[ALSA] sound/pci/fm801: Use ARRAY_SIZE macro
[linux-2.6] / sound / pci / fm801.c
1 /*
2  *  The driver for the ForteMedia FM801 based soundcards
3  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
4  *
5  *  Support FM only card by Andy Shevchenko <andy@smile.org.ua>
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <sound/driver.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/moduleparam.h>
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/ac97_codec.h>
33 #include <sound/mpu401.h>
34 #include <sound/opl3.h>
35 #include <sound/initval.h>
36
37 #include <asm/io.h>
38
39 #ifdef CONFIG_SND_FM801_TEA575X_BOOL
40 #include <sound/tea575x-tuner.h>
41 #define TEA575X_RADIO 1
42 #endif
43
44 MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>");
45 MODULE_DESCRIPTION("ForteMedia FM801");
46 MODULE_LICENSE("GPL");
47 MODULE_SUPPORTED_DEVICE("{{ForteMedia,FM801},"
48                 "{Genius,SoundMaker Live 5.1}}");
49
50 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
51 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
52 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;      /* Enable this card */
53 /*
54  *  Enable TEA575x tuner
55  *    1 = MediaForte 256-PCS
56  *    2 = MediaForte 256-PCPR
57  *    3 = MediaForte 64-PCR
58  *   16 = setup tuner only (this is additional bit), i.e. SF-64-PCR FM card
59  *  High 16-bits are video (radio) device number + 1
60  */
61 static int tea575x_tuner[SNDRV_CARDS];
62
63 module_param_array(index, int, NULL, 0444);
64 MODULE_PARM_DESC(index, "Index value for the FM801 soundcard.");
65 module_param_array(id, charp, NULL, 0444);
66 MODULE_PARM_DESC(id, "ID string for the FM801 soundcard.");
67 module_param_array(enable, bool, NULL, 0444);
68 MODULE_PARM_DESC(enable, "Enable FM801 soundcard.");
69 module_param_array(tea575x_tuner, int, NULL, 0444);
70 MODULE_PARM_DESC(tea575x_tuner, "Enable TEA575x tuner.");
71
72 /*
73  *  Direct registers
74  */
75
76 #define FM801_REG(chip, reg)    (chip->port + FM801_##reg)
77
78 #define FM801_PCM_VOL           0x00    /* PCM Output Volume */
79 #define FM801_FM_VOL            0x02    /* FM Output Volume */
80 #define FM801_I2S_VOL           0x04    /* I2S Volume */
81 #define FM801_REC_SRC           0x06    /* Record Source */
82 #define FM801_PLY_CTRL          0x08    /* Playback Control */
83 #define FM801_PLY_COUNT         0x0a    /* Playback Count */
84 #define FM801_PLY_BUF1          0x0c    /* Playback Bufer I */
85 #define FM801_PLY_BUF2          0x10    /* Playback Buffer II */
86 #define FM801_CAP_CTRL          0x14    /* Capture Control */
87 #define FM801_CAP_COUNT         0x16    /* Capture Count */
88 #define FM801_CAP_BUF1          0x18    /* Capture Buffer I */
89 #define FM801_CAP_BUF2          0x1c    /* Capture Buffer II */
90 #define FM801_CODEC_CTRL        0x22    /* Codec Control */
91 #define FM801_I2S_MODE          0x24    /* I2S Mode Control */
92 #define FM801_VOLUME            0x26    /* Volume Up/Down/Mute Status */
93 #define FM801_I2C_CTRL          0x29    /* I2C Control */
94 #define FM801_AC97_CMD          0x2a    /* AC'97 Command */
95 #define FM801_AC97_DATA         0x2c    /* AC'97 Data */
96 #define FM801_MPU401_DATA       0x30    /* MPU401 Data */
97 #define FM801_MPU401_CMD        0x31    /* MPU401 Command */
98 #define FM801_GPIO_CTRL         0x52    /* General Purpose I/O Control */
99 #define FM801_GEN_CTRL          0x54    /* General Control */
100 #define FM801_IRQ_MASK          0x56    /* Interrupt Mask */
101 #define FM801_IRQ_STATUS        0x5a    /* Interrupt Status */
102 #define FM801_OPL3_BANK0        0x68    /* OPL3 Status Read / Bank 0 Write */
103 #define FM801_OPL3_DATA0        0x69    /* OPL3 Data 0 Write */
104 #define FM801_OPL3_BANK1        0x6a    /* OPL3 Bank 1 Write */
105 #define FM801_OPL3_DATA1        0x6b    /* OPL3 Bank 1 Write */
106 #define FM801_POWERDOWN         0x70    /* Blocks Power Down Control */
107
108 /* codec access */
109 #define FM801_AC97_READ         (1<<7)  /* read=1, write=0 */
110 #define FM801_AC97_VALID        (1<<8)  /* port valid=1 */
111 #define FM801_AC97_BUSY         (1<<9)  /* busy=1 */
112 #define FM801_AC97_ADDR_SHIFT   10      /* codec id (2bit) */
113
114 /* playback and record control register bits */
115 #define FM801_BUF1_LAST         (1<<1)
116 #define FM801_BUF2_LAST         (1<<2)
117 #define FM801_START             (1<<5)
118 #define FM801_PAUSE             (1<<6)
119 #define FM801_IMMED_STOP        (1<<7)
120 #define FM801_RATE_SHIFT        8
121 #define FM801_RATE_MASK         (15 << FM801_RATE_SHIFT)
122 #define FM801_CHANNELS_4        (1<<12) /* playback only */
123 #define FM801_CHANNELS_6        (2<<12) /* playback only */
124 #define FM801_CHANNELS_6MS      (3<<12) /* playback only */
125 #define FM801_CHANNELS_MASK     (3<<12)
126 #define FM801_16BIT             (1<<14)
127 #define FM801_STEREO            (1<<15)
128
129 /* IRQ status bits */
130 #define FM801_IRQ_PLAYBACK      (1<<8)
131 #define FM801_IRQ_CAPTURE       (1<<9)
132 #define FM801_IRQ_VOLUME        (1<<14)
133 #define FM801_IRQ_MPU           (1<<15)
134
135 /* GPIO control register */
136 #define FM801_GPIO_GP0          (1<<0)  /* read/write */
137 #define FM801_GPIO_GP1          (1<<1)
138 #define FM801_GPIO_GP2          (1<<2)
139 #define FM801_GPIO_GP3          (1<<3)
140 #define FM801_GPIO_GP(x)        (1<<(0+(x)))
141 #define FM801_GPIO_GD0          (1<<8)  /* directions: 1 = input, 0 = output*/
142 #define FM801_GPIO_GD1          (1<<9)
143 #define FM801_GPIO_GD2          (1<<10)
144 #define FM801_GPIO_GD3          (1<<11)
145 #define FM801_GPIO_GD(x)        (1<<(8+(x)))
146 #define FM801_GPIO_GS0          (1<<12) /* function select: */
147 #define FM801_GPIO_GS1          (1<<13) /*    1 = GPIO */
148 #define FM801_GPIO_GS2          (1<<14) /*    0 = other (S/PDIF, VOL) */
149 #define FM801_GPIO_GS3          (1<<15)
150 #define FM801_GPIO_GS(x)        (1<<(12+(x)))
151         
152 /*
153
154  */
155
156 struct fm801 {
157         int irq;
158
159         unsigned long port;     /* I/O port number */
160         unsigned int multichannel: 1,   /* multichannel support */
161                      secondary: 1;      /* secondary codec */
162         unsigned char secondary_addr;   /* address of the secondary codec */
163         unsigned int tea575x_tuner;     /* tuner flags */
164
165         unsigned short ply_ctrl; /* playback control */
166         unsigned short cap_ctrl; /* capture control */
167
168         unsigned long ply_buffer;
169         unsigned int ply_buf;
170         unsigned int ply_count;
171         unsigned int ply_size;
172         unsigned int ply_pos;
173
174         unsigned long cap_buffer;
175         unsigned int cap_buf;
176         unsigned int cap_count;
177         unsigned int cap_size;
178         unsigned int cap_pos;
179
180         struct snd_ac97_bus *ac97_bus;
181         struct snd_ac97 *ac97;
182         struct snd_ac97 *ac97_sec;
183
184         struct pci_dev *pci;
185         struct snd_card *card;
186         struct snd_pcm *pcm;
187         struct snd_rawmidi *rmidi;
188         struct snd_pcm_substream *playback_substream;
189         struct snd_pcm_substream *capture_substream;
190         unsigned int p_dma_size;
191         unsigned int c_dma_size;
192
193         spinlock_t reg_lock;
194         struct snd_info_entry *proc_entry;
195
196 #ifdef TEA575X_RADIO
197         struct snd_tea575x tea;
198 #endif
199
200 #ifdef CONFIG_PM
201         u16 saved_regs[0x20];
202 #endif
203 };
204
205 static struct pci_device_id snd_fm801_ids[] = {
206         { 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* FM801 */
207         { 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* Gallant Odyssey Sound 4 */
208         { 0, }
209 };
210
211 MODULE_DEVICE_TABLE(pci, snd_fm801_ids);
212
213 /*
214  *  common I/O routines
215  */
216
217 static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg,
218                                  unsigned short mask, unsigned short value)
219 {
220         int change;
221         unsigned long flags;
222         unsigned short old, new;
223
224         spin_lock_irqsave(&chip->reg_lock, flags);
225         old = inw(chip->port + reg);
226         new = (old & ~mask) | value;
227         change = old != new;
228         if (change)
229                 outw(new, chip->port + reg);
230         spin_unlock_irqrestore(&chip->reg_lock, flags);
231         return change;
232 }
233
234 static void snd_fm801_codec_write(struct snd_ac97 *ac97,
235                                   unsigned short reg,
236                                   unsigned short val)
237 {
238         struct fm801 *chip = ac97->private_data;
239         int idx;
240
241         /*
242          *  Wait until the codec interface is not ready..
243          */
244         for (idx = 0; idx < 100; idx++) {
245                 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
246                         goto ok1;
247                 udelay(10);
248         }
249         snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
250         return;
251
252  ok1:
253         /* write data and address */
254         outw(val, FM801_REG(chip, AC97_DATA));
255         outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT), FM801_REG(chip, AC97_CMD));
256         /*
257          *  Wait until the write command is not completed..
258          */
259         for (idx = 0; idx < 1000; idx++) {
260                 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
261                         return;
262                 udelay(10);
263         }
264         snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
265 }
266
267 static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg)
268 {
269         struct fm801 *chip = ac97->private_data;
270         int idx;
271
272         /*
273          *  Wait until the codec interface is not ready..
274          */
275         for (idx = 0; idx < 100; idx++) {
276                 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
277                         goto ok1;
278                 udelay(10);
279         }
280         snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
281         return 0;
282
283  ok1:
284         /* read command */
285         outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ,
286              FM801_REG(chip, AC97_CMD));
287         for (idx = 0; idx < 100; idx++) {
288                 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
289                         goto ok2;
290                 udelay(10);
291         }
292         snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
293         return 0;
294
295  ok2:
296         for (idx = 0; idx < 1000; idx++) {
297                 if (inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_VALID)
298                         goto ok3;
299                 udelay(10);
300         }
301         snd_printk(KERN_ERR "AC'97 interface #%d is not valid (2)\n", ac97->num);
302         return 0;
303
304  ok3:
305         return inw(FM801_REG(chip, AC97_DATA));
306 }
307
308 static unsigned int rates[] = {
309   5500,  8000,  9600, 11025,
310   16000, 19200, 22050, 32000,
311   38400, 44100, 48000
312 };
313
314 static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
315         .count = ARRAY_SIZE(rates),
316         .list = rates,
317         .mask = 0,
318 };
319
320 static unsigned int channels[] = {
321   2, 4, 6
322 };
323
324 static struct snd_pcm_hw_constraint_list hw_constraints_channels = {
325         .count = ARRAY_SIZE(channels),
326         .list = channels,
327         .mask = 0,
328 };
329
330 /*
331  *  Sample rate routines
332  */
333
334 static unsigned short snd_fm801_rate_bits(unsigned int rate)
335 {
336         unsigned int idx;
337
338         for (idx = 0; idx < ARRAY_SIZE(rates); idx++)
339                 if (rates[idx] == rate)
340                         return idx;
341         snd_BUG();
342         return ARRAY_SIZE(rates) - 1;
343 }
344
345 /*
346  *  PCM part
347  */
348
349 static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream,
350                                       int cmd)
351 {
352         struct fm801 *chip = snd_pcm_substream_chip(substream);
353
354         spin_lock(&chip->reg_lock);
355         switch (cmd) {
356         case SNDRV_PCM_TRIGGER_START:
357                 chip->ply_ctrl &= ~(FM801_BUF1_LAST |
358                                      FM801_BUF2_LAST |
359                                      FM801_PAUSE);
360                 chip->ply_ctrl |= FM801_START |
361                                    FM801_IMMED_STOP;
362                 break;
363         case SNDRV_PCM_TRIGGER_STOP:
364                 chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE);
365                 break;
366         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
367         case SNDRV_PCM_TRIGGER_SUSPEND:
368                 chip->ply_ctrl |= FM801_PAUSE;
369                 break;
370         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
371         case SNDRV_PCM_TRIGGER_RESUME:
372                 chip->ply_ctrl &= ~FM801_PAUSE;
373                 break;
374         default:
375                 spin_unlock(&chip->reg_lock);
376                 snd_BUG();
377                 return -EINVAL;
378         }
379         outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
380         spin_unlock(&chip->reg_lock);
381         return 0;
382 }
383
384 static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream,
385                                      int cmd)
386 {
387         struct fm801 *chip = snd_pcm_substream_chip(substream);
388
389         spin_lock(&chip->reg_lock);
390         switch (cmd) {
391         case SNDRV_PCM_TRIGGER_START:
392                 chip->cap_ctrl &= ~(FM801_BUF1_LAST |
393                                      FM801_BUF2_LAST |
394                                      FM801_PAUSE);
395                 chip->cap_ctrl |= FM801_START |
396                                    FM801_IMMED_STOP;
397                 break;
398         case SNDRV_PCM_TRIGGER_STOP:
399                 chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE);
400                 break;
401         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
402         case SNDRV_PCM_TRIGGER_SUSPEND:
403                 chip->cap_ctrl |= FM801_PAUSE;
404                 break;
405         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
406         case SNDRV_PCM_TRIGGER_RESUME:
407                 chip->cap_ctrl &= ~FM801_PAUSE;
408                 break;
409         default:
410                 spin_unlock(&chip->reg_lock);
411                 snd_BUG();
412                 return -EINVAL;
413         }
414         outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
415         spin_unlock(&chip->reg_lock);
416         return 0;
417 }
418
419 static int snd_fm801_hw_params(struct snd_pcm_substream *substream,
420                                struct snd_pcm_hw_params *hw_params)
421 {
422         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
423 }
424
425 static int snd_fm801_hw_free(struct snd_pcm_substream *substream)
426 {
427         return snd_pcm_lib_free_pages(substream);
428 }
429
430 static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream)
431 {
432         struct fm801 *chip = snd_pcm_substream_chip(substream);
433         struct snd_pcm_runtime *runtime = substream->runtime;
434
435         chip->ply_size = snd_pcm_lib_buffer_bytes(substream);
436         chip->ply_count = snd_pcm_lib_period_bytes(substream);
437         spin_lock_irq(&chip->reg_lock);
438         chip->ply_ctrl &= ~(FM801_START | FM801_16BIT |
439                              FM801_STEREO | FM801_RATE_MASK |
440                              FM801_CHANNELS_MASK);
441         if (snd_pcm_format_width(runtime->format) == 16)
442                 chip->ply_ctrl |= FM801_16BIT;
443         if (runtime->channels > 1) {
444                 chip->ply_ctrl |= FM801_STEREO;
445                 if (runtime->channels == 4)
446                         chip->ply_ctrl |= FM801_CHANNELS_4;
447                 else if (runtime->channels == 6)
448                         chip->ply_ctrl |= FM801_CHANNELS_6;
449         }
450         chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
451         chip->ply_buf = 0;
452         outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
453         outw(chip->ply_count - 1, FM801_REG(chip, PLY_COUNT));
454         chip->ply_buffer = runtime->dma_addr;
455         chip->ply_pos = 0;
456         outl(chip->ply_buffer, FM801_REG(chip, PLY_BUF1));
457         outl(chip->ply_buffer + (chip->ply_count % chip->ply_size), FM801_REG(chip, PLY_BUF2));
458         spin_unlock_irq(&chip->reg_lock);
459         return 0;
460 }
461
462 static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream)
463 {
464         struct fm801 *chip = snd_pcm_substream_chip(substream);
465         struct snd_pcm_runtime *runtime = substream->runtime;
466
467         chip->cap_size = snd_pcm_lib_buffer_bytes(substream);
468         chip->cap_count = snd_pcm_lib_period_bytes(substream);
469         spin_lock_irq(&chip->reg_lock);
470         chip->cap_ctrl &= ~(FM801_START | FM801_16BIT |
471                              FM801_STEREO | FM801_RATE_MASK);
472         if (snd_pcm_format_width(runtime->format) == 16)
473                 chip->cap_ctrl |= FM801_16BIT;
474         if (runtime->channels > 1)
475                 chip->cap_ctrl |= FM801_STEREO;
476         chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
477         chip->cap_buf = 0;
478         outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
479         outw(chip->cap_count - 1, FM801_REG(chip, CAP_COUNT));
480         chip->cap_buffer = runtime->dma_addr;
481         chip->cap_pos = 0;
482         outl(chip->cap_buffer, FM801_REG(chip, CAP_BUF1));
483         outl(chip->cap_buffer + (chip->cap_count % chip->cap_size), FM801_REG(chip, CAP_BUF2));
484         spin_unlock_irq(&chip->reg_lock);
485         return 0;
486 }
487
488 static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream)
489 {
490         struct fm801 *chip = snd_pcm_substream_chip(substream);
491         size_t ptr;
492
493         if (!(chip->ply_ctrl & FM801_START))
494                 return 0;
495         spin_lock(&chip->reg_lock);
496         ptr = chip->ply_pos + (chip->ply_count - 1) - inw(FM801_REG(chip, PLY_COUNT));
497         if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_PLAYBACK) {
498                 ptr += chip->ply_count;
499                 ptr %= chip->ply_size;
500         }
501         spin_unlock(&chip->reg_lock);
502         return bytes_to_frames(substream->runtime, ptr);
503 }
504
505 static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream)
506 {
507         struct fm801 *chip = snd_pcm_substream_chip(substream);
508         size_t ptr;
509
510         if (!(chip->cap_ctrl & FM801_START))
511                 return 0;
512         spin_lock(&chip->reg_lock);
513         ptr = chip->cap_pos + (chip->cap_count - 1) - inw(FM801_REG(chip, CAP_COUNT));
514         if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_CAPTURE) {
515                 ptr += chip->cap_count;
516                 ptr %= chip->cap_size;
517         }
518         spin_unlock(&chip->reg_lock);
519         return bytes_to_frames(substream->runtime, ptr);
520 }
521
522 static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id, struct pt_regs *regs)
523 {
524         struct fm801 *chip = dev_id;
525         unsigned short status;
526         unsigned int tmp;
527
528         status = inw(FM801_REG(chip, IRQ_STATUS));
529         status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME;
530         if (! status)
531                 return IRQ_NONE;
532         /* ack first */
533         outw(status, FM801_REG(chip, IRQ_STATUS));
534         if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) {
535                 spin_lock(&chip->reg_lock);
536                 chip->ply_buf++;
537                 chip->ply_pos += chip->ply_count;
538                 chip->ply_pos %= chip->ply_size;
539                 tmp = chip->ply_pos + chip->ply_count;
540                 tmp %= chip->ply_size;
541                 outl(chip->ply_buffer + tmp,
542                                 (chip->ply_buf & 1) ?
543                                         FM801_REG(chip, PLY_BUF1) :
544                                         FM801_REG(chip, PLY_BUF2));
545                 spin_unlock(&chip->reg_lock);
546                 snd_pcm_period_elapsed(chip->playback_substream);
547         }
548         if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) {
549                 spin_lock(&chip->reg_lock);
550                 chip->cap_buf++;
551                 chip->cap_pos += chip->cap_count;
552                 chip->cap_pos %= chip->cap_size;
553                 tmp = chip->cap_pos + chip->cap_count;
554                 tmp %= chip->cap_size;
555                 outl(chip->cap_buffer + tmp,
556                                 (chip->cap_buf & 1) ?
557                                         FM801_REG(chip, CAP_BUF1) :
558                                         FM801_REG(chip, CAP_BUF2));
559                 spin_unlock(&chip->reg_lock);
560                 snd_pcm_period_elapsed(chip->capture_substream);
561         }
562         if (chip->rmidi && (status & FM801_IRQ_MPU))
563                 snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data, regs);
564         if (status & FM801_IRQ_VOLUME)
565                 ;/* TODO */
566
567         return IRQ_HANDLED;
568 }
569
570 static struct snd_pcm_hardware snd_fm801_playback =
571 {
572         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
573                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
574                                  SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
575                                  SNDRV_PCM_INFO_MMAP_VALID),
576         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
577         .rates =                SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
578         .rate_min =             5500,
579         .rate_max =             48000,
580         .channels_min =         1,
581         .channels_max =         2,
582         .buffer_bytes_max =     (128*1024),
583         .period_bytes_min =     64,
584         .period_bytes_max =     (128*1024),
585         .periods_min =          1,
586         .periods_max =          1024,
587         .fifo_size =            0,
588 };
589
590 static struct snd_pcm_hardware snd_fm801_capture =
591 {
592         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
593                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
594                                  SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
595                                  SNDRV_PCM_INFO_MMAP_VALID),
596         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
597         .rates =                SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
598         .rate_min =             5500,
599         .rate_max =             48000,
600         .channels_min =         1,
601         .channels_max =         2,
602         .buffer_bytes_max =     (128*1024),
603         .period_bytes_min =     64,
604         .period_bytes_max =     (128*1024),
605         .periods_min =          1,
606         .periods_max =          1024,
607         .fifo_size =            0,
608 };
609
610 static int snd_fm801_playback_open(struct snd_pcm_substream *substream)
611 {
612         struct fm801 *chip = snd_pcm_substream_chip(substream);
613         struct snd_pcm_runtime *runtime = substream->runtime;
614         int err;
615
616         chip->playback_substream = substream;
617         runtime->hw = snd_fm801_playback;
618         snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
619                                    &hw_constraints_rates);
620         if (chip->multichannel) {
621                 runtime->hw.channels_max = 6;
622                 snd_pcm_hw_constraint_list(runtime, 0,
623                                            SNDRV_PCM_HW_PARAM_CHANNELS,
624                                            &hw_constraints_channels);
625         }
626         if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
627                 return err;
628         return 0;
629 }
630
631 static int snd_fm801_capture_open(struct snd_pcm_substream *substream)
632 {
633         struct fm801 *chip = snd_pcm_substream_chip(substream);
634         struct snd_pcm_runtime *runtime = substream->runtime;
635         int err;
636
637         chip->capture_substream = substream;
638         runtime->hw = snd_fm801_capture;
639         snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
640                                    &hw_constraints_rates);
641         if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
642                 return err;
643         return 0;
644 }
645
646 static int snd_fm801_playback_close(struct snd_pcm_substream *substream)
647 {
648         struct fm801 *chip = snd_pcm_substream_chip(substream);
649
650         chip->playback_substream = NULL;
651         return 0;
652 }
653
654 static int snd_fm801_capture_close(struct snd_pcm_substream *substream)
655 {
656         struct fm801 *chip = snd_pcm_substream_chip(substream);
657
658         chip->capture_substream = NULL;
659         return 0;
660 }
661
662 static struct snd_pcm_ops snd_fm801_playback_ops = {
663         .open =         snd_fm801_playback_open,
664         .close =        snd_fm801_playback_close,
665         .ioctl =        snd_pcm_lib_ioctl,
666         .hw_params =    snd_fm801_hw_params,
667         .hw_free =      snd_fm801_hw_free,
668         .prepare =      snd_fm801_playback_prepare,
669         .trigger =      snd_fm801_playback_trigger,
670         .pointer =      snd_fm801_playback_pointer,
671 };
672
673 static struct snd_pcm_ops snd_fm801_capture_ops = {
674         .open =         snd_fm801_capture_open,
675         .close =        snd_fm801_capture_close,
676         .ioctl =        snd_pcm_lib_ioctl,
677         .hw_params =    snd_fm801_hw_params,
678         .hw_free =      snd_fm801_hw_free,
679         .prepare =      snd_fm801_capture_prepare,
680         .trigger =      snd_fm801_capture_trigger,
681         .pointer =      snd_fm801_capture_pointer,
682 };
683
684 static int __devinit snd_fm801_pcm(struct fm801 *chip, int device, struct snd_pcm ** rpcm)
685 {
686         struct snd_pcm *pcm;
687         int err;
688
689         if (rpcm)
690                 *rpcm = NULL;
691         if ((err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm)) < 0)
692                 return err;
693
694         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops);
695         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops);
696
697         pcm->private_data = chip;
698         pcm->info_flags = 0;
699         strcpy(pcm->name, "FM801");
700         chip->pcm = pcm;
701
702         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
703                                               snd_dma_pci_data(chip->pci),
704                                               chip->multichannel ? 128*1024 : 64*1024, 128*1024);
705
706         if (rpcm)
707                 *rpcm = pcm;
708         return 0;
709 }
710
711 /*
712  *  TEA5757 radio
713  */
714
715 #ifdef TEA575X_RADIO
716
717 /* 256PCS GPIO numbers */
718 #define TEA_256PCS_DATA                 1
719 #define TEA_256PCS_WRITE_ENABLE         2       /* inverted */
720 #define TEA_256PCS_BUS_CLOCK            3
721
722 static void snd_fm801_tea575x_256pcs_write(struct snd_tea575x *tea, unsigned int val)
723 {
724         struct fm801 *chip = tea->private_data;
725         unsigned short reg;
726         int i = 25;
727
728         spin_lock_irq(&chip->reg_lock);
729         reg = inw(FM801_REG(chip, GPIO_CTRL));
730         /* use GPIO lines and set write enable bit */
731         reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
732                FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
733                FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK);
734         /* all of lines are in the write direction */
735         /* clear data and clock lines */
736         reg &= ~(FM801_GPIO_GD(TEA_256PCS_DATA) |
737                  FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
738                  FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
739                  FM801_GPIO_GP(TEA_256PCS_DATA) |
740                  FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK) |
741                  FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE));
742         outw(reg, FM801_REG(chip, GPIO_CTRL));
743         udelay(1);
744
745         while (i--) {
746                 if (val & (1 << i))
747                         reg |= FM801_GPIO_GP(TEA_256PCS_DATA);
748                 else
749                         reg &= ~FM801_GPIO_GP(TEA_256PCS_DATA);
750                 outw(reg, FM801_REG(chip, GPIO_CTRL));
751                 udelay(1);
752                 reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
753                 outw(reg, FM801_REG(chip, GPIO_CTRL));
754                 reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
755                 outw(reg, FM801_REG(chip, GPIO_CTRL));
756                 udelay(1);
757         }
758
759         /* and reset the write enable bit */
760         reg |= FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE) |
761                FM801_GPIO_GP(TEA_256PCS_DATA);
762         outw(reg, FM801_REG(chip, GPIO_CTRL));
763         spin_unlock_irq(&chip->reg_lock);
764 }
765
766 static unsigned int snd_fm801_tea575x_256pcs_read(struct snd_tea575x *tea)
767 {
768         struct fm801 *chip = tea->private_data;
769         unsigned short reg;
770         unsigned int val = 0;
771         int i;
772         
773         spin_lock_irq(&chip->reg_lock);
774         reg = inw(FM801_REG(chip, GPIO_CTRL));
775         /* use GPIO lines, set data direction to input */
776         reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
777                FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
778                FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK) |
779                FM801_GPIO_GD(TEA_256PCS_DATA) |
780                FM801_GPIO_GP(TEA_256PCS_DATA) |
781                FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE);
782         /* all of lines are in the write direction, except data */
783         /* clear data, write enable and clock lines */
784         reg &= ~(FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
785                  FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
786                  FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK));
787
788         for (i = 0; i < 24; i++) {
789                 reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
790                 outw(reg, FM801_REG(chip, GPIO_CTRL));
791                 udelay(1);
792                 reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
793                 outw(reg, FM801_REG(chip, GPIO_CTRL));
794                 udelay(1);
795                 val <<= 1;
796                 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCS_DATA))
797                         val |= 1;
798         }
799
800         spin_unlock_irq(&chip->reg_lock);
801
802         return val;
803 }
804
805 /* 256PCPR GPIO numbers */
806 #define TEA_256PCPR_BUS_CLOCK           0
807 #define TEA_256PCPR_DATA                1
808 #define TEA_256PCPR_WRITE_ENABLE        2       /* inverted */
809
810 static void snd_fm801_tea575x_256pcpr_write(struct snd_tea575x *tea, unsigned int val)
811 {
812         struct fm801 *chip = tea->private_data;
813         unsigned short reg;
814         int i = 25;
815
816         spin_lock_irq(&chip->reg_lock);
817         reg = inw(FM801_REG(chip, GPIO_CTRL));
818         /* use GPIO lines and set write enable bit */
819         reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
820                FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
821                FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK);
822         /* all of lines are in the write direction */
823         /* clear data and clock lines */
824         reg &= ~(FM801_GPIO_GD(TEA_256PCPR_DATA) |
825                  FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
826                  FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
827                  FM801_GPIO_GP(TEA_256PCPR_DATA) |
828                  FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK) |
829                  FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE));
830         outw(reg, FM801_REG(chip, GPIO_CTRL));
831         udelay(1);
832
833         while (i--) {
834                 if (val & (1 << i))
835                         reg |= FM801_GPIO_GP(TEA_256PCPR_DATA);
836                 else
837                         reg &= ~FM801_GPIO_GP(TEA_256PCPR_DATA);
838                 outw(reg, FM801_REG(chip, GPIO_CTRL));
839                 udelay(1);
840                 reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
841                 outw(reg, FM801_REG(chip, GPIO_CTRL));
842                 reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
843                 outw(reg, FM801_REG(chip, GPIO_CTRL));
844                 udelay(1);
845         }
846
847         /* and reset the write enable bit */
848         reg |= FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE) |
849                FM801_GPIO_GP(TEA_256PCPR_DATA);
850         outw(reg, FM801_REG(chip, GPIO_CTRL));
851         spin_unlock_irq(&chip->reg_lock);
852 }
853
854 static unsigned int snd_fm801_tea575x_256pcpr_read(struct snd_tea575x *tea)
855 {
856         struct fm801 *chip = tea->private_data;
857         unsigned short reg;
858         unsigned int val = 0;
859         int i;
860         
861         spin_lock_irq(&chip->reg_lock);
862         reg = inw(FM801_REG(chip, GPIO_CTRL));
863         /* use GPIO lines, set data direction to input */
864         reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
865                FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
866                FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK) |
867                FM801_GPIO_GD(TEA_256PCPR_DATA) |
868                FM801_GPIO_GP(TEA_256PCPR_DATA) |
869                FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE);
870         /* all of lines are in the write direction, except data */
871         /* clear data, write enable and clock lines */
872         reg &= ~(FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
873                  FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
874                  FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK));
875
876         for (i = 0; i < 24; i++) {
877                 reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
878                 outw(reg, FM801_REG(chip, GPIO_CTRL));
879                 udelay(1);
880                 reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
881                 outw(reg, FM801_REG(chip, GPIO_CTRL));
882                 udelay(1);
883                 val <<= 1;
884                 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCPR_DATA))
885                         val |= 1;
886         }
887
888         spin_unlock_irq(&chip->reg_lock);
889
890         return val;
891 }
892
893 /* 64PCR GPIO numbers */
894 #define TEA_64PCR_BUS_CLOCK             0
895 #define TEA_64PCR_WRITE_ENABLE          1       /* inverted */
896 #define TEA_64PCR_DATA                  2
897
898 static void snd_fm801_tea575x_64pcr_write(struct snd_tea575x *tea, unsigned int val)
899 {
900         struct fm801 *chip = tea->private_data;
901         unsigned short reg;
902         int i = 25;
903
904         spin_lock_irq(&chip->reg_lock);
905         reg = inw(FM801_REG(chip, GPIO_CTRL));
906         /* use GPIO lines and set write enable bit */
907         reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
908                FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
909                FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK);
910         /* all of lines are in the write direction */
911         /* clear data and clock lines */
912         reg &= ~(FM801_GPIO_GD(TEA_64PCR_DATA) |
913                  FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
914                  FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
915                  FM801_GPIO_GP(TEA_64PCR_DATA) |
916                  FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK) |
917                  FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE));
918         outw(reg, FM801_REG(chip, GPIO_CTRL));
919         udelay(1);
920
921         while (i--) {
922                 if (val & (1 << i))
923                         reg |= FM801_GPIO_GP(TEA_64PCR_DATA);
924                 else
925                         reg &= ~FM801_GPIO_GP(TEA_64PCR_DATA);
926                 outw(reg, FM801_REG(chip, GPIO_CTRL));
927                 udelay(1);
928                 reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
929                 outw(reg, FM801_REG(chip, GPIO_CTRL));
930                 reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
931                 outw(reg, FM801_REG(chip, GPIO_CTRL));
932                 udelay(1);
933         }
934
935         /* and reset the write enable bit */
936         reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE) |
937                FM801_GPIO_GP(TEA_64PCR_DATA);
938         outw(reg, FM801_REG(chip, GPIO_CTRL));
939         spin_unlock_irq(&chip->reg_lock);
940 }
941
942 static unsigned int snd_fm801_tea575x_64pcr_read(struct snd_tea575x *tea)
943 {
944         struct fm801 *chip = tea->private_data;
945         unsigned short reg;
946         unsigned int val = 0;
947         int i;
948         
949         spin_lock_irq(&chip->reg_lock);
950         reg = inw(FM801_REG(chip, GPIO_CTRL));
951         /* use GPIO lines, set data direction to input */
952         reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
953                FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
954                FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK) |
955                FM801_GPIO_GD(TEA_64PCR_DATA) |
956                FM801_GPIO_GP(TEA_64PCR_DATA) |
957                FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE);
958         /* all of lines are in the write direction, except data */
959         /* clear data, write enable and clock lines */
960         reg &= ~(FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
961                  FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
962                  FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK));
963
964         for (i = 0; i < 24; i++) {
965                 reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
966                 outw(reg, FM801_REG(chip, GPIO_CTRL));
967                 udelay(1);
968                 reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
969                 outw(reg, FM801_REG(chip, GPIO_CTRL));
970                 udelay(1);
971                 val <<= 1;
972                 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_64PCR_DATA))
973                         val |= 1;
974         }
975
976         spin_unlock_irq(&chip->reg_lock);
977
978         return val;
979 }
980
981 static struct snd_tea575x_ops snd_fm801_tea_ops[3] = {
982         {
983                 /* 1 = MediaForte 256-PCS */
984                 .write = snd_fm801_tea575x_256pcs_write,
985                 .read = snd_fm801_tea575x_256pcs_read,
986         },
987         {
988                 /* 2 = MediaForte 256-PCPR */
989                 .write = snd_fm801_tea575x_256pcpr_write,
990                 .read = snd_fm801_tea575x_256pcpr_read,
991         },
992         {
993                 /* 3 = MediaForte 64-PCR */
994                 .write = snd_fm801_tea575x_64pcr_write,
995                 .read = snd_fm801_tea575x_64pcr_read,
996         }
997 };
998 #endif
999
1000 /*
1001  *  Mixer routines
1002  */
1003
1004 #define FM801_SINGLE(xname, reg, shift, mask, invert) \
1005 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \
1006   .get = snd_fm801_get_single, .put = snd_fm801_put_single, \
1007   .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
1008
1009 static int snd_fm801_info_single(struct snd_kcontrol *kcontrol,
1010                                  struct snd_ctl_elem_info *uinfo)
1011 {
1012         int mask = (kcontrol->private_value >> 16) & 0xff;
1013
1014         uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1015         uinfo->count = 1;
1016         uinfo->value.integer.min = 0;
1017         uinfo->value.integer.max = mask;
1018         return 0;
1019 }
1020
1021 static int snd_fm801_get_single(struct snd_kcontrol *kcontrol,
1022                                 struct snd_ctl_elem_value *ucontrol)
1023 {
1024         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1025         int reg = kcontrol->private_value & 0xff;
1026         int shift = (kcontrol->private_value >> 8) & 0xff;
1027         int mask = (kcontrol->private_value >> 16) & 0xff;
1028         int invert = (kcontrol->private_value >> 24) & 0xff;
1029
1030         ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift) & mask;
1031         if (invert)
1032                 ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1033         return 0;
1034 }
1035
1036 static int snd_fm801_put_single(struct snd_kcontrol *kcontrol,
1037                                 struct snd_ctl_elem_value *ucontrol)
1038 {
1039         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1040         int reg = kcontrol->private_value & 0xff;
1041         int shift = (kcontrol->private_value >> 8) & 0xff;
1042         int mask = (kcontrol->private_value >> 16) & 0xff;
1043         int invert = (kcontrol->private_value >> 24) & 0xff;
1044         unsigned short val;
1045
1046         val = (ucontrol->value.integer.value[0] & mask);
1047         if (invert)
1048                 val = mask - val;
1049         return snd_fm801_update_bits(chip, reg, mask << shift, val << shift);
1050 }
1051
1052 #define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \
1053 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \
1054   .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
1055   .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) }
1056
1057 static int snd_fm801_info_double(struct snd_kcontrol *kcontrol,
1058                                  struct snd_ctl_elem_info *uinfo)
1059 {
1060         int mask = (kcontrol->private_value >> 16) & 0xff;
1061
1062         uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1063         uinfo->count = 2;
1064         uinfo->value.integer.min = 0;
1065         uinfo->value.integer.max = mask;
1066         return 0;
1067 }
1068
1069 static int snd_fm801_get_double(struct snd_kcontrol *kcontrol,
1070                                 struct snd_ctl_elem_value *ucontrol)
1071 {
1072         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1073         int reg = kcontrol->private_value & 0xff;
1074         int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1075         int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1076         int mask = (kcontrol->private_value >> 16) & 0xff;
1077         int invert = (kcontrol->private_value >> 24) & 0xff;
1078
1079         spin_lock_irq(&chip->reg_lock);
1080         ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift_left) & mask;
1081         ucontrol->value.integer.value[1] = (inw(chip->port + reg) >> shift_right) & mask;
1082         spin_unlock_irq(&chip->reg_lock);
1083         if (invert) {
1084                 ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1085                 ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
1086         }
1087         return 0;
1088 }
1089
1090 static int snd_fm801_put_double(struct snd_kcontrol *kcontrol,
1091                                 struct snd_ctl_elem_value *ucontrol)
1092 {
1093         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1094         int reg = kcontrol->private_value & 0xff;
1095         int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1096         int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1097         int mask = (kcontrol->private_value >> 16) & 0xff;
1098         int invert = (kcontrol->private_value >> 24) & 0xff;
1099         unsigned short val1, val2;
1100  
1101         val1 = ucontrol->value.integer.value[0] & mask;
1102         val2 = ucontrol->value.integer.value[1] & mask;
1103         if (invert) {
1104                 val1 = mask - val1;
1105                 val2 = mask - val2;
1106         }
1107         return snd_fm801_update_bits(chip, reg,
1108                                      (mask << shift_left) | (mask << shift_right),
1109                                      (val1 << shift_left ) | (val2 << shift_right));
1110 }
1111
1112 static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol,
1113                               struct snd_ctl_elem_info *uinfo)
1114 {
1115         static char *texts[5] = {
1116                 "AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary"
1117         };
1118  
1119         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1120         uinfo->count = 1;
1121         uinfo->value.enumerated.items = 5;
1122         if (uinfo->value.enumerated.item > 4)
1123                 uinfo->value.enumerated.item = 4;
1124         strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
1125         return 0;
1126 }
1127
1128 static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol,
1129                              struct snd_ctl_elem_value *ucontrol)
1130 {
1131         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1132         unsigned short val;
1133  
1134         val = inw(FM801_REG(chip, REC_SRC)) & 7;
1135         if (val > 4)
1136                 val = 4;
1137         ucontrol->value.enumerated.item[0] = val;
1138         return 0;
1139 }
1140
1141 static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol,
1142                              struct snd_ctl_elem_value *ucontrol)
1143 {
1144         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1145         unsigned short val;
1146  
1147         if ((val = ucontrol->value.enumerated.item[0]) > 4)
1148                 return -EINVAL;
1149         return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val);
1150 }
1151
1152 #define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls)
1153
1154 static struct snd_kcontrol_new snd_fm801_controls[] __devinitdata = {
1155 FM801_DOUBLE("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1),
1156 FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1),
1157 FM801_DOUBLE("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1),
1158 FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1),
1159 FM801_DOUBLE("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1),
1160 FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1),
1161 {
1162         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1163         .name = "Digital Capture Source",
1164         .info = snd_fm801_info_mux,
1165         .get = snd_fm801_get_mux,
1166         .put = snd_fm801_put_mux,
1167 }
1168 };
1169
1170 #define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi)
1171
1172 static struct snd_kcontrol_new snd_fm801_controls_multi[] __devinitdata = {
1173 FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0),
1174 FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0),
1175 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0),
1176 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0),
1177 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0),
1178 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0),
1179 };
1180
1181 static void snd_fm801_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1182 {
1183         struct fm801 *chip = bus->private_data;
1184         chip->ac97_bus = NULL;
1185 }
1186
1187 static void snd_fm801_mixer_free_ac97(struct snd_ac97 *ac97)
1188 {
1189         struct fm801 *chip = ac97->private_data;
1190         if (ac97->num == 0) {
1191                 chip->ac97 = NULL;
1192         } else {
1193                 chip->ac97_sec = NULL;
1194         }
1195 }
1196
1197 static int __devinit snd_fm801_mixer(struct fm801 *chip)
1198 {
1199         struct snd_ac97_template ac97;
1200         unsigned int i;
1201         int err;
1202         static struct snd_ac97_bus_ops ops = {
1203                 .write = snd_fm801_codec_write,
1204                 .read = snd_fm801_codec_read,
1205         };
1206
1207         if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1208                 return err;
1209         chip->ac97_bus->private_free = snd_fm801_mixer_free_ac97_bus;
1210
1211         memset(&ac97, 0, sizeof(ac97));
1212         ac97.private_data = chip;
1213         ac97.private_free = snd_fm801_mixer_free_ac97;
1214         if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1215                 return err;
1216         if (chip->secondary) {
1217                 ac97.num = 1;
1218                 ac97.addr = chip->secondary_addr;
1219                 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec)) < 0)
1220                         return err;
1221         }
1222         for (i = 0; i < FM801_CONTROLS; i++)
1223                 snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip));
1224         if (chip->multichannel) {
1225                 for (i = 0; i < FM801_CONTROLS_MULTI; i++)
1226                         snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip));
1227         }
1228         return 0;
1229 }
1230
1231 /*
1232  *  initialization routines
1233  */
1234
1235 static int wait_for_codec(struct fm801 *chip, unsigned int codec_id,
1236                           unsigned short reg, unsigned long waits)
1237 {
1238         unsigned long timeout = jiffies + waits;
1239
1240         outw(FM801_AC97_READ | (codec_id << FM801_AC97_ADDR_SHIFT) | reg,
1241              FM801_REG(chip, AC97_CMD));
1242         udelay(5);
1243         do {
1244                 if ((inw(FM801_REG(chip, AC97_CMD)) & (FM801_AC97_VALID|FM801_AC97_BUSY))
1245                     == FM801_AC97_VALID)
1246                         return 0;
1247                 schedule_timeout_uninterruptible(1);
1248         } while (time_after(timeout, jiffies));
1249         return -EIO;
1250 }
1251
1252 static int snd_fm801_chip_init(struct fm801 *chip, int resume)
1253 {
1254         int id;
1255         unsigned short cmdw;
1256
1257         if (chip->tea575x_tuner & 0x0010)
1258                 goto __ac97_ok;
1259
1260         /* codec cold reset + AC'97 warm reset */
1261         outw((1<<5) | (1<<6), FM801_REG(chip, CODEC_CTRL));
1262         inw(FM801_REG(chip, CODEC_CTRL)); /* flush posting data */
1263         udelay(100);
1264         outw(0, FM801_REG(chip, CODEC_CTRL));
1265
1266         if (wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)) < 0) {
1267                 snd_printk(KERN_ERR "Primary AC'97 codec not found\n");
1268                 if (! resume)
1269                         return -EIO;
1270         }
1271
1272         if (chip->multichannel) {
1273                 if (chip->secondary_addr) {
1274                         wait_for_codec(chip, chip->secondary_addr,
1275                                        AC97_VENDOR_ID1, msecs_to_jiffies(50));
1276                 } else {
1277                         /* my card has the secondary codec */
1278                         /* at address #3, so the loop is inverted */
1279                         for (id = 3; id > 0; id--) {
1280                                 if (! wait_for_codec(chip, id, AC97_VENDOR_ID1,
1281                                                      msecs_to_jiffies(50))) {
1282                                         cmdw = inw(FM801_REG(chip, AC97_DATA));
1283                                         if (cmdw != 0xffff && cmdw != 0) {
1284                                                 chip->secondary = 1;
1285                                                 chip->secondary_addr = id;
1286                                                 break;
1287                                         }
1288                                 }
1289                         }
1290                 }
1291
1292                 /* the recovery phase, it seems that probing for non-existing codec might */
1293                 /* cause timeout problems */
1294                 wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750));
1295         }
1296
1297       __ac97_ok:
1298
1299         /* init volume */
1300         outw(0x0808, FM801_REG(chip, PCM_VOL));
1301         outw(0x9f1f, FM801_REG(chip, FM_VOL));
1302         outw(0x8808, FM801_REG(chip, I2S_VOL));
1303
1304         /* I2S control - I2S mode */
1305         outw(0x0003, FM801_REG(chip, I2S_MODE));
1306
1307         /* interrupt setup */
1308         cmdw = inw(FM801_REG(chip, IRQ_MASK));
1309         if (chip->irq < 0)
1310                 cmdw |= 0x00c3;         /* mask everything, no PCM nor MPU */
1311         else
1312                 cmdw &= ~0x0083;        /* unmask MPU, PLAYBACK & CAPTURE */
1313         outw(cmdw, FM801_REG(chip, IRQ_MASK));
1314
1315         /* interrupt clear */
1316         outw(FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU, FM801_REG(chip, IRQ_STATUS));
1317
1318         return 0;
1319 }
1320
1321
1322 static int snd_fm801_free(struct fm801 *chip)
1323 {
1324         unsigned short cmdw;
1325
1326         if (chip->irq < 0)
1327                 goto __end_hw;
1328
1329         /* interrupt setup - mask everything */
1330         cmdw = inw(FM801_REG(chip, IRQ_MASK));
1331         cmdw |= 0x00c3;
1332         outw(cmdw, FM801_REG(chip, IRQ_MASK));
1333
1334       __end_hw:
1335 #ifdef TEA575X_RADIO
1336         snd_tea575x_exit(&chip->tea);
1337 #endif
1338         if (chip->irq >= 0)
1339                 free_irq(chip->irq, chip);
1340         pci_release_regions(chip->pci);
1341         pci_disable_device(chip->pci);
1342
1343         kfree(chip);
1344         return 0;
1345 }
1346
1347 static int snd_fm801_dev_free(struct snd_device *device)
1348 {
1349         struct fm801 *chip = device->device_data;
1350         return snd_fm801_free(chip);
1351 }
1352
1353 static int __devinit snd_fm801_create(struct snd_card *card,
1354                                       struct pci_dev * pci,
1355                                       int tea575x_tuner,
1356                                       struct fm801 ** rchip)
1357 {
1358         struct fm801 *chip;
1359         unsigned char rev;
1360         int err;
1361         static struct snd_device_ops ops = {
1362                 .dev_free =     snd_fm801_dev_free,
1363         };
1364
1365         *rchip = NULL;
1366         if ((err = pci_enable_device(pci)) < 0)
1367                 return err;
1368         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1369         if (chip == NULL) {
1370                 pci_disable_device(pci);
1371                 return -ENOMEM;
1372         }
1373         spin_lock_init(&chip->reg_lock);
1374         chip->card = card;
1375         chip->pci = pci;
1376         chip->irq = -1;
1377         chip->tea575x_tuner = tea575x_tuner;
1378         if ((err = pci_request_regions(pci, "FM801")) < 0) {
1379                 kfree(chip);
1380                 pci_disable_device(pci);
1381                 return err;
1382         }
1383         chip->port = pci_resource_start(pci, 0);
1384         if ((tea575x_tuner & 0x0010) == 0) {
1385                 if (request_irq(pci->irq, snd_fm801_interrupt, IRQF_DISABLED|IRQF_SHARED,
1386                                 "FM801", chip)) {
1387                         snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->irq);
1388                         snd_fm801_free(chip);
1389                         return -EBUSY;
1390                 }
1391                 chip->irq = pci->irq;
1392                 pci_set_master(pci);
1393         }
1394
1395         pci_read_config_byte(pci, PCI_REVISION_ID, &rev);
1396         if (rev >= 0xb1)        /* FM801-AU */
1397                 chip->multichannel = 1;
1398
1399         snd_fm801_chip_init(chip, 0);
1400
1401         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
1402                 snd_fm801_free(chip);
1403                 return err;
1404         }
1405
1406         snd_card_set_dev(card, &pci->dev);
1407
1408 #ifdef TEA575X_RADIO
1409         if (tea575x_tuner > 0 && (tea575x_tuner & 0x000f) < 4) {
1410                 chip->tea.dev_nr = tea575x_tuner >> 16;
1411                 chip->tea.card = card;
1412                 chip->tea.freq_fixup = 10700;
1413                 chip->tea.private_data = chip;
1414                 chip->tea.ops = &snd_fm801_tea_ops[(tea575x_tuner & 0x000f) - 1];
1415                 snd_tea575x_init(&chip->tea);
1416         }
1417 #endif
1418
1419         *rchip = chip;
1420         return 0;
1421 }
1422
1423 static int __devinit snd_card_fm801_probe(struct pci_dev *pci,
1424                                           const struct pci_device_id *pci_id)
1425 {
1426         static int dev;
1427         struct snd_card *card;
1428         struct fm801 *chip;
1429         struct snd_opl3 *opl3;
1430         int err;
1431
1432         if (dev >= SNDRV_CARDS)
1433                 return -ENODEV;
1434         if (!enable[dev]) {
1435                 dev++;
1436                 return -ENOENT;
1437         }
1438
1439         card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
1440         if (card == NULL)
1441                 return -ENOMEM;
1442         if ((err = snd_fm801_create(card, pci, tea575x_tuner[dev], &chip)) < 0) {
1443                 snd_card_free(card);
1444                 return err;
1445         }
1446         card->private_data = chip;
1447
1448         strcpy(card->driver, "FM801");
1449         strcpy(card->shortname, "ForteMedia FM801-");
1450         strcat(card->shortname, chip->multichannel ? "AU" : "AS");
1451         sprintf(card->longname, "%s at 0x%lx, irq %i",
1452                 card->shortname, chip->port, chip->irq);
1453
1454         if (tea575x_tuner[dev] & 0x0010)
1455                 goto __fm801_tuner_only;
1456
1457         if ((err = snd_fm801_pcm(chip, 0, NULL)) < 0) {
1458                 snd_card_free(card);
1459                 return err;
1460         }
1461         if ((err = snd_fm801_mixer(chip)) < 0) {
1462                 snd_card_free(card);
1463                 return err;
1464         }
1465         if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801,
1466                                        FM801_REG(chip, MPU401_DATA),
1467                                        MPU401_INFO_INTEGRATED,
1468                                        chip->irq, 0, &chip->rmidi)) < 0) {
1469                 snd_card_free(card);
1470                 return err;
1471         }
1472         if ((err = snd_opl3_create(card, FM801_REG(chip, OPL3_BANK0),
1473                                    FM801_REG(chip, OPL3_BANK1),
1474                                    OPL3_HW_OPL3_FM801, 1, &opl3)) < 0) {
1475                 snd_card_free(card);
1476                 return err;
1477         }
1478         if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
1479                 snd_card_free(card);
1480                 return err;
1481         }
1482
1483       __fm801_tuner_only:
1484         if ((err = snd_card_register(card)) < 0) {
1485                 snd_card_free(card);
1486                 return err;
1487         }
1488         pci_set_drvdata(pci, card);
1489         dev++;
1490         return 0;
1491 }
1492
1493 static void __devexit snd_card_fm801_remove(struct pci_dev *pci)
1494 {
1495         snd_card_free(pci_get_drvdata(pci));
1496         pci_set_drvdata(pci, NULL);
1497 }
1498
1499 #ifdef CONFIG_PM
1500 static unsigned char saved_regs[] = {
1501         FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC,
1502         FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2,
1503         FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2,
1504         FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL,
1505 };
1506
1507 static int snd_fm801_suspend(struct pci_dev *pci, pm_message_t state)
1508 {
1509         struct snd_card *card = pci_get_drvdata(pci);
1510         struct fm801 *chip = card->private_data;
1511         int i;
1512
1513         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1514         snd_pcm_suspend_all(chip->pcm);
1515         snd_ac97_suspend(chip->ac97);
1516         snd_ac97_suspend(chip->ac97_sec);
1517         for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1518                 chip->saved_regs[i] = inw(chip->port + saved_regs[i]);
1519         /* FIXME: tea575x suspend */
1520
1521         pci_set_power_state(pci, PCI_D3hot);
1522         pci_disable_device(pci);
1523         pci_save_state(pci);
1524         return 0;
1525 }
1526
1527 static int snd_fm801_resume(struct pci_dev *pci)
1528 {
1529         struct snd_card *card = pci_get_drvdata(pci);
1530         struct fm801 *chip = card->private_data;
1531         int i;
1532
1533         pci_restore_state(pci);
1534         pci_enable_device(pci);
1535         pci_set_power_state(pci, PCI_D0);
1536         pci_set_master(pci);
1537
1538         snd_fm801_chip_init(chip, 1);
1539         snd_ac97_resume(chip->ac97);
1540         snd_ac97_resume(chip->ac97_sec);
1541         for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1542                 outw(chip->saved_regs[i], chip->port + saved_regs[i]);
1543
1544         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1545         return 0;
1546 }
1547 #endif
1548
1549 static struct pci_driver driver = {
1550         .name = "FM801",
1551         .id_table = snd_fm801_ids,
1552         .probe = snd_card_fm801_probe,
1553         .remove = __devexit_p(snd_card_fm801_remove),
1554 #ifdef CONFIG_PM
1555         .suspend = snd_fm801_suspend,
1556         .resume = snd_fm801_resume,
1557 #endif
1558 };
1559
1560 static int __init alsa_card_fm801_init(void)
1561 {
1562         return pci_register_driver(&driver);
1563 }
1564
1565 static void __exit alsa_card_fm801_exit(void)
1566 {
1567         pci_unregister_driver(&driver);
1568 }
1569
1570 module_init(alsa_card_fm801_init)
1571 module_exit(alsa_card_fm801_exit)