4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
54 #include <asm/uaccess.h>
57 int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58 unsigned int nr_bytes)
61 * decide whether to reenable DMA -- 3 is a random magic for now,
62 * if we DMA timeout more than 3 times, just stay in PIO
64 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65 drive->retry_pio <= 3) {
66 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
70 return blk_end_request(rq, error, nr_bytes);
72 EXPORT_SYMBOL_GPL(ide_end_rq);
74 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
76 const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
77 struct ide_taskfile *tf = &cmd->tf;
78 struct request *rq = cmd->rq;
79 u8 tf_cmd = tf->command;
84 if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
87 tp_ops->input_data(drive, cmd, data, 2);
90 tf->hob_data = data[1];
93 tp_ops->tf_read(drive, cmd);
95 if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
96 tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
97 if (tf->lbal != 0xc4) {
98 printk(KERN_ERR "%s: head unload failed!\n",
100 ide_tf_dump(drive->name, tf);
102 drive->dev_flags |= IDE_DFLAG_PARKED;
105 if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
106 memcpy(rq->special, cmd, sizeof(*cmd));
108 if (cmd->tf_flags & IDE_TFLAG_DYN)
112 /* obsolete, blk_rq_bytes() should be used instead */
113 unsigned int ide_rq_bytes(struct request *rq)
115 if (blk_pc_request(rq))
118 return rq->hard_cur_sectors << 9;
120 EXPORT_SYMBOL_GPL(ide_rq_bytes);
122 int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
124 ide_hwif_t *hwif = drive->hwif;
125 struct request *rq = hwif->rq;
129 * if failfast is set on a request, override number of sectors
130 * and complete the whole request right now
132 if (blk_noretry_request(rq) && error <= 0)
133 nr_bytes = rq->hard_nr_sectors << 9;
135 rc = ide_end_rq(drive, rq, error, nr_bytes);
141 EXPORT_SYMBOL(ide_complete_rq);
143 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
145 u8 drv_req = blk_special_request(rq) && rq->rq_disk;
146 u8 media = drive->media;
148 drive->failed_pc = NULL;
150 if ((media == ide_floppy || media == ide_tape) && drv_req) {
152 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
154 if (media == ide_tape)
155 rq->errors = IDE_DRV_ERROR_GENERAL;
156 else if (blk_fs_request(rq) == 0 && rq->errors == 0)
158 ide_complete_rq(drive, -EIO, ide_rq_bytes(rq));
162 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
164 tf->nsect = drive->sect;
165 tf->lbal = drive->sect;
166 tf->lbam = drive->cyl;
167 tf->lbah = drive->cyl >> 8;
168 tf->device = (drive->head - 1) | drive->select;
169 tf->command = ATA_CMD_INIT_DEV_PARAMS;
172 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
174 tf->nsect = drive->sect;
175 tf->command = ATA_CMD_RESTORE;
178 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
180 tf->nsect = drive->mult_req;
181 tf->command = ATA_CMD_SET_MULTI;
184 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
186 special_t *s = &drive->special;
189 memset(&cmd, 0, sizeof(cmd));
190 cmd.protocol = ATA_PROT_NODATA;
192 if (s->b.set_geometry) {
193 s->b.set_geometry = 0;
194 ide_tf_set_specify_cmd(drive, &cmd.tf);
195 } else if (s->b.recalibrate) {
196 s->b.recalibrate = 0;
197 ide_tf_set_restore_cmd(drive, &cmd.tf);
198 } else if (s->b.set_multmode) {
199 s->b.set_multmode = 0;
200 ide_tf_set_setmult_cmd(drive, &cmd.tf);
202 int special = s->all;
204 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
208 cmd.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
209 IDE_TFLAG_CUSTOM_HANDLER;
211 do_rw_taskfile(drive, &cmd);
217 * do_special - issue some special commands
218 * @drive: drive the command is for
220 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
221 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
223 * It used to do much more, but has been scaled back.
226 static ide_startstop_t do_special (ide_drive_t *drive)
228 special_t *s = &drive->special;
231 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
233 if (drive->media == ide_disk)
234 return ide_disk_special(drive);
241 void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
243 ide_hwif_t *hwif = drive->hwif;
244 struct scatterlist *sg = hwif->sg_table;
245 struct request *rq = cmd->rq;
247 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
248 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
250 } else if (!rq->bio) {
251 sg_init_one(sg, rq->data, rq->data_len);
254 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
256 EXPORT_SYMBOL_GPL(ide_map_sg);
258 void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
260 cmd->nbytes = cmd->nleft = nr_bytes;
264 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
267 * execute_drive_command - issue special drive command
268 * @drive: the drive to issue the command on
269 * @rq: the request structure holding the command
271 * execute_drive_cmd() issues a special drive command, usually
272 * initiated by ioctl() from the external hdparm program. The
273 * command can be a drive command, drive task or taskfile
274 * operation. Weirdly you can call it with NULL to wait for
275 * all commands to finish. Don't do this as that is due to change
278 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
281 struct ide_cmd *cmd = rq->special;
284 if (cmd->protocol == ATA_PROT_PIO) {
285 ide_init_sg_cmd(cmd, rq->nr_sectors << 9);
286 ide_map_sg(drive, cmd);
289 return do_rw_taskfile(drive, cmd);
293 * NULL is actually a valid way of waiting for
294 * all current requests to be flushed from the queue.
297 printk("%s: DRIVE_CMD (null)\n", drive->name);
300 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
305 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
311 case REQ_UNPARK_HEADS:
312 return ide_do_park_unpark(drive, rq);
313 case REQ_DEVSET_EXEC:
314 return ide_do_devset(drive, rq);
315 case REQ_DRIVE_RESET:
316 return ide_do_reset(drive);
323 * start_request - start of I/O and command issuing for IDE
325 * start_request() initiates handling of a new I/O request. It
326 * accepts commands and I/O (read/write) requests.
328 * FIXME: this function needs a rename
331 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
333 ide_startstop_t startstop;
335 BUG_ON(!blk_rq_started(rq));
338 printk("%s: start_request: current=0x%08lx\n",
339 drive->hwif->name, (unsigned long) rq);
342 /* bail early if we've exceeded max_failures */
343 if (drive->max_failures && (drive->failures > drive->max_failures)) {
344 rq->cmd_flags |= REQ_FAILED;
348 if (blk_pm_request(rq))
349 ide_check_pm_state(drive, rq);
351 drive->hwif->tp_ops->dev_select(drive);
352 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
353 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
354 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
357 if (!drive->special.all) {
358 struct ide_driver *drv;
361 * We reset the drive so we need to issue a SETFEATURES.
362 * Do it _after_ do_special() restored device parameters.
364 if (drive->current_speed == 0xff)
365 ide_config_drive_speed(drive, drive->desired_speed);
367 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
368 return execute_drive_cmd(drive, rq);
369 else if (blk_pm_request(rq)) {
370 struct request_pm_state *pm = rq->data;
372 printk("%s: start_power_step(step: %d)\n",
373 drive->name, pm->pm_step);
375 startstop = ide_start_power_step(drive, rq);
376 if (startstop == ide_stopped &&
377 pm->pm_step == IDE_PM_COMPLETED)
378 ide_complete_pm_rq(drive, rq);
380 } else if (!rq->rq_disk && blk_special_request(rq))
382 * TODO: Once all ULDs have been modified to
383 * check for specific op codes rather than
384 * blindly accepting any special request, the
385 * check for ->rq_disk above may be replaced
386 * by a more suitable mechanism or even
389 return ide_special_rq(drive, rq);
391 drv = *(struct ide_driver **)rq->rq_disk->private_data;
393 return drv->do_request(drive, rq, rq->sector);
395 return do_special(drive);
397 ide_kill_rq(drive, rq);
402 * ide_stall_queue - pause an IDE device
403 * @drive: drive to stall
404 * @timeout: time to stall for (jiffies)
406 * ide_stall_queue() can be used by a drive to give excess bandwidth back
407 * to the port by sleeping for timeout jiffies.
410 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
412 if (timeout > WAIT_WORSTCASE)
413 timeout = WAIT_WORSTCASE;
414 drive->sleep = timeout + jiffies;
415 drive->dev_flags |= IDE_DFLAG_SLEEPING;
417 EXPORT_SYMBOL(ide_stall_queue);
419 static inline int ide_lock_port(ide_hwif_t *hwif)
429 static inline void ide_unlock_port(ide_hwif_t *hwif)
434 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
438 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
439 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
442 host->get_lock(ide_intr, hwif);
448 static inline void ide_unlock_host(struct ide_host *host)
450 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
451 if (host->release_lock)
452 host->release_lock();
453 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
458 * Issue a new request to a device.
460 void do_ide_request(struct request_queue *q)
462 ide_drive_t *drive = q->queuedata;
463 ide_hwif_t *hwif = drive->hwif;
464 struct ide_host *host = hwif->host;
465 struct request *rq = NULL;
466 ide_startstop_t startstop;
469 * drive is doing pre-flush, ordered write, post-flush sequence. even
470 * though that is 3 requests, it must be seen as a single transaction.
471 * we must not preempt this drive until that is complete
473 if (blk_queue_flushing(q))
475 * small race where queue could get replugged during
476 * the 3-request flush cycle, just yank the plug since
477 * we want it to finish asap
481 spin_unlock_irq(q->queue_lock);
483 if (ide_lock_host(host, hwif))
486 spin_lock_irq(&hwif->lock);
488 if (!ide_lock_port(hwif)) {
489 ide_hwif_t *prev_port;
491 prev_port = hwif->host->cur_port;
494 if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
495 time_after(drive->sleep, jiffies)) {
496 ide_unlock_port(hwif);
500 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
503 * set nIEN for previous port, drives in the
504 * quirk_list may not like intr setups/cleanups
506 if (prev_port && prev_port->cur_dev->quirk_list == 0)
507 prev_port->tp_ops->write_devctl(prev_port,
511 hwif->host->cur_port = hwif;
513 hwif->cur_dev = drive;
514 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
516 spin_unlock_irq(&hwif->lock);
517 spin_lock_irq(q->queue_lock);
519 * we know that the queue isn't empty, but this can happen
520 * if the q->prep_rq_fn() decides to kill a request
522 rq = elv_next_request(drive->queue);
523 spin_unlock_irq(q->queue_lock);
524 spin_lock_irq(&hwif->lock);
527 ide_unlock_port(hwif);
532 * Sanity: don't accept a request that isn't a PM request
533 * if we are currently power managed. This is very important as
534 * blk_stop_queue() doesn't prevent the elv_next_request()
535 * above to return us whatever is in the queue. Since we call
536 * ide_do_request() ourselves, we end up taking requests while
537 * the queue is blocked...
539 * We let requests forced at head of queue with ide-preempt
540 * though. I hope that doesn't happen too much, hopefully not
541 * unless the subdriver triggers such a thing in its own PM
544 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
545 blk_pm_request(rq) == 0 &&
546 (rq->cmd_flags & REQ_PREEMPT) == 0) {
547 /* there should be no pending command at this point */
548 ide_unlock_port(hwif);
554 spin_unlock_irq(&hwif->lock);
555 startstop = start_request(drive, rq);
556 spin_lock_irq(&hwif->lock);
558 if (startstop == ide_stopped)
563 spin_unlock_irq(&hwif->lock);
565 ide_unlock_host(host);
566 spin_lock_irq(q->queue_lock);
570 spin_unlock_irq(&hwif->lock);
571 ide_unlock_host(host);
573 spin_lock_irq(q->queue_lock);
575 if (!elv_queue_empty(q))
579 static void ide_plug_device(ide_drive_t *drive)
581 struct request_queue *q = drive->queue;
584 spin_lock_irqsave(q->queue_lock, flags);
585 if (!elv_queue_empty(q))
587 spin_unlock_irqrestore(q->queue_lock, flags);
590 static int drive_is_ready(ide_drive_t *drive)
592 ide_hwif_t *hwif = drive->hwif;
595 if (drive->waiting_for_dma)
596 return hwif->dma_ops->dma_test_irq(drive);
598 if (hwif->io_ports.ctl_addr &&
599 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
600 stat = hwif->tp_ops->read_altstatus(hwif);
602 /* Note: this may clear a pending IRQ!! */
603 stat = hwif->tp_ops->read_status(hwif);
606 /* drive busy: definitely not interrupting */
609 /* drive ready: *might* be interrupting */
614 * ide_timer_expiry - handle lack of an IDE interrupt
615 * @data: timer callback magic (hwif)
617 * An IDE command has timed out before the expected drive return
618 * occurred. At this point we attempt to clean up the current
619 * mess. If the current handler includes an expiry handler then
620 * we invoke the expiry handler, and providing it is happy the
621 * work is done. If that fails we apply generic recovery rules
622 * invoking the handler and checking the drive DMA status. We
623 * have an excessively incestuous relationship with the DMA
624 * logic that wants cleaning up.
627 void ide_timer_expiry (unsigned long data)
629 ide_hwif_t *hwif = (ide_hwif_t *)data;
630 ide_drive_t *uninitialized_var(drive);
631 ide_handler_t *handler;
636 spin_lock_irqsave(&hwif->lock, flags);
638 handler = hwif->handler;
640 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
642 * Either a marginal timeout occurred
643 * (got the interrupt just as timer expired),
644 * or we were "sleeping" to give other devices a chance.
645 * Either way, we don't really want to complain about anything.
648 ide_expiry_t *expiry = hwif->expiry;
649 ide_startstop_t startstop = ide_stopped;
651 drive = hwif->cur_dev;
654 wait = expiry(drive);
655 if (wait > 0) { /* continue */
657 hwif->timer.expires = jiffies + wait;
658 hwif->req_gen_timer = hwif->req_gen;
659 add_timer(&hwif->timer);
660 spin_unlock_irqrestore(&hwif->lock, flags);
664 hwif->handler = NULL;
667 * We need to simulate a real interrupt when invoking
668 * the handler() function, which means we need to
669 * globally mask the specific IRQ:
671 spin_unlock(&hwif->lock);
672 /* disable_irq_nosync ?? */
673 disable_irq(hwif->irq);
674 /* local CPU only, as if we were handling an interrupt */
677 startstop = handler(drive);
678 } else if (drive_is_ready(drive)) {
679 if (drive->waiting_for_dma)
680 hwif->dma_ops->dma_lost_irq(drive);
682 hwif->ack_intr(hwif);
683 printk(KERN_WARNING "%s: lost interrupt\n",
685 startstop = handler(drive);
687 if (drive->waiting_for_dma)
688 startstop = ide_dma_timeout_retry(drive, wait);
690 startstop = ide_error(drive, "irq timeout",
691 hwif->tp_ops->read_status(hwif));
693 spin_lock_irq(&hwif->lock);
694 enable_irq(hwif->irq);
695 if (startstop == ide_stopped) {
696 ide_unlock_port(hwif);
700 spin_unlock_irqrestore(&hwif->lock, flags);
703 ide_unlock_host(hwif->host);
704 ide_plug_device(drive);
709 * unexpected_intr - handle an unexpected IDE interrupt
710 * @irq: interrupt line
711 * @hwif: port being processed
713 * There's nothing really useful we can do with an unexpected interrupt,
714 * other than reading the status register (to clear it), and logging it.
715 * There should be no way that an irq can happen before we're ready for it,
716 * so we needn't worry much about losing an "important" interrupt here.
718 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
719 * the drive enters "idle", "standby", or "sleep" mode, so if the status
720 * looks "good", we just ignore the interrupt completely.
722 * This routine assumes __cli() is in effect when called.
724 * If an unexpected interrupt happens on irq15 while we are handling irq14
725 * and if the two interfaces are "serialized" (CMD640), then it looks like
726 * we could screw up by interfering with a new request being set up for
729 * In reality, this is a non-issue. The new command is not sent unless
730 * the drive is ready to accept one, in which case we know the drive is
731 * not trying to interrupt us. And ide_set_handler() is always invoked
732 * before completing the issuance of any new drive command, so we will not
733 * be accidentally invoked as a result of any valid command completion
737 static void unexpected_intr(int irq, ide_hwif_t *hwif)
739 u8 stat = hwif->tp_ops->read_status(hwif);
741 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
742 /* Try to not flood the console with msgs */
743 static unsigned long last_msgtime, count;
746 if (time_after(jiffies, last_msgtime + HZ)) {
747 last_msgtime = jiffies;
748 printk(KERN_ERR "%s: unexpected interrupt, "
749 "status=0x%02x, count=%ld\n",
750 hwif->name, stat, count);
756 * ide_intr - default IDE interrupt handler
757 * @irq: interrupt number
759 * @regs: unused weirdness from the kernel irq layer
761 * This is the default IRQ handler for the IDE layer. You should
762 * not need to override it. If you do be aware it is subtle in
765 * hwif is the interface in the group currently performing
766 * a command. hwif->cur_dev is the drive and hwif->handler is
767 * the IRQ handler to call. As we issue a command the handlers
768 * step through multiple states, reassigning the handler to the
769 * next step in the process. Unlike a smart SCSI controller IDE
770 * expects the main processor to sequence the various transfer
771 * stages. We also manage a poll timer to catch up with most
772 * timeout situations. There are still a few where the handlers
773 * don't ever decide to give up.
775 * The handler eventually returns ide_stopped to indicate the
776 * request completed. At this point we issue the next request
777 * on the port and the process begins again.
780 irqreturn_t ide_intr (int irq, void *dev_id)
782 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
783 struct ide_host *host = hwif->host;
784 ide_drive_t *uninitialized_var(drive);
785 ide_handler_t *handler;
787 ide_startstop_t startstop;
788 irqreturn_t irq_ret = IRQ_NONE;
791 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
792 if (hwif != host->cur_port)
796 spin_lock_irqsave(&hwif->lock, flags);
798 if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
801 handler = hwif->handler;
803 if (handler == NULL || hwif->polling) {
805 * Not expecting an interrupt from this drive.
806 * That means this could be:
807 * (1) an interrupt from another PCI device
808 * sharing the same PCI INT# as us.
809 * or (2) a drive just entered sleep or standby mode,
810 * and is interrupting to let us know.
811 * or (3) a spurious interrupt of unknown origin.
813 * For PCI, we cannot tell the difference,
814 * so in that case we just ignore it and hope it goes away.
816 if ((host->irq_flags & IRQF_SHARED) == 0) {
818 * Probably not a shared PCI interrupt,
819 * so we can safely try to do something about it:
821 unexpected_intr(irq, hwif);
824 * Whack the status register, just in case
825 * we have a leftover pending IRQ.
827 (void)hwif->tp_ops->read_status(hwif);
832 drive = hwif->cur_dev;
834 if (!drive_is_ready(drive))
836 * This happens regularly when we share a PCI IRQ with
837 * another device. Unfortunately, it can also happen
838 * with some buggy drives that trigger the IRQ before
839 * their status register is up to date. Hopefully we have
840 * enough advance overhead that the latter isn't a problem.
844 hwif->handler = NULL;
847 del_timer(&hwif->timer);
848 spin_unlock(&hwif->lock);
850 if (hwif->port_ops && hwif->port_ops->clear_irq)
851 hwif->port_ops->clear_irq(drive);
853 if (drive->dev_flags & IDE_DFLAG_UNMASK)
854 local_irq_enable_in_hardirq();
856 /* service this interrupt, may set handler for next interrupt */
857 startstop = handler(drive);
859 spin_lock_irq(&hwif->lock);
861 * Note that handler() may have set things up for another
862 * interrupt to occur soon, but it cannot happen until
863 * we exit from this routine, because it will be the
864 * same irq as is currently being serviced here, and Linux
865 * won't allow another of the same (on any CPU) until we return.
867 if (startstop == ide_stopped) {
868 BUG_ON(hwif->handler);
869 ide_unlock_port(hwif);
872 irq_ret = IRQ_HANDLED;
874 spin_unlock_irqrestore(&hwif->lock, flags);
877 ide_unlock_host(hwif->host);
878 ide_plug_device(drive);
883 EXPORT_SYMBOL_GPL(ide_intr);
885 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
887 ide_hwif_t *hwif = drive->hwif;
892 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
894 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
898 EXPORT_SYMBOL_GPL(ide_pad_transfer);