Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
13  *      Flex-OneNAND support
14  *      Copyright (C) Samsung Electronics, 2008
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License version 2 as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/init.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/interrupt.h>
28 #include <linux/jiffies.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/onenand.h>
31 #include <linux/mtd/partitions.h>
32
33 #include <asm/io.h>
34
35 /* Default Flex-OneNAND boundary and lock respectively */
36 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
37
38 module_param_array(flex_bdry, int, NULL, 0400);
39 MODULE_PARM_DESC(flex_bdry,     "SLC Boundary information for Flex-OneNAND"
40                                 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
41                                 "DIE_BDRY: SLC boundary of the die"
42                                 "LOCK: Locking information for SLC boundary"
43                                 "    : 0->Set boundary in unlocked status"
44                                 "    : 1->Set boundary in locked status");
45
46 /**
47  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
48  *  For now, we expose only 64 out of 80 ecc bytes
49  */
50 static struct nand_ecclayout onenand_oob_128 = {
51         .eccbytes       = 64,
52         .eccpos         = {
53                 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
54                 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
55                 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
56                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
57                 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
58                 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
59                 102, 103, 104, 105
60                 },
61         .oobfree        = {
62                 {2, 4}, {18, 4}, {34, 4}, {50, 4},
63                 {66, 4}, {82, 4}, {98, 4}, {114, 4}
64         }
65 };
66
67 /**
68  * onenand_oob_64 - oob info for large (2KB) page
69  */
70 static struct nand_ecclayout onenand_oob_64 = {
71         .eccbytes       = 20,
72         .eccpos         = {
73                 8, 9, 10, 11, 12,
74                 24, 25, 26, 27, 28,
75                 40, 41, 42, 43, 44,
76                 56, 57, 58, 59, 60,
77                 },
78         .oobfree        = {
79                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
80                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
81         }
82 };
83
84 /**
85  * onenand_oob_32 - oob info for middle (1KB) page
86  */
87 static struct nand_ecclayout onenand_oob_32 = {
88         .eccbytes       = 10,
89         .eccpos         = {
90                 8, 9, 10, 11, 12,
91                 24, 25, 26, 27, 28,
92                 },
93         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
94 };
95
96 static const unsigned char ffchars[] = {
97         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
98         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
99         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
100         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
101         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
102         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
103         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
104         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
105         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
106         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
107         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
108         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
109         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
110         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
111         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
112         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
113 };
114
115 /**
116  * onenand_readw - [OneNAND Interface] Read OneNAND register
117  * @param addr          address to read
118  *
119  * Read OneNAND register
120  */
121 static unsigned short onenand_readw(void __iomem *addr)
122 {
123         return readw(addr);
124 }
125
126 /**
127  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
128  * @param value         value to write
129  * @param addr          address to write
130  *
131  * Write OneNAND register with value
132  */
133 static void onenand_writew(unsigned short value, void __iomem *addr)
134 {
135         writew(value, addr);
136 }
137
138 /**
139  * onenand_block_address - [DEFAULT] Get block address
140  * @param this          onenand chip data structure
141  * @param block         the block
142  * @return              translated block address if DDP, otherwise same
143  *
144  * Setup Start Address 1 Register (F100h)
145  */
146 static int onenand_block_address(struct onenand_chip *this, int block)
147 {
148         /* Device Flash Core select, NAND Flash Block Address */
149         if (block & this->density_mask)
150                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
151
152         return block;
153 }
154
155 /**
156  * onenand_bufferram_address - [DEFAULT] Get bufferram address
157  * @param this          onenand chip data structure
158  * @param block         the block
159  * @return              set DBS value if DDP, otherwise 0
160  *
161  * Setup Start Address 2 Register (F101h) for DDP
162  */
163 static int onenand_bufferram_address(struct onenand_chip *this, int block)
164 {
165         /* Device BufferRAM Select */
166         if (block & this->density_mask)
167                 return ONENAND_DDP_CHIP1;
168
169         return ONENAND_DDP_CHIP0;
170 }
171
172 /**
173  * onenand_page_address - [DEFAULT] Get page address
174  * @param page          the page address
175  * @param sector        the sector address
176  * @return              combined page and sector address
177  *
178  * Setup Start Address 8 Register (F107h)
179  */
180 static int onenand_page_address(int page, int sector)
181 {
182         /* Flash Page Address, Flash Sector Address */
183         int fpa, fsa;
184
185         fpa = page & ONENAND_FPA_MASK;
186         fsa = sector & ONENAND_FSA_MASK;
187
188         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
189 }
190
191 /**
192  * onenand_buffer_address - [DEFAULT] Get buffer address
193  * @param dataram1      DataRAM index
194  * @param sectors       the sector address
195  * @param count         the number of sectors
196  * @return              the start buffer value
197  *
198  * Setup Start Buffer Register (F200h)
199  */
200 static int onenand_buffer_address(int dataram1, int sectors, int count)
201 {
202         int bsa, bsc;
203
204         /* BufferRAM Sector Address */
205         bsa = sectors & ONENAND_BSA_MASK;
206
207         if (dataram1)
208                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
209         else
210                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
211
212         /* BufferRAM Sector Count */
213         bsc = count & ONENAND_BSC_MASK;
214
215         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
216 }
217
218 /**
219  * flexonenand_block- For given address return block number
220  * @param this         - OneNAND device structure
221  * @param addr          - Address for which block number is needed
222  */
223 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
224 {
225         unsigned boundary, blk, die = 0;
226
227         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
228                 die = 1;
229                 addr -= this->diesize[0];
230         }
231
232         boundary = this->boundary[die];
233
234         blk = addr >> (this->erase_shift - 1);
235         if (blk > boundary)
236                 blk = (blk + boundary + 1) >> 1;
237
238         blk += die ? this->density_mask : 0;
239         return blk;
240 }
241
242 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
243 {
244         if (!FLEXONENAND(this))
245                 return addr >> this->erase_shift;
246         return flexonenand_block(this, addr);
247 }
248
249 /**
250  * flexonenand_addr - Return address of the block
251  * @this:               OneNAND device structure
252  * @block:              Block number on Flex-OneNAND
253  *
254  * Return address of the block
255  */
256 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
257 {
258         loff_t ofs = 0;
259         int die = 0, boundary;
260
261         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
262                 block -= this->density_mask;
263                 die = 1;
264                 ofs = this->diesize[0];
265         }
266
267         boundary = this->boundary[die];
268         ofs += (loff_t)block << (this->erase_shift - 1);
269         if (block > (boundary + 1))
270                 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
271         return ofs;
272 }
273
274 loff_t onenand_addr(struct onenand_chip *this, int block)
275 {
276         if (!FLEXONENAND(this))
277                 return (loff_t)block << this->erase_shift;
278         return flexonenand_addr(this, block);
279 }
280 EXPORT_SYMBOL(onenand_addr);
281
282 /**
283  * onenand_get_density - [DEFAULT] Get OneNAND density
284  * @param dev_id        OneNAND device ID
285  *
286  * Get OneNAND density from device ID
287  */
288 static inline int onenand_get_density(int dev_id)
289 {
290         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
291         return (density & ONENAND_DEVICE_DENSITY_MASK);
292 }
293
294 /**
295  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
296  * @param mtd           MTD device structure
297  * @param addr          address whose erase region needs to be identified
298  */
299 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
300 {
301         int i;
302
303         for (i = 0; i < mtd->numeraseregions; i++)
304                 if (addr < mtd->eraseregions[i].offset)
305                         break;
306         return i - 1;
307 }
308 EXPORT_SYMBOL(flexonenand_region);
309
310 /**
311  * onenand_command - [DEFAULT] Send command to OneNAND device
312  * @param mtd           MTD device structure
313  * @param cmd           the command to be sent
314  * @param addr          offset to read from or write to
315  * @param len           number of bytes to read or write
316  *
317  * Send command to OneNAND device. This function is used for middle/large page
318  * devices (1KB/2KB Bytes per page)
319  */
320 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
321 {
322         struct onenand_chip *this = mtd->priv;
323         int value, block, page;
324
325         /* Address translation */
326         switch (cmd) {
327         case ONENAND_CMD_UNLOCK:
328         case ONENAND_CMD_LOCK:
329         case ONENAND_CMD_LOCK_TIGHT:
330         case ONENAND_CMD_UNLOCK_ALL:
331                 block = -1;
332                 page = -1;
333                 break;
334
335         case FLEXONENAND_CMD_PI_ACCESS:
336                 /* addr contains die index */
337                 block = addr * this->density_mask;
338                 page = -1;
339                 break;
340
341         case ONENAND_CMD_ERASE:
342         case ONENAND_CMD_BUFFERRAM:
343         case ONENAND_CMD_OTP_ACCESS:
344                 block = onenand_block(this, addr);
345                 page = -1;
346                 break;
347
348         case FLEXONENAND_CMD_READ_PI:
349                 cmd = ONENAND_CMD_READ;
350                 block = addr * this->density_mask;
351                 page = 0;
352                 break;
353
354         default:
355                 block = onenand_block(this, addr);
356                 page = (int) (addr - onenand_addr(this, block)) >> this->page_shift;
357
358                 if (ONENAND_IS_2PLANE(this)) {
359                         /* Make the even block number */
360                         block &= ~1;
361                         /* Is it the odd plane? */
362                         if (addr & this->writesize)
363                                 block++;
364                         page >>= 1;
365                 }
366                 page &= this->page_mask;
367                 break;
368         }
369
370         /* NOTE: The setting order of the registers is very important! */
371         if (cmd == ONENAND_CMD_BUFFERRAM) {
372                 /* Select DataRAM for DDP */
373                 value = onenand_bufferram_address(this, block);
374                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
375
376                 if (ONENAND_IS_MLC(this) || ONENAND_IS_2PLANE(this))
377                         /* It is always BufferRAM0 */
378                         ONENAND_SET_BUFFERRAM0(this);
379                 else
380                         /* Switch to the next data buffer */
381                         ONENAND_SET_NEXT_BUFFERRAM(this);
382
383                 return 0;
384         }
385
386         if (block != -1) {
387                 /* Write 'DFS, FBA' of Flash */
388                 value = onenand_block_address(this, block);
389                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
390
391                 /* Select DataRAM for DDP */
392                 value = onenand_bufferram_address(this, block);
393                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
394         }
395
396         if (page != -1) {
397                 /* Now we use page size operation */
398                 int sectors = 0, count = 0;
399                 int dataram;
400
401                 switch (cmd) {
402                 case FLEXONENAND_CMD_RECOVER_LSB:
403                 case ONENAND_CMD_READ:
404                 case ONENAND_CMD_READOOB:
405                         if (ONENAND_IS_MLC(this))
406                                 /* It is always BufferRAM0 */
407                                 dataram = ONENAND_SET_BUFFERRAM0(this);
408                         else
409                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
410                         break;
411
412                 default:
413                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
414                                 cmd = ONENAND_CMD_2X_PROG;
415                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
416                         break;
417                 }
418
419                 /* Write 'FPA, FSA' of Flash */
420                 value = onenand_page_address(page, sectors);
421                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
422
423                 /* Write 'BSA, BSC' of DataRAM */
424                 value = onenand_buffer_address(dataram, sectors, count);
425                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
426         }
427
428         /* Interrupt clear */
429         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
430
431         /* Write command */
432         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
433
434         return 0;
435 }
436
437 /**
438  * onenand_read_ecc - return ecc status
439  * @param this          onenand chip structure
440  */
441 static inline int onenand_read_ecc(struct onenand_chip *this)
442 {
443         int ecc, i, result = 0;
444
445         if (!FLEXONENAND(this))
446                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
447
448         for (i = 0; i < 4; i++) {
449                 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i);
450                 if (likely(!ecc))
451                         continue;
452                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
453                         return ONENAND_ECC_2BIT_ALL;
454                 else
455                         result = ONENAND_ECC_1BIT_ALL;
456         }
457
458         return result;
459 }
460
461 /**
462  * onenand_wait - [DEFAULT] wait until the command is done
463  * @param mtd           MTD device structure
464  * @param state         state to select the max. timeout value
465  *
466  * Wait for command done. This applies to all OneNAND command
467  * Read can take up to 30us, erase up to 2ms and program up to 350us
468  * according to general OneNAND specs
469  */
470 static int onenand_wait(struct mtd_info *mtd, int state)
471 {
472         struct onenand_chip * this = mtd->priv;
473         unsigned long timeout;
474         unsigned int flags = ONENAND_INT_MASTER;
475         unsigned int interrupt = 0;
476         unsigned int ctrl;
477
478         /* The 20 msec is enough */
479         timeout = jiffies + msecs_to_jiffies(20);
480         while (time_before(jiffies, timeout)) {
481                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
482
483                 if (interrupt & flags)
484                         break;
485
486                 if (state != FL_READING)
487                         cond_resched();
488         }
489         /* To get correct interrupt status in timeout case */
490         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
491
492         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
493
494         /*
495          * In the Spec. it checks the controller status first
496          * However if you get the correct information in case of
497          * power off recovery (POR) test, it should read ECC status first
498          */
499         if (interrupt & ONENAND_INT_READ) {
500                 int ecc = onenand_read_ecc(this);
501                 if (ecc) {
502                         if (ecc & ONENAND_ECC_2BIT_ALL) {
503                                 printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
504                                 mtd->ecc_stats.failed++;
505                                 return -EBADMSG;
506                         } else if (ecc & ONENAND_ECC_1BIT_ALL) {
507                                 printk(KERN_DEBUG "onenand_wait: correctable ECC error = 0x%04x\n", ecc);
508                                 mtd->ecc_stats.corrected++;
509                         }
510                 }
511         } else if (state == FL_READING) {
512                 printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
513                 return -EIO;
514         }
515
516         /* If there's controller error, it's a real error */
517         if (ctrl & ONENAND_CTRL_ERROR) {
518                 printk(KERN_ERR "onenand_wait: controller error = 0x%04x\n",
519                         ctrl);
520                 if (ctrl & ONENAND_CTRL_LOCK)
521                         printk(KERN_ERR "onenand_wait: it's locked error.\n");
522                 return -EIO;
523         }
524
525         return 0;
526 }
527
528 /*
529  * onenand_interrupt - [DEFAULT] onenand interrupt handler
530  * @param irq           onenand interrupt number
531  * @param dev_id        interrupt data
532  *
533  * complete the work
534  */
535 static irqreturn_t onenand_interrupt(int irq, void *data)
536 {
537         struct onenand_chip *this = data;
538
539         /* To handle shared interrupt */
540         if (!this->complete.done)
541                 complete(&this->complete);
542
543         return IRQ_HANDLED;
544 }
545
546 /*
547  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
548  * @param mtd           MTD device structure
549  * @param state         state to select the max. timeout value
550  *
551  * Wait for command done.
552  */
553 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
554 {
555         struct onenand_chip *this = mtd->priv;
556
557         wait_for_completion(&this->complete);
558
559         return onenand_wait(mtd, state);
560 }
561
562 /*
563  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
564  * @param mtd           MTD device structure
565  * @param state         state to select the max. timeout value
566  *
567  * Try interrupt based wait (It is used one-time)
568  */
569 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
570 {
571         struct onenand_chip *this = mtd->priv;
572         unsigned long remain, timeout;
573
574         /* We use interrupt wait first */
575         this->wait = onenand_interrupt_wait;
576
577         timeout = msecs_to_jiffies(100);
578         remain = wait_for_completion_timeout(&this->complete, timeout);
579         if (!remain) {
580                 printk(KERN_INFO "OneNAND: There's no interrupt. "
581                                 "We use the normal wait\n");
582
583                 /* Release the irq */
584                 free_irq(this->irq, this);
585
586                 this->wait = onenand_wait;
587         }
588
589         return onenand_wait(mtd, state);
590 }
591
592 /*
593  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
594  * @param mtd           MTD device structure
595  *
596  * There's two method to wait onenand work
597  * 1. polling - read interrupt status register
598  * 2. interrupt - use the kernel interrupt method
599  */
600 static void onenand_setup_wait(struct mtd_info *mtd)
601 {
602         struct onenand_chip *this = mtd->priv;
603         int syscfg;
604
605         init_completion(&this->complete);
606
607         if (this->irq <= 0) {
608                 this->wait = onenand_wait;
609                 return;
610         }
611
612         if (request_irq(this->irq, &onenand_interrupt,
613                                 IRQF_SHARED, "onenand", this)) {
614                 /* If we can't get irq, use the normal wait */
615                 this->wait = onenand_wait;
616                 return;
617         }
618
619         /* Enable interrupt */
620         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
621         syscfg |= ONENAND_SYS_CFG1_IOBE;
622         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
623
624         this->wait = onenand_try_interrupt_wait;
625 }
626
627 /**
628  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
629  * @param mtd           MTD data structure
630  * @param area          BufferRAM area
631  * @return              offset given area
632  *
633  * Return BufferRAM offset given area
634  */
635 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
636 {
637         struct onenand_chip *this = mtd->priv;
638
639         if (ONENAND_CURRENT_BUFFERRAM(this)) {
640                 /* Note: the 'this->writesize' is a real page size */
641                 if (area == ONENAND_DATARAM)
642                         return this->writesize;
643                 if (area == ONENAND_SPARERAM)
644                         return mtd->oobsize;
645         }
646
647         return 0;
648 }
649
650 /**
651  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
652  * @param mtd           MTD data structure
653  * @param area          BufferRAM area
654  * @param buffer        the databuffer to put/get data
655  * @param offset        offset to read from or write to
656  * @param count         number of bytes to read/write
657  *
658  * Read the BufferRAM area
659  */
660 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
661                 unsigned char *buffer, int offset, size_t count)
662 {
663         struct onenand_chip *this = mtd->priv;
664         void __iomem *bufferram;
665
666         bufferram = this->base + area;
667
668         bufferram += onenand_bufferram_offset(mtd, area);
669
670         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
671                 unsigned short word;
672
673                 /* Align with word(16-bit) size */
674                 count--;
675
676                 /* Read word and save byte */
677                 word = this->read_word(bufferram + offset + count);
678                 buffer[count] = (word & 0xff);
679         }
680
681         memcpy(buffer, bufferram + offset, count);
682
683         return 0;
684 }
685
686 /**
687  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
688  * @param mtd           MTD data structure
689  * @param area          BufferRAM area
690  * @param buffer        the databuffer to put/get data
691  * @param offset        offset to read from or write to
692  * @param count         number of bytes to read/write
693  *
694  * Read the BufferRAM area with Sync. Burst Mode
695  */
696 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
697                 unsigned char *buffer, int offset, size_t count)
698 {
699         struct onenand_chip *this = mtd->priv;
700         void __iomem *bufferram;
701
702         bufferram = this->base + area;
703
704         bufferram += onenand_bufferram_offset(mtd, area);
705
706         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
707
708         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
709                 unsigned short word;
710
711                 /* Align with word(16-bit) size */
712                 count--;
713
714                 /* Read word and save byte */
715                 word = this->read_word(bufferram + offset + count);
716                 buffer[count] = (word & 0xff);
717         }
718
719         memcpy(buffer, bufferram + offset, count);
720
721         this->mmcontrol(mtd, 0);
722
723         return 0;
724 }
725
726 /**
727  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
728  * @param mtd           MTD data structure
729  * @param area          BufferRAM area
730  * @param buffer        the databuffer to put/get data
731  * @param offset        offset to read from or write to
732  * @param count         number of bytes to read/write
733  *
734  * Write the BufferRAM area
735  */
736 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
737                 const unsigned char *buffer, int offset, size_t count)
738 {
739         struct onenand_chip *this = mtd->priv;
740         void __iomem *bufferram;
741
742         bufferram = this->base + area;
743
744         bufferram += onenand_bufferram_offset(mtd, area);
745
746         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
747                 unsigned short word;
748                 int byte_offset;
749
750                 /* Align with word(16-bit) size */
751                 count--;
752
753                 /* Calculate byte access offset */
754                 byte_offset = offset + count;
755
756                 /* Read word and save byte */
757                 word = this->read_word(bufferram + byte_offset);
758                 word = (word & ~0xff) | buffer[count];
759                 this->write_word(word, bufferram + byte_offset);
760         }
761
762         memcpy(bufferram + offset, buffer, count);
763
764         return 0;
765 }
766
767 /**
768  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
769  * @param mtd           MTD data structure
770  * @param addr          address to check
771  * @return              blockpage address
772  *
773  * Get blockpage address at 2x program mode
774  */
775 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
776 {
777         struct onenand_chip *this = mtd->priv;
778         int blockpage, block, page;
779
780         /* Calculate the even block number */
781         block = (int) (addr >> this->erase_shift) & ~1;
782         /* Is it the odd plane? */
783         if (addr & this->writesize)
784                 block++;
785         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
786         blockpage = (block << 7) | page;
787
788         return blockpage;
789 }
790
791 /**
792  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
793  * @param mtd           MTD data structure
794  * @param addr          address to check
795  * @return              1 if there are valid data, otherwise 0
796  *
797  * Check bufferram if there is data we required
798  */
799 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
800 {
801         struct onenand_chip *this = mtd->priv;
802         int blockpage, found = 0;
803         unsigned int i;
804
805         if (ONENAND_IS_2PLANE(this))
806                 blockpage = onenand_get_2x_blockpage(mtd, addr);
807         else
808                 blockpage = (int) (addr >> this->page_shift);
809
810         /* Is there valid data? */
811         i = ONENAND_CURRENT_BUFFERRAM(this);
812         if (this->bufferram[i].blockpage == blockpage)
813                 found = 1;
814         else {
815                 /* Check another BufferRAM */
816                 i = ONENAND_NEXT_BUFFERRAM(this);
817                 if (this->bufferram[i].blockpage == blockpage) {
818                         ONENAND_SET_NEXT_BUFFERRAM(this);
819                         found = 1;
820                 }
821         }
822
823         if (found && ONENAND_IS_DDP(this)) {
824                 /* Select DataRAM for DDP */
825                 int block = onenand_block(this, addr);
826                 int value = onenand_bufferram_address(this, block);
827                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
828         }
829
830         return found;
831 }
832
833 /**
834  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
835  * @param mtd           MTD data structure
836  * @param addr          address to update
837  * @param valid         valid flag
838  *
839  * Update BufferRAM information
840  */
841 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
842                 int valid)
843 {
844         struct onenand_chip *this = mtd->priv;
845         int blockpage;
846         unsigned int i;
847
848         if (ONENAND_IS_2PLANE(this))
849                 blockpage = onenand_get_2x_blockpage(mtd, addr);
850         else
851                 blockpage = (int) (addr >> this->page_shift);
852
853         /* Invalidate another BufferRAM */
854         i = ONENAND_NEXT_BUFFERRAM(this);
855         if (this->bufferram[i].blockpage == blockpage)
856                 this->bufferram[i].blockpage = -1;
857
858         /* Update BufferRAM */
859         i = ONENAND_CURRENT_BUFFERRAM(this);
860         if (valid)
861                 this->bufferram[i].blockpage = blockpage;
862         else
863                 this->bufferram[i].blockpage = -1;
864 }
865
866 /**
867  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
868  * @param mtd           MTD data structure
869  * @param addr          start address to invalidate
870  * @param len           length to invalidate
871  *
872  * Invalidate BufferRAM information
873  */
874 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
875                 unsigned int len)
876 {
877         struct onenand_chip *this = mtd->priv;
878         int i;
879         loff_t end_addr = addr + len;
880
881         /* Invalidate BufferRAM */
882         for (i = 0; i < MAX_BUFFERRAM; i++) {
883                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
884                 if (buf_addr >= addr && buf_addr < end_addr)
885                         this->bufferram[i].blockpage = -1;
886         }
887 }
888
889 /**
890  * onenand_get_device - [GENERIC] Get chip for selected access
891  * @param mtd           MTD device structure
892  * @param new_state     the state which is requested
893  *
894  * Get the device and lock it for exclusive access
895  */
896 static int onenand_get_device(struct mtd_info *mtd, int new_state)
897 {
898         struct onenand_chip *this = mtd->priv;
899         DECLARE_WAITQUEUE(wait, current);
900
901         /*
902          * Grab the lock and see if the device is available
903          */
904         while (1) {
905                 spin_lock(&this->chip_lock);
906                 if (this->state == FL_READY) {
907                         this->state = new_state;
908                         spin_unlock(&this->chip_lock);
909                         break;
910                 }
911                 if (new_state == FL_PM_SUSPENDED) {
912                         spin_unlock(&this->chip_lock);
913                         return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
914                 }
915                 set_current_state(TASK_UNINTERRUPTIBLE);
916                 add_wait_queue(&this->wq, &wait);
917                 spin_unlock(&this->chip_lock);
918                 schedule();
919                 remove_wait_queue(&this->wq, &wait);
920         }
921
922         return 0;
923 }
924
925 /**
926  * onenand_release_device - [GENERIC] release chip
927  * @param mtd           MTD device structure
928  *
929  * Deselect, release chip lock and wake up anyone waiting on the device
930  */
931 static void onenand_release_device(struct mtd_info *mtd)
932 {
933         struct onenand_chip *this = mtd->priv;
934
935         /* Release the chip */
936         spin_lock(&this->chip_lock);
937         this->state = FL_READY;
938         wake_up(&this->wq);
939         spin_unlock(&this->chip_lock);
940 }
941
942 /**
943  * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
944  * @param mtd           MTD device structure
945  * @param buf           destination address
946  * @param column        oob offset to read from
947  * @param thislen       oob length to read
948  */
949 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
950                                 int thislen)
951 {
952         struct onenand_chip *this = mtd->priv;
953         struct nand_oobfree *free;
954         int readcol = column;
955         int readend = column + thislen;
956         int lastgap = 0;
957         unsigned int i;
958         uint8_t *oob_buf = this->oob_buf;
959
960         free = this->ecclayout->oobfree;
961         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
962                 if (readcol >= lastgap)
963                         readcol += free->offset - lastgap;
964                 if (readend >= lastgap)
965                         readend += free->offset - lastgap;
966                 lastgap = free->offset + free->length;
967         }
968         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
969         free = this->ecclayout->oobfree;
970         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
971                 int free_end = free->offset + free->length;
972                 if (free->offset < readend && free_end > readcol) {
973                         int st = max_t(int,free->offset,readcol);
974                         int ed = min_t(int,free_end,readend);
975                         int n = ed - st;
976                         memcpy(buf, oob_buf + st, n);
977                         buf += n;
978                 } else if (column == 0)
979                         break;
980         }
981         return 0;
982 }
983
984 /**
985  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
986  * @param mtd           MTD device structure
987  * @param addr          address to recover
988  * @param status        return value from onenand_wait / onenand_bbt_wait
989  *
990  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
991  * lower page address and MSB page has higher page address in paired pages.
992  * If power off occurs during MSB page program, the paired LSB page data can
993  * become corrupt. LSB page recovery read is a way to read LSB page though page
994  * data are corrupted. When uncorrectable error occurs as a result of LSB page
995  * read after power up, issue LSB page recovery read.
996  */
997 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
998 {
999         struct onenand_chip *this = mtd->priv;
1000         int i;
1001
1002         /* Recovery is only for Flex-OneNAND */
1003         if (!FLEXONENAND(this))
1004                 return status;
1005
1006         /* check if we failed due to uncorrectable error */
1007         if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
1008                 return status;
1009
1010         /* check if address lies in MLC region */
1011         i = flexonenand_region(mtd, addr);
1012         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1013                 return status;
1014
1015         /* We are attempting to reread, so decrement stats.failed
1016          * which was incremented by onenand_wait due to read failure
1017          */
1018         printk(KERN_INFO "onenand_recover_lsb: Attempting to recover from uncorrectable read\n");
1019         mtd->ecc_stats.failed--;
1020
1021         /* Issue the LSB page recovery command */
1022         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1023         return this->wait(mtd, FL_READING);
1024 }
1025
1026 /**
1027  * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1028  * @param mtd           MTD device structure
1029  * @param from          offset to read from
1030  * @param ops:          oob operation description structure
1031  *
1032  * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1033  * So, read-while-load is not present.
1034  */
1035 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1036                                 struct mtd_oob_ops *ops)
1037 {
1038         struct onenand_chip *this = mtd->priv;
1039         struct mtd_ecc_stats stats;
1040         size_t len = ops->len;
1041         size_t ooblen = ops->ooblen;
1042         u_char *buf = ops->datbuf;
1043         u_char *oobbuf = ops->oobbuf;
1044         int read = 0, column, thislen;
1045         int oobread = 0, oobcolumn, thisooblen, oobsize;
1046         int ret = 0;
1047         int writesize = this->writesize;
1048
1049         DEBUG(MTD_DEBUG_LEVEL3, "onenand_mlc_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1050
1051         if (ops->mode == MTD_OOB_AUTO)
1052                 oobsize = this->ecclayout->oobavail;
1053         else
1054                 oobsize = mtd->oobsize;
1055
1056         oobcolumn = from & (mtd->oobsize - 1);
1057
1058         /* Do not allow reads past end of device */
1059         if (from + len > mtd->size) {
1060                 printk(KERN_ERR "onenand_mlc_read_ops_nolock: Attempt read beyond end of device\n");
1061                 ops->retlen = 0;
1062                 ops->oobretlen = 0;
1063                 return -EINVAL;
1064         }
1065
1066         stats = mtd->ecc_stats;
1067
1068         while (read < len) {
1069                 cond_resched();
1070
1071                 thislen = min_t(int, writesize, len - read);
1072
1073                 column = from & (writesize - 1);
1074                 if (column + thislen > writesize)
1075                         thislen = writesize - column;
1076
1077                 if (!onenand_check_bufferram(mtd, from)) {
1078                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1079
1080                         ret = this->wait(mtd, FL_READING);
1081                         if (unlikely(ret))
1082                                 ret = onenand_recover_lsb(mtd, from, ret);
1083                         onenand_update_bufferram(mtd, from, !ret);
1084                         if (ret == -EBADMSG)
1085                                 ret = 0;
1086                 }
1087
1088                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1089                 if (oobbuf) {
1090                         thisooblen = oobsize - oobcolumn;
1091                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1092
1093                         if (ops->mode == MTD_OOB_AUTO)
1094                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1095                         else
1096                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1097                         oobread += thisooblen;
1098                         oobbuf += thisooblen;
1099                         oobcolumn = 0;
1100                 }
1101
1102                 read += thislen;
1103                 if (read == len)
1104                         break;
1105
1106                 from += thislen;
1107                 buf += thislen;
1108         }
1109
1110         /*
1111          * Return success, if no ECC failures, else -EBADMSG
1112          * fs driver will take care of that, because
1113          * retlen == desired len and result == -EBADMSG
1114          */
1115         ops->retlen = read;
1116         ops->oobretlen = oobread;
1117
1118         if (ret)
1119                 return ret;
1120
1121         if (mtd->ecc_stats.failed - stats.failed)
1122                 return -EBADMSG;
1123
1124         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1125 }
1126
1127 /**
1128  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1129  * @param mtd           MTD device structure
1130  * @param from          offset to read from
1131  * @param ops:          oob operation description structure
1132  *
1133  * OneNAND read main and/or out-of-band data
1134  */
1135 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1136                                 struct mtd_oob_ops *ops)
1137 {
1138         struct onenand_chip *this = mtd->priv;
1139         struct mtd_ecc_stats stats;
1140         size_t len = ops->len;
1141         size_t ooblen = ops->ooblen;
1142         u_char *buf = ops->datbuf;
1143         u_char *oobbuf = ops->oobbuf;
1144         int read = 0, column, thislen;
1145         int oobread = 0, oobcolumn, thisooblen, oobsize;
1146         int ret = 0, boundary = 0;
1147         int writesize = this->writesize;
1148
1149         DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1150
1151         if (ops->mode == MTD_OOB_AUTO)
1152                 oobsize = this->ecclayout->oobavail;
1153         else
1154                 oobsize = mtd->oobsize;
1155
1156         oobcolumn = from & (mtd->oobsize - 1);
1157
1158         /* Do not allow reads past end of device */
1159         if ((from + len) > mtd->size) {
1160                 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
1161                 ops->retlen = 0;
1162                 ops->oobretlen = 0;
1163                 return -EINVAL;
1164         }
1165
1166         stats = mtd->ecc_stats;
1167
1168         /* Read-while-load method */
1169
1170         /* Do first load to bufferRAM */
1171         if (read < len) {
1172                 if (!onenand_check_bufferram(mtd, from)) {
1173                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1174                         ret = this->wait(mtd, FL_READING);
1175                         onenand_update_bufferram(mtd, from, !ret);
1176                         if (ret == -EBADMSG)
1177                                 ret = 0;
1178                 }
1179         }
1180
1181         thislen = min_t(int, writesize, len - read);
1182         column = from & (writesize - 1);
1183         if (column + thislen > writesize)
1184                 thislen = writesize - column;
1185
1186         while (!ret) {
1187                 /* If there is more to load then start next load */
1188                 from += thislen;
1189                 if (read + thislen < len) {
1190                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1191                         /*
1192                          * Chip boundary handling in DDP
1193                          * Now we issued chip 1 read and pointed chip 1
1194                          * bufferam so we have to point chip 0 bufferam.
1195                          */
1196                         if (ONENAND_IS_DDP(this) &&
1197                             unlikely(from == (this->chipsize >> 1))) {
1198                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1199                                 boundary = 1;
1200                         } else
1201                                 boundary = 0;
1202                         ONENAND_SET_PREV_BUFFERRAM(this);
1203                 }
1204                 /* While load is going, read from last bufferRAM */
1205                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1206
1207                 /* Read oob area if needed */
1208                 if (oobbuf) {
1209                         thisooblen = oobsize - oobcolumn;
1210                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1211
1212                         if (ops->mode == MTD_OOB_AUTO)
1213                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1214                         else
1215                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1216                         oobread += thisooblen;
1217                         oobbuf += thisooblen;
1218                         oobcolumn = 0;
1219                 }
1220
1221                 /* See if we are done */
1222                 read += thislen;
1223                 if (read == len)
1224                         break;
1225                 /* Set up for next read from bufferRAM */
1226                 if (unlikely(boundary))
1227                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1228                 ONENAND_SET_NEXT_BUFFERRAM(this);
1229                 buf += thislen;
1230                 thislen = min_t(int, writesize, len - read);
1231                 column = 0;
1232                 cond_resched();
1233                 /* Now wait for load */
1234                 ret = this->wait(mtd, FL_READING);
1235                 onenand_update_bufferram(mtd, from, !ret);
1236                 if (ret == -EBADMSG)
1237                         ret = 0;
1238         }
1239
1240         /*
1241          * Return success, if no ECC failures, else -EBADMSG
1242          * fs driver will take care of that, because
1243          * retlen == desired len and result == -EBADMSG
1244          */
1245         ops->retlen = read;
1246         ops->oobretlen = oobread;
1247
1248         if (ret)
1249                 return ret;
1250
1251         if (mtd->ecc_stats.failed - stats.failed)
1252                 return -EBADMSG;
1253
1254         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1255 }
1256
1257 /**
1258  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1259  * @param mtd           MTD device structure
1260  * @param from          offset to read from
1261  * @param ops:          oob operation description structure
1262  *
1263  * OneNAND read out-of-band data from the spare area
1264  */
1265 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1266                         struct mtd_oob_ops *ops)
1267 {
1268         struct onenand_chip *this = mtd->priv;
1269         struct mtd_ecc_stats stats;
1270         int read = 0, thislen, column, oobsize;
1271         size_t len = ops->ooblen;
1272         mtd_oob_mode_t mode = ops->mode;
1273         u_char *buf = ops->oobbuf;
1274         int ret = 0, readcmd;
1275
1276         from += ops->ooboffs;
1277
1278         DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1279
1280         /* Initialize return length value */
1281         ops->oobretlen = 0;
1282
1283         if (mode == MTD_OOB_AUTO)
1284                 oobsize = this->ecclayout->oobavail;
1285         else
1286                 oobsize = mtd->oobsize;
1287
1288         column = from & (mtd->oobsize - 1);
1289
1290         if (unlikely(column >= oobsize)) {
1291                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1292                 return -EINVAL;
1293         }
1294
1295         /* Do not allow reads past end of device */
1296         if (unlikely(from >= mtd->size ||
1297                      column + len > ((mtd->size >> this->page_shift) -
1298                                      (from >> this->page_shift)) * oobsize)) {
1299                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1300                 return -EINVAL;
1301         }
1302
1303         stats = mtd->ecc_stats;
1304
1305         readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1306
1307         while (read < len) {
1308                 cond_resched();
1309
1310                 thislen = oobsize - column;
1311                 thislen = min_t(int, thislen, len);
1312
1313                 this->command(mtd, readcmd, from, mtd->oobsize);
1314
1315                 onenand_update_bufferram(mtd, from, 0);
1316
1317                 ret = this->wait(mtd, FL_READING);
1318                 if (unlikely(ret))
1319                         ret = onenand_recover_lsb(mtd, from, ret);
1320
1321                 if (ret && ret != -EBADMSG) {
1322                         printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1323                         break;
1324                 }
1325
1326                 if (mode == MTD_OOB_AUTO)
1327                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1328                 else
1329                         this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1330
1331                 read += thislen;
1332
1333                 if (read == len)
1334                         break;
1335
1336                 buf += thislen;
1337
1338                 /* Read more? */
1339                 if (read < len) {
1340                         /* Page size */
1341                         from += mtd->writesize;
1342                         column = 0;
1343                 }
1344         }
1345
1346         ops->oobretlen = read;
1347
1348         if (ret)
1349                 return ret;
1350
1351         if (mtd->ecc_stats.failed - stats.failed)
1352                 return -EBADMSG;
1353
1354         return 0;
1355 }
1356
1357 /**
1358  * onenand_read - [MTD Interface] Read data from flash
1359  * @param mtd           MTD device structure
1360  * @param from          offset to read from
1361  * @param len           number of bytes to read
1362  * @param retlen        pointer to variable to store the number of read bytes
1363  * @param buf           the databuffer to put data
1364  *
1365  * Read with ecc
1366 */
1367 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1368         size_t *retlen, u_char *buf)
1369 {
1370         struct onenand_chip *this = mtd->priv;
1371         struct mtd_oob_ops ops = {
1372                 .len    = len,
1373                 .ooblen = 0,
1374                 .datbuf = buf,
1375                 .oobbuf = NULL,
1376         };
1377         int ret;
1378
1379         onenand_get_device(mtd, FL_READING);
1380         ret = ONENAND_IS_MLC(this) ?
1381                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1382                 onenand_read_ops_nolock(mtd, from, &ops);
1383         onenand_release_device(mtd);
1384
1385         *retlen = ops.retlen;
1386         return ret;
1387 }
1388
1389 /**
1390  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1391  * @param mtd:          MTD device structure
1392  * @param from:         offset to read from
1393  * @param ops:          oob operation description structure
1394
1395  * Read main and/or out-of-band
1396  */
1397 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1398                             struct mtd_oob_ops *ops)
1399 {
1400         struct onenand_chip *this = mtd->priv;
1401         int ret;
1402
1403         switch (ops->mode) {
1404         case MTD_OOB_PLACE:
1405         case MTD_OOB_AUTO:
1406                 break;
1407         case MTD_OOB_RAW:
1408                 /* Not implemented yet */
1409         default:
1410                 return -EINVAL;
1411         }
1412
1413         onenand_get_device(mtd, FL_READING);
1414         if (ops->datbuf)
1415                 ret = ONENAND_IS_MLC(this) ?
1416                         onenand_mlc_read_ops_nolock(mtd, from, ops) :
1417                         onenand_read_ops_nolock(mtd, from, ops);
1418         else
1419                 ret = onenand_read_oob_nolock(mtd, from, ops);
1420         onenand_release_device(mtd);
1421
1422         return ret;
1423 }
1424
1425 /**
1426  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1427  * @param mtd           MTD device structure
1428  * @param state         state to select the max. timeout value
1429  *
1430  * Wait for command done.
1431  */
1432 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1433 {
1434         struct onenand_chip *this = mtd->priv;
1435         unsigned long timeout;
1436         unsigned int interrupt;
1437         unsigned int ctrl;
1438
1439         /* The 20 msec is enough */
1440         timeout = jiffies + msecs_to_jiffies(20);
1441         while (time_before(jiffies, timeout)) {
1442                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1443                 if (interrupt & ONENAND_INT_MASTER)
1444                         break;
1445         }
1446         /* To get correct interrupt status in timeout case */
1447         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1448         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1449
1450         if (interrupt & ONENAND_INT_READ) {
1451                 int ecc = onenand_read_ecc(this);
1452                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1453                         printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1454                                 ", controller error 0x%04x\n", ecc, ctrl);
1455                         return ONENAND_BBT_READ_ECC_ERROR;
1456                 }
1457         } else {
1458                 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1459                         "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1460                 return ONENAND_BBT_READ_FATAL_ERROR;
1461         }
1462
1463         /* Initial bad block case: 0x2400 or 0x0400 */
1464         if (ctrl & ONENAND_CTRL_ERROR) {
1465                 printk(KERN_DEBUG "onenand_bbt_wait: "
1466                         "controller error = 0x%04x\n", ctrl);
1467                 return ONENAND_BBT_READ_ERROR;
1468         }
1469
1470         return 0;
1471 }
1472
1473 /**
1474  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1475  * @param mtd           MTD device structure
1476  * @param from          offset to read from
1477  * @param ops           oob operation description structure
1478  *
1479  * OneNAND read out-of-band data from the spare area for bbt scan
1480  */
1481 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1482                             struct mtd_oob_ops *ops)
1483 {
1484         struct onenand_chip *this = mtd->priv;
1485         int read = 0, thislen, column;
1486         int ret = 0, readcmd;
1487         size_t len = ops->ooblen;
1488         u_char *buf = ops->oobbuf;
1489
1490         DEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1491
1492         /* Initialize return value */
1493         ops->oobretlen = 0;
1494
1495         /* Do not allow reads past end of device */
1496         if (unlikely((from + len) > mtd->size)) {
1497                 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1498                 return ONENAND_BBT_READ_FATAL_ERROR;
1499         }
1500
1501         /* Grab the lock and see if the device is available */
1502         onenand_get_device(mtd, FL_READING);
1503
1504         column = from & (mtd->oobsize - 1);
1505
1506         readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1507
1508         while (read < len) {
1509                 cond_resched();
1510
1511                 thislen = mtd->oobsize - column;
1512                 thislen = min_t(int, thislen, len);
1513
1514                 this->command(mtd, readcmd, from, mtd->oobsize);
1515
1516                 onenand_update_bufferram(mtd, from, 0);
1517
1518                 ret = this->bbt_wait(mtd, FL_READING);
1519                 if (unlikely(ret))
1520                         ret = onenand_recover_lsb(mtd, from, ret);
1521
1522                 if (ret)
1523                         break;
1524
1525                 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1526                 read += thislen;
1527                 if (read == len)
1528                         break;
1529
1530                 buf += thislen;
1531
1532                 /* Read more? */
1533                 if (read < len) {
1534                         /* Update Page size */
1535                         from += this->writesize;
1536                         column = 0;
1537                 }
1538         }
1539
1540         /* Deselect and wake up anyone waiting on the device */
1541         onenand_release_device(mtd);
1542
1543         ops->oobretlen = read;
1544         return ret;
1545 }
1546
1547 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1548 /**
1549  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1550  * @param mtd           MTD device structure
1551  * @param buf           the databuffer to verify
1552  * @param to            offset to read from
1553  */
1554 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1555 {
1556         struct onenand_chip *this = mtd->priv;
1557         u_char *oob_buf = this->oob_buf;
1558         int status, i, readcmd;
1559
1560         readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1561
1562         this->command(mtd, readcmd, to, mtd->oobsize);
1563         onenand_update_bufferram(mtd, to, 0);
1564         status = this->wait(mtd, FL_READING);
1565         if (status)
1566                 return status;
1567
1568         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1569         for (i = 0; i < mtd->oobsize; i++)
1570                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1571                         return -EBADMSG;
1572
1573         return 0;
1574 }
1575
1576 /**
1577  * onenand_verify - [GENERIC] verify the chip contents after a write
1578  * @param mtd          MTD device structure
1579  * @param buf          the databuffer to verify
1580  * @param addr         offset to read from
1581  * @param len          number of bytes to read and compare
1582  */
1583 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1584 {
1585         struct onenand_chip *this = mtd->priv;
1586         void __iomem *dataram;
1587         int ret = 0;
1588         int thislen, column;
1589
1590         while (len != 0) {
1591                 thislen = min_t(int, this->writesize, len);
1592                 column = addr & (this->writesize - 1);
1593                 if (column + thislen > this->writesize)
1594                         thislen = this->writesize - column;
1595
1596                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1597
1598                 onenand_update_bufferram(mtd, addr, 0);
1599
1600                 ret = this->wait(mtd, FL_READING);
1601                 if (ret)
1602                         return ret;
1603
1604                 onenand_update_bufferram(mtd, addr, 1);
1605
1606                 dataram = this->base + ONENAND_DATARAM;
1607                 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1608
1609                 if (memcmp(buf, dataram + column, thislen))
1610                         return -EBADMSG;
1611
1612                 len -= thislen;
1613                 buf += thislen;
1614                 addr += thislen;
1615         }
1616
1617         return 0;
1618 }
1619 #else
1620 #define onenand_verify(...)             (0)
1621 #define onenand_verify_oob(...)         (0)
1622 #endif
1623
1624 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1625
1626 static void onenand_panic_wait(struct mtd_info *mtd)
1627 {
1628         struct onenand_chip *this = mtd->priv;
1629         unsigned int interrupt;
1630         int i;
1631         
1632         for (i = 0; i < 2000; i++) {
1633                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1634                 if (interrupt & ONENAND_INT_MASTER)
1635                         break;
1636                 udelay(10);
1637         }
1638 }
1639
1640 /**
1641  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1642  * @param mtd           MTD device structure
1643  * @param to            offset to write to
1644  * @param len           number of bytes to write
1645  * @param retlen        pointer to variable to store the number of written bytes
1646  * @param buf           the data to write
1647  *
1648  * Write with ECC
1649  */
1650 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1651                          size_t *retlen, const u_char *buf)
1652 {
1653         struct onenand_chip *this = mtd->priv;
1654         int column, subpage;
1655         int written = 0;
1656         int ret = 0;
1657
1658         if (this->state == FL_PM_SUSPENDED)
1659                 return -EBUSY;
1660
1661         /* Wait for any existing operation to clear */
1662         onenand_panic_wait(mtd);
1663
1664         DEBUG(MTD_DEBUG_LEVEL3, "onenand_panic_write: to = 0x%08x, len = %i\n",
1665               (unsigned int) to, (int) len);
1666
1667         /* Initialize retlen, in case of early exit */
1668         *retlen = 0;
1669
1670         /* Do not allow writes past end of device */
1671         if (unlikely((to + len) > mtd->size)) {
1672                 printk(KERN_ERR "onenand_panic_write: Attempt write to past end of device\n");
1673                 return -EINVAL;
1674         }
1675
1676         /* Reject writes, which are not page aligned */
1677         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1678                 printk(KERN_ERR "onenand_panic_write: Attempt to write not page aligned data\n");
1679                 return -EINVAL;
1680         }
1681
1682         column = to & (mtd->writesize - 1);
1683
1684         /* Loop until all data write */
1685         while (written < len) {
1686                 int thislen = min_t(int, mtd->writesize - column, len - written);
1687                 u_char *wbuf = (u_char *) buf;
1688
1689                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1690
1691                 /* Partial page write */
1692                 subpage = thislen < mtd->writesize;
1693                 if (subpage) {
1694                         memset(this->page_buf, 0xff, mtd->writesize);
1695                         memcpy(this->page_buf + column, buf, thislen);
1696                         wbuf = this->page_buf;
1697                 }
1698
1699                 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1700                 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1701
1702                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1703
1704                 onenand_panic_wait(mtd);
1705
1706                 /* In partial page write we don't update bufferram */
1707                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1708                 if (ONENAND_IS_2PLANE(this)) {
1709                         ONENAND_SET_BUFFERRAM1(this);
1710                         onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1711                 }
1712
1713                 if (ret) {
1714                         printk(KERN_ERR "onenand_panic_write: write failed %d\n", ret);
1715                         break;
1716                 }
1717
1718                 written += thislen;
1719
1720                 if (written == len)
1721                         break;
1722
1723                 column = 0;
1724                 to += thislen;
1725                 buf += thislen;
1726         }
1727
1728         *retlen = written;
1729         return ret;
1730 }
1731
1732 /**
1733  * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1734  * @param mtd           MTD device structure
1735  * @param oob_buf       oob buffer
1736  * @param buf           source address
1737  * @param column        oob offset to write to
1738  * @param thislen       oob length to write
1739  */
1740 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1741                                   const u_char *buf, int column, int thislen)
1742 {
1743         struct onenand_chip *this = mtd->priv;
1744         struct nand_oobfree *free;
1745         int writecol = column;
1746         int writeend = column + thislen;
1747         int lastgap = 0;
1748         unsigned int i;
1749
1750         free = this->ecclayout->oobfree;
1751         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1752                 if (writecol >= lastgap)
1753                         writecol += free->offset - lastgap;
1754                 if (writeend >= lastgap)
1755                         writeend += free->offset - lastgap;
1756                 lastgap = free->offset + free->length;
1757         }
1758         free = this->ecclayout->oobfree;
1759         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1760                 int free_end = free->offset + free->length;
1761                 if (free->offset < writeend && free_end > writecol) {
1762                         int st = max_t(int,free->offset,writecol);
1763                         int ed = min_t(int,free_end,writeend);
1764                         int n = ed - st;
1765                         memcpy(oob_buf + st, buf, n);
1766                         buf += n;
1767                 } else if (column == 0)
1768                         break;
1769         }
1770         return 0;
1771 }
1772
1773 /**
1774  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1775  * @param mtd           MTD device structure
1776  * @param to            offset to write to
1777  * @param ops           oob operation description structure
1778  *
1779  * Write main and/or oob with ECC
1780  */
1781 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1782                                 struct mtd_oob_ops *ops)
1783 {
1784         struct onenand_chip *this = mtd->priv;
1785         int written = 0, column, thislen = 0, subpage = 0;
1786         int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1787         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1788         size_t len = ops->len;
1789         size_t ooblen = ops->ooblen;
1790         const u_char *buf = ops->datbuf;
1791         const u_char *oob = ops->oobbuf;
1792         u_char *oobbuf;
1793         int ret = 0;
1794
1795         DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1796
1797         /* Initialize retlen, in case of early exit */
1798         ops->retlen = 0;
1799         ops->oobretlen = 0;
1800
1801         /* Do not allow writes past end of device */
1802         if (unlikely((to + len) > mtd->size)) {
1803                 printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n");
1804                 return -EINVAL;
1805         }
1806
1807         /* Reject writes, which are not page aligned */
1808         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1809                 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1810                 return -EINVAL;
1811         }
1812
1813         /* Check zero length */
1814         if (!len)
1815                 return 0;
1816
1817         if (ops->mode == MTD_OOB_AUTO)
1818                 oobsize = this->ecclayout->oobavail;
1819         else
1820                 oobsize = mtd->oobsize;
1821
1822         oobcolumn = to & (mtd->oobsize - 1);
1823
1824         column = to & (mtd->writesize - 1);
1825
1826         /* Loop until all data write */
1827         while (1) {
1828                 if (written < len) {
1829                         u_char *wbuf = (u_char *) buf;
1830
1831                         thislen = min_t(int, mtd->writesize - column, len - written);
1832                         thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1833
1834                         cond_resched();
1835
1836                         this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1837
1838                         /* Partial page write */
1839                         subpage = thislen < mtd->writesize;
1840                         if (subpage) {
1841                                 memset(this->page_buf, 0xff, mtd->writesize);
1842                                 memcpy(this->page_buf + column, buf, thislen);
1843                                 wbuf = this->page_buf;
1844                         }
1845
1846                         this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1847
1848                         if (oob) {
1849                                 oobbuf = this->oob_buf;
1850
1851                                 /* We send data to spare ram with oobsize
1852                                  * to prevent byte access */
1853                                 memset(oobbuf, 0xff, mtd->oobsize);
1854                                 if (ops->mode == MTD_OOB_AUTO)
1855                                         onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1856                                 else
1857                                         memcpy(oobbuf + oobcolumn, oob, thisooblen);
1858
1859                                 oobwritten += thisooblen;
1860                                 oob += thisooblen;
1861                                 oobcolumn = 0;
1862                         } else
1863                                 oobbuf = (u_char *) ffchars;
1864
1865                         this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1866                 } else
1867                         ONENAND_SET_NEXT_BUFFERRAM(this);
1868
1869                 /*
1870                  * 2 PLANE, MLC, and Flex-OneNAND doesn't support
1871                  * write-while-programe feature.
1872                  */
1873                 if (!ONENAND_IS_2PLANE(this) && !first) {
1874                         ONENAND_SET_PREV_BUFFERRAM(this);
1875
1876                         ret = this->wait(mtd, FL_WRITING);
1877
1878                         /* In partial page write we don't update bufferram */
1879                         onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1880                         if (ret) {
1881                                 written -= prevlen;
1882                                 printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1883                                 break;
1884                         }
1885
1886                         if (written == len) {
1887                                 /* Only check verify write turn on */
1888                                 ret = onenand_verify(mtd, buf - len, to - len, len);
1889                                 if (ret)
1890                                         printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1891                                 break;
1892                         }
1893
1894                         ONENAND_SET_NEXT_BUFFERRAM(this);
1895                 }
1896
1897                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1898
1899                 /*
1900                  * 2 PLANE, MLC, and Flex-OneNAND wait here
1901                  */
1902                 if (ONENAND_IS_2PLANE(this)) {
1903                         ret = this->wait(mtd, FL_WRITING);
1904
1905                         /* In partial page write we don't update bufferram */
1906                         onenand_update_bufferram(mtd, to, !ret && !subpage);
1907                         if (ret) {
1908                                 printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1909                                 break;
1910                         }
1911
1912                         /* Only check verify write turn on */
1913                         ret = onenand_verify(mtd, buf, to, thislen);
1914                         if (ret) {
1915                                 printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1916                                 break;
1917                         }
1918
1919                         written += thislen;
1920
1921                         if (written == len)
1922                                 break;
1923
1924                 } else
1925                         written += thislen;
1926
1927                 column = 0;
1928                 prev_subpage = subpage;
1929                 prev = to;
1930                 prevlen = thislen;
1931                 to += thislen;
1932                 buf += thislen;
1933                 first = 0;
1934         }
1935
1936         /* In error case, clear all bufferrams */
1937         if (written != len)
1938                 onenand_invalidate_bufferram(mtd, 0, -1);
1939
1940         ops->retlen = written;
1941         ops->oobretlen = oobwritten;
1942
1943         return ret;
1944 }
1945
1946
1947 /**
1948  * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
1949  * @param mtd           MTD device structure
1950  * @param to            offset to write to
1951  * @param len           number of bytes to write
1952  * @param retlen        pointer to variable to store the number of written bytes
1953  * @param buf           the data to write
1954  * @param mode          operation mode
1955  *
1956  * OneNAND write out-of-band
1957  */
1958 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1959                                     struct mtd_oob_ops *ops)
1960 {
1961         struct onenand_chip *this = mtd->priv;
1962         int column, ret = 0, oobsize;
1963         int written = 0, oobcmd;
1964         u_char *oobbuf;
1965         size_t len = ops->ooblen;
1966         const u_char *buf = ops->oobbuf;
1967         mtd_oob_mode_t mode = ops->mode;
1968
1969         to += ops->ooboffs;
1970
1971         DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1972
1973         /* Initialize retlen, in case of early exit */
1974         ops->oobretlen = 0;
1975
1976         if (mode == MTD_OOB_AUTO)
1977                 oobsize = this->ecclayout->oobavail;
1978         else
1979                 oobsize = mtd->oobsize;
1980
1981         column = to & (mtd->oobsize - 1);
1982
1983         if (unlikely(column >= oobsize)) {
1984                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1985                 return -EINVAL;
1986         }
1987
1988         /* For compatibility with NAND: Do not allow write past end of page */
1989         if (unlikely(column + len > oobsize)) {
1990                 printk(KERN_ERR "onenand_write_oob_nolock: "
1991                       "Attempt to write past end of page\n");
1992                 return -EINVAL;
1993         }
1994
1995         /* Do not allow reads past end of device */
1996         if (unlikely(to >= mtd->size ||
1997                      column + len > ((mtd->size >> this->page_shift) -
1998                                      (to >> this->page_shift)) * oobsize)) {
1999                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
2000                 return -EINVAL;
2001         }
2002
2003         oobbuf = this->oob_buf;
2004
2005         oobcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2006
2007         /* Loop until all data write */
2008         while (written < len) {
2009                 int thislen = min_t(int, oobsize, len - written);
2010
2011                 cond_resched();
2012
2013                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2014
2015                 /* We send data to spare ram with oobsize
2016                  * to prevent byte access */
2017                 memset(oobbuf, 0xff, mtd->oobsize);
2018                 if (mode == MTD_OOB_AUTO)
2019                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2020                 else
2021                         memcpy(oobbuf + column, buf, thislen);
2022                 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2023
2024                 if (ONENAND_IS_MLC(this)) {
2025                         /* Set main area of DataRAM to 0xff*/
2026                         memset(this->page_buf, 0xff, mtd->writesize);
2027                         this->write_bufferram(mtd, ONENAND_DATARAM,
2028                                          this->page_buf, 0, mtd->writesize);
2029                 }
2030
2031                 this->command(mtd, oobcmd, to, mtd->oobsize);
2032
2033                 onenand_update_bufferram(mtd, to, 0);
2034                 if (ONENAND_IS_2PLANE(this)) {
2035                         ONENAND_SET_BUFFERRAM1(this);
2036                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2037                 }
2038
2039                 ret = this->wait(mtd, FL_WRITING);
2040                 if (ret) {
2041                         printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
2042                         break;
2043                 }
2044
2045                 ret = onenand_verify_oob(mtd, oobbuf, to);
2046                 if (ret) {
2047                         printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
2048                         break;
2049                 }
2050
2051                 written += thislen;
2052                 if (written == len)
2053                         break;
2054
2055                 to += mtd->writesize;
2056                 buf += thislen;
2057                 column = 0;
2058         }
2059
2060         ops->oobretlen = written;
2061
2062         return ret;
2063 }
2064
2065 /**
2066  * onenand_write - [MTD Interface] write buffer to FLASH
2067  * @param mtd           MTD device structure
2068  * @param to            offset to write to
2069  * @param len           number of bytes to write
2070  * @param retlen        pointer to variable to store the number of written bytes
2071  * @param buf           the data to write
2072  *
2073  * Write with ECC
2074  */
2075 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2076         size_t *retlen, const u_char *buf)
2077 {
2078         struct mtd_oob_ops ops = {
2079                 .len    = len,
2080                 .ooblen = 0,
2081                 .datbuf = (u_char *) buf,
2082                 .oobbuf = NULL,
2083         };
2084         int ret;
2085
2086         onenand_get_device(mtd, FL_WRITING);
2087         ret = onenand_write_ops_nolock(mtd, to, &ops);
2088         onenand_release_device(mtd);
2089
2090         *retlen = ops.retlen;
2091         return ret;
2092 }
2093
2094 /**
2095  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2096  * @param mtd:          MTD device structure
2097  * @param to:           offset to write
2098  * @param ops:          oob operation description structure
2099  */
2100 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2101                              struct mtd_oob_ops *ops)
2102 {
2103         int ret;
2104
2105         switch (ops->mode) {
2106         case MTD_OOB_PLACE:
2107         case MTD_OOB_AUTO:
2108                 break;
2109         case MTD_OOB_RAW:
2110                 /* Not implemented yet */
2111         default:
2112                 return -EINVAL;
2113         }
2114
2115         onenand_get_device(mtd, FL_WRITING);
2116         if (ops->datbuf)
2117                 ret = onenand_write_ops_nolock(mtd, to, ops);
2118         else
2119                 ret = onenand_write_oob_nolock(mtd, to, ops);
2120         onenand_release_device(mtd);
2121
2122         return ret;
2123 }
2124
2125 /**
2126  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2127  * @param mtd           MTD device structure
2128  * @param ofs           offset from device start
2129  * @param allowbbt      1, if its allowed to access the bbt area
2130  *
2131  * Check, if the block is bad. Either by reading the bad block table or
2132  * calling of the scan function.
2133  */
2134 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2135 {
2136         struct onenand_chip *this = mtd->priv;
2137         struct bbm_info *bbm = this->bbm;
2138
2139         /* Return info from the table */
2140         return bbm->isbad_bbt(mtd, ofs, allowbbt);
2141 }
2142
2143 /**
2144  * onenand_erase - [MTD Interface] erase block(s)
2145  * @param mtd           MTD device structure
2146  * @param instr         erase instruction
2147  *
2148  * Erase one ore more blocks
2149  */
2150 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2151 {
2152         struct onenand_chip *this = mtd->priv;
2153         unsigned int block_size;
2154         loff_t addr = instr->addr;
2155         loff_t len = instr->len;
2156         int ret = 0, i;
2157         struct mtd_erase_region_info *region = NULL;
2158         loff_t region_end = 0;
2159
2160         DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%012llx, len = %llu\n", (unsigned long long) instr->addr, (unsigned long long) instr->len);
2161
2162         /* Do not allow erase past end of device */
2163         if (unlikely((len + addr) > mtd->size)) {
2164                 printk(KERN_ERR "onenand_erase: Erase past end of device\n");
2165                 return -EINVAL;
2166         }
2167
2168         if (FLEXONENAND(this)) {
2169                 /* Find the eraseregion of this address */
2170                 i = flexonenand_region(mtd, addr);
2171                 region = &mtd->eraseregions[i];
2172
2173                 block_size = region->erasesize;
2174                 region_end = region->offset + region->erasesize * region->numblocks;
2175
2176                 /* Start address within region must align on block boundary.
2177                  * Erase region's start offset is always block start address.
2178                  */
2179                 if (unlikely((addr - region->offset) & (block_size - 1))) {
2180                         printk(KERN_ERR "onenand_erase: Unaligned address\n");
2181                         return -EINVAL;
2182                 }
2183         } else {
2184                 block_size = 1 << this->erase_shift;
2185
2186                 /* Start address must align on block boundary */
2187                 if (unlikely(addr & (block_size - 1))) {
2188                         printk(KERN_ERR "onenand_erase: Unaligned address\n");
2189                         return -EINVAL;
2190                 }
2191         }
2192
2193         /* Length must align on block boundary */
2194         if (unlikely(len & (block_size - 1))) {
2195                 printk(KERN_ERR "onenand_erase: Length not block aligned\n");
2196                 return -EINVAL;
2197         }
2198
2199         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2200
2201         /* Grab the lock and see if the device is available */
2202         onenand_get_device(mtd, FL_ERASING);
2203
2204         /* Loop throught the pages */
2205         instr->state = MTD_ERASING;
2206
2207         while (len) {
2208                 cond_resched();
2209
2210                 /* Check if we have a bad block, we do not erase bad blocks */
2211                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2212                         printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%012llx\n", (unsigned long long) addr);
2213                         instr->state = MTD_ERASE_FAILED;
2214                         goto erase_exit;
2215                 }
2216
2217                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2218
2219                 onenand_invalidate_bufferram(mtd, addr, block_size);
2220
2221                 ret = this->wait(mtd, FL_ERASING);
2222                 /* Check, if it is write protected */
2223                 if (ret) {
2224                         printk(KERN_ERR "onenand_erase: Failed erase, block %d\n",
2225                                                  onenand_block(this, addr));
2226                         instr->state = MTD_ERASE_FAILED;
2227                         instr->fail_addr = addr;
2228                         goto erase_exit;
2229                 }
2230
2231                 len -= block_size;
2232                 addr += block_size;
2233
2234                 if (addr == region_end) {
2235                         if (!len)
2236                                 break;
2237                         region++;
2238
2239                         block_size = region->erasesize;
2240                         region_end = region->offset + region->erasesize * region->numblocks;
2241
2242                         if (len & (block_size - 1)) {
2243                                 /* FIXME: This should be handled at MTD partitioning level. */
2244                                 printk(KERN_ERR "onenand_erase: Unaligned address\n");
2245                                 goto erase_exit;
2246                         }
2247                 }
2248
2249         }
2250
2251         instr->state = MTD_ERASE_DONE;
2252
2253 erase_exit:
2254
2255         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2256
2257         /* Deselect and wake up anyone waiting on the device */
2258         onenand_release_device(mtd);
2259
2260         /* Do call back function */
2261         if (!ret)
2262                 mtd_erase_callback(instr);
2263
2264         return ret;
2265 }
2266
2267 /**
2268  * onenand_sync - [MTD Interface] sync
2269  * @param mtd           MTD device structure
2270  *
2271  * Sync is actually a wait for chip ready function
2272  */
2273 static void onenand_sync(struct mtd_info *mtd)
2274 {
2275         DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
2276
2277         /* Grab the lock and see if the device is available */
2278         onenand_get_device(mtd, FL_SYNCING);
2279
2280         /* Release it and go back */
2281         onenand_release_device(mtd);
2282 }
2283
2284 /**
2285  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2286  * @param mtd           MTD device structure
2287  * @param ofs           offset relative to mtd start
2288  *
2289  * Check whether the block is bad
2290  */
2291 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2292 {
2293         int ret;
2294
2295         /* Check for invalid offset */
2296         if (ofs > mtd->size)
2297                 return -EINVAL;
2298
2299         onenand_get_device(mtd, FL_READING);
2300         ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2301         onenand_release_device(mtd);
2302         return ret;
2303 }
2304
2305 /**
2306  * onenand_default_block_markbad - [DEFAULT] mark a block bad
2307  * @param mtd           MTD device structure
2308  * @param ofs           offset from device start
2309  *
2310  * This is the default implementation, which can be overridden by
2311  * a hardware specific driver.
2312  */
2313 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2314 {
2315         struct onenand_chip *this = mtd->priv;
2316         struct bbm_info *bbm = this->bbm;
2317         u_char buf[2] = {0, 0};
2318         struct mtd_oob_ops ops = {
2319                 .mode = MTD_OOB_PLACE,
2320                 .ooblen = 2,
2321                 .oobbuf = buf,
2322                 .ooboffs = 0,
2323         };
2324         int block;
2325
2326         /* Get block number */
2327         block = onenand_block(this, ofs);
2328         if (bbm->bbt)
2329                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2330
2331         /* We write two bytes, so we dont have to mess with 16 bit access */
2332         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2333         /* FIXME : What to do when marking SLC block in partition
2334          *         with MLC erasesize? For now, it is not advisable to
2335          *         create partitions containing both SLC and MLC regions.
2336          */
2337         return onenand_write_oob_nolock(mtd, ofs, &ops);
2338 }
2339
2340 /**
2341  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2342  * @param mtd           MTD device structure
2343  * @param ofs           offset relative to mtd start
2344  *
2345  * Mark the block as bad
2346  */
2347 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2348 {
2349         struct onenand_chip *this = mtd->priv;
2350         int ret;
2351
2352         ret = onenand_block_isbad(mtd, ofs);
2353         if (ret) {
2354                 /* If it was bad already, return success and do nothing */
2355                 if (ret > 0)
2356                         return 0;
2357                 return ret;
2358         }
2359
2360         onenand_get_device(mtd, FL_WRITING);
2361         ret = this->block_markbad(mtd, ofs);
2362         onenand_release_device(mtd);
2363         return ret;
2364 }
2365
2366 /**
2367  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2368  * @param mtd           MTD device structure
2369  * @param ofs           offset relative to mtd start
2370  * @param len           number of bytes to lock or unlock
2371  * @param cmd           lock or unlock command
2372  *
2373  * Lock or unlock one or more blocks
2374  */
2375 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2376 {
2377         struct onenand_chip *this = mtd->priv;
2378         int start, end, block, value, status;
2379         int wp_status_mask;
2380
2381         start = onenand_block(this, ofs);
2382         end = onenand_block(this, ofs + len) - 1;
2383
2384         if (cmd == ONENAND_CMD_LOCK)
2385                 wp_status_mask = ONENAND_WP_LS;
2386         else
2387                 wp_status_mask = ONENAND_WP_US;
2388
2389         /* Continuous lock scheme */
2390         if (this->options & ONENAND_HAS_CONT_LOCK) {
2391                 /* Set start block address */
2392                 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2393                 /* Set end block address */
2394                 this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2395                 /* Write lock command */
2396                 this->command(mtd, cmd, 0, 0);
2397
2398                 /* There's no return value */
2399                 this->wait(mtd, FL_LOCKING);
2400
2401                 /* Sanity check */
2402                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2403                     & ONENAND_CTRL_ONGO)
2404                         continue;
2405
2406                 /* Check lock status */
2407                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2408                 if (!(status & wp_status_mask))
2409                         printk(KERN_ERR "wp status = 0x%x\n", status);
2410
2411                 return 0;
2412         }
2413
2414         /* Block lock scheme */
2415         for (block = start; block < end + 1; block++) {
2416                 /* Set block address */
2417                 value = onenand_block_address(this, block);
2418                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2419                 /* Select DataRAM for DDP */
2420                 value = onenand_bufferram_address(this, block);
2421                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2422                 /* Set start block address */
2423                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2424                 /* Write lock command */
2425                 this->command(mtd, cmd, 0, 0);
2426
2427                 /* There's no return value */
2428                 this->wait(mtd, FL_LOCKING);
2429
2430                 /* Sanity check */
2431                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2432                     & ONENAND_CTRL_ONGO)
2433                         continue;
2434
2435                 /* Check lock status */
2436                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2437                 if (!(status & wp_status_mask))
2438                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2439         }
2440
2441         return 0;
2442 }
2443
2444 /**
2445  * onenand_lock - [MTD Interface] Lock block(s)
2446  * @param mtd           MTD device structure
2447  * @param ofs           offset relative to mtd start
2448  * @param len           number of bytes to unlock
2449  *
2450  * Lock one or more blocks
2451  */
2452 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2453 {
2454         int ret;
2455
2456         onenand_get_device(mtd, FL_LOCKING);
2457         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2458         onenand_release_device(mtd);
2459         return ret;
2460 }
2461
2462 /**
2463  * onenand_unlock - [MTD Interface] Unlock block(s)
2464  * @param mtd           MTD device structure
2465  * @param ofs           offset relative to mtd start
2466  * @param len           number of bytes to unlock
2467  *
2468  * Unlock one or more blocks
2469  */
2470 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2471 {
2472         int ret;
2473
2474         onenand_get_device(mtd, FL_LOCKING);
2475         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2476         onenand_release_device(mtd);
2477         return ret;
2478 }
2479
2480 /**
2481  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2482  * @param this          onenand chip data structure
2483  *
2484  * Check lock status
2485  */
2486 static int onenand_check_lock_status(struct onenand_chip *this)
2487 {
2488         unsigned int value, block, status;
2489         unsigned int end;
2490
2491         end = this->chipsize >> this->erase_shift;
2492         for (block = 0; block < end; block++) {
2493                 /* Set block address */
2494                 value = onenand_block_address(this, block);
2495                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2496                 /* Select DataRAM for DDP */
2497                 value = onenand_bufferram_address(this, block);
2498                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2499                 /* Set start block address */
2500                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2501
2502                 /* Check lock status */
2503                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2504                 if (!(status & ONENAND_WP_US)) {
2505                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2506                         return 0;
2507                 }
2508         }
2509
2510         return 1;
2511 }
2512
2513 /**
2514  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2515  * @param mtd           MTD device structure
2516  *
2517  * Unlock all blocks
2518  */
2519 static void onenand_unlock_all(struct mtd_info *mtd)
2520 {
2521         struct onenand_chip *this = mtd->priv;
2522         loff_t ofs = 0;
2523         loff_t len = mtd->size;
2524
2525         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2526                 /* Set start block address */
2527                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2528                 /* Write unlock command */
2529                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2530
2531                 /* There's no return value */
2532                 this->wait(mtd, FL_LOCKING);
2533
2534                 /* Sanity check */
2535                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2536                     & ONENAND_CTRL_ONGO)
2537                         continue;
2538
2539                 /* Don't check lock status */
2540                 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2541                         return;
2542
2543                 /* Check lock status */
2544                 if (onenand_check_lock_status(this))
2545                         return;
2546
2547                 /* Workaround for all block unlock in DDP */
2548                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2549                         /* All blocks on another chip */
2550                         ofs = this->chipsize >> 1;
2551                         len = this->chipsize >> 1;
2552                 }
2553         }
2554
2555         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2556 }
2557
2558 #ifdef CONFIG_MTD_ONENAND_OTP
2559
2560 /* Interal OTP operation */
2561 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2562                 size_t *retlen, u_char *buf);
2563
2564 /**
2565  * do_otp_read - [DEFAULT] Read OTP block area
2566  * @param mtd           MTD device structure
2567  * @param from          The offset to read
2568  * @param len           number of bytes to read
2569  * @param retlen        pointer to variable to store the number of readbytes
2570  * @param buf           the databuffer to put/get data
2571  *
2572  * Read OTP block area.
2573  */
2574 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2575                 size_t *retlen, u_char *buf)
2576 {
2577         struct onenand_chip *this = mtd->priv;
2578         struct mtd_oob_ops ops = {
2579                 .len    = len,
2580                 .ooblen = 0,
2581                 .datbuf = buf,
2582                 .oobbuf = NULL,
2583         };
2584         int ret;
2585
2586         /* Enter OTP access mode */
2587         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2588         this->wait(mtd, FL_OTPING);
2589
2590         ret = ONENAND_IS_MLC(this) ?
2591                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
2592                 onenand_read_ops_nolock(mtd, from, &ops);
2593
2594         /* Exit OTP access mode */
2595         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2596         this->wait(mtd, FL_RESETING);
2597
2598         return ret;
2599 }
2600
2601 /**
2602  * do_otp_write - [DEFAULT] Write OTP block area
2603  * @param mtd           MTD device structure
2604  * @param to            The offset to write
2605  * @param len           number of bytes to write
2606  * @param retlen        pointer to variable to store the number of write bytes
2607  * @param buf           the databuffer to put/get data
2608  *
2609  * Write OTP block area.
2610  */
2611 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2612                 size_t *retlen, u_char *buf)
2613 {
2614         struct onenand_chip *this = mtd->priv;
2615         unsigned char *pbuf = buf;
2616         int ret;
2617         struct mtd_oob_ops ops;
2618
2619         /* Force buffer page aligned */
2620         if (len < mtd->writesize) {
2621                 memcpy(this->page_buf, buf, len);
2622                 memset(this->page_buf + len, 0xff, mtd->writesize - len);
2623                 pbuf = this->page_buf;
2624                 len = mtd->writesize;
2625         }
2626
2627         /* Enter OTP access mode */
2628         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2629         this->wait(mtd, FL_OTPING);
2630
2631         ops.len = len;
2632         ops.ooblen = 0;
2633         ops.datbuf = pbuf;
2634         ops.oobbuf = NULL;
2635         ret = onenand_write_ops_nolock(mtd, to, &ops);
2636         *retlen = ops.retlen;
2637
2638         /* Exit OTP access mode */
2639         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2640         this->wait(mtd, FL_RESETING);
2641
2642         return ret;
2643 }
2644
2645 /**
2646  * do_otp_lock - [DEFAULT] Lock OTP block area
2647  * @param mtd           MTD device structure
2648  * @param from          The offset to lock
2649  * @param len           number of bytes to lock
2650  * @param retlen        pointer to variable to store the number of lock bytes
2651  * @param buf           the databuffer to put/get data
2652  *
2653  * Lock OTP block area.
2654  */
2655 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2656                 size_t *retlen, u_char *buf)
2657 {
2658         struct onenand_chip *this = mtd->priv;
2659         struct mtd_oob_ops ops;
2660         int ret;
2661
2662         /* Enter OTP access mode */
2663         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2664         this->wait(mtd, FL_OTPING);
2665
2666         if (FLEXONENAND(this)) {
2667                 /*
2668                  * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
2669                  * main area of page 49.
2670                  */
2671                 ops.len = mtd->writesize;
2672                 ops.ooblen = 0;
2673                 ops.datbuf = buf;
2674                 ops.oobbuf = NULL;
2675                 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
2676                 *retlen = ops.retlen;
2677         } else {
2678                 ops.mode = MTD_OOB_PLACE;
2679                 ops.ooblen = len;
2680                 ops.oobbuf = buf;
2681                 ops.ooboffs = 0;
2682                 ret = onenand_write_oob_nolock(mtd, from, &ops);
2683                 *retlen = ops.oobretlen;
2684         }
2685
2686         /* Exit OTP access mode */
2687         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2688         this->wait(mtd, FL_RESETING);
2689
2690         return ret;
2691 }
2692
2693 /**
2694  * onenand_otp_walk - [DEFAULT] Handle OTP operation
2695  * @param mtd           MTD device structure
2696  * @param from          The offset to read/write
2697  * @param len           number of bytes to read/write
2698  * @param retlen        pointer to variable to store the number of read bytes
2699  * @param buf           the databuffer to put/get data
2700  * @param action        do given action
2701  * @param mode          specify user and factory
2702  *
2703  * Handle OTP operation.
2704  */
2705 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2706                         size_t *retlen, u_char *buf,
2707                         otp_op_t action, int mode)
2708 {
2709         struct onenand_chip *this = mtd->priv;
2710         int otp_pages;
2711         int density;
2712         int ret = 0;
2713
2714         *retlen = 0;
2715
2716         density = onenand_get_density(this->device_id);
2717         if (density < ONENAND_DEVICE_DENSITY_512Mb)
2718                 otp_pages = 20;
2719         else
2720                 otp_pages = 10;
2721
2722         if (mode == MTD_OTP_FACTORY) {
2723                 from += mtd->writesize * otp_pages;
2724                 otp_pages = 64 - otp_pages;
2725         }
2726
2727         /* Check User/Factory boundary */
2728         if (((mtd->writesize * otp_pages) - (from + len)) < 0)
2729                 return 0;
2730
2731         onenand_get_device(mtd, FL_OTPING);
2732         while (len > 0 && otp_pages > 0) {
2733                 if (!action) {  /* OTP Info functions */
2734                         struct otp_info *otpinfo;
2735
2736                         len -= sizeof(struct otp_info);
2737                         if (len <= 0) {
2738                                 ret = -ENOSPC;
2739                                 break;
2740                         }
2741
2742                         otpinfo = (struct otp_info *) buf;
2743                         otpinfo->start = from;
2744                         otpinfo->length = mtd->writesize;
2745                         otpinfo->locked = 0;
2746
2747                         from += mtd->writesize;
2748                         buf += sizeof(struct otp_info);
2749                         *retlen += sizeof(struct otp_info);
2750                 } else {
2751                         size_t tmp_retlen;
2752                         int size = len;
2753
2754                         ret = action(mtd, from, len, &tmp_retlen, buf);
2755
2756                         buf += size;
2757                         len -= size;
2758                         *retlen += size;
2759
2760                         if (ret)
2761                                 break;
2762                 }
2763                 otp_pages--;
2764         }
2765         onenand_release_device(mtd);
2766
2767         return ret;
2768 }
2769
2770 /**
2771  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
2772  * @param mtd           MTD device structure
2773  * @param buf           the databuffer to put/get data
2774  * @param len           number of bytes to read
2775  *
2776  * Read factory OTP info.
2777  */
2778 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
2779                         struct otp_info *buf, size_t len)
2780 {
2781         size_t retlen;
2782         int ret;
2783
2784         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
2785
2786         return ret ? : retlen;
2787 }
2788
2789 /**
2790  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
2791  * @param mtd           MTD device structure
2792  * @param from          The offset to read
2793  * @param len           number of bytes to read
2794  * @param retlen        pointer to variable to store the number of read bytes
2795  * @param buf           the databuffer to put/get data
2796  *
2797  * Read factory OTP area.
2798  */
2799 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2800                         size_t len, size_t *retlen, u_char *buf)
2801 {
2802         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
2803 }
2804
2805 /**
2806  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
2807  * @param mtd           MTD device structure
2808  * @param buf           the databuffer to put/get data
2809  * @param len           number of bytes to read
2810  *
2811  * Read user OTP info.
2812  */
2813 static int onenand_get_user_prot_info(struct mtd_info *mtd,
2814                         struct otp_info *buf, size_t len)
2815 {
2816         size_t retlen;
2817         int ret;
2818
2819         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
2820
2821         return ret ? : retlen;
2822 }
2823
2824 /**
2825  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
2826  * @param mtd           MTD device structure
2827  * @param from          The offset to read
2828  * @param len           number of bytes to read
2829  * @param retlen        pointer to variable to store the number of read bytes
2830  * @param buf           the databuffer to put/get data
2831  *
2832  * Read user OTP area.
2833  */
2834 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2835                         size_t len, size_t *retlen, u_char *buf)
2836 {
2837         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
2838 }
2839
2840 /**
2841  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
2842  * @param mtd           MTD device structure
2843  * @param from          The offset to write
2844  * @param len           number of bytes to write
2845  * @param retlen        pointer to variable to store the number of write bytes
2846  * @param buf           the databuffer to put/get data
2847  *
2848  * Write user OTP area.
2849  */
2850 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2851                         size_t len, size_t *retlen, u_char *buf)
2852 {
2853         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
2854 }
2855
2856 /**
2857  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
2858  * @param mtd           MTD device structure
2859  * @param from          The offset to lock
2860  * @param len           number of bytes to unlock
2861  *
2862  * Write lock mark on spare area in page 0 in OTP block
2863  */
2864 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
2865                         size_t len)
2866 {
2867         struct onenand_chip *this = mtd->priv;
2868         u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
2869         size_t retlen;
2870         int ret;
2871
2872         memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
2873                                                  : mtd->oobsize);
2874         /*
2875          * Note: OTP lock operation
2876          *       OTP block : 0xXXFC
2877          *       1st block : 0xXXF3 (If chip support)
2878          *       Both      : 0xXXF0 (If chip support)
2879          */
2880         if (FLEXONENAND(this))
2881                 buf[FLEXONENAND_OTP_LOCK_OFFSET] = 0xFC;
2882         else
2883                 buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
2884
2885         /*
2886          * Write lock mark to 8th word of sector0 of page0 of the spare0.
2887          * We write 16 bytes spare area instead of 2 bytes.
2888          * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
2889          * main area of page 49.
2890          */
2891
2892         from = 0;
2893         len = FLEXONENAND(this) ? mtd->writesize : 16;
2894
2895         ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
2896
2897         return ret ? : retlen;
2898 }
2899 #endif  /* CONFIG_MTD_ONENAND_OTP */
2900
2901 /**
2902  * onenand_check_features - Check and set OneNAND features
2903  * @param mtd           MTD data structure
2904  *
2905  * Check and set OneNAND features
2906  * - lock scheme
2907  * - two plane
2908  */
2909 static void onenand_check_features(struct mtd_info *mtd)
2910 {
2911         struct onenand_chip *this = mtd->priv;
2912         unsigned int density, process;
2913
2914         /* Lock scheme depends on density and process */
2915         density = onenand_get_density(this->device_id);
2916         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2917
2918         /* Lock scheme */
2919         switch (density) {
2920         case ONENAND_DEVICE_DENSITY_4Gb:
2921                 this->options |= ONENAND_HAS_2PLANE;
2922
2923         case ONENAND_DEVICE_DENSITY_2Gb:
2924                 /* 2Gb DDP don't have 2 plane */
2925                 if (!ONENAND_IS_DDP(this))
2926                         this->options |= ONENAND_HAS_2PLANE;
2927                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2928
2929         case ONENAND_DEVICE_DENSITY_1Gb:
2930                 /* A-Die has all block unlock */
2931                 if (process)
2932                         this->options |= ONENAND_HAS_UNLOCK_ALL;
2933                 break;
2934
2935         default:
2936                 /* Some OneNAND has continuous lock scheme */
2937                 if (!process)
2938                         this->options |= ONENAND_HAS_CONT_LOCK;
2939                 break;
2940         }
2941
2942         if (ONENAND_IS_MLC(this))
2943                 this->options &= ~ONENAND_HAS_2PLANE;
2944
2945         if (FLEXONENAND(this)) {
2946                 this->options &= ~ONENAND_HAS_CONT_LOCK;
2947                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2948         }
2949
2950         if (this->options & ONENAND_HAS_CONT_LOCK)
2951                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2952         if (this->options & ONENAND_HAS_UNLOCK_ALL)
2953                 printk(KERN_DEBUG "Chip support all block unlock\n");
2954         if (this->options & ONENAND_HAS_2PLANE)
2955                 printk(KERN_DEBUG "Chip has 2 plane\n");
2956 }
2957
2958 /**
2959  * onenand_print_device_info - Print device & version ID
2960  * @param device        device ID
2961  * @param version       version ID
2962  *
2963  * Print device & version ID
2964  */
2965 static void onenand_print_device_info(int device, int version)
2966 {
2967         int vcc, demuxed, ddp, density, flexonenand;
2968
2969         vcc = device & ONENAND_DEVICE_VCC_MASK;
2970         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2971         ddp = device & ONENAND_DEVICE_IS_DDP;
2972         density = onenand_get_density(device);
2973         flexonenand = device & DEVICE_IS_FLEXONENAND;
2974         printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
2975                 demuxed ? "" : "Muxed ",
2976                 flexonenand ? "Flex-" : "",
2977                 ddp ? "(DDP)" : "",
2978                 (16 << density),
2979                 vcc ? "2.65/3.3" : "1.8",
2980                 device);
2981         printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
2982 }
2983
2984 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2985         {ONENAND_MFR_SAMSUNG, "Samsung"},
2986         {ONENAND_MFR_NUMONYX, "Numonyx"},
2987 };
2988
2989 /**
2990  * onenand_check_maf - Check manufacturer ID
2991  * @param manuf         manufacturer ID
2992  *
2993  * Check manufacturer ID
2994  */
2995 static int onenand_check_maf(int manuf)
2996 {
2997         int size = ARRAY_SIZE(onenand_manuf_ids);
2998         char *name;
2999         int i;
3000
3001         for (i = 0; i < size; i++)
3002                 if (manuf == onenand_manuf_ids[i].id)
3003                         break;
3004
3005         if (i < size)
3006                 name = onenand_manuf_ids[i].name;
3007         else
3008                 name = "Unknown";
3009
3010         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3011
3012         return (i == size);
3013 }
3014
3015 /**
3016 * flexonenand_get_boundary      - Reads the SLC boundary
3017 * @param onenand_info           - onenand info structure
3018 **/
3019 static int flexonenand_get_boundary(struct mtd_info *mtd)
3020 {
3021         struct onenand_chip *this = mtd->priv;
3022         unsigned die, bdry;
3023         int ret, syscfg, locked;
3024
3025         /* Disable ECC */
3026         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3027         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3028
3029         for (die = 0; die < this->dies; die++) {
3030                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3031                 this->wait(mtd, FL_SYNCING);
3032
3033                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3034                 ret = this->wait(mtd, FL_READING);
3035
3036                 bdry = this->read_word(this->base + ONENAND_DATARAM);
3037                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3038                         locked = 0;
3039                 else
3040                         locked = 1;
3041                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3042
3043                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3044                 ret = this->wait(mtd, FL_RESETING);
3045
3046                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3047                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3048         }
3049
3050         /* Enable ECC */
3051         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3052         return 0;
3053 }
3054
3055 /**
3056  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3057  *                        boundary[], diesize[], mtd->size, mtd->erasesize
3058  * @param mtd           - MTD device structure
3059  */
3060 static void flexonenand_get_size(struct mtd_info *mtd)
3061 {
3062         struct onenand_chip *this = mtd->priv;
3063         int die, i, eraseshift, density;
3064         int blksperdie, maxbdry;
3065         loff_t ofs;
3066
3067         density = onenand_get_density(this->device_id);
3068         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3069         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3070         maxbdry = blksperdie - 1;
3071         eraseshift = this->erase_shift - 1;
3072
3073         mtd->numeraseregions = this->dies << 1;
3074
3075         /* This fills up the device boundary */
3076         flexonenand_get_boundary(mtd);
3077         die = ofs = 0;
3078         i = -1;
3079         for (; die < this->dies; die++) {
3080                 if (!die || this->boundary[die-1] != maxbdry) {
3081                         i++;
3082                         mtd->eraseregions[i].offset = ofs;
3083                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3084                         mtd->eraseregions[i].numblocks =
3085                                                         this->boundary[die] + 1;
3086                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3087                         eraseshift++;
3088                 } else {
3089                         mtd->numeraseregions -= 1;
3090                         mtd->eraseregions[i].numblocks +=
3091                                                         this->boundary[die] + 1;
3092                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3093                 }
3094                 if (this->boundary[die] != maxbdry) {
3095                         i++;
3096                         mtd->eraseregions[i].offset = ofs;
3097                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3098                         mtd->eraseregions[i].numblocks = maxbdry ^
3099                                                          this->boundary[die];
3100                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3101                         eraseshift--;
3102                 } else
3103                         mtd->numeraseregions -= 1;
3104         }
3105
3106         /* Expose MLC erase size except when all blocks are SLC */
3107         mtd->erasesize = 1 << this->erase_shift;
3108         if (mtd->numeraseregions == 1)
3109                 mtd->erasesize >>= 1;
3110
3111         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3112         for (i = 0; i < mtd->numeraseregions; i++)
3113                 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3114                         " numblocks: %04u]\n",
3115                         (unsigned int) mtd->eraseregions[i].offset,
3116                         mtd->eraseregions[i].erasesize,
3117                         mtd->eraseregions[i].numblocks);
3118
3119         for (die = 0, mtd->size = 0; die < this->dies; die++) {
3120                 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3121                 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3122                                                  << (this->erase_shift - 1);
3123                 mtd->size += this->diesize[die];
3124         }
3125 }
3126
3127 /**
3128  * flexonenand_check_blocks_erased - Check if blocks are erased
3129  * @param mtd_info      - mtd info structure
3130  * @param start         - first erase block to check
3131  * @param end           - last erase block to check
3132  *
3133  * Converting an unerased block from MLC to SLC
3134  * causes byte values to change. Since both data and its ECC
3135  * have changed, reads on the block give uncorrectable error.
3136  * This might lead to the block being detected as bad.
3137  *
3138  * Avoid this by ensuring that the block to be converted is
3139  * erased.
3140  */
3141 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3142 {
3143         struct onenand_chip *this = mtd->priv;
3144         int i, ret;
3145         int block;
3146         struct mtd_oob_ops ops = {
3147                 .mode = MTD_OOB_PLACE,
3148                 .ooboffs = 0,
3149                 .ooblen = mtd->oobsize,
3150                 .datbuf = NULL,
3151                 .oobbuf = this->oob_buf,
3152         };
3153         loff_t addr;
3154
3155         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3156
3157         for (block = start; block <= end; block++) {
3158                 addr = flexonenand_addr(this, block);
3159                 if (onenand_block_isbad_nolock(mtd, addr, 0))
3160                         continue;
3161
3162                 /*
3163                  * Since main area write results in ECC write to spare,
3164                  * it is sufficient to check only ECC bytes for change.
3165                  */
3166                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3167                 if (ret)
3168                         return ret;
3169
3170                 for (i = 0; i < mtd->oobsize; i++)
3171                         if (this->oob_buf[i] != 0xff)
3172                                 break;
3173
3174                 if (i != mtd->oobsize) {
3175                         printk(KERN_WARNING "Block %d not erased.\n", block);
3176                         return 1;
3177                 }
3178         }
3179
3180         return 0;
3181 }
3182
3183 /**
3184  * flexonenand_set_boundary     - Writes the SLC boundary
3185  * @param mtd                   - mtd info structure
3186  */
3187 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3188                                     int boundary, int lock)
3189 {
3190         struct onenand_chip *this = mtd->priv;
3191         int ret, density, blksperdie, old, new, thisboundary;
3192         loff_t addr;
3193
3194         /* Change only once for SDP Flex-OneNAND */
3195         if (die && (!ONENAND_IS_DDP(this)))
3196                 return 0;
3197
3198         /* boundary value of -1 indicates no required change */
3199         if (boundary < 0 || boundary == this->boundary[die])
3200                 return 0;
3201
3202         density = onenand_get_density(this->device_id);
3203         blksperdie = ((16 << density) << 20) >> this->erase_shift;
3204         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3205
3206         if (boundary >= blksperdie) {
3207                 printk(KERN_ERR "flexonenand_set_boundary: Invalid boundary value. "
3208                                 "Boundary not changed.\n");
3209                 return -EINVAL;
3210         }
3211
3212         /* Check if converting blocks are erased */
3213         old = this->boundary[die] + (die * this->density_mask);
3214         new = boundary + (die * this->density_mask);
3215         ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3216         if (ret) {
3217                 printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
3218                 return ret;
3219         }
3220
3221         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3222         this->wait(mtd, FL_SYNCING);
3223
3224         /* Check is boundary is locked */
3225         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3226         ret = this->wait(mtd, FL_READING);
3227
3228         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3229         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3230                 printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
3231                 ret = 1;
3232                 goto out;
3233         }
3234
3235         printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
3236                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
3237
3238         addr = die ? this->diesize[0] : 0;
3239
3240         boundary &= FLEXONENAND_PI_MASK;
3241         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3242
3243         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3244         ret = this->wait(mtd, FL_ERASING);
3245         if (ret) {
3246                 printk(KERN_ERR "flexonenand_set_boundary: Failed PI erase for Die %d\n", die);
3247                 goto out;
3248         }
3249
3250         this->write_word(boundary, this->base + ONENAND_DATARAM);
3251         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3252         ret = this->wait(mtd, FL_WRITING);
3253         if (ret) {
3254                 printk(KERN_ERR "flexonenand_set_boundary: Failed PI write for Die %d\n", die);
3255                 goto out;
3256         }
3257
3258         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3259         ret = this->wait(mtd, FL_WRITING);
3260 out:
3261         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3262         this->wait(mtd, FL_RESETING);
3263         if (!ret)
3264                 /* Recalculate device size on boundary change*/
3265                 flexonenand_get_size(mtd);
3266
3267         return ret;
3268 }
3269
3270 /**
3271  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3272  * @param mtd           MTD device structure
3273  *
3274  * OneNAND detection method:
3275  *   Compare the values from command with ones from register
3276  */
3277 static int onenand_probe(struct mtd_info *mtd)
3278 {
3279         struct onenand_chip *this = mtd->priv;
3280         int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
3281         int density;
3282         int syscfg;
3283
3284         /* Save system configuration 1 */
3285         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3286         /* Clear Sync. Burst Read mode to read BootRAM */
3287         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3288
3289         /* Send the command for reading device ID from BootRAM */
3290         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3291
3292         /* Read manufacturer and device IDs from BootRAM */
3293         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3294         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3295
3296         /* Reset OneNAND to read default register values */
3297         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3298         /* Wait reset */
3299         this->wait(mtd, FL_RESETING);
3300
3301         /* Restore system configuration 1 */
3302         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3303
3304         /* Check manufacturer ID */
3305         if (onenand_check_maf(bram_maf_id))
3306                 return -ENXIO;
3307
3308         /* Read manufacturer and device IDs from Register */
3309         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3310         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3311         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3312         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3313
3314         /* Check OneNAND device */
3315         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3316                 return -ENXIO;
3317
3318         /* Flash device information */
3319         onenand_print_device_info(dev_id, ver_id);
3320         this->device_id = dev_id;
3321         this->version_id = ver_id;
3322
3323         density = onenand_get_density(dev_id);
3324         if (FLEXONENAND(this)) {
3325                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3326                 /* Maximum possible erase regions */
3327                 mtd->numeraseregions = this->dies << 1;
3328                 mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3329                                         * (this->dies << 1), GFP_KERNEL);
3330                 if (!mtd->eraseregions)
3331                         return -ENOMEM;
3332         }
3333
3334         /*
3335          * For Flex-OneNAND, chipsize represents maximum possible device size.
3336          * mtd->size represents the actual device size.
3337          */
3338         this->chipsize = (16 << density) << 20;
3339
3340         /* OneNAND page size & block size */
3341         /* The data buffer size is equal to page size */
3342         mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3343         /* We use the full BufferRAM */
3344         if (ONENAND_IS_MLC(this))
3345                 mtd->writesize <<= 1;
3346
3347         mtd->oobsize = mtd->writesize >> 5;
3348         /* Pages per a block are always 64 in OneNAND */
3349         mtd->erasesize = mtd->writesize << 6;
3350         /*
3351          * Flex-OneNAND SLC area has 64 pages per block.
3352          * Flex-OneNAND MLC area has 128 pages per block.
3353          * Expose MLC erase size to find erase_shift and page_mask.
3354          */
3355         if (FLEXONENAND(this))
3356                 mtd->erasesize <<= 1;
3357
3358         this->erase_shift = ffs(mtd->erasesize) - 1;
3359         this->page_shift = ffs(mtd->writesize) - 1;
3360         this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3361         /* Set density mask. it is used for DDP */
3362         if (ONENAND_IS_DDP(this))
3363                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3364         /* It's real page size */
3365         this->writesize = mtd->writesize;
3366
3367         /* REVIST: Multichip handling */
3368
3369         if (FLEXONENAND(this))
3370                 flexonenand_get_size(mtd);
3371         else
3372                 mtd->size = this->chipsize;
3373
3374         /* Check OneNAND features */
3375         onenand_check_features(mtd);
3376
3377         /*
3378          * We emulate the 4KiB page and 256KiB erase block size
3379          * But oobsize is still 64 bytes.
3380          * It is only valid if you turn on 2X program support,
3381          * Otherwise it will be ignored by compiler.
3382          */
3383         if (ONENAND_IS_2PLANE(this)) {
3384                 mtd->writesize <<= 1;
3385                 mtd->erasesize <<= 1;
3386         }
3387
3388         return 0;
3389 }
3390
3391 /**
3392  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3393  * @param mtd           MTD device structure
3394  */
3395 static int onenand_suspend(struct mtd_info *mtd)
3396 {
3397         return onenand_get_device(mtd, FL_PM_SUSPENDED);
3398 }
3399
3400 /**
3401  * onenand_resume - [MTD Interface] Resume the OneNAND flash
3402  * @param mtd           MTD device structure
3403  */
3404 static void onenand_resume(struct mtd_info *mtd)
3405 {
3406         struct onenand_chip *this = mtd->priv;
3407
3408         if (this->state == FL_PM_SUSPENDED)
3409                 onenand_release_device(mtd);
3410         else
3411                 printk(KERN_ERR "resume() called for the chip which is not"
3412                                 "in suspended state\n");
3413 }
3414
3415 /**
3416  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3417  * @param mtd           MTD device structure
3418  * @param maxchips      Number of chips to scan for
3419  *
3420  * This fills out all the not initialized function pointers
3421  * with the defaults.
3422  * The flash ID is read and the mtd/chip structures are
3423  * filled with the appropriate values.
3424  */
3425 int onenand_scan(struct mtd_info *mtd, int maxchips)
3426 {
3427         int i, ret;
3428         struct onenand_chip *this = mtd->priv;
3429
3430         if (!this->read_word)
3431                 this->read_word = onenand_readw;
3432         if (!this->write_word)
3433                 this->write_word = onenand_writew;
3434
3435         if (!this->command)
3436                 this->command = onenand_command;
3437         if (!this->wait)
3438                 onenand_setup_wait(mtd);
3439         if (!this->bbt_wait)
3440                 this->bbt_wait = onenand_bbt_wait;
3441         if (!this->unlock_all)
3442                 this->unlock_all = onenand_unlock_all;
3443
3444         if (!this->read_bufferram)
3445                 this->read_bufferram = onenand_read_bufferram;
3446         if (!this->write_bufferram)
3447                 this->write_bufferram = onenand_write_bufferram;
3448
3449         if (!this->block_markbad)
3450                 this->block_markbad = onenand_default_block_markbad;
3451         if (!this->scan_bbt)
3452                 this->scan_bbt = onenand_default_bbt;
3453
3454         if (onenand_probe(mtd))
3455                 return -ENXIO;
3456
3457         /* Set Sync. Burst Read after probing */
3458         if (this->mmcontrol) {
3459                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3460                 this->read_bufferram = onenand_sync_read_bufferram;
3461         }
3462
3463         /* Allocate buffers, if necessary */
3464         if (!this->page_buf) {
3465                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3466                 if (!this->page_buf) {
3467                         printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
3468                         return -ENOMEM;
3469                 }
3470                 this->options |= ONENAND_PAGEBUF_ALLOC;
3471         }
3472         if (!this->oob_buf) {
3473                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3474                 if (!this->oob_buf) {
3475                         printk(KERN_ERR "onenand_scan(): Can't allocate oob_buf\n");
3476                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
3477                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
3478                                 kfree(this->page_buf);
3479                         }
3480                         return -ENOMEM;
3481                 }
3482                 this->options |= ONENAND_OOBBUF_ALLOC;
3483         }
3484
3485         this->state = FL_READY;
3486         init_waitqueue_head(&this->wq);
3487         spin_lock_init(&this->chip_lock);
3488
3489         /*
3490          * Allow subpage writes up to oobsize.
3491          */
3492         switch (mtd->oobsize) {
3493         case 128:
3494                 this->ecclayout = &onenand_oob_128;
3495                 mtd->subpage_sft = 0;
3496                 break;
3497         case 64:
3498                 this->ecclayout = &onenand_oob_64;
3499                 mtd->subpage_sft = 2;
3500                 break;
3501
3502         case 32:
3503                 this->ecclayout = &onenand_oob_32;
3504                 mtd->subpage_sft = 1;
3505                 break;
3506
3507         default:
3508                 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
3509                         mtd->oobsize);
3510                 mtd->subpage_sft = 0;
3511                 /* To prevent kernel oops */
3512                 this->ecclayout = &onenand_oob_32;
3513                 break;
3514         }
3515
3516         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3517
3518         /*
3519          * The number of bytes available for a client to place data into
3520          * the out of band area
3521          */
3522         this->ecclayout->oobavail = 0;
3523         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
3524             this->ecclayout->oobfree[i].length; i++)
3525                 this->ecclayout->oobavail +=
3526                         this->ecclayout->oobfree[i].length;
3527         mtd->oobavail = this->ecclayout->oobavail;
3528
3529         mtd->ecclayout = this->ecclayout;
3530
3531         /* Fill in remaining MTD driver data */
3532         mtd->type = MTD_NANDFLASH;
3533         mtd->flags = MTD_CAP_NANDFLASH;
3534         mtd->erase = onenand_erase;
3535         mtd->point = NULL;
3536         mtd->unpoint = NULL;
3537         mtd->read = onenand_read;
3538         mtd->write = onenand_write;
3539         mtd->read_oob = onenand_read_oob;
3540         mtd->write_oob = onenand_write_oob;
3541         mtd->panic_write = onenand_panic_write;
3542 #ifdef CONFIG_MTD_ONENAND_OTP
3543         mtd->get_fact_prot_info = onenand_get_fact_prot_info;
3544         mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
3545         mtd->get_user_prot_info = onenand_get_user_prot_info;
3546         mtd->read_user_prot_reg = onenand_read_user_prot_reg;
3547         mtd->write_user_prot_reg = onenand_write_user_prot_reg;
3548         mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
3549 #endif
3550         mtd->sync = onenand_sync;
3551         mtd->lock = onenand_lock;
3552         mtd->unlock = onenand_unlock;
3553         mtd->suspend = onenand_suspend;
3554         mtd->resume = onenand_resume;
3555         mtd->block_isbad = onenand_block_isbad;
3556         mtd->block_markbad = onenand_block_markbad;
3557         mtd->owner = THIS_MODULE;
3558
3559         /* Unlock whole block */
3560         this->unlock_all(mtd);
3561
3562         ret = this->scan_bbt(mtd);
3563         if ((!FLEXONENAND(this)) || ret)
3564                 return ret;
3565
3566         /* Change Flex-OneNAND boundaries if required */
3567         for (i = 0; i < MAX_DIES; i++)
3568                 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
3569                                                  flex_bdry[(2 * i) + 1]);
3570
3571         return 0;
3572 }
3573
3574 /**
3575  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3576  * @param mtd           MTD device structure
3577  */
3578 void onenand_release(struct mtd_info *mtd)
3579 {
3580         struct onenand_chip *this = mtd->priv;
3581
3582 #ifdef CONFIG_MTD_PARTITIONS
3583         /* Deregister partitions */
3584         del_mtd_partitions (mtd);
3585 #endif
3586         /* Deregister the device */
3587         del_mtd_device (mtd);
3588
3589         /* Free bad block table memory, if allocated */
3590         if (this->bbm) {
3591                 struct bbm_info *bbm = this->bbm;
3592                 kfree(bbm->bbt);
3593                 kfree(this->bbm);
3594         }
3595         /* Buffers allocated by onenand_scan */
3596         if (this->options & ONENAND_PAGEBUF_ALLOC)
3597                 kfree(this->page_buf);
3598         if (this->options & ONENAND_OOBBUF_ALLOC)
3599                 kfree(this->oob_buf);
3600         kfree(mtd->eraseregions);
3601 }
3602
3603 EXPORT_SYMBOL_GPL(onenand_scan);
3604 EXPORT_SYMBOL_GPL(onenand_release);
3605
3606 MODULE_LICENSE("GPL");
3607 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
3608 MODULE_DESCRIPTION("Generic OneNAND flash driver code");