Merge git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched
[linux-2.6] / drivers / net / defxx.c
1 /*
2  * File Name:
3  *   defxx.c
4  *
5  * Copyright Information:
6  *   Copyright Digital Equipment Corporation 1996.
7  *
8  *   This software may be used and distributed according to the terms of
9  *   the GNU General Public License, incorporated herein by reference.
10  *
11  * Abstract:
12  *   A Linux device driver supporting the Digital Equipment Corporation
13  *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
14  *   adapters include:
15  *
16  *              DEC FDDIcontroller/TURBOchannel (DEFTA)
17  *              DEC FDDIcontroller/EISA         (DEFEA)
18  *              DEC FDDIcontroller/PCI          (DEFPA)
19  *
20  * The original author:
21  *   LVS        Lawrence V. Stefani <lstefani@yahoo.com>
22  *
23  * Maintainers:
24  *   macro      Maciej W. Rozycki <macro@linux-mips.org>
25  *
26  * Credits:
27  *   I'd like to thank Patricia Cross for helping me get started with
28  *   Linux, David Davies for a lot of help upgrading and configuring
29  *   my development system and for answering many OS and driver
30  *   development questions, and Alan Cox for recommendations and
31  *   integration help on getting FDDI support into Linux.  LVS
32  *
33  * Driver Architecture:
34  *   The driver architecture is largely based on previous driver work
35  *   for other operating systems.  The upper edge interface and
36  *   functions were largely taken from existing Linux device drivers
37  *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38  *   driver.
39  *
40  *   Adapter Probe -
41  *              The driver scans for supported EISA adapters by reading the
42  *              SLOT ID register for each EISA slot and making a match
43  *              against the expected value.
44  *
45  *   Bus-Specific Initialization -
46  *              This driver currently supports both EISA and PCI controller
47  *              families.  While the custom DMA chip and FDDI logic is similar
48  *              or identical, the bus logic is very different.  After
49  *              initialization, the     only bus-specific differences is in how the
50  *              driver enables and disables interrupts.  Other than that, the
51  *              run-time critical code behaves the same on both families.
52  *              It's important to note that both adapter families are configured
53  *              to I/O map, rather than memory map, the adapter registers.
54  *
55  *   Driver Open/Close -
56  *              In the driver open routine, the driver ISR (interrupt service
57  *              routine) is registered and the adapter is brought to an
58  *              operational state.  In the driver close routine, the opposite
59  *              occurs; the driver ISR is deregistered and the adapter is
60  *              brought to a safe, but closed state.  Users may use consecutive
61  *              commands to bring the adapter up and down as in the following
62  *              example:
63  *                                      ifconfig fddi0 up
64  *                                      ifconfig fddi0 down
65  *                                      ifconfig fddi0 up
66  *
67  *   Driver Shutdown -
68  *              Apparently, there is no shutdown or halt routine support under
69  *              Linux.  This routine would be called during "reboot" or
70  *              "shutdown" to allow the driver to place the adapter in a safe
71  *              state before a warm reboot occurs.  To be really safe, the user
72  *              should close the adapter before shutdown (eg. ifconfig fddi0 down)
73  *              to ensure that the adapter DMA engine is taken off-line.  However,
74  *              the current driver code anticipates this problem and always issues
75  *              a soft reset of the adapter     at the beginning of driver initialization.
76  *              A future driver enhancement in this area may occur in 2.1.X where
77  *              Alan indicated that a shutdown handler may be implemented.
78  *
79  *   Interrupt Service Routine -
80  *              The driver supports shared interrupts, so the ISR is registered for
81  *              each board with the appropriate flag and the pointer to that board's
82  *              device structure.  This provides the context during interrupt
83  *              processing to support shared interrupts and multiple boards.
84  *
85  *              Interrupt enabling/disabling can occur at many levels.  At the host
86  *              end, you can disable system interrupts, or disable interrupts at the
87  *              PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
88  *              have a bus-logic chip interrupt enable/disable as well as a DMA
89  *              controller interrupt enable/disable.
90  *
91  *              The driver currently enables and disables adapter interrupts at the
92  *              bus-logic chip and assumes that Linux will take care of clearing or
93  *              acknowledging any host-based interrupt chips.
94  *
95  *   Control Functions -
96  *              Control functions are those used to support functions such as adding
97  *              or deleting multicast addresses, enabling or disabling packet
98  *              reception filters, or other custom/proprietary commands.  Presently,
99  *              the driver supports the "get statistics", "set multicast list", and
100  *              "set mac address" functions defined by Linux.  A list of possible
101  *              enhancements include:
102  *
103  *                              - Custom ioctl interface for executing port interface commands
104  *                              - Custom ioctl interface for adding unicast addresses to
105  *                                adapter CAM (to support bridge functions).
106  *                              - Custom ioctl interface for supporting firmware upgrades.
107  *
108  *   Hardware (port interface) Support Routines -
109  *              The driver function names that start with "dfx_hw_" represent
110  *              low-level port interface routines that are called frequently.  They
111  *              include issuing a DMA or port control command to the adapter,
112  *              resetting the adapter, or reading the adapter state.  Since the
113  *              driver initialization and run-time code must make calls into the
114  *              port interface, these routines were written to be as generic and
115  *              usable as possible.
116  *
117  *   Receive Path -
118  *              The adapter DMA engine supports a 256 entry receive descriptor block
119  *              of which up to 255 entries can be used at any given time.  The
120  *              architecture is a standard producer, consumer, completion model in
121  *              which the driver "produces" receive buffers to the adapter, the
122  *              adapter "consumes" the receive buffers by DMAing incoming packet data,
123  *              and the driver "completes" the receive buffers by servicing the
124  *              incoming packet, then "produces" a new buffer and starts the cycle
125  *              again.  Receive buffers can be fragmented in up to 16 fragments
126  *              (descriptor     entries).  For simplicity, this driver posts
127  *              single-fragment receive buffers of 4608 bytes, then allocates a
128  *              sk_buff, copies the data, then reposts the buffer.  To reduce CPU
129  *              utilization, a better approach would be to pass up the receive
130  *              buffer (no extra copy) then allocate and post a replacement buffer.
131  *              This is a performance enhancement that should be looked into at
132  *              some point.
133  *
134  *   Transmit Path -
135  *              Like the receive path, the adapter DMA engine supports a 256 entry
136  *              transmit descriptor block of which up to 255 entries can be used at
137  *              any     given time.  Transmit buffers can be fragmented in up to 255
138  *              fragments (descriptor entries).  This driver always posts one
139  *              fragment per transmit packet request.
140  *
141  *              The fragment contains the entire packet from FC to end of data.
142  *              Before posting the buffer to the adapter, the driver sets a three-byte
143  *              packet request header (PRH) which is required by the Motorola MAC chip
144  *              used on the adapters.  The PRH tells the MAC the type of token to
145  *              receive/send, whether or not to generate and append the CRC, whether
146  *              synchronous or asynchronous framing is used, etc.  Since the PRH
147  *              definition is not necessarily consistent across all FDDI chipsets,
148  *              the driver, rather than the common FDDI packet handler routines,
149  *              sets these bytes.
150  *
151  *              To reduce the amount of descriptor fetches needed per transmit request,
152  *              the driver takes advantage of the fact that there are at least three
153  *              bytes available before the skb->data field on the outgoing transmit
154  *              request.  This is guaranteed by having fddi_setup() in net_init.c set
155  *              dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
156  *              header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
157  *              bytes which we'll use to store the PRH.
158  *
159  *              There's a subtle advantage to adding these pad bytes to the
160  *              hard_header_len, it ensures that the data portion of the packet for
161  *              an 802.2 SNAP frame is longword aligned.  Other FDDI driver
162  *              implementations may not need the extra padding and can start copying
163  *              or DMAing directly from the FC byte which starts at skb->data.  Should
164  *              another driver implementation need ADDITIONAL padding, the net_init.c
165  *              module should be updated and dev->hard_header_len should be increased.
166  *              NOTE: To maintain the alignment on the data portion of the packet,
167  *              dev->hard_header_len should always be evenly divisible by 4 and at
168  *              least 24 bytes in size.
169  *
170  * Modification History:
171  *              Date            Name    Description
172  *              16-Aug-96       LVS             Created.
173  *              20-Aug-96       LVS             Updated dfx_probe so that version information
174  *                                                      string is only displayed if 1 or more cards are
175  *                                                      found.  Changed dfx_rcv_queue_process to copy
176  *                                                      3 NULL bytes before FC to ensure that data is
177  *                                                      longword aligned in receive buffer.
178  *              09-Sep-96       LVS             Updated dfx_ctl_set_multicast_list to enable
179  *                                                      LLC group promiscuous mode if multicast list
180  *                                                      is too large.  LLC individual/group promiscuous
181  *                                                      mode is now disabled if IFF_PROMISC flag not set.
182  *                                                      dfx_xmt_queue_pkt no longer checks for NULL skb
183  *                                                      on Alan Cox recommendation.  Added node address
184  *                                                      override support.
185  *              12-Sep-96       LVS             Reset current address to factory address during
186  *                                                      device open.  Updated transmit path to post a
187  *                                                      single fragment which includes PRH->end of data.
188  *              Mar 2000        AC              Did various cleanups for 2.3.x
189  *              Jun 2000        jgarzik         PCI and resource alloc cleanups
190  *              Jul 2000        tjeerd          Much cleanup and some bug fixes
191  *              Sep 2000        tjeerd          Fix leak on unload, cosmetic code cleanup
192  *              Feb 2001                        Skb allocation fixes
193  *              Feb 2001        davej           PCI enable cleanups.
194  *              04 Aug 2003     macro           Converted to the DMA API.
195  *              14 Aug 2004     macro           Fix device names reported.
196  *              14 Jun 2005     macro           Use irqreturn_t.
197  *              23 Oct 2006     macro           Big-endian host support.
198  *              14 Dec 2006     macro           TURBOchannel support.
199  */
200
201 /* Include files */
202 #include <linux/bitops.h>
203 #include <linux/compiler.h>
204 #include <linux/delay.h>
205 #include <linux/dma-mapping.h>
206 #include <linux/eisa.h>
207 #include <linux/errno.h>
208 #include <linux/fddidevice.h>
209 #include <linux/init.h>
210 #include <linux/interrupt.h>
211 #include <linux/ioport.h>
212 #include <linux/kernel.h>
213 #include <linux/module.h>
214 #include <linux/netdevice.h>
215 #include <linux/pci.h>
216 #include <linux/skbuff.h>
217 #include <linux/slab.h>
218 #include <linux/string.h>
219 #include <linux/tc.h>
220
221 #include <asm/byteorder.h>
222 #include <asm/io.h>
223
224 #include "defxx.h"
225
226 /* Version information string should be updated prior to each new release!  */
227 #define DRV_NAME "defxx"
228 #define DRV_VERSION "v1.10"
229 #define DRV_RELDATE "2006/12/14"
230
231 static char version[] __devinitdata =
232         DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
233         "  Lawrence V. Stefani and others\n";
234
235 #define DYNAMIC_BUFFERS 1
236
237 #define SKBUFF_RX_COPYBREAK 200
238 /*
239  * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240  * alignment for compatibility with old EISA boards.
241  */
242 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
243
244 #ifdef CONFIG_PCI
245 #define DFX_BUS_PCI(dev) (dev->bus == &pci_bus_type)
246 #else
247 #define DFX_BUS_PCI(dev) 0
248 #endif
249
250 #ifdef CONFIG_EISA
251 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
252 #else
253 #define DFX_BUS_EISA(dev) 0
254 #endif
255
256 #ifdef CONFIG_TC
257 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
258 #else
259 #define DFX_BUS_TC(dev) 0
260 #endif
261
262 #ifdef CONFIG_DEFXX_MMIO
263 #define DFX_MMIO 1
264 #else
265 #define DFX_MMIO 0
266 #endif
267
268 /* Define module-wide (static) routines */
269
270 static void             dfx_bus_init(struct net_device *dev);
271 static void             dfx_bus_uninit(struct net_device *dev);
272 static void             dfx_bus_config_check(DFX_board_t *bp);
273
274 static int              dfx_driver_init(struct net_device *dev,
275                                         const char *print_name,
276                                         resource_size_t bar_start);
277 static int              dfx_adap_init(DFX_board_t *bp, int get_buffers);
278
279 static int              dfx_open(struct net_device *dev);
280 static int              dfx_close(struct net_device *dev);
281
282 static void             dfx_int_pr_halt_id(DFX_board_t *bp);
283 static void             dfx_int_type_0_process(DFX_board_t *bp);
284 static void             dfx_int_common(struct net_device *dev);
285 static irqreturn_t      dfx_interrupt(int irq, void *dev_id);
286
287 static struct           net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
288 static void             dfx_ctl_set_multicast_list(struct net_device *dev);
289 static int              dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
290 static int              dfx_ctl_update_cam(DFX_board_t *bp);
291 static int              dfx_ctl_update_filters(DFX_board_t *bp);
292
293 static int              dfx_hw_dma_cmd_req(DFX_board_t *bp);
294 static int              dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
295 static void             dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
296 static int              dfx_hw_adap_state_rd(DFX_board_t *bp);
297 static int              dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
298
299 static int              dfx_rcv_init(DFX_board_t *bp, int get_buffers);
300 static void             dfx_rcv_queue_process(DFX_board_t *bp);
301 static void             dfx_rcv_flush(DFX_board_t *bp);
302
303 static int              dfx_xmt_queue_pkt(struct sk_buff *skb, struct net_device *dev);
304 static int              dfx_xmt_done(DFX_board_t *bp);
305 static void             dfx_xmt_flush(DFX_board_t *bp);
306
307 /* Define module-wide (static) variables */
308
309 static struct pci_driver dfx_pci_driver;
310 static struct eisa_driver dfx_eisa_driver;
311 static struct tc_driver dfx_tc_driver;
312
313
314 /*
315  * =======================
316  * = dfx_port_write_long =
317  * = dfx_port_read_long  =
318  * =======================
319  *
320  * Overview:
321  *   Routines for reading and writing values from/to adapter
322  *
323  * Returns:
324  *   None
325  *
326  * Arguments:
327  *   bp         - pointer to board information
328  *   offset     - register offset from base I/O address
329  *   data       - for dfx_port_write_long, this is a value to write;
330  *                for dfx_port_read_long, this is a pointer to store
331  *                the read value
332  *
333  * Functional Description:
334  *   These routines perform the correct operation to read or write
335  *   the adapter register.
336  *
337  *   EISA port block base addresses are based on the slot number in which the
338  *   controller is installed.  For example, if the EISA controller is installed
339  *   in slot 4, the port block base address is 0x4000.  If the controller is
340  *   installed in slot 2, the port block base address is 0x2000, and so on.
341  *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
342  *   registers using the register offsets defined in DEFXX.H.
343  *
344  *   PCI port block base addresses are assigned by the PCI BIOS or system
345  *   firmware.  There is one 128 byte port block which can be accessed.  It
346  *   allows for I/O mapping of both PDQ and PFI registers using the register
347  *   offsets defined in DEFXX.H.
348  *
349  * Return Codes:
350  *   None
351  *
352  * Assumptions:
353  *   bp->base is a valid base I/O address for this adapter.
354  *   offset is a valid register offset for this adapter.
355  *
356  * Side Effects:
357  *   Rather than produce macros for these functions, these routines
358  *   are defined using "inline" to ensure that the compiler will
359  *   generate inline code and not waste a procedure call and return.
360  *   This provides all the benefits of macros, but with the
361  *   advantage of strict data type checking.
362  */
363
364 static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
365 {
366         writel(data, bp->base.mem + offset);
367         mb();
368 }
369
370 static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
371 {
372         outl(data, bp->base.port + offset);
373 }
374
375 static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
376 {
377         struct device __maybe_unused *bdev = bp->bus_dev;
378         int dfx_bus_tc = DFX_BUS_TC(bdev);
379         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
380
381         if (dfx_use_mmio)
382                 dfx_writel(bp, offset, data);
383         else
384                 dfx_outl(bp, offset, data);
385 }
386
387
388 static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
389 {
390         mb();
391         *data = readl(bp->base.mem + offset);
392 }
393
394 static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
395 {
396         *data = inl(bp->base.port + offset);
397 }
398
399 static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
400 {
401         struct device __maybe_unused *bdev = bp->bus_dev;
402         int dfx_bus_tc = DFX_BUS_TC(bdev);
403         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
404
405         if (dfx_use_mmio)
406                 dfx_readl(bp, offset, data);
407         else
408                 dfx_inl(bp, offset, data);
409 }
410
411
412 /*
413  * ================
414  * = dfx_get_bars =
415  * ================
416  *
417  * Overview:
418  *   Retrieves the address range used to access control and status
419  *   registers.
420  *
421  * Returns:
422  *   None
423  *
424  * Arguments:
425  *   bdev       - pointer to device information
426  *   bar_start  - pointer to store the start address
427  *   bar_len    - pointer to store the length of the area
428  *
429  * Assumptions:
430  *   I am sure there are some.
431  *
432  * Side Effects:
433  *   None
434  */
435 static void dfx_get_bars(struct device *bdev,
436                          resource_size_t *bar_start, resource_size_t *bar_len)
437 {
438         int dfx_bus_pci = DFX_BUS_PCI(bdev);
439         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
440         int dfx_bus_tc = DFX_BUS_TC(bdev);
441         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
442
443         if (dfx_bus_pci) {
444                 int num = dfx_use_mmio ? 0 : 1;
445
446                 *bar_start = pci_resource_start(to_pci_dev(bdev), num);
447                 *bar_len = pci_resource_len(to_pci_dev(bdev), num);
448         }
449         if (dfx_bus_eisa) {
450                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
451                 resource_size_t bar;
452
453                 if (dfx_use_mmio) {
454                         bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
455                         bar <<= 8;
456                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
457                         bar <<= 8;
458                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
459                         bar <<= 16;
460                         *bar_start = bar;
461                         bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
462                         bar <<= 8;
463                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
464                         bar <<= 8;
465                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
466                         bar <<= 16;
467                         *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
468                 } else {
469                         *bar_start = base_addr;
470                         *bar_len = PI_ESIC_K_CSR_IO_LEN;
471                 }
472         }
473         if (dfx_bus_tc) {
474                 *bar_start = to_tc_dev(bdev)->resource.start +
475                              PI_TC_K_CSR_OFFSET;
476                 *bar_len = PI_TC_K_CSR_LEN;
477         }
478 }
479
480 /*
481  * ================
482  * = dfx_register =
483  * ================
484  *
485  * Overview:
486  *   Initializes a supported FDDI controller
487  *
488  * Returns:
489  *   Condition code
490  *
491  * Arguments:
492  *   bdev - pointer to device information
493  *
494  * Functional Description:
495  *
496  * Return Codes:
497  *   0           - This device (fddi0, fddi1, etc) configured successfully
498  *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
499  *
500  * Assumptions:
501  *   It compiles so it should work :-( (PCI cards do :-)
502  *
503  * Side Effects:
504  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
505  *   initialized and the board resources are read and stored in
506  *   the device structure.
507  */
508 static int __devinit dfx_register(struct device *bdev)
509 {
510         static int version_disp;
511         int dfx_bus_pci = DFX_BUS_PCI(bdev);
512         int dfx_bus_tc = DFX_BUS_TC(bdev);
513         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
514         char *print_name = bdev->bus_id;
515         struct net_device *dev;
516         DFX_board_t       *bp;                  /* board pointer */
517         resource_size_t bar_start = 0;          /* pointer to port */
518         resource_size_t bar_len = 0;            /* resource length */
519         int alloc_size;                         /* total buffer size used */
520         struct resource *region;
521         int err = 0;
522
523         if (!version_disp) {    /* display version info if adapter is found */
524                 version_disp = 1;       /* set display flag to TRUE so that */
525                 printk(version);        /* we only display this string ONCE */
526         }
527
528         dev = alloc_fddidev(sizeof(*bp));
529         if (!dev) {
530                 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
531                        print_name);
532                 return -ENOMEM;
533         }
534
535         /* Enable PCI device. */
536         if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
537                 printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
538                        print_name);
539                 goto err_out;
540         }
541
542         SET_MODULE_OWNER(dev);
543         SET_NETDEV_DEV(dev, bdev);
544
545         bp = netdev_priv(dev);
546         bp->bus_dev = bdev;
547         dev_set_drvdata(bdev, dev);
548
549         dfx_get_bars(bdev, &bar_start, &bar_len);
550
551         if (dfx_use_mmio)
552                 region = request_mem_region(bar_start, bar_len, print_name);
553         else
554                 region = request_region(bar_start, bar_len, print_name);
555         if (!region) {
556                 printk(KERN_ERR "%s: Cannot reserve I/O resource "
557                        "0x%lx @ 0x%lx, aborting\n",
558                        print_name, (long)bar_len, (long)bar_start);
559                 err = -EBUSY;
560                 goto err_out_disable;
561         }
562
563         /* Set up I/O base address. */
564         if (dfx_use_mmio) {
565                 bp->base.mem = ioremap_nocache(bar_start, bar_len);
566                 if (!bp->base.mem) {
567                         printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
568                         err = -ENOMEM;
569                         goto err_out_region;
570                 }
571         } else {
572                 bp->base.port = bar_start;
573                 dev->base_addr = bar_start;
574         }
575
576         /* Initialize new device structure */
577
578         dev->get_stats                  = dfx_ctl_get_stats;
579         dev->open                       = dfx_open;
580         dev->stop                       = dfx_close;
581         dev->hard_start_xmit            = dfx_xmt_queue_pkt;
582         dev->set_multicast_list         = dfx_ctl_set_multicast_list;
583         dev->set_mac_address            = dfx_ctl_set_mac_address;
584
585         if (dfx_bus_pci)
586                 pci_set_master(to_pci_dev(bdev));
587
588         if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
589                 err = -ENODEV;
590                 goto err_out_unmap;
591         }
592
593         err = register_netdev(dev);
594         if (err)
595                 goto err_out_kfree;
596
597         printk("%s: registered as %s\n", print_name, dev->name);
598         return 0;
599
600 err_out_kfree:
601         alloc_size = sizeof(PI_DESCR_BLOCK) +
602                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
603 #ifndef DYNAMIC_BUFFERS
604                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
605 #endif
606                      sizeof(PI_CONSUMER_BLOCK) +
607                      (PI_ALIGN_K_DESC_BLK - 1);
608         if (bp->kmalloced)
609                 dma_free_coherent(bdev, alloc_size,
610                                   bp->kmalloced, bp->kmalloced_dma);
611
612 err_out_unmap:
613         if (dfx_use_mmio)
614                 iounmap(bp->base.mem);
615
616 err_out_region:
617         if (dfx_use_mmio)
618                 release_mem_region(bar_start, bar_len);
619         else
620                 release_region(bar_start, bar_len);
621
622 err_out_disable:
623         if (dfx_bus_pci)
624                 pci_disable_device(to_pci_dev(bdev));
625
626 err_out:
627         free_netdev(dev);
628         return err;
629 }
630
631
632 /*
633  * ================
634  * = dfx_bus_init =
635  * ================
636  *
637  * Overview:
638  *   Initializes the bus-specific controller logic.
639  *
640  * Returns:
641  *   None
642  *
643  * Arguments:
644  *   dev - pointer to device information
645  *
646  * Functional Description:
647  *   Determine and save adapter IRQ in device table,
648  *   then perform bus-specific logic initialization.
649  *
650  * Return Codes:
651  *   None
652  *
653  * Assumptions:
654  *   bp->base has already been set with the proper
655  *       base I/O address for this device.
656  *
657  * Side Effects:
658  *   Interrupts are enabled at the adapter bus-specific logic.
659  *   Note:  Interrupts at the DMA engine (PDQ chip) are not
660  *   enabled yet.
661  */
662
663 static void __devinit dfx_bus_init(struct net_device *dev)
664 {
665         DFX_board_t *bp = netdev_priv(dev);
666         struct device *bdev = bp->bus_dev;
667         int dfx_bus_pci = DFX_BUS_PCI(bdev);
668         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
669         int dfx_bus_tc = DFX_BUS_TC(bdev);
670         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
671         u8 val;
672
673         DBG_printk("In dfx_bus_init...\n");
674
675         /* Initialize a pointer back to the net_device struct */
676         bp->dev = dev;
677
678         /* Initialize adapter based on bus type */
679
680         if (dfx_bus_tc)
681                 dev->irq = to_tc_dev(bdev)->interrupt;
682         if (dfx_bus_eisa) {
683                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
684
685                 /* Get the interrupt level from the ESIC chip.  */
686                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
687                 val &= PI_CONFIG_STAT_0_M_IRQ;
688                 val >>= PI_CONFIG_STAT_0_V_IRQ;
689
690                 switch (val) {
691                 case PI_CONFIG_STAT_0_IRQ_K_9:
692                         dev->irq = 9;
693                         break;
694
695                 case PI_CONFIG_STAT_0_IRQ_K_10:
696                         dev->irq = 10;
697                         break;
698
699                 case PI_CONFIG_STAT_0_IRQ_K_11:
700                         dev->irq = 11;
701                         break;
702
703                 case PI_CONFIG_STAT_0_IRQ_K_15:
704                         dev->irq = 15;
705                         break;
706                 }
707
708                 /*
709                  * Enable memory decoding (MEMCS0) and/or port decoding
710                  * (IOCS1/IOCS0) as appropriate in Function Control
711                  * Register.  One of the port chip selects seems to be
712                  * used for the Burst Holdoff register, but this bit of
713                  * documentation is missing and as yet it has not been
714                  * determined which of the two.  This is also the reason
715                  * the size of the decoded port range is twice as large
716                  * as one required by the PDQ.
717                  */
718
719                 /* Set the decode range of the board.  */
720                 val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT);
721                 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val);
722                 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0);
723                 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val);
724                 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0);
725                 val = PI_ESIC_K_CSR_IO_LEN - 1;
726                 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff);
727                 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff);
728                 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff);
729                 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff);
730
731                 /* Enable the decoders.  */
732                 val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
733                 if (dfx_use_mmio)
734                         val |= PI_FUNCTION_CNTRL_M_MEMCS0;
735                 outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val);
736
737                 /*
738                  * Enable access to the rest of the module
739                  * (including PDQ and packet memory).
740                  */
741                 val = PI_SLOT_CNTRL_M_ENB;
742                 outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val);
743
744                 /*
745                  * Map PDQ registers into memory or port space.  This is
746                  * done with a bit in the Burst Holdoff register.
747                  */
748                 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
749                 if (dfx_use_mmio)
750                         val |= PI_BURST_HOLDOFF_V_MEM_MAP;
751                 else
752                         val &= ~PI_BURST_HOLDOFF_V_MEM_MAP;
753                 outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val);
754
755                 /* Enable interrupts at EISA bus interface chip (ESIC) */
756                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
757                 val |= PI_CONFIG_STAT_0_M_INT_ENB;
758                 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
759         }
760         if (dfx_bus_pci) {
761                 struct pci_dev *pdev = to_pci_dev(bdev);
762
763                 /* Get the interrupt level from the PCI Configuration Table */
764
765                 dev->irq = pdev->irq;
766
767                 /* Check Latency Timer and set if less than minimal */
768
769                 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
770                 if (val < PFI_K_LAT_TIMER_MIN) {
771                         val = PFI_K_LAT_TIMER_DEF;
772                         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
773                 }
774
775                 /* Enable interrupts at PCI bus interface chip (PFI) */
776                 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
777                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
778         }
779 }
780
781 /*
782  * ==================
783  * = dfx_bus_uninit =
784  * ==================
785  *
786  * Overview:
787  *   Uninitializes the bus-specific controller logic.
788  *
789  * Returns:
790  *   None
791  *
792  * Arguments:
793  *   dev - pointer to device information
794  *
795  * Functional Description:
796  *   Perform bus-specific logic uninitialization.
797  *
798  * Return Codes:
799  *   None
800  *
801  * Assumptions:
802  *   bp->base has already been set with the proper
803  *       base I/O address for this device.
804  *
805  * Side Effects:
806  *   Interrupts are disabled at the adapter bus-specific logic.
807  */
808
809 static void __devinit dfx_bus_uninit(struct net_device *dev)
810 {
811         DFX_board_t *bp = netdev_priv(dev);
812         struct device *bdev = bp->bus_dev;
813         int dfx_bus_pci = DFX_BUS_PCI(bdev);
814         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
815         u8 val;
816
817         DBG_printk("In dfx_bus_uninit...\n");
818
819         /* Uninitialize adapter based on bus type */
820
821         if (dfx_bus_eisa) {
822                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
823
824                 /* Disable interrupts at EISA bus interface chip (ESIC) */
825                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
826                 val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
827                 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
828         }
829         if (dfx_bus_pci) {
830                 /* Disable interrupts at PCI bus interface chip (PFI) */
831                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
832         }
833 }
834
835
836 /*
837  * ========================
838  * = dfx_bus_config_check =
839  * ========================
840  *
841  * Overview:
842  *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
843  *   are illegal, then this routine will set new defaults.
844  *
845  * Returns:
846  *   None
847  *
848  * Arguments:
849  *   bp - pointer to board information
850  *
851  * Functional Description:
852  *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
853  *   PDQ, and all FDDI PCI controllers, all values are legal.
854  *
855  * Return Codes:
856  *   None
857  *
858  * Assumptions:
859  *   dfx_adap_init has NOT been called yet so burst size and other items have
860  *   not been set.
861  *
862  * Side Effects:
863  *   None
864  */
865
866 static void __devinit dfx_bus_config_check(DFX_board_t *bp)
867 {
868         struct device __maybe_unused *bdev = bp->bus_dev;
869         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
870         int     status;                         /* return code from adapter port control call */
871         u32     host_data;                      /* LW data returned from port control call */
872
873         DBG_printk("In dfx_bus_config_check...\n");
874
875         /* Configuration check only valid for EISA adapter */
876
877         if (dfx_bus_eisa) {
878                 /*
879                  * First check if revision 2 EISA controller.  Rev. 1 cards used
880                  * PDQ revision B, so no workaround needed in this case.  Rev. 3
881                  * cards used PDQ revision E, so no workaround needed in this
882                  * case, either.  Only Rev. 2 cards used either Rev. D or E
883                  * chips, so we must verify the chip revision on Rev. 2 cards.
884                  */
885                 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
886                         /*
887                          * Revision 2 FDDI EISA controller found,
888                          * so let's check PDQ revision of adapter.
889                          */
890                         status = dfx_hw_port_ctrl_req(bp,
891                                                                                         PI_PCTRL_M_SUB_CMD,
892                                                                                         PI_SUB_CMD_K_PDQ_REV_GET,
893                                                                                         0,
894                                                                                         &host_data);
895                         if ((status != DFX_K_SUCCESS) || (host_data == 2))
896                                 {
897                                 /*
898                                  * Either we couldn't determine the PDQ revision, or
899                                  * we determined that it is at revision D.  In either case,
900                                  * we need to implement the workaround.
901                                  */
902
903                                 /* Ensure that the burst size is set to 8 longwords or less */
904
905                                 switch (bp->burst_size)
906                                         {
907                                         case PI_PDATA_B_DMA_BURST_SIZE_32:
908                                         case PI_PDATA_B_DMA_BURST_SIZE_16:
909                                                 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
910                                                 break;
911
912                                         default:
913                                                 break;
914                                         }
915
916                                 /* Ensure that full-duplex mode is not enabled */
917
918                                 bp->full_duplex_enb = PI_SNMP_K_FALSE;
919                                 }
920                         }
921                 }
922         }
923
924
925 /*
926  * ===================
927  * = dfx_driver_init =
928  * ===================
929  *
930  * Overview:
931  *   Initializes remaining adapter board structure information
932  *   and makes sure adapter is in a safe state prior to dfx_open().
933  *
934  * Returns:
935  *   Condition code
936  *
937  * Arguments:
938  *   dev - pointer to device information
939  *   print_name - printable device name
940  *
941  * Functional Description:
942  *   This function allocates additional resources such as the host memory
943  *   blocks needed by the adapter (eg. descriptor and consumer blocks).
944  *       Remaining bus initialization steps are also completed.  The adapter
945  *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
946  *   must call dfx_open() to open the adapter and bring it on-line.
947  *
948  * Return Codes:
949  *   DFX_K_SUCCESS      - initialization succeeded
950  *   DFX_K_FAILURE      - initialization failed - could not allocate memory
951  *                                              or read adapter MAC address
952  *
953  * Assumptions:
954  *   Memory allocated from pci_alloc_consistent() call is physically
955  *   contiguous, locked memory.
956  *
957  * Side Effects:
958  *   Adapter is reset and should be in DMA_UNAVAILABLE state before
959  *   returning from this routine.
960  */
961
962 static int __devinit dfx_driver_init(struct net_device *dev,
963                                      const char *print_name,
964                                      resource_size_t bar_start)
965 {
966         DFX_board_t *bp = netdev_priv(dev);
967         struct device *bdev = bp->bus_dev;
968         int dfx_bus_pci = DFX_BUS_PCI(bdev);
969         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
970         int dfx_bus_tc = DFX_BUS_TC(bdev);
971         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
972         int alloc_size;                 /* total buffer size needed */
973         char *top_v, *curr_v;           /* virtual addrs into memory block */
974         dma_addr_t top_p, curr_p;       /* physical addrs into memory block */
975         u32 data, le32;                 /* host data register value */
976         char *board_name = NULL;
977
978         DBG_printk("In dfx_driver_init...\n");
979
980         /* Initialize bus-specific hardware registers */
981
982         dfx_bus_init(dev);
983
984         /*
985          * Initialize default values for configurable parameters
986          *
987          * Note: All of these parameters are ones that a user may
988          *       want to customize.  It'd be nice to break these
989          *               out into Space.c or someplace else that's more
990          *               accessible/understandable than this file.
991          */
992
993         bp->full_duplex_enb             = PI_SNMP_K_FALSE;
994         bp->req_ttrt                    = 8 * 12500;            /* 8ms in 80 nanosec units */
995         bp->burst_size                  = PI_PDATA_B_DMA_BURST_SIZE_DEF;
996         bp->rcv_bufs_to_post    = RCV_BUFS_DEF;
997
998         /*
999          * Ensure that HW configuration is OK
1000          *
1001          * Note: Depending on the hardware revision, we may need to modify
1002          *       some of the configurable parameters to workaround hardware
1003          *       limitations.  We'll perform this configuration check AFTER
1004          *       setting the parameters to their default values.
1005          */
1006
1007         dfx_bus_config_check(bp);
1008
1009         /* Disable PDQ interrupts first */
1010
1011         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1012
1013         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1014
1015         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1016
1017         /*  Read the factory MAC address from the adapter then save it */
1018
1019         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1020                                  &data) != DFX_K_SUCCESS) {
1021                 printk("%s: Could not read adapter factory MAC address!\n",
1022                        print_name);
1023                 return(DFX_K_FAILURE);
1024         }
1025         le32 = cpu_to_le32(data);
1026         memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1027
1028         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1029                                  &data) != DFX_K_SUCCESS) {
1030                 printk("%s: Could not read adapter factory MAC address!\n",
1031                        print_name);
1032                 return(DFX_K_FAILURE);
1033         }
1034         le32 = cpu_to_le32(data);
1035         memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1036
1037         /*
1038          * Set current address to factory address
1039          *
1040          * Note: Node address override support is handled through
1041          *       dfx_ctl_set_mac_address.
1042          */
1043
1044         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1045         if (dfx_bus_tc)
1046                 board_name = "DEFTA";
1047         if (dfx_bus_eisa)
1048                 board_name = "DEFEA";
1049         if (dfx_bus_pci)
1050                 board_name = "DEFPA";
1051         pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, "
1052                 "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
1053                 print_name, board_name, dfx_use_mmio ? "" : "I/O ",
1054                 (long long)bar_start, dev->irq,
1055                 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
1056                 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
1057
1058         /*
1059          * Get memory for descriptor block, consumer block, and other buffers
1060          * that need to be DMA read or written to by the adapter.
1061          */
1062
1063         alloc_size = sizeof(PI_DESCR_BLOCK) +
1064                                         PI_CMD_REQ_K_SIZE_MAX +
1065                                         PI_CMD_RSP_K_SIZE_MAX +
1066 #ifndef DYNAMIC_BUFFERS
1067                                         (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1068 #endif
1069                                         sizeof(PI_CONSUMER_BLOCK) +
1070                                         (PI_ALIGN_K_DESC_BLK - 1);
1071         bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
1072                                                    &bp->kmalloced_dma,
1073                                                    GFP_ATOMIC);
1074         if (top_v == NULL) {
1075                 printk("%s: Could not allocate memory for host buffers "
1076                        "and structures!\n", print_name);
1077                 return(DFX_K_FAILURE);
1078         }
1079         memset(top_v, 0, alloc_size);   /* zero out memory before continuing */
1080         top_p = bp->kmalloced_dma;      /* get physical address of buffer */
1081
1082         /*
1083          *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1084          *  plus the amount of memory needed was allocated.  The physical address
1085          *      is now 8K aligned.  By carving up the memory in a specific order,
1086          *  we'll guarantee the alignment requirements for all other structures.
1087          *
1088          *  Note: If the assumptions change regarding the non-paged, non-cached,
1089          *                physically contiguous nature of the memory block or the address
1090          *                alignments, then we'll need to implement a different algorithm
1091          *                for allocating the needed memory.
1092          */
1093
1094         curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1095         curr_v = top_v + (curr_p - top_p);
1096
1097         /* Reserve space for descriptor block */
1098
1099         bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1100         bp->descr_block_phys = curr_p;
1101         curr_v += sizeof(PI_DESCR_BLOCK);
1102         curr_p += sizeof(PI_DESCR_BLOCK);
1103
1104         /* Reserve space for command request buffer */
1105
1106         bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1107         bp->cmd_req_phys = curr_p;
1108         curr_v += PI_CMD_REQ_K_SIZE_MAX;
1109         curr_p += PI_CMD_REQ_K_SIZE_MAX;
1110
1111         /* Reserve space for command response buffer */
1112
1113         bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1114         bp->cmd_rsp_phys = curr_p;
1115         curr_v += PI_CMD_RSP_K_SIZE_MAX;
1116         curr_p += PI_CMD_RSP_K_SIZE_MAX;
1117
1118         /* Reserve space for the LLC host receive queue buffers */
1119
1120         bp->rcv_block_virt = curr_v;
1121         bp->rcv_block_phys = curr_p;
1122
1123 #ifndef DYNAMIC_BUFFERS
1124         curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1125         curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1126 #endif
1127
1128         /* Reserve space for the consumer block */
1129
1130         bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1131         bp->cons_block_phys = curr_p;
1132
1133         /* Display virtual and physical addresses if debug driver */
1134
1135         DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
1136                    print_name,
1137                    (long)bp->descr_block_virt, bp->descr_block_phys);
1138         DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
1139                    print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
1140         DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
1141                    print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
1142         DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
1143                    print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
1144         DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
1145                    print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
1146
1147         return(DFX_K_SUCCESS);
1148 }
1149
1150
1151 /*
1152  * =================
1153  * = dfx_adap_init =
1154  * =================
1155  *
1156  * Overview:
1157  *   Brings the adapter to the link avail/link unavailable state.
1158  *
1159  * Returns:
1160  *   Condition code
1161  *
1162  * Arguments:
1163  *   bp - pointer to board information
1164  *   get_buffers - non-zero if buffers to be allocated
1165  *
1166  * Functional Description:
1167  *   Issues the low-level firmware/hardware calls necessary to bring
1168  *   the adapter up, or to properly reset and restore adapter during
1169  *   run-time.
1170  *
1171  * Return Codes:
1172  *   DFX_K_SUCCESS - Adapter brought up successfully
1173  *   DFX_K_FAILURE - Adapter initialization failed
1174  *
1175  * Assumptions:
1176  *   bp->reset_type should be set to a valid reset type value before
1177  *   calling this routine.
1178  *
1179  * Side Effects:
1180  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1181  *   upon a successful return of this routine.
1182  */
1183
1184 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1185         {
1186         DBG_printk("In dfx_adap_init...\n");
1187
1188         /* Disable PDQ interrupts first */
1189
1190         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1191
1192         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1193
1194         if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1195                 {
1196                 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1197                 return(DFX_K_FAILURE);
1198                 }
1199
1200         /*
1201          * When the PDQ is reset, some false Type 0 interrupts may be pending,
1202          * so we'll acknowledge all Type 0 interrupts now before continuing.
1203          */
1204
1205         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1206
1207         /*
1208          * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1209          *
1210          * Note: We only need to clear host copies of these registers.  The PDQ reset
1211          *       takes care of the on-board register values.
1212          */
1213
1214         bp->cmd_req_reg.lword   = 0;
1215         bp->cmd_rsp_reg.lword   = 0;
1216         bp->rcv_xmt_reg.lword   = 0;
1217
1218         /* Clear consumer block before going to DMA_AVAILABLE state */
1219
1220         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1221
1222         /* Initialize the DMA Burst Size */
1223
1224         if (dfx_hw_port_ctrl_req(bp,
1225                                                         PI_PCTRL_M_SUB_CMD,
1226                                                         PI_SUB_CMD_K_BURST_SIZE_SET,
1227                                                         bp->burst_size,
1228                                                         NULL) != DFX_K_SUCCESS)
1229                 {
1230                 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1231                 return(DFX_K_FAILURE);
1232                 }
1233
1234         /*
1235          * Set base address of Consumer Block
1236          *
1237          * Assumption: 32-bit physical address of consumer block is 64 byte
1238          *                         aligned.  That is, bits 0-5 of the address must be zero.
1239          */
1240
1241         if (dfx_hw_port_ctrl_req(bp,
1242                                                         PI_PCTRL_M_CONS_BLOCK,
1243                                                         bp->cons_block_phys,
1244                                                         0,
1245                                                         NULL) != DFX_K_SUCCESS)
1246                 {
1247                 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1248                 return(DFX_K_FAILURE);
1249                 }
1250
1251         /*
1252          * Set the base address of Descriptor Block and bring adapter
1253          * to DMA_AVAILABLE state.
1254          *
1255          * Note: We also set the literal and data swapping requirements
1256          *       in this command.
1257          *
1258          * Assumption: 32-bit physical address of descriptor block
1259          *       is 8Kbyte aligned.
1260          */
1261         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1262                                  (u32)(bp->descr_block_phys |
1263                                        PI_PDATA_A_INIT_M_BSWAP_INIT),
1264                                  0, NULL) != DFX_K_SUCCESS) {
1265                 printk("%s: Could not set descriptor block address!\n",
1266                        bp->dev->name);
1267                 return DFX_K_FAILURE;
1268         }
1269
1270         /* Set transmit flush timeout value */
1271
1272         bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1273         bp->cmd_req_virt->char_set.item[0].item_code    = PI_ITEM_K_FLUSH_TIME;
1274         bp->cmd_req_virt->char_set.item[0].value                = 3;    /* 3 seconds */
1275         bp->cmd_req_virt->char_set.item[0].item_index   = 0;
1276         bp->cmd_req_virt->char_set.item[1].item_code    = PI_ITEM_K_EOL;
1277         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1278                 {
1279                 printk("%s: DMA command request failed!\n", bp->dev->name);
1280                 return(DFX_K_FAILURE);
1281                 }
1282
1283         /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1284
1285         bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1286         bp->cmd_req_virt->snmp_set.item[0].item_code    = PI_ITEM_K_FDX_ENB_DIS;
1287         bp->cmd_req_virt->snmp_set.item[0].value                = bp->full_duplex_enb;
1288         bp->cmd_req_virt->snmp_set.item[0].item_index   = 0;
1289         bp->cmd_req_virt->snmp_set.item[1].item_code    = PI_ITEM_K_MAC_T_REQ;
1290         bp->cmd_req_virt->snmp_set.item[1].value                = bp->req_ttrt;
1291         bp->cmd_req_virt->snmp_set.item[1].item_index   = 0;
1292         bp->cmd_req_virt->snmp_set.item[2].item_code    = PI_ITEM_K_EOL;
1293         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1294                 {
1295                 printk("%s: DMA command request failed!\n", bp->dev->name);
1296                 return(DFX_K_FAILURE);
1297                 }
1298
1299         /* Initialize adapter CAM */
1300
1301         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1302                 {
1303                 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1304                 return(DFX_K_FAILURE);
1305                 }
1306
1307         /* Initialize adapter filters */
1308
1309         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1310                 {
1311                 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1312                 return(DFX_K_FAILURE);
1313                 }
1314
1315         /*
1316          * Remove any existing dynamic buffers (i.e. if the adapter is being
1317          * reinitialized)
1318          */
1319
1320         if (get_buffers)
1321                 dfx_rcv_flush(bp);
1322
1323         /* Initialize receive descriptor block and produce buffers */
1324
1325         if (dfx_rcv_init(bp, get_buffers))
1326                 {
1327                 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1328                 if (get_buffers)
1329                         dfx_rcv_flush(bp);
1330                 return(DFX_K_FAILURE);
1331                 }
1332
1333         /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1334
1335         bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1336         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1337                 {
1338                 printk("%s: Start command failed\n", bp->dev->name);
1339                 if (get_buffers)
1340                         dfx_rcv_flush(bp);
1341                 return(DFX_K_FAILURE);
1342                 }
1343
1344         /* Initialization succeeded, reenable PDQ interrupts */
1345
1346         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1347         return(DFX_K_SUCCESS);
1348         }
1349
1350
1351 /*
1352  * ============
1353  * = dfx_open =
1354  * ============
1355  *
1356  * Overview:
1357  *   Opens the adapter
1358  *
1359  * Returns:
1360  *   Condition code
1361  *
1362  * Arguments:
1363  *   dev - pointer to device information
1364  *
1365  * Functional Description:
1366  *   This function brings the adapter to an operational state.
1367  *
1368  * Return Codes:
1369  *   0           - Adapter was successfully opened
1370  *   -EAGAIN - Could not register IRQ or adapter initialization failed
1371  *
1372  * Assumptions:
1373  *   This routine should only be called for a device that was
1374  *   initialized successfully.
1375  *
1376  * Side Effects:
1377  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1378  *   if the open is successful.
1379  */
1380
1381 static int dfx_open(struct net_device *dev)
1382 {
1383         DFX_board_t *bp = netdev_priv(dev);
1384         int ret;
1385
1386         DBG_printk("In dfx_open...\n");
1387
1388         /* Register IRQ - support shared interrupts by passing device ptr */
1389
1390         ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1391                           dev);
1392         if (ret) {
1393                 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1394                 return ret;
1395         }
1396
1397         /*
1398          * Set current address to factory MAC address
1399          *
1400          * Note: We've already done this step in dfx_driver_init.
1401          *       However, it's possible that a user has set a node
1402          *               address override, then closed and reopened the
1403          *               adapter.  Unless we reset the device address field
1404          *               now, we'll continue to use the existing modified
1405          *               address.
1406          */
1407
1408         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1409
1410         /* Clear local unicast/multicast address tables and counts */
1411
1412         memset(bp->uc_table, 0, sizeof(bp->uc_table));
1413         memset(bp->mc_table, 0, sizeof(bp->mc_table));
1414         bp->uc_count = 0;
1415         bp->mc_count = 0;
1416
1417         /* Disable promiscuous filter settings */
1418
1419         bp->ind_group_prom      = PI_FSTATE_K_BLOCK;
1420         bp->group_prom          = PI_FSTATE_K_BLOCK;
1421
1422         spin_lock_init(&bp->lock);
1423
1424         /* Reset and initialize adapter */
1425
1426         bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;    /* skip self-test */
1427         if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1428         {
1429                 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1430                 free_irq(dev->irq, dev);
1431                 return -EAGAIN;
1432         }
1433
1434         /* Set device structure info */
1435         netif_start_queue(dev);
1436         return(0);
1437 }
1438
1439
1440 /*
1441  * =============
1442  * = dfx_close =
1443  * =============
1444  *
1445  * Overview:
1446  *   Closes the device/module.
1447  *
1448  * Returns:
1449  *   Condition code
1450  *
1451  * Arguments:
1452  *   dev - pointer to device information
1453  *
1454  * Functional Description:
1455  *   This routine closes the adapter and brings it to a safe state.
1456  *   The interrupt service routine is deregistered with the OS.
1457  *   The adapter can be opened again with another call to dfx_open().
1458  *
1459  * Return Codes:
1460  *   Always return 0.
1461  *
1462  * Assumptions:
1463  *   No further requests for this adapter are made after this routine is
1464  *   called.  dfx_open() can be called to reset and reinitialize the
1465  *   adapter.
1466  *
1467  * Side Effects:
1468  *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1469  *   routine.
1470  */
1471
1472 static int dfx_close(struct net_device *dev)
1473 {
1474         DFX_board_t *bp = netdev_priv(dev);
1475
1476         DBG_printk("In dfx_close...\n");
1477
1478         /* Disable PDQ interrupts first */
1479
1480         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1481
1482         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1483
1484         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1485
1486         /*
1487          * Flush any pending transmit buffers
1488          *
1489          * Note: It's important that we flush the transmit buffers
1490          *               BEFORE we clear our copy of the Type 2 register.
1491          *               Otherwise, we'll have no idea how many buffers
1492          *               we need to free.
1493          */
1494
1495         dfx_xmt_flush(bp);
1496
1497         /*
1498          * Clear Type 1 and Type 2 registers after adapter reset
1499          *
1500          * Note: Even though we're closing the adapter, it's
1501          *       possible that an interrupt will occur after
1502          *               dfx_close is called.  Without some assurance to
1503          *               the contrary we want to make sure that we don't
1504          *               process receive and transmit LLC frames and update
1505          *               the Type 2 register with bad information.
1506          */
1507
1508         bp->cmd_req_reg.lword   = 0;
1509         bp->cmd_rsp_reg.lword   = 0;
1510         bp->rcv_xmt_reg.lword   = 0;
1511
1512         /* Clear consumer block for the same reason given above */
1513
1514         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1515
1516         /* Release all dynamically allocate skb in the receive ring. */
1517
1518         dfx_rcv_flush(bp);
1519
1520         /* Clear device structure flags */
1521
1522         netif_stop_queue(dev);
1523
1524         /* Deregister (free) IRQ */
1525
1526         free_irq(dev->irq, dev);
1527
1528         return(0);
1529 }
1530
1531
1532 /*
1533  * ======================
1534  * = dfx_int_pr_halt_id =
1535  * ======================
1536  *
1537  * Overview:
1538  *   Displays halt id's in string form.
1539  *
1540  * Returns:
1541  *   None
1542  *
1543  * Arguments:
1544  *   bp - pointer to board information
1545  *
1546  * Functional Description:
1547  *   Determine current halt id and display appropriate string.
1548  *
1549  * Return Codes:
1550  *   None
1551  *
1552  * Assumptions:
1553  *   None
1554  *
1555  * Side Effects:
1556  *   None
1557  */
1558
1559 static void dfx_int_pr_halt_id(DFX_board_t      *bp)
1560         {
1561         PI_UINT32       port_status;                    /* PDQ port status register value */
1562         PI_UINT32       halt_id;                                /* PDQ port status halt ID */
1563
1564         /* Read the latest port status */
1565
1566         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1567
1568         /* Display halt state transition information */
1569
1570         halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1571         switch (halt_id)
1572                 {
1573                 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1574                         printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1575                         break;
1576
1577                 case PI_HALT_ID_K_PARITY_ERROR:
1578                         printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1579                         break;
1580
1581                 case PI_HALT_ID_K_HOST_DIR_HALT:
1582                         printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1583                         break;
1584
1585                 case PI_HALT_ID_K_SW_FAULT:
1586                         printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1587                         break;
1588
1589                 case PI_HALT_ID_K_HW_FAULT:
1590                         printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1591                         break;
1592
1593                 case PI_HALT_ID_K_PC_TRACE:
1594                         printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1595                         break;
1596
1597                 case PI_HALT_ID_K_DMA_ERROR:
1598                         printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1599                         break;
1600
1601                 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1602                         printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1603                         break;
1604
1605                 case PI_HALT_ID_K_BUS_EXCEPTION:
1606                         printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1607                         break;
1608
1609                 default:
1610                         printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1611                         break;
1612                 }
1613         }
1614
1615
1616 /*
1617  * ==========================
1618  * = dfx_int_type_0_process =
1619  * ==========================
1620  *
1621  * Overview:
1622  *   Processes Type 0 interrupts.
1623  *
1624  * Returns:
1625  *   None
1626  *
1627  * Arguments:
1628  *   bp - pointer to board information
1629  *
1630  * Functional Description:
1631  *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1632  *   is a serious fault on the adapter, then an error message is displayed
1633  *   and the adapter is reset.
1634  *
1635  *   One tricky potential timing window is the rapid succession of "link avail"
1636  *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1637  *   interrupt must be done before reading the state from the Port Status
1638  *   register.  This is true because a state change could occur after reading
1639  *   the data, but before acknowledging the interrupt.  If this state change
1640  *   does happen, it would be lost because the driver is using the old state,
1641  *   and it will never know about the new state because it subsequently
1642  *   acknowledges the state change interrupt.
1643  *
1644  *          INCORRECT                                      CORRECT
1645  *      read type 0 int reasons                   read type 0 int reasons
1646  *      read adapter state                        ack type 0 interrupts
1647  *      ack type 0 interrupts                     read adapter state
1648  *      ... process interrupt ...                 ... process interrupt ...
1649  *
1650  * Return Codes:
1651  *   None
1652  *
1653  * Assumptions:
1654  *   None
1655  *
1656  * Side Effects:
1657  *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1658  *   or if the port status indicates that the adapter is halted.  The driver
1659  *   is responsible for reinitializing the adapter with the current CAM
1660  *   contents and adapter filter settings.
1661  */
1662
1663 static void dfx_int_type_0_process(DFX_board_t  *bp)
1664
1665         {
1666         PI_UINT32       type_0_status;          /* Host Interrupt Type 0 register */
1667         PI_UINT32       state;                          /* current adap state (from port status) */
1668
1669         /*
1670          * Read host interrupt Type 0 register to determine which Type 0
1671          * interrupts are pending.  Immediately write it back out to clear
1672          * those interrupts.
1673          */
1674
1675         dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1676         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1677
1678         /* Check for Type 0 error interrupts */
1679
1680         if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1681                                                         PI_TYPE_0_STAT_M_PM_PAR_ERR |
1682                                                         PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1683                 {
1684                 /* Check for Non-Existent Memory error */
1685
1686                 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1687                         printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1688
1689                 /* Check for Packet Memory Parity error */
1690
1691                 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1692                         printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1693
1694                 /* Check for Host Bus Parity error */
1695
1696                 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1697                         printk("%s: Host Bus Parity Error\n", bp->dev->name);
1698
1699                 /* Reset adapter and bring it back on-line */
1700
1701                 bp->link_available = PI_K_FALSE;        /* link is no longer available */
1702                 bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1703                 printk("%s: Resetting adapter...\n", bp->dev->name);
1704                 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1705                         {
1706                         printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1707                         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1708                         return;
1709                         }
1710                 printk("%s: Adapter reset successful!\n", bp->dev->name);
1711                 return;
1712                 }
1713
1714         /* Check for transmit flush interrupt */
1715
1716         if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1717                 {
1718                 /* Flush any pending xmt's and acknowledge the flush interrupt */
1719
1720                 bp->link_available = PI_K_FALSE;                /* link is no longer available */
1721                 dfx_xmt_flush(bp);                                              /* flush any outstanding packets */
1722                 (void) dfx_hw_port_ctrl_req(bp,
1723                                                                         PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1724                                                                         0,
1725                                                                         0,
1726                                                                         NULL);
1727                 }
1728
1729         /* Check for adapter state change */
1730
1731         if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1732                 {
1733                 /* Get latest adapter state */
1734
1735                 state = dfx_hw_adap_state_rd(bp);       /* get adapter state */
1736                 if (state == PI_STATE_K_HALTED)
1737                         {
1738                         /*
1739                          * Adapter has transitioned to HALTED state, try to reset
1740                          * adapter to bring it back on-line.  If reset fails,
1741                          * leave the adapter in the broken state.
1742                          */
1743
1744                         printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1745                         dfx_int_pr_halt_id(bp);                 /* display halt id as string */
1746
1747                         /* Reset adapter and bring it back on-line */
1748
1749                         bp->link_available = PI_K_FALSE;        /* link is no longer available */
1750                         bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1751                         printk("%s: Resetting adapter...\n", bp->dev->name);
1752                         if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1753                                 {
1754                                 printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1755                                 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1756                                 return;
1757                                 }
1758                         printk("%s: Adapter reset successful!\n", bp->dev->name);
1759                         }
1760                 else if (state == PI_STATE_K_LINK_AVAIL)
1761                         {
1762                         bp->link_available = PI_K_TRUE;         /* set link available flag */
1763                         }
1764                 }
1765         }
1766
1767
1768 /*
1769  * ==================
1770  * = dfx_int_common =
1771  * ==================
1772  *
1773  * Overview:
1774  *   Interrupt service routine (ISR)
1775  *
1776  * Returns:
1777  *   None
1778  *
1779  * Arguments:
1780  *   bp - pointer to board information
1781  *
1782  * Functional Description:
1783  *   This is the ISR which processes incoming adapter interrupts.
1784  *
1785  * Return Codes:
1786  *   None
1787  *
1788  * Assumptions:
1789  *   This routine assumes PDQ interrupts have not been disabled.
1790  *   When interrupts are disabled at the PDQ, the Port Status register
1791  *   is automatically cleared.  This routine uses the Port Status
1792  *   register value to determine whether a Type 0 interrupt occurred,
1793  *   so it's important that adapter interrupts are not normally
1794  *   enabled/disabled at the PDQ.
1795  *
1796  *   It's vital that this routine is NOT reentered for the
1797  *   same board and that the OS is not in another section of
1798  *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1799  *   different thread.
1800  *
1801  * Side Effects:
1802  *   Pending interrupts are serviced.  Depending on the type of
1803  *   interrupt, acknowledging and clearing the interrupt at the
1804  *   PDQ involves writing a register to clear the interrupt bit
1805  *   or updating completion indices.
1806  */
1807
1808 static void dfx_int_common(struct net_device *dev)
1809 {
1810         DFX_board_t *bp = netdev_priv(dev);
1811         PI_UINT32       port_status;            /* Port Status register */
1812
1813         /* Process xmt interrupts - frequent case, so always call this routine */
1814
1815         if(dfx_xmt_done(bp))                            /* free consumed xmt packets */
1816                 netif_wake_queue(dev);
1817
1818         /* Process rcv interrupts - frequent case, so always call this routine */
1819
1820         dfx_rcv_queue_process(bp);              /* service received LLC frames */
1821
1822         /*
1823          * Transmit and receive producer and completion indices are updated on the
1824          * adapter by writing to the Type 2 Producer register.  Since the frequent
1825          * case is that we'll be processing either LLC transmit or receive buffers,
1826          * we'll optimize I/O writes by doing a single register write here.
1827          */
1828
1829         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1830
1831         /* Read PDQ Port Status register to find out which interrupts need processing */
1832
1833         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1834
1835         /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1836
1837         if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1838                 dfx_int_type_0_process(bp);     /* process Type 0 interrupts */
1839         }
1840
1841
1842 /*
1843  * =================
1844  * = dfx_interrupt =
1845  * =================
1846  *
1847  * Overview:
1848  *   Interrupt processing routine
1849  *
1850  * Returns:
1851  *   Whether a valid interrupt was seen.
1852  *
1853  * Arguments:
1854  *   irq        - interrupt vector
1855  *   dev_id     - pointer to device information
1856  *
1857  * Functional Description:
1858  *   This routine calls the interrupt processing routine for this adapter.  It
1859  *   disables and reenables adapter interrupts, as appropriate.  We can support
1860  *   shared interrupts since the incoming dev_id pointer provides our device
1861  *   structure context.
1862  *
1863  * Return Codes:
1864  *   IRQ_HANDLED - an IRQ was handled.
1865  *   IRQ_NONE    - no IRQ was handled.
1866  *
1867  * Assumptions:
1868  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1869  *   on Intel-based systems) is done by the operating system outside this
1870  *   routine.
1871  *
1872  *       System interrupts are enabled through this call.
1873  *
1874  * Side Effects:
1875  *   Interrupts are disabled, then reenabled at the adapter.
1876  */
1877
1878 static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1879 {
1880         struct net_device *dev = dev_id;
1881         DFX_board_t *bp = netdev_priv(dev);
1882         struct device *bdev = bp->bus_dev;
1883         int dfx_bus_pci = DFX_BUS_PCI(bdev);
1884         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1885         int dfx_bus_tc = DFX_BUS_TC(bdev);
1886
1887         /* Service adapter interrupts */
1888
1889         if (dfx_bus_pci) {
1890                 u32 status;
1891
1892                 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1893                 if (!(status & PFI_STATUS_M_PDQ_INT))
1894                         return IRQ_NONE;
1895
1896                 spin_lock(&bp->lock);
1897
1898                 /* Disable PDQ-PFI interrupts at PFI */
1899                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1900                                     PFI_MODE_M_DMA_ENB);
1901
1902                 /* Call interrupt service routine for this adapter */
1903                 dfx_int_common(dev);
1904
1905                 /* Clear PDQ interrupt status bit and reenable interrupts */
1906                 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1907                                     PFI_STATUS_M_PDQ_INT);
1908                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1909                                     (PFI_MODE_M_PDQ_INT_ENB |
1910                                      PFI_MODE_M_DMA_ENB));
1911
1912                 spin_unlock(&bp->lock);
1913         }
1914         if (dfx_bus_eisa) {
1915                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1916                 u8 status;
1917
1918                 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1919                 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1920                         return IRQ_NONE;
1921
1922                 spin_lock(&bp->lock);
1923
1924                 /* Disable interrupts at the ESIC */
1925                 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1926                 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1927
1928                 /* Call interrupt service routine for this adapter */
1929                 dfx_int_common(dev);
1930
1931                 /* Reenable interrupts at the ESIC */
1932                 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1933                 status |= PI_CONFIG_STAT_0_M_INT_ENB;
1934                 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1935
1936                 spin_unlock(&bp->lock);
1937         }
1938         if (dfx_bus_tc) {
1939                 u32 status;
1940
1941                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1942                 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1943                                 PI_PSTATUS_M_XMT_DATA_PENDING |
1944                                 PI_PSTATUS_M_SMT_HOST_PENDING |
1945                                 PI_PSTATUS_M_UNSOL_PENDING |
1946                                 PI_PSTATUS_M_CMD_RSP_PENDING |
1947                                 PI_PSTATUS_M_CMD_REQ_PENDING |
1948                                 PI_PSTATUS_M_TYPE_0_PENDING)))
1949                         return IRQ_NONE;
1950
1951                 spin_lock(&bp->lock);
1952
1953                 /* Call interrupt service routine for this adapter */
1954                 dfx_int_common(dev);
1955
1956                 spin_unlock(&bp->lock);
1957         }
1958
1959         return IRQ_HANDLED;
1960 }
1961
1962
1963 /*
1964  * =====================
1965  * = dfx_ctl_get_stats =
1966  * =====================
1967  *
1968  * Overview:
1969  *   Get statistics for FDDI adapter
1970  *
1971  * Returns:
1972  *   Pointer to FDDI statistics structure
1973  *
1974  * Arguments:
1975  *   dev - pointer to device information
1976  *
1977  * Functional Description:
1978  *   Gets current MIB objects from adapter, then
1979  *   returns FDDI statistics structure as defined
1980  *   in if_fddi.h.
1981  *
1982  *   Note: Since the FDDI statistics structure is
1983  *   still new and the device structure doesn't
1984  *   have an FDDI-specific get statistics handler,
1985  *   we'll return the FDDI statistics structure as
1986  *   a pointer to an Ethernet statistics structure.
1987  *   That way, at least the first part of the statistics
1988  *   structure can be decoded properly, and it allows
1989  *   "smart" applications to perform a second cast to
1990  *   decode the FDDI-specific statistics.
1991  *
1992  *   We'll have to pay attention to this routine as the
1993  *   device structure becomes more mature and LAN media
1994  *   independent.
1995  *
1996  * Return Codes:
1997  *   None
1998  *
1999  * Assumptions:
2000  *   None
2001  *
2002  * Side Effects:
2003  *   None
2004  */
2005
2006 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2007         {
2008         DFX_board_t *bp = netdev_priv(dev);
2009
2010         /* Fill the bp->stats structure with driver-maintained counters */
2011
2012         bp->stats.gen.rx_packets = bp->rcv_total_frames;
2013         bp->stats.gen.tx_packets = bp->xmt_total_frames;
2014         bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2015         bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2016         bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2017                                    bp->rcv_frame_status_errors +
2018                                    bp->rcv_length_errors;
2019         bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2020         bp->stats.gen.rx_dropped = bp->rcv_discards;
2021         bp->stats.gen.tx_dropped = bp->xmt_discards;
2022         bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2023         bp->stats.gen.collisions = 0;           /* always zero (0) for FDDI */
2024
2025         /* Get FDDI SMT MIB objects */
2026
2027         bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2028         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2029                 return((struct net_device_stats *) &bp->stats);
2030
2031         /* Fill the bp->stats structure with the SMT MIB object values */
2032
2033         memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2034         bp->stats.smt_op_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2035         bp->stats.smt_hi_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2036         bp->stats.smt_lo_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2037         memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2038         bp->stats.smt_mib_version_id                            = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2039         bp->stats.smt_mac_cts                                           = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2040         bp->stats.smt_non_master_cts                            = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2041         bp->stats.smt_master_cts                                        = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2042         bp->stats.smt_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2043         bp->stats.smt_config_capabilities                       = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2044         bp->stats.smt_config_policy                                     = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2045         bp->stats.smt_connection_policy                         = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2046         bp->stats.smt_t_notify                                          = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2047         bp->stats.smt_stat_rpt_policy                           = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2048         bp->stats.smt_trace_max_expiration                      = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2049         bp->stats.smt_bypass_present                            = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2050         bp->stats.smt_ecm_state                                         = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2051         bp->stats.smt_cf_state                                          = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2052         bp->stats.smt_remote_disconnect_flag            = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2053         bp->stats.smt_station_status                            = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2054         bp->stats.smt_peer_wrap_flag                            = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2055         bp->stats.smt_time_stamp                                        = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2056         bp->stats.smt_transition_time_stamp                     = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2057         bp->stats.mac_frame_status_functions            = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2058         bp->stats.mac_t_max_capability                          = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2059         bp->stats.mac_tvx_capability                            = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2060         bp->stats.mac_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2061         bp->stats.mac_current_path                                      = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2062         memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2063         memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2064         memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2065         memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2066         bp->stats.mac_dup_address_test                          = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2067         bp->stats.mac_requested_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2068         bp->stats.mac_downstream_port_type                      = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2069         memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2070         bp->stats.mac_t_req                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2071         bp->stats.mac_t_neg                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2072         bp->stats.mac_t_max                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2073         bp->stats.mac_tvx_value                                         = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2074         bp->stats.mac_frame_error_threshold                     = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2075         bp->stats.mac_frame_error_ratio                         = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2076         bp->stats.mac_rmt_state                                         = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2077         bp->stats.mac_da_flag                                           = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2078         bp->stats.mac_una_da_flag                                       = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2079         bp->stats.mac_frame_error_flag                          = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2080         bp->stats.mac_ma_unitdata_available                     = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2081         bp->stats.mac_hardware_present                          = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2082         bp->stats.mac_ma_unitdata_enable                        = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2083         bp->stats.path_tvx_lower_bound                          = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2084         bp->stats.path_t_max_lower_bound                        = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2085         bp->stats.path_max_t_req                                        = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2086         memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2087         bp->stats.port_my_type[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2088         bp->stats.port_my_type[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2089         bp->stats.port_neighbor_type[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2090         bp->stats.port_neighbor_type[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2091         bp->stats.port_connection_policies[0]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2092         bp->stats.port_connection_policies[1]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2093         bp->stats.port_mac_indicated[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2094         bp->stats.port_mac_indicated[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2095         bp->stats.port_current_path[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2096         bp->stats.port_current_path[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2097         memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2098         memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2099         bp->stats.port_mac_placement[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2100         bp->stats.port_mac_placement[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2101         bp->stats.port_available_paths[0]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2102         bp->stats.port_available_paths[1]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2103         bp->stats.port_pmd_class[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2104         bp->stats.port_pmd_class[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2105         bp->stats.port_connection_capabilities[0]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2106         bp->stats.port_connection_capabilities[1]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2107         bp->stats.port_bs_flag[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2108         bp->stats.port_bs_flag[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2109         bp->stats.port_ler_estimate[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2110         bp->stats.port_ler_estimate[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2111         bp->stats.port_ler_cutoff[0]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2112         bp->stats.port_ler_cutoff[1]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2113         bp->stats.port_ler_alarm[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2114         bp->stats.port_ler_alarm[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2115         bp->stats.port_connect_state[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2116         bp->stats.port_connect_state[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2117         bp->stats.port_pcm_state[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2118         bp->stats.port_pcm_state[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2119         bp->stats.port_pc_withhold[0]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2120         bp->stats.port_pc_withhold[1]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2121         bp->stats.port_ler_flag[0]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2122         bp->stats.port_ler_flag[1]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2123         bp->stats.port_hardware_present[0]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2124         bp->stats.port_hardware_present[1]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2125
2126         /* Get FDDI counters */
2127
2128         bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2129         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2130                 return((struct net_device_stats *) &bp->stats);
2131
2132         /* Fill the bp->stats structure with the FDDI counter values */
2133
2134         bp->stats.mac_frame_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2135         bp->stats.mac_copied_cts                        = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2136         bp->stats.mac_transmit_cts                      = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2137         bp->stats.mac_error_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2138         bp->stats.mac_lost_cts                          = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2139         bp->stats.port_lct_fail_cts[0]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2140         bp->stats.port_lct_fail_cts[1]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2141         bp->stats.port_lem_reject_cts[0]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2142         bp->stats.port_lem_reject_cts[1]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2143         bp->stats.port_lem_cts[0]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2144         bp->stats.port_lem_cts[1]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2145
2146         return((struct net_device_stats *) &bp->stats);
2147         }
2148
2149
2150 /*
2151  * ==============================
2152  * = dfx_ctl_set_multicast_list =
2153  * ==============================
2154  *
2155  * Overview:
2156  *   Enable/Disable LLC frame promiscuous mode reception
2157  *   on the adapter and/or update multicast address table.
2158  *
2159  * Returns:
2160  *   None
2161  *
2162  * Arguments:
2163  *   dev - pointer to device information
2164  *
2165  * Functional Description:
2166  *   This routine follows a fairly simple algorithm for setting the
2167  *   adapter filters and CAM:
2168  *
2169  *              if IFF_PROMISC flag is set
2170  *                      enable LLC individual/group promiscuous mode
2171  *              else
2172  *                      disable LLC individual/group promiscuous mode
2173  *                      if number of incoming multicast addresses >
2174  *                                      (CAM max size - number of unicast addresses in CAM)
2175  *                              enable LLC group promiscuous mode
2176  *                              set driver-maintained multicast address count to zero
2177  *                      else
2178  *                              disable LLC group promiscuous mode
2179  *                              set driver-maintained multicast address count to incoming count
2180  *                      update adapter CAM
2181  *              update adapter filters
2182  *
2183  * Return Codes:
2184  *   None
2185  *
2186  * Assumptions:
2187  *   Multicast addresses are presented in canonical (LSB) format.
2188  *
2189  * Side Effects:
2190  *   On-board adapter CAM and filters are updated.
2191  */
2192
2193 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2194 {
2195         DFX_board_t *bp = netdev_priv(dev);
2196         int                                     i;                      /* used as index in for loop */
2197         struct dev_mc_list      *dmi;           /* ptr to multicast addr entry */
2198
2199         /* Enable LLC frame promiscuous mode, if necessary */
2200
2201         if (dev->flags & IFF_PROMISC)
2202                 bp->ind_group_prom = PI_FSTATE_K_PASS;          /* Enable LLC ind/group prom mode */
2203
2204         /* Else, update multicast address table */
2205
2206         else
2207                 {
2208                 bp->ind_group_prom = PI_FSTATE_K_BLOCK;         /* Disable LLC ind/group prom mode */
2209                 /*
2210                  * Check whether incoming multicast address count exceeds table size
2211                  *
2212                  * Note: The adapters utilize an on-board 64 entry CAM for
2213                  *       supporting perfect filtering of multicast packets
2214                  *               and bridge functions when adding unicast addresses.
2215                  *               There is no hash function available.  To support
2216                  *               additional multicast addresses, the all multicast
2217                  *               filter (LLC group promiscuous mode) must be enabled.
2218                  *
2219                  *               The firmware reserves two CAM entries for SMT-related
2220                  *               multicast addresses, which leaves 62 entries available.
2221                  *               The following code ensures that we're not being asked
2222                  *               to add more than 62 addresses to the CAM.  If we are,
2223                  *               the driver will enable the all multicast filter.
2224                  *               Should the number of multicast addresses drop below
2225                  *               the high water mark, the filter will be disabled and
2226                  *               perfect filtering will be used.
2227                  */
2228
2229                 if (dev->mc_count > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2230                         {
2231                         bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2232                         bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2233                         }
2234                 else
2235                         {
2236                         bp->group_prom  = PI_FSTATE_K_BLOCK;    /* Disable LLC group prom mode */
2237                         bp->mc_count    = dev->mc_count;                /* Add mc addrs to CAM */
2238                         }
2239
2240                 /* Copy addresses to multicast address table, then update adapter CAM */
2241
2242                 dmi = dev->mc_list;                             /* point to first multicast addr */
2243                 for (i=0; i < bp->mc_count; i++)
2244                         {
2245                         memcpy(&bp->mc_table[i*FDDI_K_ALEN], dmi->dmi_addr, FDDI_K_ALEN);
2246                         dmi = dmi->next;                        /* point to next multicast addr */
2247                         }
2248                 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2249                         {
2250                         DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2251                         }
2252                 else
2253                         {
2254                         DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2255                         }
2256                 }
2257
2258         /* Update adapter filters */
2259
2260         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2261                 {
2262                 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2263                 }
2264         else
2265                 {
2266                 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2267                 }
2268         }
2269
2270
2271 /*
2272  * ===========================
2273  * = dfx_ctl_set_mac_address =
2274  * ===========================
2275  *
2276  * Overview:
2277  *   Add node address override (unicast address) to adapter
2278  *   CAM and update dev_addr field in device table.
2279  *
2280  * Returns:
2281  *   None
2282  *
2283  * Arguments:
2284  *   dev  - pointer to device information
2285  *   addr - pointer to sockaddr structure containing unicast address to add
2286  *
2287  * Functional Description:
2288  *   The adapter supports node address overrides by adding one or more
2289  *   unicast addresses to the adapter CAM.  This is similar to adding
2290  *   multicast addresses.  In this routine we'll update the driver and
2291  *   device structures with the new address, then update the adapter CAM
2292  *   to ensure that the adapter will copy and strip frames destined and
2293  *   sourced by that address.
2294  *
2295  * Return Codes:
2296  *   Always returns zero.
2297  *
2298  * Assumptions:
2299  *   The address pointed to by addr->sa_data is a valid unicast
2300  *   address and is presented in canonical (LSB) format.
2301  *
2302  * Side Effects:
2303  *   On-board adapter CAM is updated.  On-board adapter filters
2304  *   may be updated.
2305  */
2306
2307 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2308         {
2309         struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2310         DFX_board_t *bp = netdev_priv(dev);
2311
2312         /* Copy unicast address to driver-maintained structs and update count */
2313
2314         memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);        /* update device struct */
2315         memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);     /* update driver struct */
2316         bp->uc_count = 1;
2317
2318         /*
2319          * Verify we're not exceeding the CAM size by adding unicast address
2320          *
2321          * Note: It's possible that before entering this routine we've
2322          *       already filled the CAM with 62 multicast addresses.
2323          *               Since we need to place the node address override into
2324          *               the CAM, we have to check to see that we're not
2325          *               exceeding the CAM size.  If we are, we have to enable
2326          *               the LLC group (multicast) promiscuous mode filter as
2327          *               in dfx_ctl_set_multicast_list.
2328          */
2329
2330         if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2331                 {
2332                 bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2333                 bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2334
2335                 /* Update adapter filters */
2336
2337                 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2338                         {
2339                         DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2340                         }
2341                 else
2342                         {
2343                         DBG_printk("%s: Adapter filters updated!\n", dev->name);
2344                         }
2345                 }
2346
2347         /* Update adapter CAM with new unicast address */
2348
2349         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2350                 {
2351                 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2352                 }
2353         else
2354                 {
2355                 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2356                 }
2357         return(0);                      /* always return zero */
2358         }
2359
2360
2361 /*
2362  * ======================
2363  * = dfx_ctl_update_cam =
2364  * ======================
2365  *
2366  * Overview:
2367  *   Procedure to update adapter CAM (Content Addressable Memory)
2368  *   with desired unicast and multicast address entries.
2369  *
2370  * Returns:
2371  *   Condition code
2372  *
2373  * Arguments:
2374  *   bp - pointer to board information
2375  *
2376  * Functional Description:
2377  *   Updates adapter CAM with current contents of board structure
2378  *   unicast and multicast address tables.  Since there are only 62
2379  *   free entries in CAM, this routine ensures that the command
2380  *   request buffer is not overrun.
2381  *
2382  * Return Codes:
2383  *   DFX_K_SUCCESS - Request succeeded
2384  *   DFX_K_FAILURE - Request failed
2385  *
2386  * Assumptions:
2387  *   All addresses being added (unicast and multicast) are in canonical
2388  *   order.
2389  *
2390  * Side Effects:
2391  *   On-board adapter CAM is updated.
2392  */
2393
2394 static int dfx_ctl_update_cam(DFX_board_t *bp)
2395         {
2396         int                     i;                              /* used as index */
2397         PI_LAN_ADDR     *p_addr;                /* pointer to CAM entry */
2398
2399         /*
2400          * Fill in command request information
2401          *
2402          * Note: Even though both the unicast and multicast address
2403          *       table entries are stored as contiguous 6 byte entries,
2404          *               the firmware address filter set command expects each
2405          *               entry to be two longwords (8 bytes total).  We must be
2406          *               careful to only copy the six bytes of each unicast and
2407          *               multicast table entry into each command entry.  This
2408          *               is also why we must first clear the entire command
2409          *               request buffer.
2410          */
2411
2412         memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);     /* first clear buffer */
2413         bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2414         p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2415
2416         /* Now add unicast addresses to command request buffer, if any */
2417
2418         for (i=0; i < (int)bp->uc_count; i++)
2419                 {
2420                 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2421                         {
2422                         memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2423                         p_addr++;                       /* point to next command entry */
2424                         }
2425                 }
2426
2427         /* Now add multicast addresses to command request buffer, if any */
2428
2429         for (i=0; i < (int)bp->mc_count; i++)
2430                 {
2431                 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2432                         {
2433                         memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2434                         p_addr++;                       /* point to next command entry */
2435                         }
2436                 }
2437
2438         /* Issue command to update adapter CAM, then return */
2439
2440         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2441                 return(DFX_K_FAILURE);
2442         return(DFX_K_SUCCESS);
2443         }
2444
2445
2446 /*
2447  * ==========================
2448  * = dfx_ctl_update_filters =
2449  * ==========================
2450  *
2451  * Overview:
2452  *   Procedure to update adapter filters with desired
2453  *   filter settings.
2454  *
2455  * Returns:
2456  *   Condition code
2457  *
2458  * Arguments:
2459  *   bp - pointer to board information
2460  *
2461  * Functional Description:
2462  *   Enables or disables filter using current filter settings.
2463  *
2464  * Return Codes:
2465  *   DFX_K_SUCCESS - Request succeeded.
2466  *   DFX_K_FAILURE - Request failed.
2467  *
2468  * Assumptions:
2469  *   We must always pass up packets destined to the broadcast
2470  *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2471  *   broadcast filter enabled.
2472  *
2473  * Side Effects:
2474  *   On-board adapter filters are updated.
2475  */
2476
2477 static int dfx_ctl_update_filters(DFX_board_t *bp)
2478         {
2479         int     i = 0;                                  /* used as index */
2480
2481         /* Fill in command request information */
2482
2483         bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2484
2485         /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2486
2487         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_BROADCAST;
2488         bp->cmd_req_virt->filter_set.item[i++].value    = PI_FSTATE_K_PASS;
2489
2490         /* Initialize LLC Individual/Group Promiscuous filter */
2491
2492         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_IND_GROUP_PROM;
2493         bp->cmd_req_virt->filter_set.item[i++].value    = bp->ind_group_prom;
2494
2495         /* Initialize LLC Group Promiscuous filter */
2496
2497         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_GROUP_PROM;
2498         bp->cmd_req_virt->filter_set.item[i++].value    = bp->group_prom;
2499
2500         /* Terminate the item code list */
2501
2502         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_EOL;
2503
2504         /* Issue command to update adapter filters, then return */
2505
2506         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2507                 return(DFX_K_FAILURE);
2508         return(DFX_K_SUCCESS);
2509         }
2510
2511
2512 /*
2513  * ======================
2514  * = dfx_hw_dma_cmd_req =
2515  * ======================
2516  *
2517  * Overview:
2518  *   Sends PDQ DMA command to adapter firmware
2519  *
2520  * Returns:
2521  *   Condition code
2522  *
2523  * Arguments:
2524  *   bp - pointer to board information
2525  *
2526  * Functional Description:
2527  *   The command request and response buffers are posted to the adapter in the manner
2528  *   described in the PDQ Port Specification:
2529  *
2530  *              1. Command Response Buffer is posted to adapter.
2531  *              2. Command Request Buffer is posted to adapter.
2532  *              3. Command Request consumer index is polled until it indicates that request
2533  *         buffer has been DMA'd to adapter.
2534  *              4. Command Response consumer index is polled until it indicates that response
2535  *         buffer has been DMA'd from adapter.
2536  *
2537  *   This ordering ensures that a response buffer is already available for the firmware
2538  *   to use once it's done processing the request buffer.
2539  *
2540  * Return Codes:
2541  *   DFX_K_SUCCESS        - DMA command succeeded
2542  *       DFX_K_OUTSTATE   - Adapter is NOT in proper state
2543  *   DFX_K_HW_TIMEOUT - DMA command timed out
2544  *
2545  * Assumptions:
2546  *   Command request buffer has already been filled with desired DMA command.
2547  *
2548  * Side Effects:
2549  *   None
2550  */
2551
2552 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2553         {
2554         int status;                     /* adapter status */
2555         int timeout_cnt;        /* used in for loops */
2556
2557         /* Make sure the adapter is in a state that we can issue the DMA command in */
2558
2559         status = dfx_hw_adap_state_rd(bp);
2560         if ((status == PI_STATE_K_RESET)                ||
2561                 (status == PI_STATE_K_HALTED)           ||
2562                 (status == PI_STATE_K_DMA_UNAVAIL)      ||
2563                 (status == PI_STATE_K_UPGRADE))
2564                 return(DFX_K_OUTSTATE);
2565
2566         /* Put response buffer on the command response queue */
2567
2568         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2569                         ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2570         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2571
2572         /* Bump (and wrap) the producer index and write out to register */
2573
2574         bp->cmd_rsp_reg.index.prod += 1;
2575         bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2576         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2577
2578         /* Put request buffer on the command request queue */
2579
2580         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2581                         PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2582         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2583
2584         /* Bump (and wrap) the producer index and write out to register */
2585
2586         bp->cmd_req_reg.index.prod += 1;
2587         bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2588         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2589
2590         /*
2591          * Here we wait for the command request consumer index to be equal
2592          * to the producer, indicating that the adapter has DMAed the request.
2593          */
2594
2595         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2596                 {
2597                 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2598                         break;
2599                 udelay(100);                    /* wait for 100 microseconds */
2600                 }
2601         if (timeout_cnt == 0)
2602                 return(DFX_K_HW_TIMEOUT);
2603
2604         /* Bump (and wrap) the completion index and write out to register */
2605
2606         bp->cmd_req_reg.index.comp += 1;
2607         bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2608         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2609
2610         /*
2611          * Here we wait for the command response consumer index to be equal
2612          * to the producer, indicating that the adapter has DMAed the response.
2613          */
2614
2615         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2616                 {
2617                 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2618                         break;
2619                 udelay(100);                    /* wait for 100 microseconds */
2620                 }
2621         if (timeout_cnt == 0)
2622                 return(DFX_K_HW_TIMEOUT);
2623
2624         /* Bump (and wrap) the completion index and write out to register */
2625
2626         bp->cmd_rsp_reg.index.comp += 1;
2627         bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2628         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2629         return(DFX_K_SUCCESS);
2630         }
2631
2632
2633 /*
2634  * ========================
2635  * = dfx_hw_port_ctrl_req =
2636  * ========================
2637  *
2638  * Overview:
2639  *   Sends PDQ port control command to adapter firmware
2640  *
2641  * Returns:
2642  *   Host data register value in host_data if ptr is not NULL
2643  *
2644  * Arguments:
2645  *   bp                 - pointer to board information
2646  *       command        - port control command
2647  *       data_a         - port data A register value
2648  *       data_b         - port data B register value
2649  *       host_data      - ptr to host data register value
2650  *
2651  * Functional Description:
2652  *   Send generic port control command to adapter by writing
2653  *   to various PDQ port registers, then polling for completion.
2654  *
2655  * Return Codes:
2656  *   DFX_K_SUCCESS        - port control command succeeded
2657  *   DFX_K_HW_TIMEOUT - port control command timed out
2658  *
2659  * Assumptions:
2660  *   None
2661  *
2662  * Side Effects:
2663  *   None
2664  */
2665
2666 static int dfx_hw_port_ctrl_req(
2667         DFX_board_t     *bp,
2668         PI_UINT32       command,
2669         PI_UINT32       data_a,
2670         PI_UINT32       data_b,
2671         PI_UINT32       *host_data
2672         )
2673
2674         {
2675         PI_UINT32       port_cmd;               /* Port Control command register value */
2676         int                     timeout_cnt;    /* used in for loops */
2677
2678         /* Set Command Error bit in command longword */
2679
2680         port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2681
2682         /* Issue port command to the adapter */
2683
2684         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2685         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2686         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2687
2688         /* Now wait for command to complete */
2689
2690         if (command == PI_PCTRL_M_BLAST_FLASH)
2691                 timeout_cnt = 600000;   /* set command timeout count to 60 seconds */
2692         else
2693                 timeout_cnt = 20000;    /* set command timeout count to 2 seconds */
2694
2695         for (; timeout_cnt > 0; timeout_cnt--)
2696                 {
2697                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2698                 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2699                         break;
2700                 udelay(100);                    /* wait for 100 microseconds */
2701                 }
2702         if (timeout_cnt == 0)
2703                 return(DFX_K_HW_TIMEOUT);
2704
2705         /*
2706          * If the address of host_data is non-zero, assume caller has supplied a
2707          * non NULL pointer, and return the contents of the HOST_DATA register in
2708          * it.
2709          */
2710
2711         if (host_data != NULL)
2712                 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2713         return(DFX_K_SUCCESS);
2714         }
2715
2716
2717 /*
2718  * =====================
2719  * = dfx_hw_adap_reset =
2720  * =====================
2721  *
2722  * Overview:
2723  *   Resets adapter
2724  *
2725  * Returns:
2726  *   None
2727  *
2728  * Arguments:
2729  *   bp   - pointer to board information
2730  *   type - type of reset to perform
2731  *
2732  * Functional Description:
2733  *   Issue soft reset to adapter by writing to PDQ Port Reset
2734  *   register.  Use incoming reset type to tell adapter what
2735  *   kind of reset operation to perform.
2736  *
2737  * Return Codes:
2738  *   None
2739  *
2740  * Assumptions:
2741  *   This routine merely issues a soft reset to the adapter.
2742  *   It is expected that after this routine returns, the caller
2743  *   will appropriately poll the Port Status register for the
2744  *   adapter to enter the proper state.
2745  *
2746  * Side Effects:
2747  *   Internal adapter registers are cleared.
2748  */
2749
2750 static void dfx_hw_adap_reset(
2751         DFX_board_t     *bp,
2752         PI_UINT32       type
2753         )
2754
2755         {
2756         /* Set Reset type and assert reset */
2757
2758         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);        /* tell adapter type of reset */
2759         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2760
2761         /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2762
2763         udelay(20);
2764
2765         /* Deassert reset */
2766
2767         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2768         }
2769
2770
2771 /*
2772  * ========================
2773  * = dfx_hw_adap_state_rd =
2774  * ========================
2775  *
2776  * Overview:
2777  *   Returns current adapter state
2778  *
2779  * Returns:
2780  *   Adapter state per PDQ Port Specification
2781  *
2782  * Arguments:
2783  *   bp - pointer to board information
2784  *
2785  * Functional Description:
2786  *   Reads PDQ Port Status register and returns adapter state.
2787  *
2788  * Return Codes:
2789  *   None
2790  *
2791  * Assumptions:
2792  *   None
2793  *
2794  * Side Effects:
2795  *   None
2796  */
2797
2798 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2799         {
2800         PI_UINT32 port_status;          /* Port Status register value */
2801
2802         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2803         return((port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE);
2804         }
2805
2806
2807 /*
2808  * =====================
2809  * = dfx_hw_dma_uninit =
2810  * =====================
2811  *
2812  * Overview:
2813  *   Brings adapter to DMA_UNAVAILABLE state
2814  *
2815  * Returns:
2816  *   Condition code
2817  *
2818  * Arguments:
2819  *   bp   - pointer to board information
2820  *   type - type of reset to perform
2821  *
2822  * Functional Description:
2823  *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2824  *              1. Set reset type bit in Port Data A Register then reset adapter.
2825  *              2. Check that adapter is in DMA_UNAVAILABLE state.
2826  *
2827  * Return Codes:
2828  *   DFX_K_SUCCESS        - adapter is in DMA_UNAVAILABLE state
2829  *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2830  *
2831  * Assumptions:
2832  *   None
2833  *
2834  * Side Effects:
2835  *   Internal adapter registers are cleared.
2836  */
2837
2838 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2839         {
2840         int timeout_cnt;        /* used in for loops */
2841
2842         /* Set reset type bit and reset adapter */
2843
2844         dfx_hw_adap_reset(bp, type);
2845
2846         /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2847
2848         for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2849                 {
2850                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2851                         break;
2852                 udelay(100);                                    /* wait for 100 microseconds */
2853                 }
2854         if (timeout_cnt == 0)
2855                 return(DFX_K_HW_TIMEOUT);
2856         return(DFX_K_SUCCESS);
2857         }
2858
2859 /*
2860  *      Align an sk_buff to a boundary power of 2
2861  *
2862  */
2863
2864 static void my_skb_align(struct sk_buff *skb, int n)
2865 {
2866         unsigned long x = (unsigned long)skb->data;
2867         unsigned long v;
2868
2869         v = ALIGN(x, n);        /* Where we want to be */
2870
2871         skb_reserve(skb, v - x);
2872 }
2873
2874
2875 /*
2876  * ================
2877  * = dfx_rcv_init =
2878  * ================
2879  *
2880  * Overview:
2881  *   Produces buffers to adapter LLC Host receive descriptor block
2882  *
2883  * Returns:
2884  *   None
2885  *
2886  * Arguments:
2887  *   bp - pointer to board information
2888  *   get_buffers - non-zero if buffers to be allocated
2889  *
2890  * Functional Description:
2891  *   This routine can be called during dfx_adap_init() or during an adapter
2892  *       reset.  It initializes the descriptor block and produces all allocated
2893  *   LLC Host queue receive buffers.
2894  *
2895  * Return Codes:
2896  *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2897  *   dynamic buffer allocation). If the buffer allocation failed, the
2898  *   already allocated buffers will not be released and the caller should do
2899  *   this.
2900  *
2901  * Assumptions:
2902  *   The PDQ has been reset and the adapter and driver maintained Type 2
2903  *   register indices are cleared.
2904  *
2905  * Side Effects:
2906  *   Receive buffers are posted to the adapter LLC queue and the adapter
2907  *   is notified.
2908  */
2909
2910 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2911         {
2912         int     i, j;                                   /* used in for loop */
2913
2914         /*
2915          *  Since each receive buffer is a single fragment of same length, initialize
2916          *  first longword in each receive descriptor for entire LLC Host descriptor
2917          *  block.  Also initialize second longword in each receive descriptor with
2918          *  physical address of receive buffer.  We'll always allocate receive
2919          *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2920          *  block and produce new receive buffers by simply updating the receive
2921          *  producer index.
2922          *
2923          *      Assumptions:
2924          *              To support all shipping versions of PDQ, the receive buffer size
2925          *              must be mod 128 in length and the physical address must be 128 byte
2926          *              aligned.  In other words, bits 0-6 of the length and address must
2927          *              be zero for the following descriptor field entries to be correct on
2928          *              all PDQ-based boards.  We guaranteed both requirements during
2929          *              driver initialization when we allocated memory for the receive buffers.
2930          */
2931
2932         if (get_buffers) {
2933 #ifdef DYNAMIC_BUFFERS
2934         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2935                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2936                 {
2937                         struct sk_buff *newskb = __dev_alloc_skb(NEW_SKB_SIZE, GFP_NOIO);
2938                         if (!newskb)
2939                                 return -ENOMEM;
2940                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2941                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2942                         /*
2943                          * align to 128 bytes for compatibility with
2944                          * the old EISA boards.
2945                          */
2946
2947                         my_skb_align(newskb, 128);
2948                         bp->descr_block_virt->rcv_data[i + j].long_1 =
2949                                 (u32)dma_map_single(bp->bus_dev, newskb->data,
2950                                                     NEW_SKB_SIZE,
2951                                                     DMA_FROM_DEVICE);
2952                         /*
2953                          * p_rcv_buff_va is only used inside the
2954                          * kernel so we put the skb pointer here.
2955                          */
2956                         bp->p_rcv_buff_va[i+j] = (char *) newskb;
2957                 }
2958 #else
2959         for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2960                 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2961                         {
2962                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2963                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2964                         bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2965                         bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2966                         }
2967 #endif
2968         }
2969
2970         /* Update receive producer and Type 2 register */
2971
2972         bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2973         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2974         return 0;
2975         }
2976
2977
2978 /*
2979  * =========================
2980  * = dfx_rcv_queue_process =
2981  * =========================
2982  *
2983  * Overview:
2984  *   Process received LLC frames.
2985  *
2986  * Returns:
2987  *   None
2988  *
2989  * Arguments:
2990  *   bp - pointer to board information
2991  *
2992  * Functional Description:
2993  *   Received LLC frames are processed until there are no more consumed frames.
2994  *   Once all frames are processed, the receive buffers are returned to the
2995  *   adapter.  Note that this algorithm fixes the length of time that can be spent
2996  *   in this routine, because there are a fixed number of receive buffers to
2997  *   process and buffers are not produced until this routine exits and returns
2998  *   to the ISR.
2999  *
3000  * Return Codes:
3001  *   None
3002  *
3003  * Assumptions:
3004  *   None
3005  *
3006  * Side Effects:
3007  *   None
3008  */
3009
3010 static void dfx_rcv_queue_process(
3011         DFX_board_t *bp
3012         )
3013
3014         {
3015         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3016         char                            *p_buff;                        /* ptr to start of packet receive buffer (FMC descriptor) */
3017         u32                                     descr, pkt_len;         /* FMC descriptor field and packet length */
3018         struct sk_buff          *skb;                           /* pointer to a sk_buff to hold incoming packet data */
3019
3020         /* Service all consumed LLC receive frames */
3021
3022         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3023         while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3024                 {
3025                 /* Process any errors */
3026
3027                 int entry;
3028
3029                 entry = bp->rcv_xmt_reg.index.rcv_comp;
3030 #ifdef DYNAMIC_BUFFERS
3031                 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3032 #else
3033                 p_buff = (char *) bp->p_rcv_buff_va[entry];
3034 #endif
3035                 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3036
3037                 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3038                         {
3039                         if (descr & PI_FMC_DESCR_M_RCC_CRC)
3040                                 bp->rcv_crc_errors++;
3041                         else
3042                                 bp->rcv_frame_status_errors++;
3043                         }
3044                 else
3045                 {
3046                         int rx_in_place = 0;
3047
3048                         /* The frame was received without errors - verify packet length */
3049
3050                         pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3051                         pkt_len -= 4;                           /* subtract 4 byte CRC */
3052                         if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3053                                 bp->rcv_length_errors++;
3054                         else{
3055 #ifdef DYNAMIC_BUFFERS
3056                                 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3057                                         struct sk_buff *newskb;
3058
3059                                         newskb = dev_alloc_skb(NEW_SKB_SIZE);
3060                                         if (newskb){
3061                                                 rx_in_place = 1;
3062
3063                                                 my_skb_align(newskb, 128);
3064                                                 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3065                                                 dma_unmap_single(bp->bus_dev,
3066                                                         bp->descr_block_virt->rcv_data[entry].long_1,
3067                                                         NEW_SKB_SIZE,
3068                                                         DMA_FROM_DEVICE);
3069                                                 skb_reserve(skb, RCV_BUFF_K_PADDING);
3070                                                 bp->p_rcv_buff_va[entry] = (char *)newskb;
3071                                                 bp->descr_block_virt->rcv_data[entry].long_1 =
3072                                                         (u32)dma_map_single(bp->bus_dev,
3073                                                                 newskb->data,
3074                                                                 NEW_SKB_SIZE,
3075                                                                 DMA_FROM_DEVICE);
3076                                         } else
3077                                                 skb = NULL;
3078                                 } else
3079 #endif
3080                                         skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
3081                                 if (skb == NULL)
3082                                         {
3083                                         printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3084                                         bp->rcv_discards++;
3085                                         break;
3086                                         }
3087                                 else {
3088 #ifndef DYNAMIC_BUFFERS
3089                                         if (! rx_in_place)
3090 #endif
3091                                         {
3092                                                 /* Receive buffer allocated, pass receive packet up */
3093
3094                                                 skb_copy_to_linear_data(skb,
3095                                                                p_buff + RCV_BUFF_K_PADDING,
3096                                                                pkt_len + 3);
3097                                         }
3098
3099                                         skb_reserve(skb,3);             /* adjust data field so that it points to FC byte */
3100                                         skb_put(skb, pkt_len);          /* pass up packet length, NOT including CRC */
3101                                         skb->protocol = fddi_type_trans(skb, bp->dev);
3102                                         bp->rcv_total_bytes += skb->len;
3103                                         netif_rx(skb);
3104
3105                                         /* Update the rcv counters */
3106                                         bp->dev->last_rx = jiffies;
3107                                         bp->rcv_total_frames++;
3108                                         if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3109                                                 bp->rcv_multicast_frames++;
3110                                 }
3111                         }
3112                         }
3113
3114                 /*
3115                  * Advance the producer (for recycling) and advance the completion
3116                  * (for servicing received frames).  Note that it is okay to
3117                  * advance the producer without checking that it passes the
3118                  * completion index because they are both advanced at the same
3119                  * rate.
3120                  */
3121
3122                 bp->rcv_xmt_reg.index.rcv_prod += 1;
3123                 bp->rcv_xmt_reg.index.rcv_comp += 1;
3124                 }
3125         }
3126
3127
3128 /*
3129  * =====================
3130  * = dfx_xmt_queue_pkt =
3131  * =====================
3132  *
3133  * Overview:
3134  *   Queues packets for transmission
3135  *
3136  * Returns:
3137  *   Condition code
3138  *
3139  * Arguments:
3140  *   skb - pointer to sk_buff to queue for transmission
3141  *   dev - pointer to device information
3142  *
3143  * Functional Description:
3144  *   Here we assume that an incoming skb transmit request
3145  *   is contained in a single physically contiguous buffer
3146  *   in which the virtual address of the start of packet
3147  *   (skb->data) can be converted to a physical address
3148  *   by using pci_map_single().
3149  *
3150  *   Since the adapter architecture requires a three byte
3151  *   packet request header to prepend the start of packet,
3152  *   we'll write the three byte field immediately prior to
3153  *   the FC byte.  This assumption is valid because we've
3154  *   ensured that dev->hard_header_len includes three pad
3155  *   bytes.  By posting a single fragment to the adapter,
3156  *   we'll reduce the number of descriptor fetches and
3157  *   bus traffic needed to send the request.
3158  *
3159  *   Also, we can't free the skb until after it's been DMA'd
3160  *   out by the adapter, so we'll queue it in the driver and
3161  *   return it in dfx_xmt_done.
3162  *
3163  * Return Codes:
3164  *   0 - driver queued packet, link is unavailable, or skbuff was bad
3165  *       1 - caller should requeue the sk_buff for later transmission
3166  *
3167  * Assumptions:
3168  *       First and foremost, we assume the incoming skb pointer
3169  *   is NOT NULL and is pointing to a valid sk_buff structure.
3170  *
3171  *   The outgoing packet is complete, starting with the
3172  *   frame control byte including the last byte of data,
3173  *   but NOT including the 4 byte CRC.  We'll let the
3174  *   adapter hardware generate and append the CRC.
3175  *
3176  *   The entire packet is stored in one physically
3177  *   contiguous buffer which is not cached and whose
3178  *   32-bit physical address can be determined.
3179  *
3180  *   It's vital that this routine is NOT reentered for the
3181  *   same board and that the OS is not in another section of
3182  *   code (eg. dfx_int_common) for the same board on a
3183  *   different thread.
3184  *
3185  * Side Effects:
3186  *   None
3187  */
3188
3189 static int dfx_xmt_queue_pkt(
3190         struct sk_buff  *skb,
3191         struct net_device       *dev
3192         )
3193
3194         {
3195         DFX_board_t             *bp = netdev_priv(dev);
3196         u8                      prod;                           /* local transmit producer index */
3197         PI_XMT_DESCR            *p_xmt_descr;           /* ptr to transmit descriptor block entry */
3198         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3199         unsigned long           flags;
3200
3201         netif_stop_queue(dev);
3202
3203         /*
3204          * Verify that incoming transmit request is OK
3205          *
3206          * Note: The packet size check is consistent with other
3207          *               Linux device drivers, although the correct packet
3208          *               size should be verified before calling the
3209          *               transmit routine.
3210          */
3211
3212         if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3213         {
3214                 printk("%s: Invalid packet length - %u bytes\n",
3215                         dev->name, skb->len);
3216                 bp->xmt_length_errors++;                /* bump error counter */
3217                 netif_wake_queue(dev);
3218                 dev_kfree_skb(skb);
3219                 return(0);                              /* return "success" */
3220         }
3221         /*
3222          * See if adapter link is available, if not, free buffer
3223          *
3224          * Note: If the link isn't available, free buffer and return 0
3225          *               rather than tell the upper layer to requeue the packet.
3226          *               The methodology here is that by the time the link
3227          *               becomes available, the packet to be sent will be
3228          *               fairly stale.  By simply dropping the packet, the
3229          *               higher layer protocols will eventually time out
3230          *               waiting for response packets which it won't receive.
3231          */
3232
3233         if (bp->link_available == PI_K_FALSE)
3234                 {
3235                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)  /* is link really available? */
3236                         bp->link_available = PI_K_TRUE;         /* if so, set flag and continue */
3237                 else
3238                         {
3239                         bp->xmt_discards++;                                     /* bump error counter */
3240                         dev_kfree_skb(skb);             /* free sk_buff now */
3241                         netif_wake_queue(dev);
3242                         return(0);                                                      /* return "success" */
3243                         }
3244                 }
3245
3246         spin_lock_irqsave(&bp->lock, flags);
3247
3248         /* Get the current producer and the next free xmt data descriptor */
3249
3250         prod            = bp->rcv_xmt_reg.index.xmt_prod;
3251         p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3252
3253         /*
3254          * Get pointer to auxiliary queue entry to contain information
3255          * for this packet.
3256          *
3257          * Note: The current xmt producer index will become the
3258          *       current xmt completion index when we complete this
3259          *       packet later on.  So, we'll get the pointer to the
3260          *       next auxiliary queue entry now before we bump the
3261          *       producer index.
3262          */
3263
3264         p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);     /* also bump producer index */
3265
3266         /* Write the three PRH bytes immediately before the FC byte */
3267
3268         skb_push(skb,3);
3269         skb->data[0] = DFX_PRH0_BYTE;   /* these byte values are defined */
3270         skb->data[1] = DFX_PRH1_BYTE;   /* in the Motorola FDDI MAC chip */
3271         skb->data[2] = DFX_PRH2_BYTE;   /* specification */
3272
3273         /*
3274          * Write the descriptor with buffer info and bump producer
3275          *
3276          * Note: Since we need to start DMA from the packet request
3277          *               header, we'll add 3 bytes to the DMA buffer length,
3278          *               and we'll determine the physical address of the
3279          *               buffer from the PRH, not skb->data.
3280          *
3281          * Assumptions:
3282          *               1. Packet starts with the frame control (FC) byte
3283          *                  at skb->data.
3284          *               2. The 4-byte CRC is not appended to the buffer or
3285          *                      included in the length.
3286          *               3. Packet length (skb->len) is from FC to end of
3287          *                      data, inclusive.
3288          *               4. The packet length does not exceed the maximum
3289          *                      FDDI LLC frame length of 4491 bytes.
3290          *               5. The entire packet is contained in a physically
3291          *                      contiguous, non-cached, locked memory space
3292          *                      comprised of a single buffer pointed to by
3293          *                      skb->data.
3294          *               6. The physical address of the start of packet
3295          *                      can be determined from the virtual address
3296          *                      by using pci_map_single() and is only 32-bits
3297          *                      wide.
3298          */
3299
3300         p_xmt_descr->long_0     = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3301         p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data,
3302                                                   skb->len, DMA_TO_DEVICE);
3303
3304         /*
3305          * Verify that descriptor is actually available
3306          *
3307          * Note: If descriptor isn't available, return 1 which tells
3308          *       the upper layer to requeue the packet for later
3309          *       transmission.
3310          *
3311          *       We need to ensure that the producer never reaches the
3312          *       completion, except to indicate that the queue is empty.
3313          */
3314
3315         if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3316         {
3317                 skb_pull(skb,3);
3318                 spin_unlock_irqrestore(&bp->lock, flags);
3319                 return(1);                      /* requeue packet for later */
3320         }
3321
3322         /*
3323          * Save info for this packet for xmt done indication routine
3324          *
3325          * Normally, we'd save the producer index in the p_xmt_drv_descr
3326          * structure so that we'd have it handy when we complete this
3327          * packet later (in dfx_xmt_done).  However, since the current
3328          * transmit architecture guarantees a single fragment for the
3329          * entire packet, we can simply bump the completion index by
3330          * one (1) for each completed packet.
3331          *
3332          * Note: If this assumption changes and we're presented with
3333          *       an inconsistent number of transmit fragments for packet
3334          *       data, we'll need to modify this code to save the current
3335          *       transmit producer index.
3336          */
3337
3338         p_xmt_drv_descr->p_skb = skb;
3339
3340         /* Update Type 2 register */
3341
3342         bp->rcv_xmt_reg.index.xmt_prod = prod;
3343         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3344         spin_unlock_irqrestore(&bp->lock, flags);
3345         netif_wake_queue(dev);
3346         return(0);                                                      /* packet queued to adapter */
3347         }
3348
3349
3350 /*
3351  * ================
3352  * = dfx_xmt_done =
3353  * ================
3354  *
3355  * Overview:
3356  *   Processes all frames that have been transmitted.
3357  *
3358  * Returns:
3359  *   None
3360  *
3361  * Arguments:
3362  *   bp - pointer to board information
3363  *
3364  * Functional Description:
3365  *   For all consumed transmit descriptors that have not
3366  *   yet been completed, we'll free the skb we were holding
3367  *   onto using dev_kfree_skb and bump the appropriate
3368  *   counters.
3369  *
3370  * Return Codes:
3371  *   None
3372  *
3373  * Assumptions:
3374  *   The Type 2 register is not updated in this routine.  It is
3375  *   assumed that it will be updated in the ISR when dfx_xmt_done
3376  *   returns.
3377  *
3378  * Side Effects:
3379  *   None
3380  */
3381
3382 static int dfx_xmt_done(DFX_board_t *bp)
3383         {
3384         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3385         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3386         u8                      comp;                   /* local transmit completion index */
3387         int                     freed = 0;              /* buffers freed */
3388
3389         /* Service all consumed transmit frames */
3390
3391         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3392         while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3393                 {
3394                 /* Get pointer to the transmit driver descriptor block information */
3395
3396                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3397
3398                 /* Increment transmit counters */
3399
3400                 bp->xmt_total_frames++;
3401                 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3402
3403                 /* Return skb to operating system */
3404                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3405                 dma_unmap_single(bp->bus_dev,
3406                                  bp->descr_block_virt->xmt_data[comp].long_1,
3407                                  p_xmt_drv_descr->p_skb->len,
3408                                  DMA_TO_DEVICE);
3409                 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3410
3411                 /*
3412                  * Move to start of next packet by updating completion index
3413                  *
3414                  * Here we assume that a transmit packet request is always
3415                  * serviced by posting one fragment.  We can therefore
3416                  * simplify the completion code by incrementing the
3417                  * completion index by one.  This code will need to be
3418                  * modified if this assumption changes.  See comments
3419                  * in dfx_xmt_queue_pkt for more details.
3420                  */
3421
3422                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3423                 freed++;
3424                 }
3425         return freed;
3426         }
3427
3428
3429 /*
3430  * =================
3431  * = dfx_rcv_flush =
3432  * =================
3433  *
3434  * Overview:
3435  *   Remove all skb's in the receive ring.
3436  *
3437  * Returns:
3438  *   None
3439  *
3440  * Arguments:
3441  *   bp - pointer to board information
3442  *
3443  * Functional Description:
3444  *   Free's all the dynamically allocated skb's that are
3445  *   currently attached to the device receive ring. This
3446  *   function is typically only used when the device is
3447  *   initialized or reinitialized.
3448  *
3449  * Return Codes:
3450  *   None
3451  *
3452  * Side Effects:
3453  *   None
3454  */
3455 #ifdef DYNAMIC_BUFFERS
3456 static void dfx_rcv_flush( DFX_board_t *bp )
3457         {
3458         int i, j;
3459
3460         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3461                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3462                 {
3463                         struct sk_buff *skb;
3464                         skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3465                         if (skb)
3466                                 dev_kfree_skb(skb);
3467                         bp->p_rcv_buff_va[i+j] = NULL;
3468                 }
3469
3470         }
3471 #else
3472 static inline void dfx_rcv_flush( DFX_board_t *bp )
3473 {
3474 }
3475 #endif /* DYNAMIC_BUFFERS */
3476
3477 /*
3478  * =================
3479  * = dfx_xmt_flush =
3480  * =================
3481  *
3482  * Overview:
3483  *   Processes all frames whether they've been transmitted
3484  *   or not.
3485  *
3486  * Returns:
3487  *   None
3488  *
3489  * Arguments:
3490  *   bp - pointer to board information
3491  *
3492  * Functional Description:
3493  *   For all produced transmit descriptors that have not
3494  *   yet been completed, we'll free the skb we were holding
3495  *   onto using dev_kfree_skb and bump the appropriate
3496  *   counters.  Of course, it's possible that some of
3497  *   these transmit requests actually did go out, but we
3498  *   won't make that distinction here.  Finally, we'll
3499  *   update the consumer index to match the producer.
3500  *
3501  * Return Codes:
3502  *   None
3503  *
3504  * Assumptions:
3505  *   This routine does NOT update the Type 2 register.  It
3506  *   is assumed that this routine is being called during a
3507  *   transmit flush interrupt, or a shutdown or close routine.
3508  *
3509  * Side Effects:
3510  *   None
3511  */
3512
3513 static void dfx_xmt_flush( DFX_board_t *bp )
3514         {
3515         u32                     prod_cons;              /* rcv/xmt consumer block longword */
3516         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3517         u8                      comp;                   /* local transmit completion index */
3518
3519         /* Flush all outstanding transmit frames */
3520
3521         while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3522                 {
3523                 /* Get pointer to the transmit driver descriptor block information */
3524
3525                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3526
3527                 /* Return skb to operating system */
3528                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3529                 dma_unmap_single(bp->bus_dev,
3530                                  bp->descr_block_virt->xmt_data[comp].long_1,
3531                                  p_xmt_drv_descr->p_skb->len,
3532                                  DMA_TO_DEVICE);
3533                 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3534
3535                 /* Increment transmit error counter */
3536
3537                 bp->xmt_discards++;
3538
3539                 /*
3540                  * Move to start of next packet by updating completion index
3541                  *
3542                  * Here we assume that a transmit packet request is always
3543                  * serviced by posting one fragment.  We can therefore
3544                  * simplify the completion code by incrementing the
3545                  * completion index by one.  This code will need to be
3546                  * modified if this assumption changes.  See comments
3547                  * in dfx_xmt_queue_pkt for more details.
3548                  */
3549
3550                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3551                 }
3552
3553         /* Update the transmit consumer index in the consumer block */
3554
3555         prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3556         prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3557         bp->cons_block_virt->xmt_rcv_data = prod_cons;
3558         }
3559
3560 /*
3561  * ==================
3562  * = dfx_unregister =
3563  * ==================
3564  *
3565  * Overview:
3566  *   Shuts down an FDDI controller
3567  *
3568  * Returns:
3569  *   Condition code
3570  *
3571  * Arguments:
3572  *   bdev - pointer to device information
3573  *
3574  * Functional Description:
3575  *
3576  * Return Codes:
3577  *   None
3578  *
3579  * Assumptions:
3580  *   It compiles so it should work :-( (PCI cards do :-)
3581  *
3582  * Side Effects:
3583  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3584  *   freed.
3585  */
3586 static void __devexit dfx_unregister(struct device *bdev)
3587 {
3588         struct net_device *dev = dev_get_drvdata(bdev);
3589         DFX_board_t *bp = netdev_priv(dev);
3590         int dfx_bus_pci = DFX_BUS_PCI(bdev);
3591         int dfx_bus_tc = DFX_BUS_TC(bdev);
3592         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3593         resource_size_t bar_start = 0;          /* pointer to port */
3594         resource_size_t bar_len = 0;            /* resource length */
3595         int             alloc_size;             /* total buffer size used */
3596
3597         unregister_netdev(dev);
3598
3599         alloc_size = sizeof(PI_DESCR_BLOCK) +
3600                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3601 #ifndef DYNAMIC_BUFFERS
3602                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3603 #endif
3604                      sizeof(PI_CONSUMER_BLOCK) +
3605                      (PI_ALIGN_K_DESC_BLK - 1);
3606         if (bp->kmalloced)
3607                 dma_free_coherent(bdev, alloc_size,
3608                                   bp->kmalloced, bp->kmalloced_dma);
3609
3610         dfx_bus_uninit(dev);
3611
3612         dfx_get_bars(bdev, &bar_start, &bar_len);
3613         if (dfx_use_mmio) {
3614                 iounmap(bp->base.mem);
3615                 release_mem_region(bar_start, bar_len);
3616         } else
3617                 release_region(bar_start, bar_len);
3618
3619         if (dfx_bus_pci)
3620                 pci_disable_device(to_pci_dev(bdev));
3621
3622         free_netdev(dev);
3623 }
3624
3625
3626 static int __devinit __maybe_unused dfx_dev_register(struct device *);
3627 static int __devexit __maybe_unused dfx_dev_unregister(struct device *);
3628
3629 #ifdef CONFIG_PCI
3630 static int __devinit dfx_pci_register(struct pci_dev *,
3631                                       const struct pci_device_id *);
3632 static void __devexit dfx_pci_unregister(struct pci_dev *);
3633
3634 static struct pci_device_id dfx_pci_table[] = {
3635         { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3636         { }
3637 };
3638 MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3639
3640 static struct pci_driver dfx_pci_driver = {
3641         .name           = "defxx",
3642         .id_table       = dfx_pci_table,
3643         .probe          = dfx_pci_register,
3644         .remove         = __devexit_p(dfx_pci_unregister),
3645 };
3646
3647 static __devinit int dfx_pci_register(struct pci_dev *pdev,
3648                                       const struct pci_device_id *ent)
3649 {
3650         return dfx_register(&pdev->dev);
3651 }
3652
3653 static void __devexit dfx_pci_unregister(struct pci_dev *pdev)
3654 {
3655         dfx_unregister(&pdev->dev);
3656 }
3657 #endif /* CONFIG_PCI */
3658
3659 #ifdef CONFIG_EISA
3660 static struct eisa_device_id dfx_eisa_table[] = {
3661         { "DEC3001", DEFEA_PROD_ID_1 },
3662         { "DEC3002", DEFEA_PROD_ID_2 },
3663         { "DEC3003", DEFEA_PROD_ID_3 },
3664         { "DEC3004", DEFEA_PROD_ID_4 },
3665         { }
3666 };
3667 MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3668
3669 static struct eisa_driver dfx_eisa_driver = {
3670         .id_table       = dfx_eisa_table,
3671         .driver         = {
3672                 .name   = "defxx",
3673                 .bus    = &eisa_bus_type,
3674                 .probe  = dfx_dev_register,
3675                 .remove = __devexit_p(dfx_dev_unregister),
3676         },
3677 };
3678 #endif /* CONFIG_EISA */
3679
3680 #ifdef CONFIG_TC
3681 static struct tc_device_id const dfx_tc_table[] = {
3682         { "DEC     ", "PMAF-FA " },
3683         { "DEC     ", "PMAF-FD " },
3684         { "DEC     ", "PMAF-FS " },
3685         { "DEC     ", "PMAF-FU " },
3686         { }
3687 };
3688 MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3689
3690 static struct tc_driver dfx_tc_driver = {
3691         .id_table       = dfx_tc_table,
3692         .driver         = {
3693                 .name   = "defxx",
3694                 .bus    = &tc_bus_type,
3695                 .probe  = dfx_dev_register,
3696                 .remove = __devexit_p(dfx_dev_unregister),
3697         },
3698 };
3699 #endif /* CONFIG_TC */
3700
3701 static int __devinit __maybe_unused dfx_dev_register(struct device *dev)
3702 {
3703         int status;
3704
3705         status = dfx_register(dev);
3706         if (!status)
3707                 get_device(dev);
3708         return status;
3709 }
3710
3711 static int __devexit __maybe_unused dfx_dev_unregister(struct device *dev)
3712 {
3713         put_device(dev);
3714         dfx_unregister(dev);
3715         return 0;
3716 }
3717
3718
3719 static int __devinit dfx_init(void)
3720 {
3721         int status;
3722
3723         status = pci_register_driver(&dfx_pci_driver);
3724         if (!status)
3725                 status = eisa_driver_register(&dfx_eisa_driver);
3726         if (!status)
3727                 status = tc_register_driver(&dfx_tc_driver);
3728         return status;
3729 }
3730
3731 static void __devexit dfx_cleanup(void)
3732 {
3733         tc_unregister_driver(&dfx_tc_driver);
3734         eisa_driver_unregister(&dfx_eisa_driver);
3735         pci_unregister_driver(&dfx_pci_driver);
3736 }
3737
3738 module_init(dfx_init);
3739 module_exit(dfx_cleanup);
3740 MODULE_AUTHOR("Lawrence V. Stefani");
3741 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3742                    DRV_VERSION " " DRV_RELDATE);
3743 MODULE_LICENSE("GPL");
3744
3745
3746 /*
3747  * Local variables:
3748  * kernel-compile-command: "gcc -D__KERNEL__ -I/root/linux/include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -c defxx.c"
3749  * End:
3750  */