 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1186 skb_reset_mac_header(skb);
1187 skb->mac_header += offset;
1190 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1192 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1194 return skb->transport_header;
1197 static inline void skb_reset_transport_header(struct sk_buff *skb)
1199 skb->transport_header = skb->data;
1202 static inline void skb_set_transport_header(struct sk_buff *skb,
1205 skb->transport_header = skb->data + offset;
1208 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1210 return skb->network_header;
1213 static inline void skb_reset_network_header(struct sk_buff *skb)
1215 skb->network_header = skb->data;
1218 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1220 skb->network_header = skb->data + offset;
1223 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1225 return skb->mac_header;
1228 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1230 return skb->mac_header != NULL;
1233 static inline void skb_reset_mac_header(struct sk_buff *skb)
1235 skb->mac_header = skb->data;
1238 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1240 skb->mac_header = skb->data + offset;
1242 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1244 static inline int skb_transport_offset(const struct sk_buff *skb)
1246 return skb_transport_header(skb) - skb->data;
1249 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1251 return skb->transport_header - skb->network_header;
1254 static inline int skb_network_offset(const struct sk_buff *skb)
1256 return skb_network_header(skb) - skb->data;
1260 * CPUs often take a performance hit when accessing unaligned memory
1261 * locations. The actual performance hit varies, it can be small if the
1262 * hardware handles it or large if we have to take an exception and fix it
1265 * Since an ethernet header is 14 bytes network drivers often end up with
1266 * the IP header at an unaligned offset. The IP header can be aligned by
1267 * shifting the start of the packet by 2 bytes. Drivers should do this
1270 * skb_reserve(NET_IP_ALIGN);
1272 * The downside to this alignment of the IP header is that the DMA is now
1273 * unaligned. On some architectures the cost of an unaligned DMA is high
1274 * and this cost outweighs the gains made by aligning the IP header.
1276 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1279 #ifndef NET_IP_ALIGN
1280 #define NET_IP_ALIGN 2
1284 * The networking layer reserves some headroom in skb data (via
1285 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1286 * the header has to grow. In the default case, if the header has to grow
1287 * 32 bytes or less we avoid the reallocation.
1289 * Unfortunately this headroom changes the DMA alignment of the resulting
1290 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1291 * on some architectures. An architecture can override this value,
1292 * perhaps setting it to a cacheline in size (since that will maintain
1293 * cacheline alignment of the DMA). It must be a power of 2.
1295 * Various parts of the networking layer expect at least 32 bytes of
1296 * headroom, you should not reduce this.
1299 #define NET_SKB_PAD 32
1302 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1304 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1306 if (unlikely(skb->data_len)) {
1311 skb_set_tail_pointer(skb, len);
1314 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1316 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1319 return ___pskb_trim(skb, len);
1320 __skb_trim(skb, len);
1324 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1326 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1330 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1331 * @skb: buffer to alter
1334 * This is identical to pskb_trim except that the caller knows that
1335 * the skb is not cloned so we should never get an error due to out-
1338 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1340 int err = pskb_trim(skb, len);
1345 * skb_orphan - orphan a buffer
1346 * @skb: buffer to orphan
1348 * If a buffer currently has an owner then we call the owner's
1349 * destructor function and make the @skb unowned. The buffer continues
1350 * to exist but is no longer charged to its former owner.
1352 static inline void skb_orphan(struct sk_buff *skb)
1354 if (skb->destructor)
1355 skb->destructor(skb);
1356 skb->destructor = NULL;
1361 * __skb_queue_purge - empty a list
1362 * @list: list to empty
1364 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1365 * the list and one reference dropped. This function does not take the
1366 * list lock and the caller must hold the relevant locks to use it.
1368 extern void skb_queue_purge(struct sk_buff_head *list);
1369 static inline void __skb_queue_purge(struct sk_buff_head *list)
1371 struct sk_buff *skb;
1372 while ((skb = __skb_dequeue(list)) != NULL)
1377 * __dev_alloc_skb - allocate an skbuff for receiving
1378 * @length: length to allocate
1379 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1381 * Allocate a new &sk_buff and assign it a usage count of one. The
1382 * buffer has unspecified headroom built in. Users should allocate
1383 * the headroom they think they need without accounting for the
1384 * built in space. The built in space is used for optimisations.
1386 * %NULL is returned if there is no free memory.
1388 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1391 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1393 skb_reserve(skb, NET_SKB_PAD);
1397 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1399 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1400 unsigned int length, gfp_t gfp_mask);
1403 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1404 * @dev: network device to receive on
1405 * @length: length to allocate
1407 * Allocate a new &sk_buff and assign it a usage count of one. The
1408 * buffer has unspecified headroom built in. Users should allocate
1409 * the headroom they think they need without accounting for the
1410 * built in space. The built in space is used for optimisations.
1412 * %NULL is returned if there is no free memory. Although this function
1413 * allocates memory it can be called from an interrupt.
1415 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1416 unsigned int length)
1418 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1421 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1424 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1425 * @dev: network device to receive on
1427 * Allocate a new page node local to the specified device.
1429 * %NULL is returned if there is no free memory.
1431 static inline struct page *netdev_alloc_page(struct net_device *dev)
1433 return __netdev_alloc_page(dev, GFP_ATOMIC);
1436 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1442 * skb_clone_writable - is the header of a clone writable
1443 * @skb: buffer to check
1444 * @len: length up to which to write
1446 * Returns true if modifying the header part of the cloned buffer
1447 * does not requires the data to be copied.
1449 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1451 return !skb_header_cloned(skb) &&
1452 skb_headroom(skb) + len <= skb->hdr_len;
1455 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1460 if (headroom < NET_SKB_PAD)
1461 headroom = NET_SKB_PAD;
1462 if (headroom > skb_headroom(skb))
1463 delta = headroom - skb_headroom(skb);
1465 if (delta || cloned)
1466 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1472 * skb_cow - copy header of skb when it is required
1473 * @skb: buffer to cow
1474 * @headroom: needed headroom
1476 * If the skb passed lacks sufficient headroom or its data part
1477 * is shared, data is reallocated. If reallocation fails, an error
1478 * is returned and original skb is not changed.
1480 * The result is skb with writable area skb->head...skb->tail
1481 * and at least @headroom of space at head.
1483 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1485 return __skb_cow(skb, headroom, skb_cloned(skb));
1489 * skb_cow_head - skb_cow but only making the head writable
1490 * @skb: buffer to cow
1491 * @headroom: needed headroom
1493 * This function is identical to skb_cow except that we replace the
1494 * skb_cloned check by skb_header_cloned. It should be used when
1495 * you only need to push on some header and do not need to modify
1498 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1500 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1504 * skb_padto - pad an skbuff up to a minimal size
1505 * @skb: buffer to pad
1506 * @len: minimal length
1508 * Pads up a buffer to ensure the trailing bytes exist and are
1509 * blanked. If the buffer already contains sufficient data it
1510 * is untouched. Otherwise it is extended. Returns zero on
1511 * success. The skb is freed on error.
1514 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1516 unsigned int size = skb->len;
1517 if (likely(size >= len))
1519 return skb_pad(skb, len - size);
1522 static inline int skb_add_data(struct sk_buff *skb,
1523 char __user *from, int copy)
1525 const int off = skb->len;
1527 if (skb->ip_summed == CHECKSUM_NONE) {
1529 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1532 skb->csum = csum_block_add(skb->csum, csum, off);
1535 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1538 __skb_trim(skb, off);
1542 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1543 struct page *page, int off)
1546 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1548 return page == frag->page &&
1549 off == frag->page_offset + frag->size;
1554 static inline int __skb_linearize(struct sk_buff *skb)
1556 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1560 * skb_linearize - convert paged skb to linear one
1561 * @skb: buffer to linarize
1563 * If there is no free memory -ENOMEM is returned, otherwise zero
1564 * is returned and the old skb data released.
1566 static inline int skb_linearize(struct sk_buff *skb)
1568 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1572 * skb_linearize_cow - make sure skb is linear and writable
1573 * @skb: buffer to process
1575 * If there is no free memory -ENOMEM is returned, otherwise zero
1576 * is returned and the old skb data released.
1578 static inline int skb_linearize_cow(struct sk_buff *skb)
1580 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1581 __skb_linearize(skb) : 0;
1585 * skb_postpull_rcsum - update checksum for received skb after pull
1586 * @skb: buffer to update
1587 * @start: start of data before pull
1588 * @len: length of data pulled
1590 * After doing a pull on a received packet, you need to call this to
1591 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1592 * CHECKSUM_NONE so that it can be recomputed from scratch.
1595 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1596 const void *start, unsigned int len)
1598 if (skb->ip_summed == CHECKSUM_COMPLETE)
1599 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1602 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1605 * pskb_trim_rcsum - trim received skb and update checksum
1606 * @skb: buffer to trim
1609 * This is exactly the same as pskb_trim except that it ensures the
1610 * checksum of received packets are still valid after the operation.
1613 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1615 if (likely(len >= skb->len))
1617 if (skb->ip_summed == CHECKSUM_COMPLETE)
1618 skb->ip_summed = CHECKSUM_NONE;
1619 return __pskb_trim(skb, len);
1622 #define skb_queue_walk(queue, skb) \
1623 for (skb = (queue)->next; \
1624 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1627 #define skb_queue_walk_safe(queue, skb, tmp) \
1628 for (skb = (queue)->next, tmp = skb->next; \
1629 skb != (struct sk_buff *)(queue); \
1630 skb = tmp, tmp = skb->next)
1632 #define skb_queue_walk_from(queue, skb) \
1633 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1636 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1637 for (tmp = skb->next; \
1638 skb != (struct sk_buff *)(queue); \
1639 skb = tmp, tmp = skb->next)
1641 #define skb_queue_reverse_walk(queue, skb) \
1642 for (skb = (queue)->prev; \
1643 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1647 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1648 int *peeked, int *err);
1649 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1650 int noblock, int *err);
1651 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1652 struct poll_table_struct *wait);
1653 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1654 int offset, struct iovec *to,
1656 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1659 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1663 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1664 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1665 unsigned int flags);
1666 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1667 int len, __wsum csum);
1668 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1670 extern int skb_store_bits(struct sk_buff *skb, int offset,
1671 const void *from, int len);
1672 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1673 int offset, u8 *to, int len,
1675 extern int skb_splice_bits(struct sk_buff *skb,
1676 unsigned int offset,
1677 struct pipe_inode_info *pipe,
1679 unsigned int flags);
1680 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1681 extern void skb_split(struct sk_buff *skb,
1682 struct sk_buff *skb1, const u32 len);
1683 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1686 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1688 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1689 int len, void *buffer)
1691 int hlen = skb_headlen(skb);
1693 if (hlen - offset >= len)
1694 return skb->data + offset;
1696 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1702 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1704 const unsigned int len)
1706 memcpy(to, skb->data, len);
1709 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1710 const int offset, void *to,
1711 const unsigned int len)
1713 memcpy(to, skb->data + offset, len);
1716 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1718 const unsigned int len)
1720 memcpy(skb->data, from, len);
1723 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1726 const unsigned int len)
1728 memcpy(skb->data + offset, from, len);
1731 extern void skb_init(void);
1734 * skb_get_timestamp - get timestamp from a skb
1735 * @skb: skb to get stamp from
1736 * @stamp: pointer to struct timeval to store stamp in
1738 * Timestamps are stored in the skb as offsets to a base timestamp.
1739 * This function converts the offset back to a struct timeval and stores
1742 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1744 *stamp = ktime_to_timeval(skb->tstamp);
1747 static inline void __net_timestamp(struct sk_buff *skb)
1749 skb->tstamp = ktime_get_real();
1752 static inline ktime_t net_timedelta(ktime_t t)
1754 return ktime_sub(ktime_get_real(), t);
1757 static inline ktime_t net_invalid_timestamp(void)
1759 return ktime_set(0, 0);
1762 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1763 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1765 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1767 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1771 * skb_checksum_complete - Calculate checksum of an entire packet
1772 * @skb: packet to process
1774 * This function calculates the checksum over the entire packet plus
1775 * the value of skb->csum. The latter can be used to supply the
1776 * checksum of a pseudo header as used by TCP/UDP. It returns the
1779 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1780 * this function can be used to verify that checksum on received
1781 * packets. In that case the function should return zero if the
1782 * checksum is correct. In particular, this function will return zero
1783 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1784 * hardware has already verified the correctness of the checksum.
1786 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1788 return skb_csum_unnecessary(skb) ?
1789 0 : __skb_checksum_complete(skb);
1792 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1793 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1794 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1796 if (nfct && atomic_dec_and_test(&nfct->use))
1797 nf_conntrack_destroy(nfct);
1799 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1802 atomic_inc(&nfct->use);
1804 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1807 atomic_inc(&skb->users);
1809 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1815 #ifdef CONFIG_BRIDGE_NETFILTER
1816 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1818 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1821 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1824 atomic_inc(&nf_bridge->use);
1826 #endif /* CONFIG_BRIDGE_NETFILTER */
1827 static inline void nf_reset(struct sk_buff *skb)
1829 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1830 nf_conntrack_put(skb->nfct);
1832 nf_conntrack_put_reasm(skb->nfct_reasm);
1833 skb->nfct_reasm = NULL;
1835 #ifdef CONFIG_BRIDGE_NETFILTER
1836 nf_bridge_put(skb->nf_bridge);
1837 skb->nf_bridge = NULL;
1841 /* Note: This doesn't put any conntrack and bridge info in dst. */
1842 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1844 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1845 dst->nfct = src->nfct;
1846 nf_conntrack_get(src->nfct);
1847 dst->nfctinfo = src->nfctinfo;
1848 dst->nfct_reasm = src->nfct_reasm;
1849 nf_conntrack_get_reasm(src->nfct_reasm);
1851 #ifdef CONFIG_BRIDGE_NETFILTER
1852 dst->nf_bridge = src->nf_bridge;
1853 nf_bridge_get(src->nf_bridge);
1857 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1859 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1860 nf_conntrack_put(dst->nfct);
1861 nf_conntrack_put_reasm(dst->nfct_reasm);
1863 #ifdef CONFIG_BRIDGE_NETFILTER
1864 nf_bridge_put(dst->nf_bridge);
1866 __nf_copy(dst, src);
1869 #ifdef CONFIG_NETWORK_SECMARK
1870 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1872 to->secmark = from->secmark;
1875 static inline void skb_init_secmark(struct sk_buff *skb)
1880 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1883 static inline void skb_init_secmark(struct sk_buff *skb)
1887 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1889 skb->queue_mapping = queue_mapping;
1892 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1894 return skb->queue_mapping;
1897 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1899 to->queue_mapping = from->queue_mapping;
1902 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
1904 skb->queue_mapping = rx_queue + 1;
1907 static inline u16 skb_get_rx_queue(struct sk_buff *skb)
1909 return skb->queue_mapping - 1;
1912 static inline bool skb_rx_queue_recorded(struct sk_buff *skb)
1914 return (skb->queue_mapping != 0);
1918 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
1923 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
1929 static inline int skb_is_gso(const struct sk_buff *skb)
1931 return skb_shinfo(skb)->gso_size;
1934 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1936 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1939 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
1941 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
1943 /* LRO sets gso_size but not gso_type, whereas if GSO is really
1944 * wanted then gso_type will be set. */
1945 struct skb_shared_info *shinfo = skb_shinfo(skb);
1946 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
1947 __skb_warn_lro_forwarding(skb);
1953 static inline void skb_forward_csum(struct sk_buff *skb)
1955 /* Unfortunately we don't support this one. Any brave souls? */
1956 if (skb->ip_summed == CHECKSUM_COMPLETE)
1957 skb->ip_summed = CHECKSUM_NONE;
1960 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1961 #endif /* __KERNEL__ */
1962 #endif /* _LINUX_SKBUFF_H */