2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
34 * The Gianfar Ethernet Controller uses a ring of buffer
35 * descriptors. The beginning is indicated by a register
36 * pointing to the physical address of the start of the ring.
37 * The end is determined by a "wrap" bit being set in the
38 * last descriptor of the ring.
40 * When a packet is received, the RXF bit in the
41 * IEVENT register is set, triggering an interrupt when the
42 * corresponding bit in the IMASK register is also set (if
43 * interrupt coalescing is active, then the interrupt may not
44 * happen immediately, but will wait until either a set number
45 * of frames or amount of time have passed). In NAPI, the
46 * interrupt handler will signal there is work to be done, and
47 * exit. This method will start at the last known empty
48 * descriptor, and process every subsequent descriptor until there
49 * are none left with data (NAPI will stop after a set number of
50 * packets to give time to other tasks, but will eventually
51 * process all the packets). The data arrives inside a
52 * pre-allocated skb, and so after the skb is passed up to the
53 * stack, a new skb must be allocated, and the address field in
54 * the buffer descriptor must be updated to indicate this new
57 * When the kernel requests that a packet be transmitted, the
58 * driver starts where it left off last time, and points the
59 * descriptor at the buffer which was passed in. The driver
60 * then informs the DMA engine that there are packets ready to
61 * be transmitted. Once the controller is finished transmitting
62 * the packet, an interrupt may be triggered (under the same
63 * conditions as for reception, but depending on the TXF bit).
64 * The driver then cleans up the buffer.
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
81 #include <linux/platform_device.h>
83 #include <linux/tcp.h>
84 #include <linux/udp.h>
89 #include <asm/uaccess.h>
90 #include <linux/module.h>
91 #include <linux/dma-mapping.h>
92 #include <linux/crc32.h>
93 #include <linux/mii.h>
94 #include <linux/phy.h>
97 #include "gianfar_mii.h"
99 #define TX_TIMEOUT (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_reset_task(struct work_struct *work);
109 static void gfar_timeout(struct net_device *dev);
110 static int gfar_close(struct net_device *dev);
111 struct sk_buff *gfar_new_skb(struct net_device *dev);
112 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
113 struct sk_buff *skb);
114 static int gfar_set_mac_address(struct net_device *dev);
115 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
116 static irqreturn_t gfar_error(int irq, void *dev_id);
117 static irqreturn_t gfar_transmit(int irq, void *dev_id);
118 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
119 static void adjust_link(struct net_device *dev);
120 static void init_registers(struct net_device *dev);
121 static int init_phy(struct net_device *dev);
122 static int gfar_probe(struct platform_device *pdev);
123 static int gfar_remove(struct platform_device *pdev);
124 static void free_skb_resources(struct gfar_private *priv);
125 static void gfar_set_multi(struct net_device *dev);
126 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
127 static void gfar_configure_serdes(struct net_device *dev);
128 static int gfar_poll(struct napi_struct *napi, int budget);
129 #ifdef CONFIG_NET_POLL_CONTROLLER
130 static void gfar_netpoll(struct net_device *dev);
132 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
133 static int gfar_clean_tx_ring(struct net_device *dev);
134 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
135 static void gfar_vlan_rx_register(struct net_device *netdev,
136 struct vlan_group *grp);
137 void gfar_halt(struct net_device *dev);
138 static void gfar_halt_nodisable(struct net_device *dev);
139 void gfar_start(struct net_device *dev);
140 static void gfar_clear_exact_match(struct net_device *dev);
141 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
143 extern const struct ethtool_ops gfar_ethtool_ops;
145 MODULE_AUTHOR("Freescale Semiconductor, Inc");
146 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
147 MODULE_LICENSE("GPL");
149 /* Returns 1 if incoming frames use an FCB */
150 static inline int gfar_uses_fcb(struct gfar_private *priv)
152 return (priv->vlan_enable || priv->rx_csum_enable);
155 /* Set up the ethernet device structure, private data,
156 * and anything else we need before we start */
157 static int gfar_probe(struct platform_device *pdev)
160 struct net_device *dev = NULL;
161 struct gfar_private *priv = NULL;
162 struct gianfar_platform_data *einfo;
165 DECLARE_MAC_BUF(mac);
167 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
170 printk(KERN_ERR "gfar %d: Missing additional data!\n",
176 /* Create an ethernet device instance */
177 dev = alloc_etherdev(sizeof (*priv));
182 priv = netdev_priv(dev);
185 /* Set the info in the priv to the current info */
188 /* fill out IRQ fields */
189 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
190 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
191 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
192 priv->interruptError = platform_get_irq_byname(pdev, "error");
193 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
196 priv->interruptTransmit = platform_get_irq(pdev, 0);
197 if (priv->interruptTransmit < 0)
201 /* get a pointer to the register memory */
202 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
203 priv->regs = ioremap(r->start, sizeof (struct gfar));
205 if (NULL == priv->regs) {
210 spin_lock_init(&priv->txlock);
211 spin_lock_init(&priv->rxlock);
212 spin_lock_init(&priv->bflock);
213 INIT_WORK(&priv->reset_task, gfar_reset_task);
215 platform_set_drvdata(pdev, dev);
217 /* Stop the DMA engine now, in case it was running before */
218 /* (The firmware could have used it, and left it running). */
219 /* To do this, we write Graceful Receive Stop and Graceful */
220 /* Transmit Stop, and then wait until the corresponding bits */
221 /* in IEVENT indicate the stops have completed. */
222 tempval = gfar_read(&priv->regs->dmactrl);
223 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
224 gfar_write(&priv->regs->dmactrl, tempval);
226 tempval = gfar_read(&priv->regs->dmactrl);
227 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
228 gfar_write(&priv->regs->dmactrl, tempval);
230 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
233 /* Reset MAC layer */
234 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
236 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
237 gfar_write(&priv->regs->maccfg1, tempval);
239 /* Initialize MACCFG2. */
240 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
242 /* Initialize ECNTRL */
243 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
245 /* Copy the station address into the dev structure, */
246 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
248 /* Set the dev->base_addr to the gfar reg region */
249 dev->base_addr = (unsigned long) (priv->regs);
251 SET_NETDEV_DEV(dev, &pdev->dev);
253 /* Fill in the dev structure */
254 dev->open = gfar_enet_open;
255 dev->hard_start_xmit = gfar_start_xmit;
256 dev->tx_timeout = gfar_timeout;
257 dev->watchdog_timeo = TX_TIMEOUT;
258 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
259 #ifdef CONFIG_NET_POLL_CONTROLLER
260 dev->poll_controller = gfar_netpoll;
262 dev->stop = gfar_close;
263 dev->change_mtu = gfar_change_mtu;
265 dev->set_multicast_list = gfar_set_multi;
267 dev->ethtool_ops = &gfar_ethtool_ops;
269 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
270 priv->rx_csum_enable = 1;
271 dev->features |= NETIF_F_IP_CSUM;
273 priv->rx_csum_enable = 0;
277 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
278 dev->vlan_rx_register = gfar_vlan_rx_register;
280 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
282 priv->vlan_enable = 1;
285 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
286 priv->extended_hash = 1;
287 priv->hash_width = 9;
289 priv->hash_regs[0] = &priv->regs->igaddr0;
290 priv->hash_regs[1] = &priv->regs->igaddr1;
291 priv->hash_regs[2] = &priv->regs->igaddr2;
292 priv->hash_regs[3] = &priv->regs->igaddr3;
293 priv->hash_regs[4] = &priv->regs->igaddr4;
294 priv->hash_regs[5] = &priv->regs->igaddr5;
295 priv->hash_regs[6] = &priv->regs->igaddr6;
296 priv->hash_regs[7] = &priv->regs->igaddr7;
297 priv->hash_regs[8] = &priv->regs->gaddr0;
298 priv->hash_regs[9] = &priv->regs->gaddr1;
299 priv->hash_regs[10] = &priv->regs->gaddr2;
300 priv->hash_regs[11] = &priv->regs->gaddr3;
301 priv->hash_regs[12] = &priv->regs->gaddr4;
302 priv->hash_regs[13] = &priv->regs->gaddr5;
303 priv->hash_regs[14] = &priv->regs->gaddr6;
304 priv->hash_regs[15] = &priv->regs->gaddr7;
307 priv->extended_hash = 0;
308 priv->hash_width = 8;
310 priv->hash_regs[0] = &priv->regs->gaddr0;
311 priv->hash_regs[1] = &priv->regs->gaddr1;
312 priv->hash_regs[2] = &priv->regs->gaddr2;
313 priv->hash_regs[3] = &priv->regs->gaddr3;
314 priv->hash_regs[4] = &priv->regs->gaddr4;
315 priv->hash_regs[5] = &priv->regs->gaddr5;
316 priv->hash_regs[6] = &priv->regs->gaddr6;
317 priv->hash_regs[7] = &priv->regs->gaddr7;
320 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
321 priv->padding = DEFAULT_PADDING;
325 if (dev->features & NETIF_F_IP_CSUM)
326 dev->hard_header_len += GMAC_FCB_LEN;
328 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
329 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
330 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
332 priv->txcoalescing = DEFAULT_TX_COALESCE;
333 priv->txcount = DEFAULT_TXCOUNT;
334 priv->txtime = DEFAULT_TXTIME;
335 priv->rxcoalescing = DEFAULT_RX_COALESCE;
336 priv->rxcount = DEFAULT_RXCOUNT;
337 priv->rxtime = DEFAULT_RXTIME;
339 /* Enable most messages by default */
340 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
342 err = register_netdev(dev);
345 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
350 /* Create all the sysfs files */
351 gfar_init_sysfs(dev);
353 /* Print out the device info */
354 printk(KERN_INFO DEVICE_NAME "%s\n",
355 dev->name, print_mac(mac, dev->dev_addr));
357 /* Even more device info helps when determining which kernel */
358 /* provided which set of benchmarks. */
359 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
360 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
361 dev->name, priv->rx_ring_size, priv->tx_ring_size);
372 static int gfar_remove(struct platform_device *pdev)
374 struct net_device *dev = platform_get_drvdata(pdev);
375 struct gfar_private *priv = netdev_priv(dev);
377 platform_set_drvdata(pdev, NULL);
386 static int gfar_suspend(struct platform_device *pdev, pm_message_t state)
388 struct net_device *dev = platform_get_drvdata(pdev);
389 struct gfar_private *priv = netdev_priv(dev);
393 int magic_packet = priv->wol_en &&
394 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
396 netif_device_detach(dev);
398 if (netif_running(dev)) {
399 spin_lock_irqsave(&priv->txlock, flags);
400 spin_lock(&priv->rxlock);
402 gfar_halt_nodisable(dev);
404 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
405 tempval = gfar_read(&priv->regs->maccfg1);
407 tempval &= ~MACCFG1_TX_EN;
410 tempval &= ~MACCFG1_RX_EN;
412 gfar_write(&priv->regs->maccfg1, tempval);
414 spin_unlock(&priv->rxlock);
415 spin_unlock_irqrestore(&priv->txlock, flags);
417 napi_disable(&priv->napi);
420 /* Enable interrupt on Magic Packet */
421 gfar_write(&priv->regs->imask, IMASK_MAG);
423 /* Enable Magic Packet mode */
424 tempval = gfar_read(&priv->regs->maccfg2);
425 tempval |= MACCFG2_MPEN;
426 gfar_write(&priv->regs->maccfg2, tempval);
428 phy_stop(priv->phydev);
435 static int gfar_resume(struct platform_device *pdev)
437 struct net_device *dev = platform_get_drvdata(pdev);
438 struct gfar_private *priv = netdev_priv(dev);
441 int magic_packet = priv->wol_en &&
442 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
444 if (!netif_running(dev)) {
445 netif_device_attach(dev);
449 if (!magic_packet && priv->phydev)
450 phy_start(priv->phydev);
452 /* Disable Magic Packet mode, in case something
456 spin_lock_irqsave(&priv->txlock, flags);
457 spin_lock(&priv->rxlock);
459 tempval = gfar_read(&priv->regs->maccfg2);
460 tempval &= ~MACCFG2_MPEN;
461 gfar_write(&priv->regs->maccfg2, tempval);
465 spin_unlock(&priv->rxlock);
466 spin_unlock_irqrestore(&priv->txlock, flags);
468 netif_device_attach(dev);
470 napi_enable(&priv->napi);
475 #define gfar_suspend NULL
476 #define gfar_resume NULL
479 /* Reads the controller's registers to determine what interface
480 * connects it to the PHY.
482 static phy_interface_t gfar_get_interface(struct net_device *dev)
484 struct gfar_private *priv = netdev_priv(dev);
485 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
487 if (ecntrl & ECNTRL_SGMII_MODE)
488 return PHY_INTERFACE_MODE_SGMII;
490 if (ecntrl & ECNTRL_TBI_MODE) {
491 if (ecntrl & ECNTRL_REDUCED_MODE)
492 return PHY_INTERFACE_MODE_RTBI;
494 return PHY_INTERFACE_MODE_TBI;
497 if (ecntrl & ECNTRL_REDUCED_MODE) {
498 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
499 return PHY_INTERFACE_MODE_RMII;
501 phy_interface_t interface = priv->einfo->interface;
504 * This isn't autodetected right now, so it must
505 * be set by the device tree or platform code.
507 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
508 return PHY_INTERFACE_MODE_RGMII_ID;
510 return PHY_INTERFACE_MODE_RGMII;
514 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
515 return PHY_INTERFACE_MODE_GMII;
517 return PHY_INTERFACE_MODE_MII;
521 /* Initializes driver's PHY state, and attaches to the PHY.
522 * Returns 0 on success.
524 static int init_phy(struct net_device *dev)
526 struct gfar_private *priv = netdev_priv(dev);
527 uint gigabit_support =
528 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
529 SUPPORTED_1000baseT_Full : 0;
530 struct phy_device *phydev;
531 char phy_id[BUS_ID_SIZE];
532 phy_interface_t interface;
536 priv->oldduplex = -1;
538 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
540 interface = gfar_get_interface(dev);
542 phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
544 if (interface == PHY_INTERFACE_MODE_SGMII)
545 gfar_configure_serdes(dev);
547 if (IS_ERR(phydev)) {
548 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
549 return PTR_ERR(phydev);
552 /* Remove any features not supported by the controller */
553 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
554 phydev->advertising = phydev->supported;
556 priv->phydev = phydev;
562 * Initialize TBI PHY interface for communicating with the
563 * SERDES lynx PHY on the chip. We communicate with this PHY
564 * through the MDIO bus on each controller, treating it as a
565 * "normal" PHY at the address found in the TBIPA register. We assume
566 * that the TBIPA register is valid. Either the MDIO bus code will set
567 * it to a value that doesn't conflict with other PHYs on the bus, or the
568 * value doesn't matter, as there are no other PHYs on the bus.
570 static void gfar_configure_serdes(struct net_device *dev)
572 struct gfar_private *priv = netdev_priv(dev);
573 struct gfar_mii __iomem *regs =
574 (void __iomem *)&priv->regs->gfar_mii_regs;
575 int tbipa = gfar_read(&priv->regs->tbipa);
577 /* Single clk mode, mii mode off(for serdes communication) */
578 gfar_local_mdio_write(regs, tbipa, MII_TBICON, TBICON_CLK_SELECT);
580 gfar_local_mdio_write(regs, tbipa, MII_ADVERTISE,
581 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
582 ADVERTISE_1000XPSE_ASYM);
584 gfar_local_mdio_write(regs, tbipa, MII_BMCR, BMCR_ANENABLE |
585 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
588 static void init_registers(struct net_device *dev)
590 struct gfar_private *priv = netdev_priv(dev);
593 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
595 /* Initialize IMASK */
596 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
598 /* Init hash registers to zero */
599 gfar_write(&priv->regs->igaddr0, 0);
600 gfar_write(&priv->regs->igaddr1, 0);
601 gfar_write(&priv->regs->igaddr2, 0);
602 gfar_write(&priv->regs->igaddr3, 0);
603 gfar_write(&priv->regs->igaddr4, 0);
604 gfar_write(&priv->regs->igaddr5, 0);
605 gfar_write(&priv->regs->igaddr6, 0);
606 gfar_write(&priv->regs->igaddr7, 0);
608 gfar_write(&priv->regs->gaddr0, 0);
609 gfar_write(&priv->regs->gaddr1, 0);
610 gfar_write(&priv->regs->gaddr2, 0);
611 gfar_write(&priv->regs->gaddr3, 0);
612 gfar_write(&priv->regs->gaddr4, 0);
613 gfar_write(&priv->regs->gaddr5, 0);
614 gfar_write(&priv->regs->gaddr6, 0);
615 gfar_write(&priv->regs->gaddr7, 0);
617 /* Zero out the rmon mib registers if it has them */
618 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
619 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
621 /* Mask off the CAM interrupts */
622 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
623 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
626 /* Initialize the max receive buffer length */
627 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
629 /* Initialize the Minimum Frame Length Register */
630 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
634 /* Halt the receive and transmit queues */
635 static void gfar_halt_nodisable(struct net_device *dev)
637 struct gfar_private *priv = netdev_priv(dev);
638 struct gfar __iomem *regs = priv->regs;
641 /* Mask all interrupts */
642 gfar_write(®s->imask, IMASK_INIT_CLEAR);
644 /* Clear all interrupts */
645 gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
647 /* Stop the DMA, and wait for it to stop */
648 tempval = gfar_read(&priv->regs->dmactrl);
649 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
650 != (DMACTRL_GRS | DMACTRL_GTS)) {
651 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
652 gfar_write(&priv->regs->dmactrl, tempval);
654 while (!(gfar_read(&priv->regs->ievent) &
655 (IEVENT_GRSC | IEVENT_GTSC)))
660 /* Halt the receive and transmit queues */
661 void gfar_halt(struct net_device *dev)
663 struct gfar_private *priv = netdev_priv(dev);
664 struct gfar __iomem *regs = priv->regs;
667 gfar_halt_nodisable(dev);
669 /* Disable Rx and Tx */
670 tempval = gfar_read(®s->maccfg1);
671 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
672 gfar_write(®s->maccfg1, tempval);
675 void stop_gfar(struct net_device *dev)
677 struct gfar_private *priv = netdev_priv(dev);
678 struct gfar __iomem *regs = priv->regs;
681 phy_stop(priv->phydev);
684 spin_lock_irqsave(&priv->txlock, flags);
685 spin_lock(&priv->rxlock);
689 spin_unlock(&priv->rxlock);
690 spin_unlock_irqrestore(&priv->txlock, flags);
693 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
694 free_irq(priv->interruptError, dev);
695 free_irq(priv->interruptTransmit, dev);
696 free_irq(priv->interruptReceive, dev);
698 free_irq(priv->interruptTransmit, dev);
701 free_skb_resources(priv);
703 dma_free_coherent(&dev->dev,
704 sizeof(struct txbd8)*priv->tx_ring_size
705 + sizeof(struct rxbd8)*priv->rx_ring_size,
707 gfar_read(®s->tbase0));
710 /* If there are any tx skbs or rx skbs still around, free them.
711 * Then free tx_skbuff and rx_skbuff */
712 static void free_skb_resources(struct gfar_private *priv)
718 /* Go through all the buffer descriptors and free their data buffers */
719 txbdp = priv->tx_bd_base;
721 for (i = 0; i < priv->tx_ring_size; i++) {
723 if (priv->tx_skbuff[i]) {
724 dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
727 dev_kfree_skb_any(priv->tx_skbuff[i]);
728 priv->tx_skbuff[i] = NULL;
734 kfree(priv->tx_skbuff);
736 rxbdp = priv->rx_bd_base;
738 /* rx_skbuff is not guaranteed to be allocated, so only
739 * free it and its contents if it is allocated */
740 if(priv->rx_skbuff != NULL) {
741 for (i = 0; i < priv->rx_ring_size; i++) {
742 if (priv->rx_skbuff[i]) {
743 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
744 priv->rx_buffer_size,
747 dev_kfree_skb_any(priv->rx_skbuff[i]);
748 priv->rx_skbuff[i] = NULL;
758 kfree(priv->rx_skbuff);
762 void gfar_start(struct net_device *dev)
764 struct gfar_private *priv = netdev_priv(dev);
765 struct gfar __iomem *regs = priv->regs;
768 /* Enable Rx and Tx in MACCFG1 */
769 tempval = gfar_read(®s->maccfg1);
770 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
771 gfar_write(®s->maccfg1, tempval);
773 /* Initialize DMACTRL to have WWR and WOP */
774 tempval = gfar_read(&priv->regs->dmactrl);
775 tempval |= DMACTRL_INIT_SETTINGS;
776 gfar_write(&priv->regs->dmactrl, tempval);
778 /* Make sure we aren't stopped */
779 tempval = gfar_read(&priv->regs->dmactrl);
780 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
781 gfar_write(&priv->regs->dmactrl, tempval);
783 /* Clear THLT/RHLT, so that the DMA starts polling now */
784 gfar_write(®s->tstat, TSTAT_CLEAR_THALT);
785 gfar_write(®s->rstat, RSTAT_CLEAR_RHALT);
787 /* Unmask the interrupts we look for */
788 gfar_write(®s->imask, IMASK_DEFAULT);
791 /* Bring the controller up and running */
792 int startup_gfar(struct net_device *dev)
799 struct gfar_private *priv = netdev_priv(dev);
800 struct gfar __iomem *regs = priv->regs;
805 gfar_write(®s->imask, IMASK_INIT_CLEAR);
807 /* Allocate memory for the buffer descriptors */
808 vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
809 sizeof (struct txbd8) * priv->tx_ring_size +
810 sizeof (struct rxbd8) * priv->rx_ring_size,
814 if (netif_msg_ifup(priv))
815 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
820 priv->tx_bd_base = (struct txbd8 *) vaddr;
822 /* enet DMA only understands physical addresses */
823 gfar_write(®s->tbase0, addr);
825 /* Start the rx descriptor ring where the tx ring leaves off */
826 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
827 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
828 priv->rx_bd_base = (struct rxbd8 *) vaddr;
829 gfar_write(®s->rbase0, addr);
831 /* Setup the skbuff rings */
833 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
834 priv->tx_ring_size, GFP_KERNEL);
836 if (NULL == priv->tx_skbuff) {
837 if (netif_msg_ifup(priv))
838 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
844 for (i = 0; i < priv->tx_ring_size; i++)
845 priv->tx_skbuff[i] = NULL;
848 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
849 priv->rx_ring_size, GFP_KERNEL);
851 if (NULL == priv->rx_skbuff) {
852 if (netif_msg_ifup(priv))
853 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
859 for (i = 0; i < priv->rx_ring_size; i++)
860 priv->rx_skbuff[i] = NULL;
862 /* Initialize some variables in our dev structure */
863 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
864 priv->cur_rx = priv->rx_bd_base;
865 priv->skb_curtx = priv->skb_dirtytx = 0;
868 /* Initialize Transmit Descriptor Ring */
869 txbdp = priv->tx_bd_base;
870 for (i = 0; i < priv->tx_ring_size; i++) {
877 /* Set the last descriptor in the ring to indicate wrap */
879 txbdp->status |= TXBD_WRAP;
881 rxbdp = priv->rx_bd_base;
882 for (i = 0; i < priv->rx_ring_size; i++) {
885 skb = gfar_new_skb(dev);
888 printk(KERN_ERR "%s: Can't allocate RX buffers\n",
891 goto err_rxalloc_fail;
894 priv->rx_skbuff[i] = skb;
896 gfar_new_rxbdp(dev, rxbdp, skb);
901 /* Set the last descriptor in the ring to wrap */
903 rxbdp->status |= RXBD_WRAP;
905 /* If the device has multiple interrupts, register for
906 * them. Otherwise, only register for the one */
907 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
908 /* Install our interrupt handlers for Error,
909 * Transmit, and Receive */
910 if (request_irq(priv->interruptError, gfar_error,
911 0, "enet_error", dev) < 0) {
912 if (netif_msg_intr(priv))
913 printk(KERN_ERR "%s: Can't get IRQ %d\n",
914 dev->name, priv->interruptError);
920 if (request_irq(priv->interruptTransmit, gfar_transmit,
921 0, "enet_tx", dev) < 0) {
922 if (netif_msg_intr(priv))
923 printk(KERN_ERR "%s: Can't get IRQ %d\n",
924 dev->name, priv->interruptTransmit);
931 if (request_irq(priv->interruptReceive, gfar_receive,
932 0, "enet_rx", dev) < 0) {
933 if (netif_msg_intr(priv))
934 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
935 dev->name, priv->interruptReceive);
941 if (request_irq(priv->interruptTransmit, gfar_interrupt,
942 0, "gfar_interrupt", dev) < 0) {
943 if (netif_msg_intr(priv))
944 printk(KERN_ERR "%s: Can't get IRQ %d\n",
945 dev->name, priv->interruptError);
952 phy_start(priv->phydev);
954 /* Configure the coalescing support */
955 if (priv->txcoalescing)
956 gfar_write(®s->txic,
957 mk_ic_value(priv->txcount, priv->txtime));
959 gfar_write(®s->txic, 0);
961 if (priv->rxcoalescing)
962 gfar_write(®s->rxic,
963 mk_ic_value(priv->rxcount, priv->rxtime));
965 gfar_write(®s->rxic, 0);
967 if (priv->rx_csum_enable)
968 rctrl |= RCTRL_CHECKSUMMING;
970 if (priv->extended_hash) {
971 rctrl |= RCTRL_EXTHASH;
973 gfar_clear_exact_match(dev);
977 if (priv->vlan_enable)
981 rctrl &= ~RCTRL_PAL_MASK;
982 rctrl |= RCTRL_PADDING(priv->padding);
985 /* Init rctrl based on our settings */
986 gfar_write(&priv->regs->rctrl, rctrl);
988 if (dev->features & NETIF_F_IP_CSUM)
989 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
991 /* Set the extraction length and index */
992 attrs = ATTRELI_EL(priv->rx_stash_size) |
993 ATTRELI_EI(priv->rx_stash_index);
995 gfar_write(&priv->regs->attreli, attrs);
997 /* Start with defaults, and add stashing or locking
998 * depending on the approprate variables */
999 attrs = ATTR_INIT_SETTINGS;
1001 if (priv->bd_stash_en)
1002 attrs |= ATTR_BDSTASH;
1004 if (priv->rx_stash_size != 0)
1005 attrs |= ATTR_BUFSTASH;
1007 gfar_write(&priv->regs->attr, attrs);
1009 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1010 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1011 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1013 /* Start the controller */
1019 free_irq(priv->interruptTransmit, dev);
1021 free_irq(priv->interruptError, dev);
1025 free_skb_resources(priv);
1027 dma_free_coherent(&dev->dev,
1028 sizeof(struct txbd8)*priv->tx_ring_size
1029 + sizeof(struct rxbd8)*priv->rx_ring_size,
1031 gfar_read(®s->tbase0));
1036 /* Called when something needs to use the ethernet device */
1037 /* Returns 0 for success. */
1038 static int gfar_enet_open(struct net_device *dev)
1040 struct gfar_private *priv = netdev_priv(dev);
1043 napi_enable(&priv->napi);
1045 /* Initialize a bunch of registers */
1046 init_registers(dev);
1048 gfar_set_mac_address(dev);
1050 err = init_phy(dev);
1053 napi_disable(&priv->napi);
1057 err = startup_gfar(dev);
1059 napi_disable(&priv->napi);
1063 netif_start_queue(dev);
1068 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
1070 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1072 memset(fcb, 0, GMAC_FCB_LEN);
1077 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1081 /* If we're here, it's a IP packet with a TCP or UDP
1082 * payload. We set it to checksum, using a pseudo-header
1085 flags = TXFCB_DEFAULT;
1087 /* Tell the controller what the protocol is */
1088 /* And provide the already calculated phcs */
1089 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1091 fcb->phcs = udp_hdr(skb)->check;
1093 fcb->phcs = tcp_hdr(skb)->check;
1095 /* l3os is the distance between the start of the
1096 * frame (skb->data) and the start of the IP hdr.
1097 * l4os is the distance between the start of the
1098 * l3 hdr and the l4 hdr */
1099 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1100 fcb->l4os = skb_network_header_len(skb);
1105 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1107 fcb->flags |= TXFCB_VLN;
1108 fcb->vlctl = vlan_tx_tag_get(skb);
1111 /* This is called by the kernel when a frame is ready for transmission. */
1112 /* It is pointed to by the dev->hard_start_xmit function pointer */
1113 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1115 struct gfar_private *priv = netdev_priv(dev);
1116 struct txfcb *fcb = NULL;
1117 struct txbd8 *txbdp;
1119 unsigned long flags;
1121 /* Update transmit stats */
1122 dev->stats.tx_bytes += skb->len;
1125 spin_lock_irqsave(&priv->txlock, flags);
1127 /* Point at the first free tx descriptor */
1128 txbdp = priv->cur_tx;
1130 /* Clear all but the WRAP status flags */
1131 status = txbdp->status & TXBD_WRAP;
1133 /* Set up checksumming */
1134 if (likely((dev->features & NETIF_F_IP_CSUM)
1135 && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1136 fcb = gfar_add_fcb(skb, txbdp);
1138 gfar_tx_checksum(skb, fcb);
1141 if (priv->vlan_enable &&
1142 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1143 if (unlikely(NULL == fcb)) {
1144 fcb = gfar_add_fcb(skb, txbdp);
1148 gfar_tx_vlan(skb, fcb);
1151 /* Set buffer length and pointer */
1152 txbdp->length = skb->len;
1153 txbdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1154 skb->len, DMA_TO_DEVICE);
1156 /* Save the skb pointer so we can free it later */
1157 priv->tx_skbuff[priv->skb_curtx] = skb;
1159 /* Update the current skb pointer (wrapping if this was the last) */
1161 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1163 /* Flag the BD as interrupt-causing */
1164 status |= TXBD_INTERRUPT;
1166 /* Flag the BD as ready to go, last in frame, and */
1167 /* in need of CRC */
1168 status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1170 dev->trans_start = jiffies;
1172 /* The powerpc-specific eieio() is used, as wmb() has too strong
1173 * semantics (it requires synchronization between cacheable and
1174 * uncacheable mappings, which eieio doesn't provide and which we
1175 * don't need), thus requiring a more expensive sync instruction. At
1176 * some point, the set of architecture-independent barrier functions
1177 * should be expanded to include weaker barriers.
1181 txbdp->status = status;
1183 /* If this was the last BD in the ring, the next one */
1184 /* is at the beginning of the ring */
1185 if (txbdp->status & TXBD_WRAP)
1186 txbdp = priv->tx_bd_base;
1190 /* If the next BD still needs to be cleaned up, then the bds
1191 are full. We need to tell the kernel to stop sending us stuff. */
1192 if (txbdp == priv->dirty_tx) {
1193 netif_stop_queue(dev);
1195 dev->stats.tx_fifo_errors++;
1198 /* Update the current txbd to the next one */
1199 priv->cur_tx = txbdp;
1201 /* Tell the DMA to go go go */
1202 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1205 spin_unlock_irqrestore(&priv->txlock, flags);
1210 /* Stops the kernel queue, and halts the controller */
1211 static int gfar_close(struct net_device *dev)
1213 struct gfar_private *priv = netdev_priv(dev);
1215 napi_disable(&priv->napi);
1217 cancel_work_sync(&priv->reset_task);
1220 /* Disconnect from the PHY */
1221 phy_disconnect(priv->phydev);
1222 priv->phydev = NULL;
1224 netif_stop_queue(dev);
1229 /* Changes the mac address if the controller is not running. */
1230 static int gfar_set_mac_address(struct net_device *dev)
1232 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1238 /* Enables and disables VLAN insertion/extraction */
1239 static void gfar_vlan_rx_register(struct net_device *dev,
1240 struct vlan_group *grp)
1242 struct gfar_private *priv = netdev_priv(dev);
1243 unsigned long flags;
1246 spin_lock_irqsave(&priv->rxlock, flags);
1251 /* Enable VLAN tag insertion */
1252 tempval = gfar_read(&priv->regs->tctrl);
1253 tempval |= TCTRL_VLINS;
1255 gfar_write(&priv->regs->tctrl, tempval);
1257 /* Enable VLAN tag extraction */
1258 tempval = gfar_read(&priv->regs->rctrl);
1259 tempval |= RCTRL_VLEX;
1260 gfar_write(&priv->regs->rctrl, tempval);
1262 /* Disable VLAN tag insertion */
1263 tempval = gfar_read(&priv->regs->tctrl);
1264 tempval &= ~TCTRL_VLINS;
1265 gfar_write(&priv->regs->tctrl, tempval);
1267 /* Disable VLAN tag extraction */
1268 tempval = gfar_read(&priv->regs->rctrl);
1269 tempval &= ~RCTRL_VLEX;
1270 gfar_write(&priv->regs->rctrl, tempval);
1273 spin_unlock_irqrestore(&priv->rxlock, flags);
1276 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1278 int tempsize, tempval;
1279 struct gfar_private *priv = netdev_priv(dev);
1280 int oldsize = priv->rx_buffer_size;
1281 int frame_size = new_mtu + ETH_HLEN;
1283 if (priv->vlan_enable)
1284 frame_size += VLAN_HLEN;
1286 if (gfar_uses_fcb(priv))
1287 frame_size += GMAC_FCB_LEN;
1289 frame_size += priv->padding;
1291 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1292 if (netif_msg_drv(priv))
1293 printk(KERN_ERR "%s: Invalid MTU setting\n",
1299 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1300 INCREMENTAL_BUFFER_SIZE;
1302 /* Only stop and start the controller if it isn't already
1303 * stopped, and we changed something */
1304 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1307 priv->rx_buffer_size = tempsize;
1311 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1312 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1314 /* If the mtu is larger than the max size for standard
1315 * ethernet frames (ie, a jumbo frame), then set maccfg2
1316 * to allow huge frames, and to check the length */
1317 tempval = gfar_read(&priv->regs->maccfg2);
1319 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1320 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1322 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1324 gfar_write(&priv->regs->maccfg2, tempval);
1326 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1332 /* gfar_reset_task gets scheduled when a packet has not been
1333 * transmitted after a set amount of time.
1334 * For now, assume that clearing out all the structures, and
1335 * starting over will fix the problem.
1337 static void gfar_reset_task(struct work_struct *work)
1339 struct gfar_private *priv = container_of(work, struct gfar_private,
1341 struct net_device *dev = priv->dev;
1343 if (dev->flags & IFF_UP) {
1348 netif_tx_schedule_all(dev);
1351 static void gfar_timeout(struct net_device *dev)
1353 struct gfar_private *priv = netdev_priv(dev);
1355 dev->stats.tx_errors++;
1356 schedule_work(&priv->reset_task);
1359 /* Interrupt Handler for Transmit complete */
1360 static int gfar_clean_tx_ring(struct net_device *dev)
1363 struct gfar_private *priv = netdev_priv(dev);
1366 bdp = priv->dirty_tx;
1367 while ((bdp->status & TXBD_READY) == 0) {
1368 /* If dirty_tx and cur_tx are the same, then either the */
1369 /* ring is empty or full now (it could only be full in the beginning, */
1370 /* obviously). If it is empty, we are done. */
1371 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1376 /* Deferred means some collisions occurred during transmit, */
1377 /* but we eventually sent the packet. */
1378 if (bdp->status & TXBD_DEF)
1379 dev->stats.collisions++;
1381 /* Free the sk buffer associated with this TxBD */
1382 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1384 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1386 (priv->skb_dirtytx +
1387 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1389 /* Clean BD length for empty detection */
1392 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1393 if (bdp->status & TXBD_WRAP)
1394 bdp = priv->tx_bd_base;
1398 /* Move dirty_tx to be the next bd */
1399 priv->dirty_tx = bdp;
1401 /* We freed a buffer, so now we can restart transmission */
1402 if (netif_queue_stopped(dev))
1403 netif_wake_queue(dev);
1404 } /* while ((bdp->status & TXBD_READY) == 0) */
1406 dev->stats.tx_packets += howmany;
1411 /* Interrupt Handler for Transmit complete */
1412 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1414 struct net_device *dev = (struct net_device *) dev_id;
1415 struct gfar_private *priv = netdev_priv(dev);
1418 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1421 spin_lock(&priv->txlock);
1423 gfar_clean_tx_ring(dev);
1425 /* If we are coalescing the interrupts, reset the timer */
1426 /* Otherwise, clear it */
1427 if (likely(priv->txcoalescing)) {
1428 gfar_write(&priv->regs->txic, 0);
1429 gfar_write(&priv->regs->txic,
1430 mk_ic_value(priv->txcount, priv->txtime));
1433 spin_unlock(&priv->txlock);
1438 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1439 struct sk_buff *skb)
1441 struct gfar_private *priv = netdev_priv(dev);
1442 u32 * status_len = (u32 *)bdp;
1445 bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1446 priv->rx_buffer_size, DMA_FROM_DEVICE);
1448 flags = RXBD_EMPTY | RXBD_INTERRUPT;
1450 if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1455 *status_len = (u32)flags << 16;
1459 struct sk_buff * gfar_new_skb(struct net_device *dev)
1461 unsigned int alignamount;
1462 struct gfar_private *priv = netdev_priv(dev);
1463 struct sk_buff *skb = NULL;
1465 /* We have to allocate the skb, so keep trying till we succeed */
1466 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1471 alignamount = RXBUF_ALIGNMENT -
1472 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1474 /* We need the data buffer to be aligned properly. We will reserve
1475 * as many bytes as needed to align the data properly
1477 skb_reserve(skb, alignamount);
1482 static inline void count_errors(unsigned short status, struct net_device *dev)
1484 struct gfar_private *priv = netdev_priv(dev);
1485 struct net_device_stats *stats = &dev->stats;
1486 struct gfar_extra_stats *estats = &priv->extra_stats;
1488 /* If the packet was truncated, none of the other errors
1490 if (status & RXBD_TRUNCATED) {
1491 stats->rx_length_errors++;
1497 /* Count the errors, if there were any */
1498 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1499 stats->rx_length_errors++;
1501 if (status & RXBD_LARGE)
1506 if (status & RXBD_NONOCTET) {
1507 stats->rx_frame_errors++;
1508 estats->rx_nonoctet++;
1510 if (status & RXBD_CRCERR) {
1511 estats->rx_crcerr++;
1512 stats->rx_crc_errors++;
1514 if (status & RXBD_OVERRUN) {
1515 estats->rx_overrun++;
1516 stats->rx_crc_errors++;
1520 irqreturn_t gfar_receive(int irq, void *dev_id)
1522 struct net_device *dev = (struct net_device *) dev_id;
1523 struct gfar_private *priv = netdev_priv(dev);
1527 /* Clear IEVENT, so interrupts aren't called again
1528 * because of the packets that have already arrived */
1529 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1531 if (netif_rx_schedule_prep(dev, &priv->napi)) {
1532 tempval = gfar_read(&priv->regs->imask);
1533 tempval &= IMASK_RTX_DISABLED;
1534 gfar_write(&priv->regs->imask, tempval);
1536 __netif_rx_schedule(dev, &priv->napi);
1538 if (netif_msg_rx_err(priv))
1539 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1540 dev->name, gfar_read(&priv->regs->ievent),
1541 gfar_read(&priv->regs->imask));
1547 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1549 /* If valid headers were found, and valid sums
1550 * were verified, then we tell the kernel that no
1551 * checksumming is necessary. Otherwise, it is */
1552 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1553 skb->ip_summed = CHECKSUM_UNNECESSARY;
1555 skb->ip_summed = CHECKSUM_NONE;
1559 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1561 struct rxfcb *fcb = (struct rxfcb *)skb->data;
1563 /* Remove the FCB from the skb */
1564 skb_pull(skb, GMAC_FCB_LEN);
1569 /* gfar_process_frame() -- handle one incoming packet if skb
1571 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1574 struct gfar_private *priv = netdev_priv(dev);
1575 struct rxfcb *fcb = NULL;
1578 if (netif_msg_rx_err(priv))
1579 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1580 dev->stats.rx_dropped++;
1581 priv->extra_stats.rx_skbmissing++;
1585 /* Prep the skb for the packet */
1586 skb_put(skb, length);
1588 /* Grab the FCB if there is one */
1589 if (gfar_uses_fcb(priv))
1590 fcb = gfar_get_fcb(skb);
1592 /* Remove the padded bytes, if there are any */
1594 skb_pull(skb, priv->padding);
1596 if (priv->rx_csum_enable)
1597 gfar_rx_checksum(skb, fcb);
1599 /* Tell the skb what kind of packet this is */
1600 skb->protocol = eth_type_trans(skb, dev);
1602 /* Send the packet up the stack */
1603 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN))) {
1604 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp,
1607 ret = netif_receive_skb(skb);
1609 if (NET_RX_DROP == ret)
1610 priv->extra_stats.kernel_dropped++;
1616 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1617 * until the budget/quota has been reached. Returns the number
1620 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1623 struct sk_buff *skb;
1626 struct gfar_private *priv = netdev_priv(dev);
1628 /* Get the first full descriptor */
1631 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1632 struct sk_buff *newskb;
1635 /* Add another skb for the future */
1636 newskb = gfar_new_skb(dev);
1638 skb = priv->rx_skbuff[priv->skb_currx];
1640 /* We drop the frame if we failed to allocate a new buffer */
1641 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1642 bdp->status & RXBD_ERR)) {
1643 count_errors(bdp->status, dev);
1645 if (unlikely(!newskb))
1649 dma_unmap_single(&priv->dev->dev,
1651 priv->rx_buffer_size,
1654 dev_kfree_skb_any(skb);
1657 /* Increment the number of packets */
1658 dev->stats.rx_packets++;
1661 /* Remove the FCS from the packet length */
1662 pkt_len = bdp->length - 4;
1664 gfar_process_frame(dev, skb, pkt_len);
1666 dev->stats.rx_bytes += pkt_len;
1669 dev->last_rx = jiffies;
1671 priv->rx_skbuff[priv->skb_currx] = newskb;
1673 /* Setup the new bdp */
1674 gfar_new_rxbdp(dev, bdp, newskb);
1676 /* Update to the next pointer */
1677 if (bdp->status & RXBD_WRAP)
1678 bdp = priv->rx_bd_base;
1682 /* update to point at the next skb */
1684 (priv->skb_currx + 1) &
1685 RX_RING_MOD_MASK(priv->rx_ring_size);
1688 /* Update the current rxbd pointer to be the next one */
1694 static int gfar_poll(struct napi_struct *napi, int budget)
1696 struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1697 struct net_device *dev = priv->dev;
1699 unsigned long flags;
1701 /* If we fail to get the lock, don't bother with the TX BDs */
1702 if (spin_trylock_irqsave(&priv->txlock, flags)) {
1703 gfar_clean_tx_ring(dev);
1704 spin_unlock_irqrestore(&priv->txlock, flags);
1707 howmany = gfar_clean_rx_ring(dev, budget);
1709 if (howmany < budget) {
1710 netif_rx_complete(dev, napi);
1712 /* Clear the halt bit in RSTAT */
1713 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1715 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1717 /* If we are coalescing interrupts, update the timer */
1718 /* Otherwise, clear it */
1719 if (likely(priv->rxcoalescing)) {
1720 gfar_write(&priv->regs->rxic, 0);
1721 gfar_write(&priv->regs->rxic,
1722 mk_ic_value(priv->rxcount, priv->rxtime));
1729 #ifdef CONFIG_NET_POLL_CONTROLLER
1731 * Polling 'interrupt' - used by things like netconsole to send skbs
1732 * without having to re-enable interrupts. It's not called while
1733 * the interrupt routine is executing.
1735 static void gfar_netpoll(struct net_device *dev)
1737 struct gfar_private *priv = netdev_priv(dev);
1739 /* If the device has multiple interrupts, run tx/rx */
1740 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1741 disable_irq(priv->interruptTransmit);
1742 disable_irq(priv->interruptReceive);
1743 disable_irq(priv->interruptError);
1744 gfar_interrupt(priv->interruptTransmit, dev);
1745 enable_irq(priv->interruptError);
1746 enable_irq(priv->interruptReceive);
1747 enable_irq(priv->interruptTransmit);
1749 disable_irq(priv->interruptTransmit);
1750 gfar_interrupt(priv->interruptTransmit, dev);
1751 enable_irq(priv->interruptTransmit);
1756 /* The interrupt handler for devices with one interrupt */
1757 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1759 struct net_device *dev = dev_id;
1760 struct gfar_private *priv = netdev_priv(dev);
1762 /* Save ievent for future reference */
1763 u32 events = gfar_read(&priv->regs->ievent);
1765 /* Check for reception */
1766 if (events & IEVENT_RX_MASK)
1767 gfar_receive(irq, dev_id);
1769 /* Check for transmit completion */
1770 if (events & IEVENT_TX_MASK)
1771 gfar_transmit(irq, dev_id);
1773 /* Check for errors */
1774 if (events & IEVENT_ERR_MASK)
1775 gfar_error(irq, dev_id);
1780 /* Called every time the controller might need to be made
1781 * aware of new link state. The PHY code conveys this
1782 * information through variables in the phydev structure, and this
1783 * function converts those variables into the appropriate
1784 * register values, and can bring down the device if needed.
1786 static void adjust_link(struct net_device *dev)
1788 struct gfar_private *priv = netdev_priv(dev);
1789 struct gfar __iomem *regs = priv->regs;
1790 unsigned long flags;
1791 struct phy_device *phydev = priv->phydev;
1794 spin_lock_irqsave(&priv->txlock, flags);
1796 u32 tempval = gfar_read(®s->maccfg2);
1797 u32 ecntrl = gfar_read(®s->ecntrl);
1799 /* Now we make sure that we can be in full duplex mode.
1800 * If not, we operate in half-duplex mode. */
1801 if (phydev->duplex != priv->oldduplex) {
1803 if (!(phydev->duplex))
1804 tempval &= ~(MACCFG2_FULL_DUPLEX);
1806 tempval |= MACCFG2_FULL_DUPLEX;
1808 priv->oldduplex = phydev->duplex;
1811 if (phydev->speed != priv->oldspeed) {
1813 switch (phydev->speed) {
1816 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1821 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1823 /* Reduced mode distinguishes
1824 * between 10 and 100 */
1825 if (phydev->speed == SPEED_100)
1826 ecntrl |= ECNTRL_R100;
1828 ecntrl &= ~(ECNTRL_R100);
1831 if (netif_msg_link(priv))
1833 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1834 dev->name, phydev->speed);
1838 priv->oldspeed = phydev->speed;
1841 gfar_write(®s->maccfg2, tempval);
1842 gfar_write(®s->ecntrl, ecntrl);
1844 if (!priv->oldlink) {
1848 } else if (priv->oldlink) {
1852 priv->oldduplex = -1;
1855 if (new_state && netif_msg_link(priv))
1856 phy_print_status(phydev);
1858 spin_unlock_irqrestore(&priv->txlock, flags);
1861 /* Update the hash table based on the current list of multicast
1862 * addresses we subscribe to. Also, change the promiscuity of
1863 * the device based on the flags (this function is called
1864 * whenever dev->flags is changed */
1865 static void gfar_set_multi(struct net_device *dev)
1867 struct dev_mc_list *mc_ptr;
1868 struct gfar_private *priv = netdev_priv(dev);
1869 struct gfar __iomem *regs = priv->regs;
1872 if(dev->flags & IFF_PROMISC) {
1873 /* Set RCTRL to PROM */
1874 tempval = gfar_read(®s->rctrl);
1875 tempval |= RCTRL_PROM;
1876 gfar_write(®s->rctrl, tempval);
1878 /* Set RCTRL to not PROM */
1879 tempval = gfar_read(®s->rctrl);
1880 tempval &= ~(RCTRL_PROM);
1881 gfar_write(®s->rctrl, tempval);
1884 if(dev->flags & IFF_ALLMULTI) {
1885 /* Set the hash to rx all multicast frames */
1886 gfar_write(®s->igaddr0, 0xffffffff);
1887 gfar_write(®s->igaddr1, 0xffffffff);
1888 gfar_write(®s->igaddr2, 0xffffffff);
1889 gfar_write(®s->igaddr3, 0xffffffff);
1890 gfar_write(®s->igaddr4, 0xffffffff);
1891 gfar_write(®s->igaddr5, 0xffffffff);
1892 gfar_write(®s->igaddr6, 0xffffffff);
1893 gfar_write(®s->igaddr7, 0xffffffff);
1894 gfar_write(®s->gaddr0, 0xffffffff);
1895 gfar_write(®s->gaddr1, 0xffffffff);
1896 gfar_write(®s->gaddr2, 0xffffffff);
1897 gfar_write(®s->gaddr3, 0xffffffff);
1898 gfar_write(®s->gaddr4, 0xffffffff);
1899 gfar_write(®s->gaddr5, 0xffffffff);
1900 gfar_write(®s->gaddr6, 0xffffffff);
1901 gfar_write(®s->gaddr7, 0xffffffff);
1906 /* zero out the hash */
1907 gfar_write(®s->igaddr0, 0x0);
1908 gfar_write(®s->igaddr1, 0x0);
1909 gfar_write(®s->igaddr2, 0x0);
1910 gfar_write(®s->igaddr3, 0x0);
1911 gfar_write(®s->igaddr4, 0x0);
1912 gfar_write(®s->igaddr5, 0x0);
1913 gfar_write(®s->igaddr6, 0x0);
1914 gfar_write(®s->igaddr7, 0x0);
1915 gfar_write(®s->gaddr0, 0x0);
1916 gfar_write(®s->gaddr1, 0x0);
1917 gfar_write(®s->gaddr2, 0x0);
1918 gfar_write(®s->gaddr3, 0x0);
1919 gfar_write(®s->gaddr4, 0x0);
1920 gfar_write(®s->gaddr5, 0x0);
1921 gfar_write(®s->gaddr6, 0x0);
1922 gfar_write(®s->gaddr7, 0x0);
1924 /* If we have extended hash tables, we need to
1925 * clear the exact match registers to prepare for
1927 if (priv->extended_hash) {
1928 em_num = GFAR_EM_NUM + 1;
1929 gfar_clear_exact_match(dev);
1936 if(dev->mc_count == 0)
1939 /* Parse the list, and set the appropriate bits */
1940 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1942 gfar_set_mac_for_addr(dev, idx,
1946 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1954 /* Clears each of the exact match registers to zero, so they
1955 * don't interfere with normal reception */
1956 static void gfar_clear_exact_match(struct net_device *dev)
1959 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1961 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1962 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1965 /* Set the appropriate hash bit for the given addr */
1966 /* The algorithm works like so:
1967 * 1) Take the Destination Address (ie the multicast address), and
1968 * do a CRC on it (little endian), and reverse the bits of the
1970 * 2) Use the 8 most significant bits as a hash into a 256-entry
1971 * table. The table is controlled through 8 32-bit registers:
1972 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1973 * gaddr7. This means that the 3 most significant bits in the
1974 * hash index which gaddr register to use, and the 5 other bits
1975 * indicate which bit (assuming an IBM numbering scheme, which
1976 * for PowerPC (tm) is usually the case) in the register holds
1978 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1981 struct gfar_private *priv = netdev_priv(dev);
1982 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1983 int width = priv->hash_width;
1984 u8 whichbit = (result >> (32 - width)) & 0x1f;
1985 u8 whichreg = result >> (32 - width + 5);
1986 u32 value = (1 << (31-whichbit));
1988 tempval = gfar_read(priv->hash_regs[whichreg]);
1990 gfar_write(priv->hash_regs[whichreg], tempval);
1996 /* There are multiple MAC Address register pairs on some controllers
1997 * This function sets the numth pair to a given address
1999 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2001 struct gfar_private *priv = netdev_priv(dev);
2003 char tmpbuf[MAC_ADDR_LEN];
2005 u32 __iomem *macptr = &priv->regs->macstnaddr1;
2009 /* Now copy it into the mac registers backwards, cuz */
2010 /* little endian is silly */
2011 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2012 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2014 gfar_write(macptr, *((u32 *) (tmpbuf)));
2016 tempval = *((u32 *) (tmpbuf + 4));
2018 gfar_write(macptr+1, tempval);
2021 /* GFAR error interrupt handler */
2022 static irqreturn_t gfar_error(int irq, void *dev_id)
2024 struct net_device *dev = dev_id;
2025 struct gfar_private *priv = netdev_priv(dev);
2027 /* Save ievent for future reference */
2028 u32 events = gfar_read(&priv->regs->ievent);
2031 gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2033 /* Magic Packet is not an error. */
2034 if ((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2035 (events & IEVENT_MAG))
2036 events &= ~IEVENT_MAG;
2039 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2040 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2041 dev->name, events, gfar_read(&priv->regs->imask));
2043 /* Update the error counters */
2044 if (events & IEVENT_TXE) {
2045 dev->stats.tx_errors++;
2047 if (events & IEVENT_LC)
2048 dev->stats.tx_window_errors++;
2049 if (events & IEVENT_CRL)
2050 dev->stats.tx_aborted_errors++;
2051 if (events & IEVENT_XFUN) {
2052 if (netif_msg_tx_err(priv))
2053 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2054 "packet dropped.\n", dev->name);
2055 dev->stats.tx_dropped++;
2056 priv->extra_stats.tx_underrun++;
2058 /* Reactivate the Tx Queues */
2059 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2061 if (netif_msg_tx_err(priv))
2062 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2064 if (events & IEVENT_BSY) {
2065 dev->stats.rx_errors++;
2066 priv->extra_stats.rx_bsy++;
2068 gfar_receive(irq, dev_id);
2070 if (netif_msg_rx_err(priv))
2071 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2072 dev->name, gfar_read(&priv->regs->rstat));
2074 if (events & IEVENT_BABR) {
2075 dev->stats.rx_errors++;
2076 priv->extra_stats.rx_babr++;
2078 if (netif_msg_rx_err(priv))
2079 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2081 if (events & IEVENT_EBERR) {
2082 priv->extra_stats.eberr++;
2083 if (netif_msg_rx_err(priv))
2084 printk(KERN_DEBUG "%s: bus error\n", dev->name);
2086 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2087 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2089 if (events & IEVENT_BABT) {
2090 priv->extra_stats.tx_babt++;
2091 if (netif_msg_tx_err(priv))
2092 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2097 /* work with hotplug and coldplug */
2098 MODULE_ALIAS("platform:fsl-gianfar");
2100 /* Structure for a device driver */
2101 static struct platform_driver gfar_driver = {
2102 .probe = gfar_probe,
2103 .remove = gfar_remove,
2104 .suspend = gfar_suspend,
2105 .resume = gfar_resume,
2107 .name = "fsl-gianfar",
2108 .owner = THIS_MODULE,
2112 static int __init gfar_init(void)
2114 int err = gfar_mdio_init();
2119 err = platform_driver_register(&gfar_driver);
2127 static void __exit gfar_exit(void)
2129 platform_driver_unregister(&gfar_driver);
2133 module_init(gfar_init);
2134 module_exit(gfar_exit);