2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/config.h>
63 #include <linux/smp_lock.h>
64 #include <linux/socket.h>
65 #include <linux/file.h>
66 #include <linux/net.h>
67 #include <linux/interrupt.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/divert.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
89 #include <asm/uaccess.h>
90 #include <asm/unistd.h>
92 #include <net/compat.h>
95 #include <linux/netfilter.h>
97 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
98 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf,
99 size_t size, loff_t pos);
100 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf,
101 size_t size, loff_t pos);
102 static int sock_mmap(struct file *file, struct vm_area_struct * vma);
104 static int sock_close(struct inode *inode, struct file *file);
105 static unsigned int sock_poll(struct file *file,
106 struct poll_table_struct *wait);
107 static long sock_ioctl(struct file *file,
108 unsigned int cmd, unsigned long arg);
109 static int sock_fasync(int fd, struct file *filp, int on);
110 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
111 unsigned long count, loff_t *ppos);
112 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
113 unsigned long count, loff_t *ppos);
114 static ssize_t sock_sendpage(struct file *file, struct page *page,
115 int offset, size_t size, loff_t *ppos, int more);
119 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
120 * in the operation structures but are done directly via the socketcall() multiplexor.
123 static struct file_operations socket_file_ops = {
124 .owner = THIS_MODULE,
126 .aio_read = sock_aio_read,
127 .aio_write = sock_aio_write,
129 .unlocked_ioctl = sock_ioctl,
131 .open = sock_no_open, /* special open code to disallow open via /proc */
132 .release = sock_close,
133 .fasync = sock_fasync,
135 .writev = sock_writev,
136 .sendpage = sock_sendpage
140 * The protocol list. Each protocol is registered in here.
143 static struct net_proto_family *net_families[NPROTO];
145 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
146 static atomic_t net_family_lockct = ATOMIC_INIT(0);
147 static DEFINE_SPINLOCK(net_family_lock);
149 /* The strategy is: modifications net_family vector are short, do not
150 sleep and veeery rare, but read access should be free of any exclusive
154 static void net_family_write_lock(void)
156 spin_lock(&net_family_lock);
157 while (atomic_read(&net_family_lockct) != 0) {
158 spin_unlock(&net_family_lock);
162 spin_lock(&net_family_lock);
166 static __inline__ void net_family_write_unlock(void)
168 spin_unlock(&net_family_lock);
171 static __inline__ void net_family_read_lock(void)
173 atomic_inc(&net_family_lockct);
174 spin_unlock_wait(&net_family_lock);
177 static __inline__ void net_family_read_unlock(void)
179 atomic_dec(&net_family_lockct);
183 #define net_family_write_lock() do { } while(0)
184 #define net_family_write_unlock() do { } while(0)
185 #define net_family_read_lock() do { } while(0)
186 #define net_family_read_unlock() do { } while(0)
191 * Statistics counters of the socket lists
194 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
197 * Support routines. Move socket addresses back and forth across the kernel/user
198 * divide and look after the messy bits.
201 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
202 16 for IP, 16 for IPX,
205 must be at least one bigger than
206 the AF_UNIX size (see net/unix/af_unix.c
211 * move_addr_to_kernel - copy a socket address into kernel space
212 * @uaddr: Address in user space
213 * @kaddr: Address in kernel space
214 * @ulen: Length in user space
216 * The address is copied into kernel space. If the provided address is
217 * too long an error code of -EINVAL is returned. If the copy gives
218 * invalid addresses -EFAULT is returned. On a success 0 is returned.
221 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
223 if(ulen<0||ulen>MAX_SOCK_ADDR)
227 if(copy_from_user(kaddr,uaddr,ulen))
229 return audit_sockaddr(ulen, kaddr);
233 * move_addr_to_user - copy an address to user space
234 * @kaddr: kernel space address
235 * @klen: length of address in kernel
236 * @uaddr: user space address
237 * @ulen: pointer to user length field
239 * The value pointed to by ulen on entry is the buffer length available.
240 * This is overwritten with the buffer space used. -EINVAL is returned
241 * if an overlong buffer is specified or a negative buffer size. -EFAULT
242 * is returned if either the buffer or the length field are not
244 * After copying the data up to the limit the user specifies, the true
245 * length of the data is written over the length limit the user
246 * specified. Zero is returned for a success.
249 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen)
254 if((err=get_user(len, ulen)))
258 if(len<0 || len> MAX_SOCK_ADDR)
262 if(copy_to_user(uaddr,kaddr,len))
266 * "fromlen shall refer to the value before truncation.."
269 return __put_user(klen, ulen);
272 #define SOCKFS_MAGIC 0x534F434B
274 static kmem_cache_t * sock_inode_cachep __read_mostly;
276 static struct inode *sock_alloc_inode(struct super_block *sb)
278 struct socket_alloc *ei;
279 ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
282 init_waitqueue_head(&ei->socket.wait);
284 ei->socket.fasync_list = NULL;
285 ei->socket.state = SS_UNCONNECTED;
286 ei->socket.flags = 0;
287 ei->socket.ops = NULL;
288 ei->socket.sk = NULL;
289 ei->socket.file = NULL;
290 ei->socket.flags = 0;
292 return &ei->vfs_inode;
295 static void sock_destroy_inode(struct inode *inode)
297 kmem_cache_free(sock_inode_cachep,
298 container_of(inode, struct socket_alloc, vfs_inode));
301 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
303 struct socket_alloc *ei = (struct socket_alloc *) foo;
305 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
306 SLAB_CTOR_CONSTRUCTOR)
307 inode_init_once(&ei->vfs_inode);
310 static int init_inodecache(void)
312 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
313 sizeof(struct socket_alloc),
314 0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT,
316 if (sock_inode_cachep == NULL)
321 static struct super_operations sockfs_ops = {
322 .alloc_inode = sock_alloc_inode,
323 .destroy_inode =sock_destroy_inode,
324 .statfs = simple_statfs,
327 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type,
328 int flags, const char *dev_name, void *data)
330 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
333 static struct vfsmount *sock_mnt __read_mostly;
335 static struct file_system_type sock_fs_type = {
337 .get_sb = sockfs_get_sb,
338 .kill_sb = kill_anon_super,
340 static int sockfs_delete_dentry(struct dentry *dentry)
344 static struct dentry_operations sockfs_dentry_operations = {
345 .d_delete = sockfs_delete_dentry,
349 * Obtains the first available file descriptor and sets it up for use.
351 * This function creates file structure and maps it to fd space
352 * of current process. On success it returns file descriptor
353 * and file struct implicitly stored in sock->file.
354 * Note that another thread may close file descriptor before we return
355 * from this function. We use the fact that now we do not refer
356 * to socket after mapping. If one day we will need it, this
357 * function will increment ref. count on file by 1.
359 * In any case returned fd MAY BE not valid!
360 * This race condition is unavoidable
361 * with shared fd spaces, we cannot solve it inside kernel,
362 * but we take care of internal coherence yet.
365 int sock_map_fd(struct socket *sock)
372 * Find a file descriptor suitable for return to the user.
375 fd = get_unused_fd();
377 struct file *file = get_empty_filp();
385 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
387 this.hash = SOCK_INODE(sock)->i_ino;
389 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
390 if (!file->f_dentry) {
396 file->f_dentry->d_op = &sockfs_dentry_operations;
397 d_add(file->f_dentry, SOCK_INODE(sock));
398 file->f_vfsmnt = mntget(sock_mnt);
399 file->f_mapping = file->f_dentry->d_inode->i_mapping;
402 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
403 file->f_mode = FMODE_READ | FMODE_WRITE;
404 file->f_flags = O_RDWR;
406 file->private_data = sock;
407 fd_install(fd, file);
415 * sockfd_lookup - Go from a file number to its socket slot
417 * @err: pointer to an error code return
419 * The file handle passed in is locked and the socket it is bound
420 * too is returned. If an error occurs the err pointer is overwritten
421 * with a negative errno code and NULL is returned. The function checks
422 * for both invalid handles and passing a handle which is not a socket.
424 * On a success the socket object pointer is returned.
427 struct socket *sockfd_lookup(int fd, int *err)
433 if (!(file = fget(fd)))
439 if (file->f_op == &socket_file_ops)
440 return file->private_data; /* set in sock_map_fd */
442 inode = file->f_dentry->d_inode;
443 if (!S_ISSOCK(inode->i_mode)) {
449 sock = SOCKET_I(inode);
450 if (sock->file != file) {
451 printk(KERN_ERR "socki_lookup: socket file changed!\n");
458 * sock_alloc - allocate a socket
460 * Allocate a new inode and socket object. The two are bound together
461 * and initialised. The socket is then returned. If we are out of inodes
465 static struct socket *sock_alloc(void)
467 struct inode * inode;
468 struct socket * sock;
470 inode = new_inode(sock_mnt->mnt_sb);
474 sock = SOCKET_I(inode);
476 inode->i_mode = S_IFSOCK|S_IRWXUGO;
477 inode->i_uid = current->fsuid;
478 inode->i_gid = current->fsgid;
480 get_cpu_var(sockets_in_use)++;
481 put_cpu_var(sockets_in_use);
486 * In theory you can't get an open on this inode, but /proc provides
487 * a back door. Remember to keep it shut otherwise you'll let the
488 * creepy crawlies in.
491 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
496 struct file_operations bad_sock_fops = {
497 .owner = THIS_MODULE,
498 .open = sock_no_open,
502 * sock_release - close a socket
503 * @sock: socket to close
505 * The socket is released from the protocol stack if it has a release
506 * callback, and the inode is then released if the socket is bound to
507 * an inode not a file.
510 void sock_release(struct socket *sock)
513 struct module *owner = sock->ops->owner;
515 sock->ops->release(sock);
520 if (sock->fasync_list)
521 printk(KERN_ERR "sock_release: fasync list not empty!\n");
523 get_cpu_var(sockets_in_use)--;
524 put_cpu_var(sockets_in_use);
526 iput(SOCK_INODE(sock));
532 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
533 struct msghdr *msg, size_t size)
535 struct sock_iocb *si = kiocb_to_siocb(iocb);
543 err = security_socket_sendmsg(sock, msg, size);
547 return sock->ops->sendmsg(iocb, sock, msg, size);
550 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
553 struct sock_iocb siocb;
556 init_sync_kiocb(&iocb, NULL);
557 iocb.private = &siocb;
558 ret = __sock_sendmsg(&iocb, sock, msg, size);
559 if (-EIOCBQUEUED == ret)
560 ret = wait_on_sync_kiocb(&iocb);
564 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
565 struct kvec *vec, size_t num, size_t size)
567 mm_segment_t oldfs = get_fs();
572 * the following is safe, since for compiler definitions of kvec and
573 * iovec are identical, yielding the same in-core layout and alignment
575 msg->msg_iov = (struct iovec *)vec,
576 msg->msg_iovlen = num;
577 result = sock_sendmsg(sock, msg, size);
582 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
583 struct msghdr *msg, size_t size, int flags)
586 struct sock_iocb *si = kiocb_to_siocb(iocb);
594 err = security_socket_recvmsg(sock, msg, size, flags);
598 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
601 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
602 size_t size, int flags)
605 struct sock_iocb siocb;
608 init_sync_kiocb(&iocb, NULL);
609 iocb.private = &siocb;
610 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
611 if (-EIOCBQUEUED == ret)
612 ret = wait_on_sync_kiocb(&iocb);
616 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
617 struct kvec *vec, size_t num,
618 size_t size, int flags)
620 mm_segment_t oldfs = get_fs();
625 * the following is safe, since for compiler definitions of kvec and
626 * iovec are identical, yielding the same in-core layout and alignment
628 msg->msg_iov = (struct iovec *)vec,
629 msg->msg_iovlen = num;
630 result = sock_recvmsg(sock, msg, size, flags);
635 static void sock_aio_dtor(struct kiocb *iocb)
637 kfree(iocb->private);
640 static ssize_t sock_sendpage(struct file *file, struct page *page,
641 int offset, size_t size, loff_t *ppos, int more)
646 sock = file->private_data;
648 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
652 return sock->ops->sendpage(sock, page, offset, size, flags);
655 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
656 char __user *ubuf, size_t size, struct sock_iocb *siocb)
658 if (!is_sync_kiocb(iocb)) {
659 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
662 iocb->ki_dtor = sock_aio_dtor;
666 siocb->async_iov.iov_base = ubuf;
667 siocb->async_iov.iov_len = size;
669 iocb->private = siocb;
673 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
674 struct file *file, struct iovec *iov, unsigned long nr_segs)
676 struct socket *sock = file->private_data;
680 for (i = 0 ; i < nr_segs ; i++)
681 size += iov[i].iov_len;
683 msg->msg_name = NULL;
684 msg->msg_namelen = 0;
685 msg->msg_control = NULL;
686 msg->msg_controllen = 0;
687 msg->msg_iov = (struct iovec *) iov;
688 msg->msg_iovlen = nr_segs;
689 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
691 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
694 static ssize_t sock_readv(struct file *file, const struct iovec *iov,
695 unsigned long nr_segs, loff_t *ppos)
698 struct sock_iocb siocb;
702 init_sync_kiocb(&iocb, NULL);
703 iocb.private = &siocb;
705 ret = do_sock_read(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
706 if (-EIOCBQUEUED == ret)
707 ret = wait_on_sync_kiocb(&iocb);
711 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf,
712 size_t count, loff_t pos)
714 struct sock_iocb siocb, *x;
718 if (count == 0) /* Match SYS5 behaviour */
721 x = alloc_sock_iocb(iocb, ubuf, count, &siocb);
724 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp,
728 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
729 struct file *file, struct iovec *iov, unsigned long nr_segs)
731 struct socket *sock = file->private_data;
735 for (i = 0 ; i < nr_segs ; i++)
736 size += iov[i].iov_len;
738 msg->msg_name = NULL;
739 msg->msg_namelen = 0;
740 msg->msg_control = NULL;
741 msg->msg_controllen = 0;
742 msg->msg_iov = (struct iovec *) iov;
743 msg->msg_iovlen = nr_segs;
744 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
745 if (sock->type == SOCK_SEQPACKET)
746 msg->msg_flags |= MSG_EOR;
748 return __sock_sendmsg(iocb, sock, msg, size);
751 static ssize_t sock_writev(struct file *file, const struct iovec *iov,
752 unsigned long nr_segs, loff_t *ppos)
756 struct sock_iocb siocb;
759 init_sync_kiocb(&iocb, NULL);
760 iocb.private = &siocb;
762 ret = do_sock_write(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
763 if (-EIOCBQUEUED == ret)
764 ret = wait_on_sync_kiocb(&iocb);
768 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf,
769 size_t count, loff_t pos)
771 struct sock_iocb siocb, *x;
775 if (count == 0) /* Match SYS5 behaviour */
778 x = alloc_sock_iocb(iocb, (void __user *)ubuf, count, &siocb);
782 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp,
788 * Atomic setting of ioctl hooks to avoid race
789 * with module unload.
792 static DECLARE_MUTEX(br_ioctl_mutex);
793 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL;
795 void brioctl_set(int (*hook)(unsigned int, void __user *))
797 down(&br_ioctl_mutex);
798 br_ioctl_hook = hook;
801 EXPORT_SYMBOL(brioctl_set);
803 static DECLARE_MUTEX(vlan_ioctl_mutex);
804 static int (*vlan_ioctl_hook)(void __user *arg);
806 void vlan_ioctl_set(int (*hook)(void __user *))
808 down(&vlan_ioctl_mutex);
809 vlan_ioctl_hook = hook;
810 up(&vlan_ioctl_mutex);
812 EXPORT_SYMBOL(vlan_ioctl_set);
814 static DECLARE_MUTEX(dlci_ioctl_mutex);
815 static int (*dlci_ioctl_hook)(unsigned int, void __user *);
817 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *))
819 down(&dlci_ioctl_mutex);
820 dlci_ioctl_hook = hook;
821 up(&dlci_ioctl_mutex);
823 EXPORT_SYMBOL(dlci_ioctl_set);
826 * With an ioctl, arg may well be a user mode pointer, but we don't know
827 * what to do with it - that's up to the protocol still.
830 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
833 void __user *argp = (void __user *)arg;
836 sock = file->private_data;
837 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
838 err = dev_ioctl(cmd, argp);
840 #ifdef CONFIG_WIRELESS_EXT
841 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
842 err = dev_ioctl(cmd, argp);
844 #endif /* CONFIG_WIRELESS_EXT */
849 if (get_user(pid, (int __user *)argp))
851 err = f_setown(sock->file, pid, 1);
855 err = put_user(sock->file->f_owner.pid, (int __user *)argp);
863 request_module("bridge");
865 down(&br_ioctl_mutex);
867 err = br_ioctl_hook(cmd, argp);
873 if (!vlan_ioctl_hook)
874 request_module("8021q");
876 down(&vlan_ioctl_mutex);
878 err = vlan_ioctl_hook(argp);
879 up(&vlan_ioctl_mutex);
883 /* Convert this to call through a hook */
884 err = divert_ioctl(cmd, argp);
889 if (!dlci_ioctl_hook)
890 request_module("dlci");
892 if (dlci_ioctl_hook) {
893 down(&dlci_ioctl_mutex);
894 err = dlci_ioctl_hook(cmd, argp);
895 up(&dlci_ioctl_mutex);
899 err = sock->ops->ioctl(sock, cmd, arg);
902 * If this ioctl is unknown try to hand it down
905 if (err == -ENOIOCTLCMD)
906 err = dev_ioctl(cmd, argp);
912 int sock_create_lite(int family, int type, int protocol, struct socket **res)
915 struct socket *sock = NULL;
917 err = security_socket_create(family, type, protocol, 1);
927 security_socket_post_create(sock, family, type, protocol, 1);
934 /* No kernel lock held - perfect */
935 static unsigned int sock_poll(struct file *file, poll_table * wait)
940 * We can't return errors to poll, so it's either yes or no.
942 sock = file->private_data;
943 return sock->ops->poll(file, sock, wait);
946 static int sock_mmap(struct file * file, struct vm_area_struct * vma)
948 struct socket *sock = file->private_data;
950 return sock->ops->mmap(file, sock, vma);
953 static int sock_close(struct inode *inode, struct file *filp)
956 * It was possible the inode is NULL we were
957 * closing an unfinished socket.
962 printk(KERN_DEBUG "sock_close: NULL inode\n");
965 sock_fasync(-1, filp, 0);
966 sock_release(SOCKET_I(inode));
971 * Update the socket async list
973 * Fasync_list locking strategy.
975 * 1. fasync_list is modified only under process context socket lock
976 * i.e. under semaphore.
977 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
978 * or under socket lock.
979 * 3. fasync_list can be used from softirq context, so that
980 * modification under socket lock have to be enhanced with
981 * write_lock_bh(&sk->sk_callback_lock).
985 static int sock_fasync(int fd, struct file *filp, int on)
987 struct fasync_struct *fa, *fna=NULL, **prev;
993 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
998 sock = filp->private_data;
1000 if ((sk=sock->sk) == NULL) {
1007 prev=&(sock->fasync_list);
1009 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
1010 if (fa->fa_file==filp)
1017 write_lock_bh(&sk->sk_callback_lock);
1019 write_unlock_bh(&sk->sk_callback_lock);
1026 fna->magic=FASYNC_MAGIC;
1027 fna->fa_next=sock->fasync_list;
1028 write_lock_bh(&sk->sk_callback_lock);
1029 sock->fasync_list=fna;
1030 write_unlock_bh(&sk->sk_callback_lock);
1036 write_lock_bh(&sk->sk_callback_lock);
1038 write_unlock_bh(&sk->sk_callback_lock);
1044 release_sock(sock->sk);
1048 /* This function may be called only under socket lock or callback_lock */
1050 int sock_wake_async(struct socket *sock, int how, int band)
1052 if (!sock || !sock->fasync_list)
1058 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1062 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1067 __kill_fasync(sock->fasync_list, SIGIO, band);
1070 __kill_fasync(sock->fasync_list, SIGURG, band);
1075 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern)
1078 struct socket *sock;
1081 * Check protocol is in range
1083 if (family < 0 || family >= NPROTO)
1084 return -EAFNOSUPPORT;
1085 if (type < 0 || type >= SOCK_MAX)
1090 This uglymoron is moved from INET layer to here to avoid
1091 deadlock in module load.
1093 if (family == PF_INET && type == SOCK_PACKET) {
1097 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
1102 err = security_socket_create(family, type, protocol, kern);
1106 #if defined(CONFIG_KMOD)
1107 /* Attempt to load a protocol module if the find failed.
1109 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1110 * requested real, full-featured networking support upon configuration.
1111 * Otherwise module support will break!
1113 if (net_families[family]==NULL)
1115 request_module("net-pf-%d",family);
1119 net_family_read_lock();
1120 if (net_families[family] == NULL) {
1121 err = -EAFNOSUPPORT;
1126 * Allocate the socket and allow the family to set things up. if
1127 * the protocol is 0, the family is instructed to select an appropriate
1131 if (!(sock = sock_alloc())) {
1132 printk(KERN_WARNING "socket: no more sockets\n");
1133 err = -ENFILE; /* Not exactly a match, but its the
1134 closest posix thing */
1141 * We will call the ->create function, that possibly is in a loadable
1142 * module, so we have to bump that loadable module refcnt first.
1144 err = -EAFNOSUPPORT;
1145 if (!try_module_get(net_families[family]->owner))
1148 if ((err = net_families[family]->create(sock, protocol)) < 0) {
1150 goto out_module_put;
1154 * Now to bump the refcnt of the [loadable] module that owns this
1155 * socket at sock_release time we decrement its refcnt.
1157 if (!try_module_get(sock->ops->owner)) {
1159 goto out_module_put;
1162 * Now that we're done with the ->create function, the [loadable]
1163 * module can have its refcnt decremented
1165 module_put(net_families[family]->owner);
1167 security_socket_post_create(sock, family, type, protocol, kern);
1170 net_family_read_unlock();
1173 module_put(net_families[family]->owner);
1179 int sock_create(int family, int type, int protocol, struct socket **res)
1181 return __sock_create(family, type, protocol, res, 0);
1184 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1186 return __sock_create(family, type, protocol, res, 1);
1189 asmlinkage long sys_socket(int family, int type, int protocol)
1192 struct socket *sock;
1194 retval = sock_create(family, type, protocol, &sock);
1198 retval = sock_map_fd(sock);
1203 /* It may be already another descriptor 8) Not kernel problem. */
1212 * Create a pair of connected sockets.
1215 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1217 struct socket *sock1, *sock2;
1221 * Obtain the first socket and check if the underlying protocol
1222 * supports the socketpair call.
1225 err = sock_create(family, type, protocol, &sock1);
1229 err = sock_create(family, type, protocol, &sock2);
1233 err = sock1->ops->socketpair(sock1, sock2);
1235 goto out_release_both;
1239 err = sock_map_fd(sock1);
1241 goto out_release_both;
1244 err = sock_map_fd(sock2);
1249 /* fd1 and fd2 may be already another descriptors.
1250 * Not kernel problem.
1253 err = put_user(fd1, &usockvec[0]);
1255 err = put_user(fd2, &usockvec[1]);
1264 sock_release(sock2);
1269 sock_release(sock2);
1271 sock_release(sock1);
1278 * Bind a name to a socket. Nothing much to do here since it's
1279 * the protocol's responsibility to handle the local address.
1281 * We move the socket address to kernel space before we call
1282 * the protocol layer (having also checked the address is ok).
1285 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1287 struct socket *sock;
1288 char address[MAX_SOCK_ADDR];
1291 if((sock = sockfd_lookup(fd,&err))!=NULL)
1293 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) {
1294 err = security_socket_bind(sock, (struct sockaddr *)address, addrlen);
1299 err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen);
1308 * Perform a listen. Basically, we allow the protocol to do anything
1309 * necessary for a listen, and if that works, we mark the socket as
1310 * ready for listening.
1313 int sysctl_somaxconn = SOMAXCONN;
1315 asmlinkage long sys_listen(int fd, int backlog)
1317 struct socket *sock;
1320 if ((sock = sockfd_lookup(fd, &err)) != NULL) {
1321 if ((unsigned) backlog > sysctl_somaxconn)
1322 backlog = sysctl_somaxconn;
1324 err = security_socket_listen(sock, backlog);
1330 err=sock->ops->listen(sock, backlog);
1338 * For accept, we attempt to create a new socket, set up the link
1339 * with the client, wake up the client, then return the new
1340 * connected fd. We collect the address of the connector in kernel
1341 * space and move it to user at the very end. This is unclean because
1342 * we open the socket then return an error.
1344 * 1003.1g adds the ability to recvmsg() to query connection pending
1345 * status to recvmsg. We need to add that support in a way thats
1346 * clean when we restucture accept also.
1349 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen)
1351 struct socket *sock, *newsock;
1353 char address[MAX_SOCK_ADDR];
1355 sock = sockfd_lookup(fd, &err);
1360 if (!(newsock = sock_alloc()))
1363 newsock->type = sock->type;
1364 newsock->ops = sock->ops;
1367 * We don't need try_module_get here, as the listening socket (sock)
1368 * has the protocol module (sock->ops->owner) held.
1370 __module_get(newsock->ops->owner);
1372 err = security_socket_accept(sock, newsock);
1376 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1380 if (upeer_sockaddr) {
1381 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
1382 err = -ECONNABORTED;
1385 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1390 /* File flags are not inherited via accept() unlike another OSes. */
1392 if ((err = sock_map_fd(newsock)) < 0)
1395 security_socket_post_accept(sock, newsock);
1402 sock_release(newsock);
1408 * Attempt to connect to a socket with the server address. The address
1409 * is in user space so we verify it is OK and move it to kernel space.
1411 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1414 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1415 * other SEQPACKET protocols that take time to connect() as it doesn't
1416 * include the -EINPROGRESS status for such sockets.
1419 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1421 struct socket *sock;
1422 char address[MAX_SOCK_ADDR];
1425 sock = sockfd_lookup(fd, &err);
1428 err = move_addr_to_kernel(uservaddr, addrlen, address);
1432 err = security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1436 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
1437 sock->file->f_flags);
1445 * Get the local address ('name') of a socket object. Move the obtained
1446 * name to user space.
1449 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1451 struct socket *sock;
1452 char address[MAX_SOCK_ADDR];
1455 sock = sockfd_lookup(fd, &err);
1459 err = security_socket_getsockname(sock);
1463 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1466 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1475 * Get the remote address ('name') of a socket object. Move the obtained
1476 * name to user space.
1479 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1481 struct socket *sock;
1482 char address[MAX_SOCK_ADDR];
1485 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1487 err = security_socket_getpeername(sock);
1493 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1495 err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
1502 * Send a datagram to a given address. We move the address into kernel
1503 * space and check the user space data area is readable before invoking
1507 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags,
1508 struct sockaddr __user *addr, int addr_len)
1510 struct socket *sock;
1511 char address[MAX_SOCK_ADDR];
1516 sock = sockfd_lookup(fd, &err);
1524 msg.msg_control=NULL;
1525 msg.msg_controllen=0;
1529 err = move_addr_to_kernel(addr, addr_len, address);
1532 msg.msg_name=address;
1533 msg.msg_namelen=addr_len;
1535 if (sock->file->f_flags & O_NONBLOCK)
1536 flags |= MSG_DONTWAIT;
1537 msg.msg_flags = flags;
1538 err = sock_sendmsg(sock, &msg, len);
1547 * Send a datagram down a socket.
1550 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags)
1552 return sys_sendto(fd, buff, len, flags, NULL, 0);
1556 * Receive a frame from the socket and optionally record the address of the
1557 * sender. We verify the buffers are writable and if needed move the
1558 * sender address from kernel to user space.
1561 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags,
1562 struct sockaddr __user *addr, int __user *addr_len)
1564 struct socket *sock;
1567 char address[MAX_SOCK_ADDR];
1570 sock = sockfd_lookup(fd, &err);
1574 msg.msg_control=NULL;
1575 msg.msg_controllen=0;
1580 msg.msg_name=address;
1581 msg.msg_namelen=MAX_SOCK_ADDR;
1582 if (sock->file->f_flags & O_NONBLOCK)
1583 flags |= MSG_DONTWAIT;
1584 err=sock_recvmsg(sock, &msg, size, flags);
1586 if(err >= 0 && addr != NULL)
1588 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1598 * Receive a datagram from a socket.
1601 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags)
1603 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1607 * Set a socket option. Because we don't know the option lengths we have
1608 * to pass the user mode parameter for the protocols to sort out.
1611 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen)
1614 struct socket *sock;
1619 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1621 err = security_socket_setsockopt(sock,level,optname);
1627 if (level == SOL_SOCKET)
1628 err=sock_setsockopt(sock,level,optname,optval,optlen);
1630 err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
1637 * Get a socket option. Because we don't know the option lengths we have
1638 * to pass a user mode parameter for the protocols to sort out.
1641 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen)
1644 struct socket *sock;
1646 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1648 err = security_socket_getsockopt(sock, level,
1655 if (level == SOL_SOCKET)
1656 err=sock_getsockopt(sock,level,optname,optval,optlen);
1658 err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
1666 * Shutdown a socket.
1669 asmlinkage long sys_shutdown(int fd, int how)
1672 struct socket *sock;
1674 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1676 err = security_socket_shutdown(sock, how);
1682 err=sock->ops->shutdown(sock, how);
1688 /* A couple of helpful macros for getting the address of the 32/64 bit
1689 * fields which are the same type (int / unsigned) on our platforms.
1691 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1692 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1693 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1697 * BSD sendmsg interface
1700 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1702 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1703 struct socket *sock;
1704 char address[MAX_SOCK_ADDR];
1705 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1706 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1707 __attribute__ ((aligned (sizeof(__kernel_size_t))));
1708 /* 20 is size of ipv6_pktinfo */
1709 unsigned char *ctl_buf = ctl;
1710 struct msghdr msg_sys;
1711 int err, ctl_len, iov_size, total_len;
1714 if (MSG_CMSG_COMPAT & flags) {
1715 if (get_compat_msghdr(&msg_sys, msg_compat))
1717 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1720 sock = sockfd_lookup(fd, &err);
1724 /* do not move before msg_sys is valid */
1726 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1729 /* Check whether to allocate the iovec area*/
1731 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1732 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1733 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1738 /* This will also move the address data into kernel space */
1739 if (MSG_CMSG_COMPAT & flags) {
1740 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1742 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1749 if (msg_sys.msg_controllen > INT_MAX)
1751 ctl_len = msg_sys.msg_controllen;
1752 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1753 err = cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, sizeof(ctl));
1756 ctl_buf = msg_sys.msg_control;
1757 ctl_len = msg_sys.msg_controllen;
1758 } else if (ctl_len) {
1759 if (ctl_len > sizeof(ctl))
1761 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1762 if (ctl_buf == NULL)
1767 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1768 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1769 * checking falls down on this.
1771 if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len))
1773 msg_sys.msg_control = ctl_buf;
1775 msg_sys.msg_flags = flags;
1777 if (sock->file->f_flags & O_NONBLOCK)
1778 msg_sys.msg_flags |= MSG_DONTWAIT;
1779 err = sock_sendmsg(sock, &msg_sys, total_len);
1783 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1785 if (iov != iovstack)
1786 sock_kfree_s(sock->sk, iov, iov_size);
1794 * BSD recvmsg interface
1797 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags)
1799 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1800 struct socket *sock;
1801 struct iovec iovstack[UIO_FASTIOV];
1802 struct iovec *iov=iovstack;
1803 struct msghdr msg_sys;
1804 unsigned long cmsg_ptr;
1805 int err, iov_size, total_len, len;
1807 /* kernel mode address */
1808 char addr[MAX_SOCK_ADDR];
1810 /* user mode address pointers */
1811 struct sockaddr __user *uaddr;
1812 int __user *uaddr_len;
1814 if (MSG_CMSG_COMPAT & flags) {
1815 if (get_compat_msghdr(&msg_sys, msg_compat))
1818 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1821 sock = sockfd_lookup(fd, &err);
1826 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1829 /* Check whether to allocate the iovec area*/
1831 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1832 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1833 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1839 * Save the user-mode address (verify_iovec will change the
1840 * kernel msghdr to use the kernel address space)
1843 uaddr = (void __user *) msg_sys.msg_name;
1844 uaddr_len = COMPAT_NAMELEN(msg);
1845 if (MSG_CMSG_COMPAT & flags) {
1846 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1848 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1853 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1854 msg_sys.msg_flags = 0;
1855 if (MSG_CMSG_COMPAT & flags)
1856 msg_sys.msg_flags = MSG_CMSG_COMPAT;
1858 if (sock->file->f_flags & O_NONBLOCK)
1859 flags |= MSG_DONTWAIT;
1860 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1865 if (uaddr != NULL) {
1866 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1870 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1874 if (MSG_CMSG_COMPAT & flags)
1875 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1876 &msg_compat->msg_controllen);
1878 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1879 &msg->msg_controllen);
1885 if (iov != iovstack)
1886 sock_kfree_s(sock->sk, iov, iov_size);
1893 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1895 /* Argument list sizes for sys_socketcall */
1896 #define AL(x) ((x) * sizeof(unsigned long))
1897 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1898 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1899 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1903 * System call vectors.
1905 * Argument checking cleaned up. Saved 20% in size.
1906 * This function doesn't need to set the kernel lock because
1907 * it is set by the callees.
1910 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1913 unsigned long a0,a1;
1916 if(call<1||call>SYS_RECVMSG)
1919 /* copy_from_user should be SMP safe. */
1920 if (copy_from_user(a, args, nargs[call]))
1923 err = audit_socketcall(nargs[call]/sizeof(unsigned long), a);
1933 err = sys_socket(a0,a1,a[2]);
1936 err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
1939 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
1942 err = sys_listen(a0,a1);
1945 err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1947 case SYS_GETSOCKNAME:
1948 err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1950 case SYS_GETPEERNAME:
1951 err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]);
1953 case SYS_SOCKETPAIR:
1954 err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]);
1957 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
1960 err = sys_sendto(a0,(void __user *)a1, a[2], a[3],
1961 (struct sockaddr __user *)a[4], a[5]);
1964 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
1967 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
1968 (struct sockaddr __user *)a[4], (int __user *)a[5]);
1971 err = sys_shutdown(a0,a1);
1973 case SYS_SETSOCKOPT:
1974 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
1976 case SYS_GETSOCKOPT:
1977 err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]);
1980 err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]);
1983 err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
1992 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
1995 * This function is called by a protocol handler that wants to
1996 * advertise its address family, and have it linked into the
2000 int sock_register(struct net_proto_family *ops)
2004 if (ops->family >= NPROTO) {
2005 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2008 net_family_write_lock();
2010 if (net_families[ops->family] == NULL) {
2011 net_families[ops->family]=ops;
2014 net_family_write_unlock();
2015 printk(KERN_INFO "NET: Registered protocol family %d\n",
2021 * This function is called by a protocol handler that wants to
2022 * remove its address family, and have it unlinked from the
2026 int sock_unregister(int family)
2028 if (family < 0 || family >= NPROTO)
2031 net_family_write_lock();
2032 net_families[family]=NULL;
2033 net_family_write_unlock();
2034 printk(KERN_INFO "NET: Unregistered protocol family %d\n",
2039 static int __init sock_init(void)
2042 * Initialize sock SLAB cache.
2048 * Initialize skbuff SLAB cache
2053 * Initialize the protocols module.
2057 register_filesystem(&sock_fs_type);
2058 sock_mnt = kern_mount(&sock_fs_type);
2060 /* The real protocol initialization is performed in later initcalls.
2063 #ifdef CONFIG_NETFILTER
2070 core_initcall(sock_init); /* early initcall */
2072 #ifdef CONFIG_PROC_FS
2073 void socket_seq_show(struct seq_file *seq)
2079 counter += per_cpu(sockets_in_use, cpu);
2081 /* It can be negative, by the way. 8) */
2085 seq_printf(seq, "sockets: used %d\n", counter);
2087 #endif /* CONFIG_PROC_FS */
2089 /* ABI emulation layers need these two */
2090 EXPORT_SYMBOL(move_addr_to_kernel);
2091 EXPORT_SYMBOL(move_addr_to_user);
2092 EXPORT_SYMBOL(sock_create);
2093 EXPORT_SYMBOL(sock_create_kern);
2094 EXPORT_SYMBOL(sock_create_lite);
2095 EXPORT_SYMBOL(sock_map_fd);
2096 EXPORT_SYMBOL(sock_recvmsg);
2097 EXPORT_SYMBOL(sock_register);
2098 EXPORT_SYMBOL(sock_release);
2099 EXPORT_SYMBOL(sock_sendmsg);
2100 EXPORT_SYMBOL(sock_unregister);
2101 EXPORT_SYMBOL(sock_wake_async);
2102 EXPORT_SYMBOL(sockfd_lookup);
2103 EXPORT_SYMBOL(kernel_sendmsg);
2104 EXPORT_SYMBOL(kernel_recvmsg);