2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
37 #include "rt2x00pci.h"
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attampt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
51 static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
56 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
57 rt2x00pci_register_read(rt2x00dev, PHY_CSR3, ®);
58 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
60 udelay(REGISTER_BUSY_DELAY);
66 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67 const unsigned int word, const u8 value)
72 * Wait until the BBP becomes ready.
74 reg = rt61pci_bbp_check(rt2x00dev);
75 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
76 ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
81 * Write the data into the BBP.
84 rt2x00_set_field32(®, PHY_CSR3_VALUE, value);
85 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
86 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
87 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0);
89 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
92 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
93 const unsigned int word, u8 *value)
98 * Wait until the BBP becomes ready.
100 reg = rt61pci_bbp_check(rt2x00dev);
101 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
102 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
107 * Write the request into the BBP.
110 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
111 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
112 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1);
114 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
117 * Wait until the BBP becomes ready.
119 reg = rt61pci_bbp_check(rt2x00dev);
120 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
121 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
126 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
129 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
130 const unsigned int word, const u32 value)
138 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
139 rt2x00pci_register_read(rt2x00dev, PHY_CSR4, ®);
140 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
142 udelay(REGISTER_BUSY_DELAY);
145 ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
150 rt2x00_set_field32(®, PHY_CSR4_VALUE, value);
151 rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 21);
152 rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0);
153 rt2x00_set_field32(®, PHY_CSR4_BUSY, 1);
155 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
156 rt2x00_rf_write(rt2x00dev, word, value);
159 #ifdef CONFIG_RT61PCI_LEDS
161 * This function is only called from rt61pci_led_brightness()
162 * make gcc happy by placing this function inside the
163 * same ifdef statement as the caller.
165 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
166 const u8 command, const u8 token,
167 const u8 arg0, const u8 arg1)
171 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, ®);
173 if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
174 ERROR(rt2x00dev, "mcu request error. "
175 "Request 0x%02x failed for token 0x%02x.\n",
180 rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1);
181 rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token);
182 rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0);
183 rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1);
184 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
186 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, ®);
187 rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command);
188 rt2x00_set_field32(®, HOST_CMD_CSR_INTERRUPT_MCU, 1);
189 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
191 #endif /* CONFIG_RT61PCI_LEDS */
193 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
195 struct rt2x00_dev *rt2x00dev = eeprom->data;
198 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®);
200 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
201 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
202 eeprom->reg_data_clock =
203 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
204 eeprom->reg_chip_select =
205 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
208 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
210 struct rt2x00_dev *rt2x00dev = eeprom->data;
213 rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
214 rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
215 rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK,
216 !!eeprom->reg_data_clock);
217 rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT,
218 !!eeprom->reg_chip_select);
220 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
223 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
224 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
226 static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev,
227 const unsigned int word, u32 *data)
229 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
232 static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev,
233 const unsigned int word, u32 data)
235 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
238 static const struct rt2x00debug rt61pci_rt2x00debug = {
239 .owner = THIS_MODULE,
241 .read = rt61pci_read_csr,
242 .write = rt61pci_write_csr,
243 .word_size = sizeof(u32),
244 .word_count = CSR_REG_SIZE / sizeof(u32),
247 .read = rt2x00_eeprom_read,
248 .write = rt2x00_eeprom_write,
249 .word_size = sizeof(u16),
250 .word_count = EEPROM_SIZE / sizeof(u16),
253 .read = rt61pci_bbp_read,
254 .write = rt61pci_bbp_write,
255 .word_size = sizeof(u8),
256 .word_count = BBP_SIZE / sizeof(u8),
259 .read = rt2x00_rf_read,
260 .write = rt61pci_rf_write,
261 .word_size = sizeof(u32),
262 .word_count = RF_SIZE / sizeof(u32),
265 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
267 #ifdef CONFIG_RT61PCI_RFKILL
268 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
272 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®);
273 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
276 #define rt61pci_rfkill_poll NULL
277 #endif /* CONFIG_RT61PCI_RFKILL */
279 #ifdef CONFIG_RT61PCI_LEDS
280 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
281 enum led_brightness brightness)
283 struct rt2x00_led *led =
284 container_of(led_cdev, struct rt2x00_led, led_dev);
285 unsigned int enabled = brightness != LED_OFF;
286 unsigned int a_mode =
287 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
288 unsigned int bg_mode =
289 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
291 if (led->type == LED_TYPE_RADIO) {
292 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
293 MCU_LEDCS_RADIO_STATUS, enabled);
295 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
296 (led->rt2x00dev->led_mcu_reg & 0xff),
297 ((led->rt2x00dev->led_mcu_reg >> 8)));
298 } else if (led->type == LED_TYPE_ASSOC) {
299 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
300 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
301 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
302 MCU_LEDCS_LINK_A_STATUS, a_mode);
304 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
305 (led->rt2x00dev->led_mcu_reg & 0xff),
306 ((led->rt2x00dev->led_mcu_reg >> 8)));
307 } else if (led->type == LED_TYPE_QUALITY) {
309 * The brightness is divided into 6 levels (0 - 5),
310 * this means we need to convert the brightness
311 * argument into the matching level within that range.
313 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
314 brightness / (LED_FULL / 6), 0);
318 static int rt61pci_blink_set(struct led_classdev *led_cdev,
319 unsigned long *delay_on,
320 unsigned long *delay_off)
322 struct rt2x00_led *led =
323 container_of(led_cdev, struct rt2x00_led, led_dev);
326 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, ®);
327 rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on);
328 rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off);
329 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
334 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
335 struct rt2x00_led *led,
338 led->rt2x00dev = rt2x00dev;
340 led->led_dev.brightness_set = rt61pci_brightness_set;
341 led->led_dev.blink_set = rt61pci_blink_set;
342 led->flags = LED_INITIALIZED;
344 #endif /* CONFIG_RT61PCI_LEDS */
347 * Configuration handlers.
349 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
350 const unsigned int filter_flags)
355 * Start configuration steps.
356 * Note that the version error will always be dropped
357 * and broadcast frames will always be accepted since
358 * there is no filter for it at this time.
360 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
361 rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC,
362 !(filter_flags & FIF_FCSFAIL));
363 rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL,
364 !(filter_flags & FIF_PLCPFAIL));
365 rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL,
366 !(filter_flags & FIF_CONTROL));
367 rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME,
368 !(filter_flags & FIF_PROMISC_IN_BSS));
369 rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS,
370 !(filter_flags & FIF_PROMISC_IN_BSS) &&
371 !rt2x00dev->intf_ap_count);
372 rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1);
373 rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST,
374 !(filter_flags & FIF_ALLMULTI));
375 rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0);
376 rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS,
377 !(filter_flags & FIF_CONTROL));
378 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
381 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
382 struct rt2x00_intf *intf,
383 struct rt2x00intf_conf *conf,
384 const unsigned int flags)
386 unsigned int beacon_base;
389 if (flags & CONFIG_UPDATE_TYPE) {
391 * Clear current synchronisation setup.
392 * For the Beacon base registers we only need to clear
393 * the first byte since that byte contains the VALID and OWNER
394 * bits which (when set to 0) will invalidate the entire beacon.
396 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
397 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
400 * Enable synchronisation.
402 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
403 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1);
404 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync);
405 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1);
406 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
409 if (flags & CONFIG_UPDATE_MAC) {
410 reg = le32_to_cpu(conf->mac[1]);
411 rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
412 conf->mac[1] = cpu_to_le32(reg);
414 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
415 conf->mac, sizeof(conf->mac));
418 if (flags & CONFIG_UPDATE_BSSID) {
419 reg = le32_to_cpu(conf->bssid[1]);
420 rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3);
421 conf->bssid[1] = cpu_to_le32(reg);
423 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
424 conf->bssid, sizeof(conf->bssid));
428 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
429 struct rt2x00lib_erp *erp)
433 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
434 rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
435 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
437 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
438 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE,
439 !!erp->short_preamble);
440 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
443 static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
444 const int basic_rate_mask)
446 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
449 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
450 struct rf_channel *rf, const int txpower)
456 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
457 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
459 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
460 rt2x00_rf(&rt2x00dev->chip, RF2527));
462 rt61pci_bbp_read(rt2x00dev, 3, &r3);
463 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
464 rt61pci_bbp_write(rt2x00dev, 3, r3);
467 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
468 r94 += txpower - MAX_TXPOWER;
469 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
471 rt61pci_bbp_write(rt2x00dev, 94, r94);
473 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
474 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
475 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
476 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
480 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
481 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
482 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
483 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
487 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
488 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
489 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
490 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
495 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
498 struct rf_channel rf;
500 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
501 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
502 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
503 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
505 rt61pci_config_channel(rt2x00dev, &rf, txpower);
508 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
509 struct antenna_setup *ant)
515 rt61pci_bbp_read(rt2x00dev, 3, &r3);
516 rt61pci_bbp_read(rt2x00dev, 4, &r4);
517 rt61pci_bbp_read(rt2x00dev, 77, &r77);
519 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
520 rt2x00_rf(&rt2x00dev->chip, RF5325));
523 * Configure the RX antenna.
526 case ANTENNA_HW_DIVERSITY:
527 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
528 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
529 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
532 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
533 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
534 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
535 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
537 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
541 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
542 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
543 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
544 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
546 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
550 rt61pci_bbp_write(rt2x00dev, 77, r77);
551 rt61pci_bbp_write(rt2x00dev, 3, r3);
552 rt61pci_bbp_write(rt2x00dev, 4, r4);
555 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
556 struct antenna_setup *ant)
562 rt61pci_bbp_read(rt2x00dev, 3, &r3);
563 rt61pci_bbp_read(rt2x00dev, 4, &r4);
564 rt61pci_bbp_read(rt2x00dev, 77, &r77);
566 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
567 rt2x00_rf(&rt2x00dev->chip, RF2529));
568 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
569 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
572 * Configure the RX antenna.
575 case ANTENNA_HW_DIVERSITY:
576 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
579 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
580 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
584 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
585 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
589 rt61pci_bbp_write(rt2x00dev, 77, r77);
590 rt61pci_bbp_write(rt2x00dev, 3, r3);
591 rt61pci_bbp_write(rt2x00dev, 4, r4);
594 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
595 const int p1, const int p2)
599 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®);
601 rt2x00_set_field32(®, MAC_CSR13_BIT4, p1);
602 rt2x00_set_field32(®, MAC_CSR13_BIT12, 0);
604 rt2x00_set_field32(®, MAC_CSR13_BIT3, !p2);
605 rt2x00_set_field32(®, MAC_CSR13_BIT11, 0);
607 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
610 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
611 struct antenna_setup *ant)
617 rt61pci_bbp_read(rt2x00dev, 3, &r3);
618 rt61pci_bbp_read(rt2x00dev, 4, &r4);
619 rt61pci_bbp_read(rt2x00dev, 77, &r77);
622 * Configure the RX antenna.
626 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
627 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
628 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
630 case ANTENNA_HW_DIVERSITY:
632 * FIXME: Antenna selection for the rf 2529 is very confusing
633 * in the legacy driver. Just default to antenna B until the
634 * legacy code can be properly translated into rt2x00 code.
638 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
639 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
640 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
644 rt61pci_bbp_write(rt2x00dev, 77, r77);
645 rt61pci_bbp_write(rt2x00dev, 3, r3);
646 rt61pci_bbp_write(rt2x00dev, 4, r4);
652 * value[0] -> non-LNA
658 static const struct antenna_sel antenna_sel_a[] = {
659 { 96, { 0x58, 0x78 } },
660 { 104, { 0x38, 0x48 } },
661 { 75, { 0xfe, 0x80 } },
662 { 86, { 0xfe, 0x80 } },
663 { 88, { 0xfe, 0x80 } },
664 { 35, { 0x60, 0x60 } },
665 { 97, { 0x58, 0x58 } },
666 { 98, { 0x58, 0x58 } },
669 static const struct antenna_sel antenna_sel_bg[] = {
670 { 96, { 0x48, 0x68 } },
671 { 104, { 0x2c, 0x3c } },
672 { 75, { 0xfe, 0x80 } },
673 { 86, { 0xfe, 0x80 } },
674 { 88, { 0xfe, 0x80 } },
675 { 35, { 0x50, 0x50 } },
676 { 97, { 0x48, 0x48 } },
677 { 98, { 0x48, 0x48 } },
680 static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
681 struct antenna_setup *ant)
683 const struct antenna_sel *sel;
689 * We should never come here because rt2x00lib is supposed
690 * to catch this and send us the correct antenna explicitely.
692 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
693 ant->tx == ANTENNA_SW_DIVERSITY);
695 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
697 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
699 sel = antenna_sel_bg;
700 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
703 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
704 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
706 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, ®);
708 rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG,
709 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
710 rt2x00_set_field32(®, PHY_CSR0_PA_PE_A,
711 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
713 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
715 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
716 rt2x00_rf(&rt2x00dev->chip, RF5325))
717 rt61pci_config_antenna_5x(rt2x00dev, ant);
718 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
719 rt61pci_config_antenna_2x(rt2x00dev, ant);
720 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
721 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
722 rt61pci_config_antenna_2x(rt2x00dev, ant);
724 rt61pci_config_antenna_2529(rt2x00dev, ant);
728 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
729 struct rt2x00lib_conf *libconf)
733 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®);
734 rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, libconf->slot_time);
735 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
737 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, ®);
738 rt2x00_set_field32(®, MAC_CSR8_SIFS, libconf->sifs);
739 rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
740 rt2x00_set_field32(®, MAC_CSR8_EIFS, libconf->eifs);
741 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
743 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
744 rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
745 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
747 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
748 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
749 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
751 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
752 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL,
753 libconf->conf->beacon_int * 16);
754 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
757 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
758 struct rt2x00lib_conf *libconf,
759 const unsigned int flags)
761 if (flags & CONFIG_UPDATE_PHYMODE)
762 rt61pci_config_phymode(rt2x00dev, libconf->basic_rates);
763 if (flags & CONFIG_UPDATE_CHANNEL)
764 rt61pci_config_channel(rt2x00dev, &libconf->rf,
765 libconf->conf->power_level);
766 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
767 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
768 if (flags & CONFIG_UPDATE_ANTENNA)
769 rt61pci_config_antenna(rt2x00dev, &libconf->ant);
770 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
771 rt61pci_config_duration(rt2x00dev, libconf);
777 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
778 struct link_qual *qual)
783 * Update FCS error count from register.
785 rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®);
786 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
789 * Update False CCA count from register.
791 rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®);
792 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
795 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
797 rt61pci_bbp_write(rt2x00dev, 17, 0x20);
798 rt2x00dev->link.vgc_level = 0x20;
801 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
803 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
808 rt61pci_bbp_read(rt2x00dev, 17, &r17);
811 * Determine r17 bounds.
813 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
816 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
823 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
830 * If we are not associated, we should go straight to the
831 * dynamic CCA tuning.
833 if (!rt2x00dev->intf_associated)
834 goto dynamic_cca_tune;
837 * Special big-R17 for very short distance
841 rt61pci_bbp_write(rt2x00dev, 17, 0x60);
846 * Special big-R17 for short distance
850 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
855 * Special big-R17 for middle-short distance
859 if (r17 != low_bound)
860 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
865 * Special mid-R17 for middle distance
869 if (r17 != low_bound)
870 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
875 * Special case: Change up_bound based on the rssi.
876 * Lower up_bound when rssi is weaker then -74 dBm.
878 up_bound -= 2 * (-74 - rssi);
879 if (low_bound > up_bound)
880 up_bound = low_bound;
882 if (r17 > up_bound) {
883 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
890 * r17 does not yet exceed upper limit, continue and base
891 * the r17 tuning on the false CCA count.
893 if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
894 if (++r17 > up_bound)
896 rt61pci_bbp_write(rt2x00dev, 17, r17);
897 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
898 if (--r17 < low_bound)
900 rt61pci_bbp_write(rt2x00dev, 17, r17);
907 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
911 switch (rt2x00dev->chip.rt) {
913 fw_name = FIRMWARE_RT2561;
916 fw_name = FIRMWARE_RT2561s;
919 fw_name = FIRMWARE_RT2661;
929 static u16 rt61pci_get_firmware_crc(const void *data, const size_t len)
934 * Use the crc itu-t algorithm.
935 * The last 2 bytes in the firmware array are the crc checksum itself,
936 * this means that we should never pass those 2 bytes to the crc
939 crc = crc_itu_t(0, data, len - 2);
940 crc = crc_itu_t_byte(crc, 0);
941 crc = crc_itu_t_byte(crc, 0);
946 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
953 * Wait for stable hardware.
955 for (i = 0; i < 100; i++) {
956 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®);
963 ERROR(rt2x00dev, "Unstable hardware.\n");
968 * Prepare MCU and mailbox for firmware loading.
971 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1);
972 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
973 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
974 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
975 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
978 * Write firmware to device.
981 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1);
982 rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 1);
983 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
985 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
988 rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 0);
989 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
991 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 0);
992 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
994 for (i = 0; i < 100; i++) {
995 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, ®);
996 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1002 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1007 * Hardware needs another millisecond before it is ready.
1012 * Reset MAC and BBP registers.
1015 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1);
1016 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1);
1017 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1019 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1020 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0);
1021 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0);
1022 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1024 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1025 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1);
1026 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1032 * Initialization functions.
1034 static void rt61pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
1035 struct queue_entry *entry)
1037 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1038 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1041 rt2x00_desc_read(entry_priv->desc, 5, &word);
1042 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1044 rt2x00_desc_write(entry_priv->desc, 5, word);
1046 rt2x00_desc_read(entry_priv->desc, 0, &word);
1047 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1048 rt2x00_desc_write(entry_priv->desc, 0, word);
1051 static void rt61pci_init_txentry(struct rt2x00_dev *rt2x00dev,
1052 struct queue_entry *entry)
1054 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1057 rt2x00_desc_read(entry_priv->desc, 0, &word);
1058 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1059 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1060 rt2x00_desc_write(entry_priv->desc, 0, word);
1063 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1065 struct queue_entry_priv_pci *entry_priv;
1069 * Initialize registers.
1071 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, ®);
1072 rt2x00_set_field32(®, TX_RING_CSR0_AC0_RING_SIZE,
1073 rt2x00dev->tx[0].limit);
1074 rt2x00_set_field32(®, TX_RING_CSR0_AC1_RING_SIZE,
1075 rt2x00dev->tx[1].limit);
1076 rt2x00_set_field32(®, TX_RING_CSR0_AC2_RING_SIZE,
1077 rt2x00dev->tx[2].limit);
1078 rt2x00_set_field32(®, TX_RING_CSR0_AC3_RING_SIZE,
1079 rt2x00dev->tx[3].limit);
1080 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1082 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, ®);
1083 rt2x00_set_field32(®, TX_RING_CSR1_TXD_SIZE,
1084 rt2x00dev->tx[0].desc_size / 4);
1085 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1087 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1088 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, ®);
1089 rt2x00_set_field32(®, AC0_BASE_CSR_RING_REGISTER,
1090 entry_priv->desc_dma);
1091 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1093 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1094 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, ®);
1095 rt2x00_set_field32(®, AC1_BASE_CSR_RING_REGISTER,
1096 entry_priv->desc_dma);
1097 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1099 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1100 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, ®);
1101 rt2x00_set_field32(®, AC2_BASE_CSR_RING_REGISTER,
1102 entry_priv->desc_dma);
1103 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1105 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1106 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, ®);
1107 rt2x00_set_field32(®, AC3_BASE_CSR_RING_REGISTER,
1108 entry_priv->desc_dma);
1109 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1111 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, ®);
1112 rt2x00_set_field32(®, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1113 rt2x00_set_field32(®, RX_RING_CSR_RXD_SIZE,
1114 rt2x00dev->rx->desc_size / 4);
1115 rt2x00_set_field32(®, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1116 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1118 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1119 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, ®);
1120 rt2x00_set_field32(®, RX_BASE_CSR_RING_REGISTER,
1121 entry_priv->desc_dma);
1122 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1124 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, ®);
1125 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC0, 2);
1126 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC1, 2);
1127 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC2, 2);
1128 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC3, 2);
1129 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1131 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, ®);
1132 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1133 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1134 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1135 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1136 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1138 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®);
1139 rt2x00_set_field32(®, RX_CNTL_CSR_LOAD_RXD, 1);
1140 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1145 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1149 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
1150 rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1);
1151 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0);
1152 rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1153 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1155 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, ®);
1156 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1157 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1);
1158 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1159 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1);
1160 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1161 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1);
1162 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1163 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1);
1164 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1167 * CCK TXD BBP registers
1169 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, ®);
1170 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13);
1171 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1);
1172 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12);
1173 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1);
1174 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11);
1175 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1);
1176 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10);
1177 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1);
1178 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1181 * OFDM TXD BBP registers
1183 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, ®);
1184 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7);
1185 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1);
1186 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6);
1187 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1);
1188 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5);
1189 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1);
1190 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1192 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, ®);
1193 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59);
1194 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53);
1195 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49);
1196 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46);
1197 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1199 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, ®);
1200 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44);
1201 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42);
1202 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42);
1203 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42);
1204 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1206 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
1207 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0);
1208 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0);
1209 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0);
1210 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0);
1211 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
1212 rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1213 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1215 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1217 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1219 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®);
1220 rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0);
1221 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1223 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1225 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1228 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1231 * Invalidate all Shared Keys (SEC_CSR0),
1232 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1234 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1235 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1236 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1238 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1239 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1240 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1241 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1243 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1245 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1247 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1249 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, ®);
1250 rt2x00_set_field32(®, AC_TXOP_CSR0_AC0_TX_OP, 0);
1251 rt2x00_set_field32(®, AC_TXOP_CSR0_AC1_TX_OP, 0);
1252 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
1254 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, ®);
1255 rt2x00_set_field32(®, AC_TXOP_CSR1_AC2_TX_OP, 192);
1256 rt2x00_set_field32(®, AC_TXOP_CSR1_AC3_TX_OP, 48);
1257 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
1261 * For the Beacon base registers we only need to clear
1262 * the first byte since that byte contains the VALID and OWNER
1263 * bits which (when set to 0) will invalidate the entire beacon.
1265 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1266 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1267 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1268 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1271 * We must clear the error counters.
1272 * These registers are cleared on read,
1273 * so we may pass a useless variable to store the value.
1275 rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®);
1276 rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®);
1277 rt2x00pci_register_read(rt2x00dev, STA_CSR2, ®);
1280 * Reset MAC and BBP registers.
1282 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1283 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1);
1284 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1);
1285 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1287 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1288 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0);
1289 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0);
1290 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1292 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®);
1293 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1);
1294 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1299 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1304 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1305 rt61pci_bbp_read(rt2x00dev, 0, &value);
1306 if ((value != 0xff) && (value != 0x00))
1308 udelay(REGISTER_BUSY_DELAY);
1311 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1315 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1322 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1325 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1326 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1327 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1328 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1329 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1330 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1331 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1332 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1333 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1334 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1335 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1336 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1337 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1338 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1339 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1340 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1341 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1342 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1343 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1344 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1345 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1346 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1347 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1348 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1350 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1351 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1353 if (eeprom != 0xffff && eeprom != 0x0000) {
1354 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1355 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1356 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1364 * Device state switch handlers.
1366 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1367 enum dev_state state)
1371 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®);
1372 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX,
1373 (state == STATE_RADIO_RX_OFF) ||
1374 (state == STATE_RADIO_RX_OFF_LINK));
1375 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1378 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1379 enum dev_state state)
1381 int mask = (state == STATE_RADIO_IRQ_OFF);
1385 * When interrupts are being enabled, the interrupt registers
1386 * should clear the register to assure a clean state.
1388 if (state == STATE_RADIO_IRQ_ON) {
1389 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
1390 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1392 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®);
1393 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1397 * Only toggle the interrupts bits we are going to use.
1398 * Non-checked interrupt bits are disabled by default.
1400 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®);
1401 rt2x00_set_field32(®, INT_MASK_CSR_TXDONE, mask);
1402 rt2x00_set_field32(®, INT_MASK_CSR_RXDONE, mask);
1403 rt2x00_set_field32(®, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1404 rt2x00_set_field32(®, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1405 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1407 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®);
1408 rt2x00_set_field32(®, MCU_INT_MASK_CSR_0, mask);
1409 rt2x00_set_field32(®, MCU_INT_MASK_CSR_1, mask);
1410 rt2x00_set_field32(®, MCU_INT_MASK_CSR_2, mask);
1411 rt2x00_set_field32(®, MCU_INT_MASK_CSR_3, mask);
1412 rt2x00_set_field32(®, MCU_INT_MASK_CSR_4, mask);
1413 rt2x00_set_field32(®, MCU_INT_MASK_CSR_5, mask);
1414 rt2x00_set_field32(®, MCU_INT_MASK_CSR_6, mask);
1415 rt2x00_set_field32(®, MCU_INT_MASK_CSR_7, mask);
1416 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1419 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1424 * Initialize all registers.
1426 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1427 rt61pci_init_registers(rt2x00dev) ||
1428 rt61pci_init_bbp(rt2x00dev)))
1434 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®);
1435 rt2x00_set_field32(®, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1436 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1441 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1445 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1448 * Disable synchronisation.
1450 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1455 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®);
1456 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1457 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1458 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1459 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1460 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1463 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1469 put_to_sleep = (state != STATE_AWAKE);
1471 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®);
1472 rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1473 rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1474 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1477 * Device is not guaranteed to be in the requested state yet.
1478 * We must wait until the register indicates that the
1479 * device has entered the correct state.
1481 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1482 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®);
1483 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1484 if (state == !put_to_sleep)
1492 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1493 enum dev_state state)
1498 case STATE_RADIO_ON:
1499 retval = rt61pci_enable_radio(rt2x00dev);
1501 case STATE_RADIO_OFF:
1502 rt61pci_disable_radio(rt2x00dev);
1504 case STATE_RADIO_RX_ON:
1505 case STATE_RADIO_RX_ON_LINK:
1506 case STATE_RADIO_RX_OFF:
1507 case STATE_RADIO_RX_OFF_LINK:
1508 rt61pci_toggle_rx(rt2x00dev, state);
1510 case STATE_RADIO_IRQ_ON:
1511 case STATE_RADIO_IRQ_OFF:
1512 rt61pci_toggle_irq(rt2x00dev, state);
1514 case STATE_DEEP_SLEEP:
1518 retval = rt61pci_set_state(rt2x00dev, state);
1525 if (unlikely(retval))
1526 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1533 * TX descriptor initialization
1535 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1536 struct sk_buff *skb,
1537 struct txentry_desc *txdesc)
1539 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1540 __le32 *txd = skbdesc->desc;
1544 * Start writing the descriptor words.
1546 rt2x00_desc_read(txd, 1, &word);
1547 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1548 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1549 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1550 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1551 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1552 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1553 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1554 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1555 rt2x00_desc_write(txd, 1, word);
1557 rt2x00_desc_read(txd, 2, &word);
1558 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1559 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1560 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1561 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1562 rt2x00_desc_write(txd, 2, word);
1564 rt2x00_desc_read(txd, 5, &word);
1565 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1566 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1567 skbdesc->entry->entry_idx);
1568 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1569 TXPOWER_TO_DEV(rt2x00dev->tx_power));
1570 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1571 rt2x00_desc_write(txd, 5, word);
1573 rt2x00_desc_read(txd, 6, &word);
1574 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1576 rt2x00_desc_write(txd, 6, word);
1578 if (skbdesc->desc_len > TXINFO_SIZE) {
1579 rt2x00_desc_read(txd, 11, &word);
1580 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1581 rt2x00_desc_write(txd, 11, word);
1584 rt2x00_desc_read(txd, 0, &word);
1585 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1586 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1587 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1588 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1589 rt2x00_set_field32(&word, TXD_W0_ACK,
1590 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1591 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1592 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1593 rt2x00_set_field32(&word, TXD_W0_OFDM,
1594 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1595 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1596 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1597 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1598 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0);
1599 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1600 rt2x00_set_field32(&word, TXD_W0_BURST,
1601 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1602 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1603 rt2x00_desc_write(txd, 0, word);
1607 * TX data initialization
1609 static void rt61pci_write_beacon(struct queue_entry *entry)
1611 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1612 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1613 unsigned int beacon_base;
1617 * Disable beaconing while we are reloading the beacon data,
1618 * otherwise we might be sending out invalid data.
1620 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
1621 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0);
1622 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0);
1623 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
1624 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1627 * Write entire beacon with descriptor to register.
1629 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1630 rt2x00pci_register_multiwrite(rt2x00dev,
1632 skbdesc->desc, skbdesc->desc_len);
1633 rt2x00pci_register_multiwrite(rt2x00dev,
1634 beacon_base + skbdesc->desc_len,
1635 entry->skb->data, entry->skb->len);
1638 * Clean up beacon skb.
1640 dev_kfree_skb_any(entry->skb);
1644 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1645 const enum data_queue_qid queue)
1649 if (queue == QID_BEACON) {
1651 * For Wi-Fi faily generated beacons between participating
1652 * stations. Set TBTT phase adaptive adjustment step to 8us.
1654 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1656 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®);
1657 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1658 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1);
1659 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1);
1660 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
1661 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1666 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®);
1667 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1668 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1669 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1670 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1671 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1675 * RX control handlers
1677 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1683 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1698 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1699 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
1702 if (lna == 3 || lna == 2)
1705 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
1706 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
1708 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
1711 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
1712 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
1715 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1718 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1719 struct rxdone_entry_desc *rxdesc)
1721 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1725 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1726 rt2x00_desc_read(entry_priv->desc, 1, &word1);
1728 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1729 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1732 * Obtain the status about this packet.
1733 * When frame was received with an OFDM bitrate,
1734 * the signal is the PLCP value. If it was received with
1735 * a CCK bitrate the signal is the rate in 100kbit/s.
1737 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1738 rxdesc->rssi = rt61pci_agc_to_rssi(entry->queue->rt2x00dev, word1);
1739 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1741 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1742 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1743 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1744 rxdesc->dev_flags |= RXDONE_MY_BSS;
1748 * Interrupt functions.
1750 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
1752 struct data_queue *queue;
1753 struct queue_entry *entry;
1754 struct queue_entry *entry_done;
1755 struct queue_entry_priv_pci *entry_priv;
1756 struct txdone_entry_desc txdesc;
1764 * During each loop we will compare the freshly read
1765 * STA_CSR4 register value with the value read from
1766 * the previous loop. If the 2 values are equal then
1767 * we should stop processing because the chance it
1768 * quite big that the device has been unplugged and
1769 * we risk going into an endless loop.
1774 rt2x00pci_register_read(rt2x00dev, STA_CSR4, ®);
1775 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
1783 * Skip this entry when it contains an invalid
1784 * queue identication number.
1786 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
1787 queue = rt2x00queue_get_queue(rt2x00dev, type);
1788 if (unlikely(!queue))
1792 * Skip this entry when it contains an invalid
1795 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
1796 if (unlikely(index >= queue->limit))
1799 entry = &queue->entries[index];
1800 entry_priv = entry->priv_data;
1801 rt2x00_desc_read(entry_priv->desc, 0, &word);
1803 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1804 !rt2x00_get_field32(word, TXD_W0_VALID))
1807 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1808 while (entry != entry_done) {
1810 * Just report any entries we missed as failed.
1813 "TX status report missed for entry %d\n",
1814 entry_done->entry_idx);
1817 __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
1820 rt2x00lib_txdone(entry_done, &txdesc);
1821 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1825 * Obtain the status about this packet.
1828 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
1829 case 0: /* Success, maybe with retry */
1830 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1832 case 6: /* Failure, excessive retries */
1833 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1834 /* Don't break, this is a failed frame! */
1835 default: /* Failure */
1836 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1838 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
1840 rt2x00lib_txdone(entry, &txdesc);
1844 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
1846 struct rt2x00_dev *rt2x00dev = dev_instance;
1851 * Get the interrupt sources & saved to local variable.
1852 * Write register value back to clear pending interrupts.
1854 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®_mcu);
1855 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
1857 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®);
1858 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1860 if (!reg && !reg_mcu)
1863 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1867 * Handle interrupts, walk through all bits
1868 * and run the tasks, the bits are checked in order of
1873 * 1 - Rx ring done interrupt.
1875 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
1876 rt2x00pci_rxdone(rt2x00dev);
1879 * 2 - Tx ring done interrupt.
1881 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
1882 rt61pci_txdone(rt2x00dev);
1885 * 3 - Handle MCU command done.
1888 rt2x00pci_register_write(rt2x00dev,
1889 M2H_CMD_DONE_CSR, 0xffffffff);
1895 * Device probe functions.
1897 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1899 struct eeprom_93cx6 eeprom;
1905 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®);
1907 eeprom.data = rt2x00dev;
1908 eeprom.register_read = rt61pci_eepromregister_read;
1909 eeprom.register_write = rt61pci_eepromregister_write;
1910 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
1911 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1912 eeprom.reg_data_in = 0;
1913 eeprom.reg_data_out = 0;
1914 eeprom.reg_data_clock = 0;
1915 eeprom.reg_chip_select = 0;
1917 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1918 EEPROM_SIZE / sizeof(u16));
1921 * Start validation of the data that has been read.
1923 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1924 if (!is_valid_ether_addr(mac)) {
1925 DECLARE_MAC_BUF(macbuf);
1927 random_ether_addr(mac);
1928 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1931 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1932 if (word == 0xffff) {
1933 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1934 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1936 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1938 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1939 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1940 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1941 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
1942 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1943 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1946 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1947 if (word == 0xffff) {
1948 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
1949 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
1950 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
1951 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
1952 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1953 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
1954 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1955 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1958 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1959 if (word == 0xffff) {
1960 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1962 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1963 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1966 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1967 if (word == 0xffff) {
1968 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1969 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1970 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1971 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1974 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1975 if (word == 0xffff) {
1976 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1977 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1978 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1979 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1981 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1982 if (value < -10 || value > 10)
1983 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1984 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1985 if (value < -10 || value > 10)
1986 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1987 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1990 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1991 if (word == 0xffff) {
1992 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1993 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1994 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1995 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1997 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1998 if (value < -10 || value > 10)
1999 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2000 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2001 if (value < -10 || value > 10)
2002 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2003 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2009 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2017 * Read EEPROM word for configuration.
2019 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2022 * Identify RF chipset.
2023 * To determine the RT chip we have to read the
2024 * PCI header of the device.
2026 pci_read_config_word(to_pci_dev(rt2x00dev->dev),
2027 PCI_CONFIG_HEADER_DEVICE, &device);
2028 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2029 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®);
2030 rt2x00_set_chip(rt2x00dev, device, value, reg);
2032 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2033 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2034 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2035 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2036 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2041 * Determine number of antenna's.
2043 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2044 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2047 * Identify default antenna configuration.
2049 rt2x00dev->default_ant.tx =
2050 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2051 rt2x00dev->default_ant.rx =
2052 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2055 * Read the Frame type.
2057 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2058 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2061 * Detect if this device has an hardware controlled radio.
2063 #ifdef CONFIG_RT61PCI_RFKILL
2064 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2065 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2066 #endif /* CONFIG_RT61PCI_RFKILL */
2069 * Read frequency offset and RF programming sequence.
2071 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2072 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2073 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2075 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2078 * Read external LNA informations.
2080 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2082 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2083 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2084 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2085 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2088 * When working with a RF2529 chip without double antenna
2089 * the antenna settings should be gathered from the NIC
2092 if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2093 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2094 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2096 rt2x00dev->default_ant.tx = ANTENNA_B;
2097 rt2x00dev->default_ant.rx = ANTENNA_A;
2100 rt2x00dev->default_ant.tx = ANTENNA_B;
2101 rt2x00dev->default_ant.rx = ANTENNA_B;
2104 rt2x00dev->default_ant.tx = ANTENNA_A;
2105 rt2x00dev->default_ant.rx = ANTENNA_A;
2108 rt2x00dev->default_ant.tx = ANTENNA_A;
2109 rt2x00dev->default_ant.rx = ANTENNA_B;
2113 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2114 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2115 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2116 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2120 * Store led settings, for correct led behaviour.
2121 * If the eeprom value is invalid,
2122 * switch to default led mode.
2124 #ifdef CONFIG_RT61PCI_LEDS
2125 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2126 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2128 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2129 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2130 if (value == LED_MODE_SIGNAL_STRENGTH)
2131 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2134 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2135 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2136 rt2x00_get_field16(eeprom,
2137 EEPROM_LED_POLARITY_GPIO_0));
2138 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2139 rt2x00_get_field16(eeprom,
2140 EEPROM_LED_POLARITY_GPIO_1));
2141 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2142 rt2x00_get_field16(eeprom,
2143 EEPROM_LED_POLARITY_GPIO_2));
2144 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2145 rt2x00_get_field16(eeprom,
2146 EEPROM_LED_POLARITY_GPIO_3));
2147 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2148 rt2x00_get_field16(eeprom,
2149 EEPROM_LED_POLARITY_GPIO_4));
2150 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2151 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2152 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2153 rt2x00_get_field16(eeprom,
2154 EEPROM_LED_POLARITY_RDY_G));
2155 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2156 rt2x00_get_field16(eeprom,
2157 EEPROM_LED_POLARITY_RDY_A));
2158 #endif /* CONFIG_RT61PCI_LEDS */
2164 * RF value list for RF5225 & RF5325
2165 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2167 static const struct rf_channel rf_vals_noseq[] = {
2168 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2169 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2170 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2171 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2172 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2173 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2174 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2175 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2176 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2177 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2178 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2179 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2180 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2181 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2183 /* 802.11 UNI / HyperLan 2 */
2184 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2185 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2186 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2187 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2188 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2189 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2190 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2191 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2193 /* 802.11 HyperLan 2 */
2194 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2195 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2196 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2197 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2198 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2199 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2200 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2201 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2202 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2203 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2206 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2207 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2208 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2209 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2210 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2211 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2213 /* MMAC(Japan)J52 ch 34,38,42,46 */
2214 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2215 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2216 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2217 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2221 * RF value list for RF5225 & RF5325
2222 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2224 static const struct rf_channel rf_vals_seq[] = {
2225 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2226 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2227 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2228 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2229 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2230 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2231 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2232 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2233 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2234 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2235 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2236 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2237 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2238 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2240 /* 802.11 UNI / HyperLan 2 */
2241 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2242 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2243 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2244 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2245 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2246 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2247 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2248 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2250 /* 802.11 HyperLan 2 */
2251 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2252 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2253 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2254 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2255 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2256 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2257 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2258 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2259 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2260 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2263 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2264 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2265 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2266 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2267 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2268 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2270 /* MMAC(Japan)J52 ch 34,38,42,46 */
2271 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2272 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2273 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2274 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2277 static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2279 struct hw_mode_spec *spec = &rt2x00dev->spec;
2284 * Initialize all hw fields.
2286 rt2x00dev->hw->flags =
2287 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2288 IEEE80211_HW_SIGNAL_DBM;
2289 rt2x00dev->hw->extra_tx_headroom = 0;
2291 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2292 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2293 rt2x00_eeprom_addr(rt2x00dev,
2294 EEPROM_MAC_ADDR_0));
2297 * Convert tx_power array in eeprom.
2299 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2300 for (i = 0; i < 14; i++)
2301 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2304 * Initialize hw_mode information.
2306 spec->supported_bands = SUPPORT_BAND_2GHZ;
2307 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2308 spec->tx_power_a = NULL;
2309 spec->tx_power_bg = txpower;
2310 spec->tx_power_default = DEFAULT_TXPOWER;
2312 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2313 spec->num_channels = 14;
2314 spec->channels = rf_vals_noseq;
2316 spec->num_channels = 14;
2317 spec->channels = rf_vals_seq;
2320 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2321 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2322 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2323 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2325 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2326 for (i = 0; i < 14; i++)
2327 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2329 spec->tx_power_a = txpower;
2333 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2338 * Allocate eeprom data.
2340 retval = rt61pci_validate_eeprom(rt2x00dev);
2344 retval = rt61pci_init_eeprom(rt2x00dev);
2349 * Initialize hw specifications.
2351 rt61pci_probe_hw_mode(rt2x00dev);
2354 * This device requires firmware and DMA mapped skbs.
2356 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2357 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2360 * Set the rssi offset.
2362 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2368 * IEEE80211 stack callback functions.
2370 static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
2371 u32 short_retry, u32 long_retry)
2373 struct rt2x00_dev *rt2x00dev = hw->priv;
2376 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®);
2377 rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
2378 rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
2379 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
2384 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2386 struct rt2x00_dev *rt2x00dev = hw->priv;
2390 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, ®);
2391 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2392 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, ®);
2393 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2398 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2400 .start = rt2x00mac_start,
2401 .stop = rt2x00mac_stop,
2402 .add_interface = rt2x00mac_add_interface,
2403 .remove_interface = rt2x00mac_remove_interface,
2404 .config = rt2x00mac_config,
2405 .config_interface = rt2x00mac_config_interface,
2406 .configure_filter = rt2x00mac_configure_filter,
2407 .get_stats = rt2x00mac_get_stats,
2408 .set_retry_limit = rt61pci_set_retry_limit,
2409 .bss_info_changed = rt2x00mac_bss_info_changed,
2410 .conf_tx = rt2x00mac_conf_tx,
2411 .get_tx_stats = rt2x00mac_get_tx_stats,
2412 .get_tsf = rt61pci_get_tsf,
2415 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2416 .irq_handler = rt61pci_interrupt,
2417 .probe_hw = rt61pci_probe_hw,
2418 .get_firmware_name = rt61pci_get_firmware_name,
2419 .get_firmware_crc = rt61pci_get_firmware_crc,
2420 .load_firmware = rt61pci_load_firmware,
2421 .initialize = rt2x00pci_initialize,
2422 .uninitialize = rt2x00pci_uninitialize,
2423 .init_rxentry = rt61pci_init_rxentry,
2424 .init_txentry = rt61pci_init_txentry,
2425 .set_device_state = rt61pci_set_device_state,
2426 .rfkill_poll = rt61pci_rfkill_poll,
2427 .link_stats = rt61pci_link_stats,
2428 .reset_tuner = rt61pci_reset_tuner,
2429 .link_tuner = rt61pci_link_tuner,
2430 .write_tx_desc = rt61pci_write_tx_desc,
2431 .write_tx_data = rt2x00pci_write_tx_data,
2432 .write_beacon = rt61pci_write_beacon,
2433 .kick_tx_queue = rt61pci_kick_tx_queue,
2434 .fill_rxdone = rt61pci_fill_rxdone,
2435 .config_filter = rt61pci_config_filter,
2436 .config_intf = rt61pci_config_intf,
2437 .config_erp = rt61pci_config_erp,
2438 .config = rt61pci_config,
2441 static const struct data_queue_desc rt61pci_queue_rx = {
2442 .entry_num = RX_ENTRIES,
2443 .data_size = DATA_FRAME_SIZE,
2444 .desc_size = RXD_DESC_SIZE,
2445 .priv_size = sizeof(struct queue_entry_priv_pci),
2448 static const struct data_queue_desc rt61pci_queue_tx = {
2449 .entry_num = TX_ENTRIES,
2450 .data_size = DATA_FRAME_SIZE,
2451 .desc_size = TXD_DESC_SIZE,
2452 .priv_size = sizeof(struct queue_entry_priv_pci),
2455 static const struct data_queue_desc rt61pci_queue_bcn = {
2456 .entry_num = 4 * BEACON_ENTRIES,
2457 .data_size = 0, /* No DMA required for beacons */
2458 .desc_size = TXINFO_SIZE,
2459 .priv_size = sizeof(struct queue_entry_priv_pci),
2462 static const struct rt2x00_ops rt61pci_ops = {
2463 .name = KBUILD_MODNAME,
2466 .eeprom_size = EEPROM_SIZE,
2468 .tx_queues = NUM_TX_QUEUES,
2469 .rx = &rt61pci_queue_rx,
2470 .tx = &rt61pci_queue_tx,
2471 .bcn = &rt61pci_queue_bcn,
2472 .lib = &rt61pci_rt2x00_ops,
2473 .hw = &rt61pci_mac80211_ops,
2474 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2475 .debugfs = &rt61pci_rt2x00debug,
2476 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2480 * RT61pci module information.
2482 static struct pci_device_id rt61pci_device_table[] = {
2484 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2486 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2488 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2492 MODULE_AUTHOR(DRV_PROJECT);
2493 MODULE_VERSION(DRV_VERSION);
2494 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2495 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2496 "PCI & PCMCIA chipset based cards");
2497 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2498 MODULE_FIRMWARE(FIRMWARE_RT2561);
2499 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2500 MODULE_FIRMWARE(FIRMWARE_RT2661);
2501 MODULE_LICENSE("GPL");
2503 static struct pci_driver rt61pci_driver = {
2504 .name = KBUILD_MODNAME,
2505 .id_table = rt61pci_device_table,
2506 .probe = rt2x00pci_probe,
2507 .remove = __devexit_p(rt2x00pci_remove),
2508 .suspend = rt2x00pci_suspend,
2509 .resume = rt2x00pci_resume,
2512 static int __init rt61pci_init(void)
2514 return pci_register_driver(&rt61pci_driver);
2517 static void __exit rt61pci_exit(void)
2519 pci_unregister_driver(&rt61pci_driver);
2522 module_init(rt61pci_init);
2523 module_exit(rt61pci_exit);