ieee1394: eth1394: .probe and .update may sleep
[linux-2.6] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /*
26  * This driver intends to support RFC 2734, which describes a method for
27  * transporting IPv4 datagrams over IEEE-1394 serial busses.
28  *
29  * TODO:
30  * RFC 2734 related:
31  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
32  *
33  * Non-RFC 2734 related:
34  * - Handle fragmented skb's coming from the networking layer.
35  * - Move generic GASP reception to core 1394 code
36  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37  * - Stability improvements
38  * - Performance enhancements
39  * - Consider garbage collecting old partial datagrams after X amount of time
40  */
41
42 #include <linux/module.h>
43
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50
51 #include <linux/netdevice.h>
52 #include <linux/inetdevice.h>
53 #include <linux/etherdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
56 #include <linux/ip.h>
57 #include <linux/in.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
65 #include <net/arp.h>
66
67 #include "config_roms.h"
68 #include "csr1212.h"
69 #include "eth1394.h"
70 #include "highlevel.h"
71 #include "ieee1394.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80         printk(level "%s: " fmt, driver_name, ## args)
81
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
84
85 struct fragment_info {
86         struct list_head list;
87         int offset;
88         int len;
89 };
90
91 struct partial_datagram {
92         struct list_head list;
93         u16 dgl;
94         u16 dg_size;
95         u16 ether_type;
96         struct sk_buff *skb;
97         char *pbuf;
98         struct list_head frag_info;
99 };
100
101 struct pdg_list {
102         struct list_head list;  /* partial datagram list per node       */
103         unsigned int sz;        /* partial datagram list size per node  */
104         spinlock_t lock;        /* partial datagram lock                */
105 };
106
107 struct eth1394_host_info {
108         struct hpsb_host *host;
109         struct net_device *dev;
110 };
111
112 struct eth1394_node_ref {
113         struct unit_directory *ud;
114         struct list_head list;
115 };
116
117 struct eth1394_node_info {
118         u16 maxpayload;         /* max payload                  */
119         u8 sspd;                /* max speed                    */
120         u64 fifo;               /* FIFO address                 */
121         struct pdg_list pdg;    /* partial RX datagram lists    */
122         int dgl;                /* outgoing datagram label      */
123 };
124
125 static const char driver_name[] = "eth1394";
126
127 static struct kmem_cache *packet_task_cache;
128
129 static struct hpsb_highlevel eth1394_highlevel;
130
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133         sizeof(struct eth1394_uf_hdr),
134         sizeof(struct eth1394_ff_hdr),
135         sizeof(struct eth1394_sf_hdr),
136         sizeof(struct eth1394_sf_hdr)
137 };
138
139 /* For now, this needs to be 1500, so that XP works with us */
140 #define ETH1394_DATA_LEN        ETH_DATA_LEN
141
142 static const u16 eth1394_speedto_maxpayload[] = {
143 /*     S100, S200, S400, S800, S1600, S3200 */
144         512, 1024, 2048, 4096,  4096,  4096
145 };
146
147 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
148 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
149 MODULE_LICENSE("GPL");
150
151 /*
152  * The max_partial_datagrams parameter is the maximum number of fragmented
153  * datagrams per node that eth1394 will keep in memory.  Providing an upper
154  * bound allows us to limit the amount of memory that partial datagrams
155  * consume in the event that some partial datagrams are never completed.
156  */
157 static int max_partial_datagrams = 25;
158 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
159 MODULE_PARM_DESC(max_partial_datagrams,
160                  "Maximum number of partially received fragmented datagrams "
161                  "(default = 25).");
162
163
164 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
165                             unsigned short type, void *daddr, void *saddr,
166                             unsigned len);
167 static int ether1394_rebuild_header(struct sk_buff *skb);
168 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
169 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
170 static void ether1394_header_cache_update(struct hh_cache *hh,
171                                           struct net_device *dev,
172                                           unsigned char *haddr);
173 static int ether1394_mac_addr(struct net_device *dev, void *p);
174
175 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
176 static void ether1394_iso(struct hpsb_iso *iso);
177
178 static struct ethtool_ops ethtool_ops;
179
180 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
181                            quadlet_t *data, u64 addr, size_t len, u16 flags);
182 static void ether1394_add_host(struct hpsb_host *host);
183 static void ether1394_remove_host(struct hpsb_host *host);
184 static void ether1394_host_reset(struct hpsb_host *host);
185
186 /* Function for incoming 1394 packets */
187 static struct hpsb_address_ops addr_ops = {
188         .write =        ether1394_write,
189 };
190
191 /* Ieee1394 highlevel driver functions */
192 static struct hpsb_highlevel eth1394_highlevel = {
193         .name =         driver_name,
194         .add_host =     ether1394_add_host,
195         .remove_host =  ether1394_remove_host,
196         .host_reset =   ether1394_host_reset,
197 };
198
199 static int ether1394_recv_init(struct net_device *dev)
200 {
201         struct eth1394_priv *priv = netdev_priv(dev);
202         unsigned int iso_buf_size;
203
204         /* FIXME: rawiso limits us to PAGE_SIZE */
205         iso_buf_size = min((unsigned int)PAGE_SIZE,
206                            2 * (1U << (priv->host->csr.max_rec + 1)));
207
208         priv->iso = hpsb_iso_recv_init(priv->host,
209                                        ETHER1394_GASP_BUFFERS * iso_buf_size,
210                                        ETHER1394_GASP_BUFFERS,
211                                        priv->broadcast_channel,
212                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
213                                        1, ether1394_iso);
214         if (priv->iso == NULL) {
215                 ETH1394_PRINT(KERN_ERR, dev->name,
216                               "Could not allocate isochronous receive "
217                               "context for the broadcast channel\n");
218                 priv->bc_state = ETHER1394_BC_ERROR;
219                 return -EAGAIN;
220         }
221
222         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
223                 priv->bc_state = ETHER1394_BC_STOPPED;
224         else
225                 priv->bc_state = ETHER1394_BC_RUNNING;
226         return 0;
227 }
228
229 /* This is called after an "ifup" */
230 static int ether1394_open(struct net_device *dev)
231 {
232         struct eth1394_priv *priv = netdev_priv(dev);
233         int ret;
234
235         if (priv->bc_state == ETHER1394_BC_ERROR) {
236                 ret = ether1394_recv_init(dev);
237                 if (ret)
238                         return ret;
239         }
240         netif_start_queue(dev);
241         return 0;
242 }
243
244 /* This is called after an "ifdown" */
245 static int ether1394_stop(struct net_device *dev)
246 {
247         netif_stop_queue(dev);
248         return 0;
249 }
250
251 /* Return statistics to the caller */
252 static struct net_device_stats *ether1394_stats(struct net_device *dev)
253 {
254         return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
255 }
256
257 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
258  * so that's what we do. Should we increment the stat counters too?  */
259 static void ether1394_tx_timeout(struct net_device *dev)
260 {
261         struct hpsb_host *host =
262                         ((struct eth1394_priv *)netdev_priv(dev))->host;
263
264         ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host %s\n",
265                       host->driver->name);
266         highlevel_host_reset(host);
267         netif_wake_queue(dev);
268 }
269
270 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
271 {
272         int max_rec =
273                 ((struct eth1394_priv *)netdev_priv(dev))->host->csr.max_rec;
274
275         if (new_mtu < 68 ||
276             new_mtu > ETH1394_DATA_LEN ||
277             new_mtu > (1 << (max_rec + 1)) - sizeof(union eth1394_hdr) -
278                       ETHER1394_GASP_OVERHEAD)
279                 return -EINVAL;
280
281         dev->mtu = new_mtu;
282         return 0;
283 }
284
285 static void purge_partial_datagram(struct list_head *old)
286 {
287         struct partial_datagram *pd;
288         struct list_head *lh, *n;
289         struct fragment_info *fi;
290
291         pd = list_entry(old, struct partial_datagram, list);
292
293         list_for_each_safe(lh, n, &pd->frag_info) {
294                 fi = list_entry(lh, struct fragment_info, list);
295                 list_del(lh);
296                 kfree(fi);
297         }
298         list_del(old);
299         kfree_skb(pd->skb);
300         kfree(pd);
301 }
302
303 /******************************************
304  * 1394 bus activity functions
305  ******************************************/
306
307 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
308                                                   struct unit_directory *ud)
309 {
310         struct eth1394_node_ref *node;
311
312         list_for_each_entry(node, inl, list)
313                 if (node->ud == ud)
314                         return node;
315
316         return NULL;
317 }
318
319 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
320                                                        u64 guid)
321 {
322         struct eth1394_node_ref *node;
323
324         list_for_each_entry(node, inl, list)
325                 if (node->ud->ne->guid == guid)
326                         return node;
327
328         return NULL;
329 }
330
331 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
332                                                          nodeid_t nodeid)
333 {
334         struct eth1394_node_ref *node;
335
336         list_for_each_entry(node, inl, list)
337                 if (node->ud->ne->nodeid == nodeid)
338                         return node;
339
340         return NULL;
341 }
342
343 static int eth1394_probe(struct device *dev)
344 {
345         struct unit_directory *ud;
346         struct eth1394_host_info *hi;
347         struct eth1394_priv *priv;
348         struct eth1394_node_ref *new_node;
349         struct eth1394_node_info *node_info;
350
351         ud = container_of(dev, struct unit_directory, device);
352
353         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
354         if (!hi)
355                 return -ENOENT;
356
357         new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
358         if (!new_node)
359                 return -ENOMEM;
360
361         node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
362         if (!node_info) {
363                 kfree(new_node);
364                 return -ENOMEM;
365         }
366
367         spin_lock_init(&node_info->pdg.lock);
368         INIT_LIST_HEAD(&node_info->pdg.list);
369         node_info->pdg.sz = 0;
370         node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
371
372         ud->device.driver_data = node_info;
373         new_node->ud = ud;
374
375         priv = netdev_priv(hi->dev);
376         list_add_tail(&new_node->list, &priv->ip_node_list);
377
378         return 0;
379 }
380
381 static int eth1394_remove(struct device *dev)
382 {
383         struct unit_directory *ud;
384         struct eth1394_host_info *hi;
385         struct eth1394_priv *priv;
386         struct eth1394_node_ref *old_node;
387         struct eth1394_node_info *node_info;
388         struct list_head *lh, *n;
389         unsigned long flags;
390
391         ud = container_of(dev, struct unit_directory, device);
392         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
393         if (!hi)
394                 return -ENOENT;
395
396         priv = netdev_priv(hi->dev);
397
398         old_node = eth1394_find_node(&priv->ip_node_list, ud);
399         if (!old_node)
400                 return 0;
401
402         list_del(&old_node->list);
403         kfree(old_node);
404
405         node_info = (struct eth1394_node_info*)ud->device.driver_data;
406
407         spin_lock_irqsave(&node_info->pdg.lock, flags);
408         /* The partial datagram list should be empty, but we'll just
409          * make sure anyway... */
410         list_for_each_safe(lh, n, &node_info->pdg.list)
411                 purge_partial_datagram(lh);
412         spin_unlock_irqrestore(&node_info->pdg.lock, flags);
413
414         kfree(node_info);
415         ud->device.driver_data = NULL;
416         return 0;
417 }
418
419 static int eth1394_update(struct unit_directory *ud)
420 {
421         struct eth1394_host_info *hi;
422         struct eth1394_priv *priv;
423         struct eth1394_node_ref *node;
424         struct eth1394_node_info *node_info;
425
426         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
427         if (!hi)
428                 return -ENOENT;
429
430         priv = netdev_priv(hi->dev);
431
432         node = eth1394_find_node(&priv->ip_node_list, ud);
433         if (node)
434                 return 0;
435
436         node = kmalloc(sizeof(*node), GFP_KERNEL);
437         if (!node)
438                 return -ENOMEM;
439
440         node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
441         if (!node_info) {
442                 kfree(node);
443                 return -ENOMEM;
444         }
445
446         spin_lock_init(&node_info->pdg.lock);
447         INIT_LIST_HEAD(&node_info->pdg.list);
448         node_info->pdg.sz = 0;
449
450         ud->device.driver_data = node_info;
451         node->ud = ud;
452
453         priv = netdev_priv(hi->dev);
454         list_add_tail(&node->list, &priv->ip_node_list);
455         return 0;
456 }
457
458 static struct ieee1394_device_id eth1394_id_table[] = {
459         {
460                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
461                                 IEEE1394_MATCH_VERSION),
462                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
463                 .version = ETHER1394_GASP_VERSION,
464         },
465         {}
466 };
467
468 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
469
470 static struct hpsb_protocol_driver eth1394_proto_driver = {
471         .name           = driver_name,
472         .id_table       = eth1394_id_table,
473         .update         = eth1394_update,
474         .driver         = {
475                 .probe          = eth1394_probe,
476                 .remove         = eth1394_remove,
477         },
478 };
479
480 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
481 {
482         unsigned long flags;
483         int i;
484         struct eth1394_priv *priv = netdev_priv(dev);
485         struct hpsb_host *host = priv->host;
486         u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
487         int max_speed = IEEE1394_SPEED_MAX;
488
489         spin_lock_irqsave(&priv->lock, flags);
490
491         memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
492         priv->bc_maxpayload = 512;
493
494         /* Determine speed limit */
495         for (i = 0; i < host->node_count; i++)
496                 if (max_speed > host->speed[i])
497                         max_speed = host->speed[i];
498         priv->bc_sspd = max_speed;
499
500         /* We'll use our maximum payload as the default MTU */
501         if (set_mtu) {
502                 int max_payload = 1 << (host->csr.max_rec + 1);
503
504                 dev->mtu = min(ETH1394_DATA_LEN,
505                                (int)(max_payload - sizeof(union eth1394_hdr) -
506                                      ETHER1394_GASP_OVERHEAD));
507
508                 /* Set our hardware address while we're at it */
509                 memcpy(dev->dev_addr, &guid, sizeof(u64));
510                 memset(dev->broadcast, 0xff, sizeof(u64));
511         }
512
513         spin_unlock_irqrestore(&priv->lock, flags);
514 }
515
516 /* This function is called right before register_netdev */
517 static void ether1394_init_dev(struct net_device *dev)
518 {
519         /* Our functions */
520         dev->open               = ether1394_open;
521         dev->stop               = ether1394_stop;
522         dev->hard_start_xmit    = ether1394_tx;
523         dev->get_stats          = ether1394_stats;
524         dev->tx_timeout         = ether1394_tx_timeout;
525         dev->change_mtu         = ether1394_change_mtu;
526
527         dev->hard_header        = ether1394_header;
528         dev->rebuild_header     = ether1394_rebuild_header;
529         dev->hard_header_cache  = ether1394_header_cache;
530         dev->header_cache_update= ether1394_header_cache_update;
531         dev->hard_header_parse  = ether1394_header_parse;
532         dev->set_mac_address    = ether1394_mac_addr;
533         SET_ETHTOOL_OPS(dev, &ethtool_ops);
534
535         /* Some constants */
536         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
537         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
538         dev->features           = NETIF_F_HIGHDMA;
539         dev->addr_len           = ETH1394_ALEN;
540         dev->hard_header_len    = ETH1394_HLEN;
541         dev->type               = ARPHRD_IEEE1394;
542
543         ether1394_reset_priv(dev, 1);
544 }
545
546 /*
547  * This function is called every time a card is found. It is generally called
548  * when the module is installed. This is where we add all of our ethernet
549  * devices. One for each host.
550  */
551 static void ether1394_add_host(struct hpsb_host *host)
552 {
553         struct eth1394_host_info *hi = NULL;
554         struct net_device *dev = NULL;
555         struct eth1394_priv *priv;
556         u64 fifo_addr;
557
558         if (hpsb_config_rom_ip1394_add(host) != 0) {
559                 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
560                 return;
561         }
562
563         fifo_addr = hpsb_allocate_and_register_addrspace(
564                         &eth1394_highlevel, host, &addr_ops,
565                         ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
566                         CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
567         if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
568                 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
569                 hpsb_config_rom_ip1394_remove(host);
570                 return;
571         }
572
573         /* We should really have our own alloc_hpsbdev() function in
574          * net_init.c instead of calling the one for ethernet then hijacking
575          * it for ourselves.  That way we'd be a real networking device. */
576         dev = alloc_etherdev(sizeof (struct eth1394_priv));
577
578         if (dev == NULL) {
579                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
580                                  "etherdevice for IEEE 1394 device %s-%d\n",
581                                  host->driver->name, host->id);
582                 goto out;
583         }
584
585         SET_MODULE_OWNER(dev);
586 #if 0
587         /* FIXME - Is this the correct parent device anyway? */
588         SET_NETDEV_DEV(dev, &host->device);
589 #endif
590
591         priv = netdev_priv(dev);
592
593         INIT_LIST_HEAD(&priv->ip_node_list);
594
595         spin_lock_init(&priv->lock);
596         priv->host = host;
597         priv->local_fifo = fifo_addr;
598
599         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
600
601         if (hi == NULL) {
602                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
603                                  "hostinfo for IEEE 1394 device %s-%d\n",
604                                  host->driver->name, host->id);
605                 goto out;
606         }
607
608         ether1394_init_dev(dev);
609
610         if (register_netdev (dev)) {
611                 ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
612                 goto out;
613         }
614
615         ETH1394_PRINT (KERN_INFO, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
616                        host->id);
617
618         hi->host = host;
619         hi->dev = dev;
620
621         /* Ignore validity in hopes that it will be set in the future.  It'll
622          * be checked when the eth device is opened. */
623         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
624
625         ether1394_recv_init(dev);
626         return;
627 out:
628         if (dev)
629                 free_netdev(dev);
630         if (hi)
631                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
632         hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
633         hpsb_config_rom_ip1394_remove(host);
634 }
635
636 /* Remove a card from our list */
637 static void ether1394_remove_host(struct hpsb_host *host)
638 {
639         struct eth1394_host_info *hi;
640         struct eth1394_priv *priv;
641
642         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
643         if (!hi)
644                 return;
645         priv = netdev_priv(hi->dev);
646         hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
647         hpsb_config_rom_ip1394_remove(host);
648         if (priv->iso)
649                 hpsb_iso_shutdown(priv->iso);
650         unregister_netdev(hi->dev);
651         free_netdev(hi->dev);
652 }
653
654 /* A bus reset happened */
655 static void ether1394_host_reset(struct hpsb_host *host)
656 {
657         struct eth1394_host_info *hi;
658         struct eth1394_priv *priv;
659         struct net_device *dev;
660         struct list_head *lh, *n;
661         struct eth1394_node_ref *node;
662         struct eth1394_node_info *node_info;
663         unsigned long flags;
664
665         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
666
667         /* This can happen for hosts that we don't use */
668         if (!hi)
669                 return;
670
671         dev = hi->dev;
672         priv = netdev_priv(dev);
673
674         /* Reset our private host data, but not our MTU */
675         netif_stop_queue(dev);
676         ether1394_reset_priv(dev, 0);
677
678         list_for_each_entry(node, &priv->ip_node_list, list) {
679                 node_info = node->ud->device.driver_data;
680
681                 spin_lock_irqsave(&node_info->pdg.lock, flags);
682
683                 list_for_each_safe(lh, n, &node_info->pdg.list)
684                         purge_partial_datagram(lh);
685
686                 INIT_LIST_HEAD(&(node_info->pdg.list));
687                 node_info->pdg.sz = 0;
688
689                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
690         }
691
692         netif_wake_queue(dev);
693 }
694
695 /******************************************
696  * HW Header net device functions
697  ******************************************/
698 /* These functions have been adapted from net/ethernet/eth.c */
699
700 /* Create a fake MAC header for an arbitrary protocol layer.
701  * saddr=NULL means use device source address
702  * daddr=NULL means leave destination address (eg unresolved arp). */
703 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
704                             unsigned short type, void *daddr, void *saddr,
705                             unsigned len)
706 {
707         struct eth1394hdr *eth =
708                         (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
709
710         eth->h_proto = htons(type);
711
712         if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
713                 memset(eth->h_dest, 0, dev->addr_len);
714                 return dev->hard_header_len;
715         }
716
717         if (daddr) {
718                 memcpy(eth->h_dest, daddr, dev->addr_len);
719                 return dev->hard_header_len;
720         }
721
722         return -dev->hard_header_len;
723 }
724
725 /* Rebuild the faked MAC header. This is called after an ARP
726  * (or in future other address resolution) has completed on this
727  * sk_buff. We now let ARP fill in the other fields.
728  *
729  * This routine CANNOT use cached dst->neigh!
730  * Really, it is used only when dst->neigh is wrong.
731  */
732 static int ether1394_rebuild_header(struct sk_buff *skb)
733 {
734         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
735         struct net_device *dev = skb->dev;
736
737         switch (eth->h_proto) {
738
739 #ifdef CONFIG_INET
740         case __constant_htons(ETH_P_IP):
741                 return arp_find((unsigned char *)&eth->h_dest, skb);
742 #endif
743         default:
744                 ETH1394_PRINT(KERN_DEBUG, dev->name,
745                               "unable to resolve type %04x addresses.\n",
746                               ntohs(eth->h_proto));
747                 break;
748         }
749
750         return 0;
751 }
752
753 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
754 {
755         struct net_device *dev = skb->dev;
756
757         memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
758         return ETH1394_ALEN;
759 }
760
761 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
762 {
763         unsigned short type = hh->hh_type;
764         struct net_device *dev = neigh->dev;
765         struct eth1394hdr *eth =
766                 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
767
768         if (type == htons(ETH_P_802_3))
769                 return -1;
770
771         eth->h_proto = type;
772         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
773
774         hh->hh_len = ETH1394_HLEN;
775         return 0;
776 }
777
778 /* Called by Address Resolution module to notify changes in address. */
779 static void ether1394_header_cache_update(struct hh_cache *hh,
780                                           struct net_device *dev,
781                                           unsigned char * haddr)
782 {
783         memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
784 }
785
786 static int ether1394_mac_addr(struct net_device *dev, void *p)
787 {
788         if (netif_running(dev))
789                 return -EBUSY;
790
791         /* Not going to allow setting the MAC address, we really need to use
792          * the real one supplied by the hardware */
793          return -EINVAL;
794 }
795
796 /******************************************
797  * Datagram reception code
798  ******************************************/
799
800 /* Copied from net/ethernet/eth.c */
801 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
802 {
803         struct eth1394hdr *eth;
804         unsigned char *rawp;
805
806         skb_reset_mac_header(skb);
807         skb_pull(skb, ETH1394_HLEN);
808         eth = eth1394_hdr(skb);
809
810         if (*eth->h_dest & 1) {
811                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
812                         skb->pkt_type = PACKET_BROADCAST;
813 #if 0
814                 else
815                         skb->pkt_type = PACKET_MULTICAST;
816 #endif
817         } else {
818                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
819                         skb->pkt_type = PACKET_OTHERHOST;
820         }
821
822         if (ntohs(eth->h_proto) >= 1536)
823                 return eth->h_proto;
824
825         rawp = skb->data;
826
827         if (*(unsigned short *)rawp == 0xFFFF)
828                 return htons(ETH_P_802_3);
829
830         return htons(ETH_P_802_2);
831 }
832
833 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
834  * We also perform ARP translation here, if need be.  */
835 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
836                                  nodeid_t srcid, nodeid_t destid,
837                                  u16 ether_type)
838 {
839         struct eth1394_priv *priv = netdev_priv(dev);
840         u64 dest_hw;
841         unsigned short ret = 0;
842
843         /* Setup our hw addresses. We use these to build the ethernet header. */
844         if (destid == (LOCAL_BUS | ALL_NODES))
845                 dest_hw = ~0ULL;  /* broadcast */
846         else
847                 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
848                                       priv->host->csr.guid_lo);
849
850         /* If this is an ARP packet, convert it. First, we want to make
851          * use of some of the fields, since they tell us a little bit
852          * about the sending machine.  */
853         if (ether_type == htons(ETH_P_ARP)) {
854                 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
855                 struct arphdr *arp = (struct arphdr *)skb->data;
856                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
857                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
858                                            ntohl(arp1394->fifo_lo);
859                 u8 max_rec = min(priv->host->csr.max_rec,
860                                  (u8)(arp1394->max_rec));
861                 int sspd = arp1394->sspd;
862                 u16 maxpayload;
863                 struct eth1394_node_ref *node;
864                 struct eth1394_node_info *node_info;
865                 __be64 guid;
866
867                 /* Sanity check. MacOSX seems to be sending us 131 in this
868                  * field (atleast on my Panther G5). Not sure why. */
869                 if (sspd > 5 || sspd < 0)
870                         sspd = 0;
871
872                 maxpayload = min(eth1394_speedto_maxpayload[sspd],
873                                  (u16)(1 << (max_rec + 1)));
874
875                 guid = get_unaligned(&arp1394->s_uniq_id);
876                 node = eth1394_find_node_guid(&priv->ip_node_list,
877                                               be64_to_cpu(guid));
878                 if (!node)
879                         return 0;
880
881                 node_info =
882                     (struct eth1394_node_info *)node->ud->device.driver_data;
883
884                 /* Update our speed/payload/fifo_offset table */
885                 node_info->maxpayload = maxpayload;
886                 node_info->sspd =       sspd;
887                 node_info->fifo =       fifo_addr;
888
889                 /* Now that we're done with the 1394 specific stuff, we'll
890                  * need to alter some of the data.  Believe it or not, all
891                  * that needs to be done is sender_IP_address needs to be
892                  * moved, the destination hardware address get stuffed
893                  * in and the hardware address length set to 8.
894                  *
895                  * IMPORTANT: The code below overwrites 1394 specific data
896                  * needed above so keep the munging of the data for the
897                  * higher level IP stack last. */
898
899                 arp->ar_hln = 8;
900                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
901                 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
902                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
903
904                 if (arp->ar_op == htons(ARPOP_REQUEST))
905                         memset(arp_ptr, 0, sizeof(u64));
906                 else
907                         memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
908         }
909
910         /* Now add the ethernet header. */
911         if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
912                              skb->len) >= 0)
913                 ret = ether1394_type_trans(skb, dev);
914
915         return ret;
916 }
917
918 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
919 {
920         struct fragment_info *fi;
921
922         list_for_each_entry(fi, frag_list, list) {
923                 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
924                        ((offset + len - 1) < fi->offset)))
925                         return 1;
926         }
927         return 0;
928 }
929
930 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
931 {
932         struct partial_datagram *pd;
933
934         list_for_each_entry(pd, pdgl, list)
935                 if (pd->dgl == dgl)
936                         return &pd->list;
937
938         return NULL;
939 }
940
941 /* Assumes that new fragment does not overlap any existing fragments */
942 static int new_fragment(struct list_head *frag_info, int offset, int len)
943 {
944         struct list_head *lh;
945         struct fragment_info *fi, *fi2, *new;
946
947         list_for_each(lh, frag_info) {
948                 fi = list_entry(lh, struct fragment_info, list);
949                 if (fi->offset + fi->len == offset) {
950                         /* The new fragment can be tacked on to the end */
951                         fi->len += len;
952                         /* Did the new fragment plug a hole? */
953                         fi2 = list_entry(lh->next, struct fragment_info, list);
954                         if (fi->offset + fi->len == fi2->offset) {
955                                 /* glue fragments together */
956                                 fi->len += fi2->len;
957                                 list_del(lh->next);
958                                 kfree(fi2);
959                         }
960                         return 0;
961                 } else if (offset + len == fi->offset) {
962                         /* The new fragment can be tacked on to the beginning */
963                         fi->offset = offset;
964                         fi->len += len;
965                         /* Did the new fragment plug a hole? */
966                         fi2 = list_entry(lh->prev, struct fragment_info, list);
967                         if (fi2->offset + fi2->len == fi->offset) {
968                                 /* glue fragments together */
969                                 fi2->len += fi->len;
970                                 list_del(lh);
971                                 kfree(fi);
972                         }
973                         return 0;
974                 } else if (offset > fi->offset + fi->len) {
975                         break;
976                 } else if (offset + len < fi->offset) {
977                         lh = lh->prev;
978                         break;
979                 }
980         }
981
982         new = kmalloc(sizeof(*new), GFP_ATOMIC);
983         if (!new)
984                 return -ENOMEM;
985
986         new->offset = offset;
987         new->len = len;
988
989         list_add(&new->list, lh);
990         return 0;
991 }
992
993 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
994                                 int dgl, int dg_size, char *frag_buf,
995                                 int frag_off, int frag_len)
996 {
997         struct partial_datagram *new;
998
999         new = kmalloc(sizeof(*new), GFP_ATOMIC);
1000         if (!new)
1001                 return -ENOMEM;
1002
1003         INIT_LIST_HEAD(&new->frag_info);
1004
1005         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1006                 kfree(new);
1007                 return -ENOMEM;
1008         }
1009
1010         new->dgl = dgl;
1011         new->dg_size = dg_size;
1012
1013         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1014         if (!new->skb) {
1015                 struct fragment_info *fi = list_entry(new->frag_info.next,
1016                                                       struct fragment_info,
1017                                                       list);
1018                 kfree(fi);
1019                 kfree(new);
1020                 return -ENOMEM;
1021         }
1022
1023         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1024         new->pbuf = skb_put(new->skb, dg_size);
1025         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1026
1027         list_add(&new->list, pdgl);
1028         return 0;
1029 }
1030
1031 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1032                                    char *frag_buf, int frag_off, int frag_len)
1033 {
1034         struct partial_datagram *pd =
1035                         list_entry(lh, struct partial_datagram, list);
1036
1037         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1038                 return -ENOMEM;
1039
1040         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1041
1042         /* Move list entry to beginnig of list so that oldest partial
1043          * datagrams percolate to the end of the list */
1044         list_move(lh, pdgl);
1045         return 0;
1046 }
1047
1048 static int is_datagram_complete(struct list_head *lh, int dg_size)
1049 {
1050         struct partial_datagram *pd;
1051         struct fragment_info *fi;
1052
1053         pd = list_entry(lh, struct partial_datagram, list);
1054         fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1055
1056         return (fi->len == dg_size);
1057 }
1058
1059 /* Packet reception. We convert the IP1394 encapsulation header to an
1060  * ethernet header, and fill it with some of our other fields. This is
1061  * an incoming packet from the 1394 bus.  */
1062 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1063                                   char *buf, int len)
1064 {
1065         struct sk_buff *skb;
1066         unsigned long flags;
1067         struct eth1394_priv *priv = netdev_priv(dev);
1068         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1069         u16 ether_type = 0;  /* initialized to clear warning */
1070         int hdr_len;
1071         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1072         struct eth1394_node_info *node_info;
1073
1074         if (!ud) {
1075                 struct eth1394_node_ref *node;
1076                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1077                 if (!node) {
1078                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1079                                    "lookup failure: " NODE_BUS_FMT,
1080                                    NODE_BUS_ARGS(priv->host, srcid));
1081                         priv->stats.rx_dropped++;
1082                         return -1;
1083                 }
1084                 ud = node->ud;
1085
1086                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1087         }
1088
1089         node_info = (struct eth1394_node_info *)ud->device.driver_data;
1090
1091         /* First, did we receive a fragmented or unfragmented datagram? */
1092         hdr->words.word1 = ntohs(hdr->words.word1);
1093
1094         hdr_len = hdr_type_len[hdr->common.lf];
1095
1096         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1097                 /* An unfragmented datagram has been received by the ieee1394
1098                  * bus. Build an skbuff around it so we can pass it to the
1099                  * high level network layer. */
1100
1101                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1102                 if (!skb) {
1103                         HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
1104                         priv->stats.rx_dropped++;
1105                         return -1;
1106                 }
1107                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1108                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1109                        len - hdr_len);
1110                 ether_type = hdr->uf.ether_type;
1111         } else {
1112                 /* A datagram fragment has been received, now the fun begins. */
1113
1114                 struct list_head *pdgl, *lh;
1115                 struct partial_datagram *pd;
1116                 int fg_off;
1117                 int fg_len = len - hdr_len;
1118                 int dg_size;
1119                 int dgl;
1120                 int retval;
1121                 struct pdg_list *pdg = &(node_info->pdg);
1122
1123                 hdr->words.word3 = ntohs(hdr->words.word3);
1124                 /* The 4th header word is reserved so no need to do ntohs() */
1125
1126                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1127                         ether_type = hdr->ff.ether_type;
1128                         dgl = hdr->ff.dgl;
1129                         dg_size = hdr->ff.dg_size + 1;
1130                         fg_off = 0;
1131                 } else {
1132                         hdr->words.word2 = ntohs(hdr->words.word2);
1133                         dgl = hdr->sf.dgl;
1134                         dg_size = hdr->sf.dg_size + 1;
1135                         fg_off = hdr->sf.fg_off;
1136                 }
1137                 spin_lock_irqsave(&pdg->lock, flags);
1138
1139                 pdgl = &(pdg->list);
1140                 lh = find_partial_datagram(pdgl, dgl);
1141
1142                 if (lh == NULL) {
1143                         while (pdg->sz >= max_partial_datagrams) {
1144                                 /* remove the oldest */
1145                                 purge_partial_datagram(pdgl->prev);
1146                                 pdg->sz--;
1147                         }
1148
1149                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1150                                                       buf + hdr_len, fg_off,
1151                                                       fg_len);
1152                         if (retval < 0) {
1153                                 spin_unlock_irqrestore(&pdg->lock, flags);
1154                                 goto bad_proto;
1155                         }
1156                         pdg->sz++;
1157                         lh = find_partial_datagram(pdgl, dgl);
1158                 } else {
1159                         struct partial_datagram *pd;
1160
1161                         pd = list_entry(lh, struct partial_datagram, list);
1162
1163                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1164                                 /* Overlapping fragments, obliterate old
1165                                  * datagram and start new one. */
1166                                 purge_partial_datagram(lh);
1167                                 retval = new_partial_datagram(dev, pdgl, dgl,
1168                                                               dg_size,
1169                                                               buf + hdr_len,
1170                                                               fg_off, fg_len);
1171                                 if (retval < 0) {
1172                                         pdg->sz--;
1173                                         spin_unlock_irqrestore(&pdg->lock, flags);
1174                                         goto bad_proto;
1175                                 }
1176                         } else {
1177                                 retval = update_partial_datagram(pdgl, lh,
1178                                                                  buf + hdr_len,
1179                                                                  fg_off, fg_len);
1180                                 if (retval < 0) {
1181                                         /* Couldn't save off fragment anyway
1182                                          * so might as well obliterate the
1183                                          * datagram now. */
1184                                         purge_partial_datagram(lh);
1185                                         pdg->sz--;
1186                                         spin_unlock_irqrestore(&pdg->lock, flags);
1187                                         goto bad_proto;
1188                                 }
1189                         } /* fragment overlap */
1190                 } /* new datagram or add to existing one */
1191
1192                 pd = list_entry(lh, struct partial_datagram, list);
1193
1194                 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1195                         pd->ether_type = ether_type;
1196
1197                 if (is_datagram_complete(lh, dg_size)) {
1198                         ether_type = pd->ether_type;
1199                         pdg->sz--;
1200                         skb = skb_get(pd->skb);
1201                         purge_partial_datagram(lh);
1202                         spin_unlock_irqrestore(&pdg->lock, flags);
1203                 } else {
1204                         /* Datagram is not complete, we're done for the
1205                          * moment. */
1206                         spin_unlock_irqrestore(&pdg->lock, flags);
1207                         return 0;
1208                 }
1209         } /* unframgented datagram or fragmented one */
1210
1211         /* Write metadata, and then pass to the receive level */
1212         skb->dev = dev;
1213         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1214
1215         /* Parse the encapsulation header. This actually does the job of
1216          * converting to an ethernet frame header, aswell as arp
1217          * conversion if needed. ARP conversion is easier in this
1218          * direction, since we are using ethernet as our backend.  */
1219         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1220                                               ether_type);
1221
1222         spin_lock_irqsave(&priv->lock, flags);
1223
1224         if (!skb->protocol) {
1225                 priv->stats.rx_errors++;
1226                 priv->stats.rx_dropped++;
1227                 dev_kfree_skb_any(skb);
1228                 goto bad_proto;
1229         }
1230
1231         if (netif_rx(skb) == NET_RX_DROP) {
1232                 priv->stats.rx_errors++;
1233                 priv->stats.rx_dropped++;
1234                 goto bad_proto;
1235         }
1236
1237         /* Statistics */
1238         priv->stats.rx_packets++;
1239         priv->stats.rx_bytes += skb->len;
1240
1241 bad_proto:
1242         if (netif_queue_stopped(dev))
1243                 netif_wake_queue(dev);
1244         spin_unlock_irqrestore(&priv->lock, flags);
1245
1246         dev->last_rx = jiffies;
1247
1248         return 0;
1249 }
1250
1251 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1252                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1253 {
1254         struct eth1394_host_info *hi;
1255
1256         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1257         if (hi == NULL) {
1258                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1259                                 host->driver->name);
1260                 return RCODE_ADDRESS_ERROR;
1261         }
1262
1263         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1264                 return RCODE_ADDRESS_ERROR;
1265         else
1266                 return RCODE_COMPLETE;
1267 }
1268
1269 static void ether1394_iso(struct hpsb_iso *iso)
1270 {
1271         quadlet_t *data;
1272         char *buf;
1273         struct eth1394_host_info *hi;
1274         struct net_device *dev;
1275         struct eth1394_priv *priv;
1276         unsigned int len;
1277         u32 specifier_id;
1278         u16 source_id;
1279         int i;
1280         int nready;
1281
1282         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1283         if (hi == NULL) {
1284                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1285                                 iso->host->driver->name);
1286                 return;
1287         }
1288
1289         dev = hi->dev;
1290
1291         nready = hpsb_iso_n_ready(iso);
1292         for (i = 0; i < nready; i++) {
1293                 struct hpsb_iso_packet_info *info =
1294                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1295                 data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1296
1297                 /* skip over GASP header */
1298                 buf = (char *)data + 8;
1299                 len = info->len - 8;
1300
1301                 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1302                                (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1303                 source_id = be32_to_cpu(data[0]) >> 16;
1304
1305                 priv = netdev_priv(dev);
1306
1307                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1308                     || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1309                         /* This packet is not for us */
1310                         continue;
1311                 }
1312                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1313                                        buf, len);
1314         }
1315
1316         hpsb_iso_recv_release_packets(iso, i);
1317
1318         dev->last_rx = jiffies;
1319 }
1320
1321 /******************************************
1322  * Datagram transmission code
1323  ******************************************/
1324
1325 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1326  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1327  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1328  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1329  * judge.
1330  *
1331  * Now that the EUI is used for the hardware address all we need to do to make
1332  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1333  * speed, and unicast FIFO address information between the sender_unique_id
1334  * and the IP addresses.
1335  */
1336 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1337                                      struct net_device *dev)
1338 {
1339         struct eth1394_priv *priv = netdev_priv(dev);
1340         struct arphdr *arp = (struct arphdr *)skb->data;
1341         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1342         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1343
1344         arp1394->hw_addr_len    = 16;
1345         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1346         arp1394->max_rec        = priv->host->csr.max_rec;
1347         arp1394->sspd           = priv->host->csr.lnk_spd;
1348         arp1394->fifo_hi        = htons(priv->local_fifo >> 32);
1349         arp1394->fifo_lo        = htonl(priv->local_fifo & ~0x0);
1350 }
1351
1352 /* We need to encapsulate the standard header with our own. We use the
1353  * ethernet header's proto for our own. */
1354 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1355                                                __be16 proto,
1356                                                union eth1394_hdr *hdr,
1357                                                u16 dg_size, u16 dgl)
1358 {
1359         unsigned int adj_max_payload =
1360                                 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1361
1362         /* Does it all fit in one packet? */
1363         if (dg_size <= adj_max_payload) {
1364                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1365                 hdr->uf.ether_type = proto;
1366         } else {
1367                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1368                 hdr->ff.ether_type = proto;
1369                 hdr->ff.dg_size = dg_size - 1;
1370                 hdr->ff.dgl = dgl;
1371                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1372         }
1373         return (dg_size + adj_max_payload - 1) / adj_max_payload;
1374 }
1375
1376 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1377                                           unsigned int max_payload,
1378                                           union eth1394_hdr *hdr)
1379 {
1380         union eth1394_hdr *bufhdr;
1381         int ftype = hdr->common.lf;
1382         int hdrsz = hdr_type_len[ftype];
1383         unsigned int adj_max_payload = max_payload - hdrsz;
1384
1385         switch (ftype) {
1386         case ETH1394_HDR_LF_UF:
1387                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1388                 bufhdr->words.word1 = htons(hdr->words.word1);
1389                 bufhdr->words.word2 = hdr->words.word2;
1390                 break;
1391
1392         case ETH1394_HDR_LF_FF:
1393                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1394                 bufhdr->words.word1 = htons(hdr->words.word1);
1395                 bufhdr->words.word2 = hdr->words.word2;
1396                 bufhdr->words.word3 = htons(hdr->words.word3);
1397                 bufhdr->words.word4 = 0;
1398
1399                 /* Set frag type here for future interior fragments */
1400                 hdr->common.lf = ETH1394_HDR_LF_IF;
1401                 hdr->sf.fg_off = 0;
1402                 break;
1403
1404         default:
1405                 hdr->sf.fg_off += adj_max_payload;
1406                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1407                 if (max_payload >= skb->len)
1408                         hdr->common.lf = ETH1394_HDR_LF_LF;
1409                 bufhdr->words.word1 = htons(hdr->words.word1);
1410                 bufhdr->words.word2 = htons(hdr->words.word2);
1411                 bufhdr->words.word3 = htons(hdr->words.word3);
1412                 bufhdr->words.word4 = 0;
1413         }
1414         return min(max_payload, skb->len);
1415 }
1416
1417 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1418 {
1419         struct hpsb_packet *p;
1420
1421         p = hpsb_alloc_packet(0);
1422         if (p) {
1423                 p->host = host;
1424                 p->generation = get_hpsb_generation(host);
1425                 p->type = hpsb_async;
1426         }
1427         return p;
1428 }
1429
1430 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1431                                        struct hpsb_host *host, nodeid_t node,
1432                                        u64 addr, void *data, int tx_len)
1433 {
1434         p->node_id = node;
1435         p->data = NULL;
1436
1437         p->tcode = TCODE_WRITEB;
1438         p->header[1] = host->node_id << 16 | addr >> 32;
1439         p->header[2] = addr & 0xffffffff;
1440
1441         p->header_size = 16;
1442         p->expect_response = 1;
1443
1444         if (hpsb_get_tlabel(p)) {
1445                 ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
1446                                 "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
1447                 return -1;
1448         }
1449         p->header[0] =
1450                 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1451
1452         p->header[3] = tx_len << 16;
1453         p->data_size = (tx_len + 3) & ~3;
1454         p->data = data;
1455
1456         return 0;
1457 }
1458
1459 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1460                                        struct eth1394_priv *priv,
1461                                        struct sk_buff *skb, int length)
1462 {
1463         p->header_size = 4;
1464         p->tcode = TCODE_STREAM_DATA;
1465
1466         p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1467                        TCODE_STREAM_DATA << 4;
1468         p->data_size = length;
1469         p->data = (quadlet_t *)skb->data - 2;
1470         p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1471                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1472         p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1473                                  ETHER1394_GASP_VERSION);
1474
1475         /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1476          * prevents hpsb_send_packet() from setting the speed to an arbitrary
1477          * value based on packet->node_id if packet->node_id is not set. */
1478         p->node_id = ALL_NODES;
1479         p->speed_code = priv->bc_sspd;
1480 }
1481
1482 static void ether1394_free_packet(struct hpsb_packet *packet)
1483 {
1484         if (packet->tcode != TCODE_STREAM_DATA)
1485                 hpsb_free_tlabel(packet);
1486         hpsb_free_packet(packet);
1487 }
1488
1489 static void ether1394_complete_cb(void *__ptask);
1490
1491 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1492 {
1493         struct eth1394_priv *priv = ptask->priv;
1494         struct hpsb_packet *packet = NULL;
1495
1496         packet = ether1394_alloc_common_packet(priv->host);
1497         if (!packet)
1498                 return -1;
1499
1500         if (ptask->tx_type == ETH1394_GASP) {
1501                 int length = tx_len + 2 * sizeof(quadlet_t);
1502
1503                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1504         } else if (ether1394_prep_write_packet(packet, priv->host,
1505                                                ptask->dest_node,
1506                                                ptask->addr, ptask->skb->data,
1507                                                tx_len)) {
1508                 hpsb_free_packet(packet);
1509                 return -1;
1510         }
1511
1512         ptask->packet = packet;
1513         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1514                                       ptask);
1515
1516         if (hpsb_send_packet(packet) < 0) {
1517                 ether1394_free_packet(packet);
1518                 return -1;
1519         }
1520
1521         return 0;
1522 }
1523
1524 /* Task function to be run when a datagram transmission is completed */
1525 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1526 {
1527         struct sk_buff *skb = ptask->skb;
1528         struct eth1394_priv *priv = netdev_priv(skb->dev);
1529         unsigned long flags;
1530
1531         /* Statistics */
1532         spin_lock_irqsave(&priv->lock, flags);
1533         if (fail) {
1534                 priv->stats.tx_dropped++;
1535                 priv->stats.tx_errors++;
1536         } else {
1537                 priv->stats.tx_bytes += skb->len;
1538                 priv->stats.tx_packets++;
1539         }
1540         spin_unlock_irqrestore(&priv->lock, flags);
1541
1542         dev_kfree_skb_any(skb);
1543         kmem_cache_free(packet_task_cache, ptask);
1544 }
1545
1546 /* Callback for when a packet has been sent and the status of that packet is
1547  * known */
1548 static void ether1394_complete_cb(void *__ptask)
1549 {
1550         struct packet_task *ptask = (struct packet_task *)__ptask;
1551         struct hpsb_packet *packet = ptask->packet;
1552         int fail = 0;
1553
1554         if (packet->tcode != TCODE_STREAM_DATA)
1555                 fail = hpsb_packet_success(packet);
1556
1557         ether1394_free_packet(packet);
1558
1559         ptask->outstanding_pkts--;
1560         if (ptask->outstanding_pkts > 0 && !fail) {
1561                 int tx_len;
1562
1563                 /* Add the encapsulation header to the fragment */
1564                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1565                                                &ptask->hdr);
1566                 if (ether1394_send_packet(ptask, tx_len))
1567                         ether1394_dg_complete(ptask, 1);
1568         } else {
1569                 ether1394_dg_complete(ptask, fail);
1570         }
1571 }
1572
1573 /* Transmit a packet (called by kernel) */
1574 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1575 {
1576         gfp_t kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1577         struct eth1394hdr *eth;
1578         struct eth1394_priv *priv = netdev_priv(dev);
1579         __be16 proto;
1580         unsigned long flags;
1581         nodeid_t dest_node;
1582         eth1394_tx_type tx_type;
1583         int ret = 0;
1584         unsigned int tx_len;
1585         unsigned int max_payload;
1586         u16 dg_size;
1587         u16 dgl;
1588         struct packet_task *ptask;
1589         struct eth1394_node_ref *node;
1590         struct eth1394_node_info *node_info = NULL;
1591
1592         ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1593         if (ptask == NULL) {
1594                 ret = -ENOMEM;
1595                 goto fail;
1596         }
1597
1598         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1599          * it does not set our validity bit. We need to compensate for
1600          * that somewhere else, but not in eth1394. */
1601 #if 0
1602         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1603                 ret = -EAGAIN;
1604                 goto fail;
1605         }
1606 #endif
1607
1608         skb = skb_share_check(skb, kmflags);
1609         if (!skb) {
1610                 ret = -ENOMEM;
1611                 goto fail;
1612         }
1613
1614         /* Get rid of the fake eth1394 header, but save a pointer */
1615         eth = (struct eth1394hdr *)skb->data;
1616         skb_pull(skb, ETH1394_HLEN);
1617
1618         proto = eth->h_proto;
1619         dg_size = skb->len;
1620
1621         /* Set the transmission type for the packet.  ARP packets and IP
1622          * broadcast packets are sent via GASP. */
1623         if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1624             proto == htons(ETH_P_ARP) ||
1625             (proto == htons(ETH_P_IP) &&
1626              IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1627                 tx_type = ETH1394_GASP;
1628                 dest_node = LOCAL_BUS | ALL_NODES;
1629                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1630                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1631                 dgl = priv->bc_dgl;
1632                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1633                         priv->bc_dgl++;
1634         } else {
1635                 __be64 guid = get_unaligned((u64 *)eth->h_dest);
1636
1637                 node = eth1394_find_node_guid(&priv->ip_node_list,
1638                                               be64_to_cpu(guid));
1639                 if (!node) {
1640                         ret = -EAGAIN;
1641                         goto fail;
1642                 }
1643                 node_info =
1644                     (struct eth1394_node_info *)node->ud->device.driver_data;
1645                 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE) {
1646                         ret = -EAGAIN;
1647                         goto fail;
1648                 }
1649
1650                 dest_node = node->ud->ne->nodeid;
1651                 max_payload = node_info->maxpayload;
1652                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1653
1654                 dgl = node_info->dgl;
1655                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1656                         node_info->dgl++;
1657                 tx_type = ETH1394_WRREQ;
1658         }
1659
1660         /* If this is an ARP packet, convert it */
1661         if (proto == htons(ETH_P_ARP))
1662                 ether1394_arp_to_1394arp(skb, dev);
1663
1664         ptask->hdr.words.word1 = 0;
1665         ptask->hdr.words.word2 = 0;
1666         ptask->hdr.words.word3 = 0;
1667         ptask->hdr.words.word4 = 0;
1668         ptask->skb = skb;
1669         ptask->priv = priv;
1670         ptask->tx_type = tx_type;
1671
1672         if (tx_type != ETH1394_GASP) {
1673                 u64 addr;
1674
1675                 spin_lock_irqsave(&priv->lock, flags);
1676                 addr = node_info->fifo;
1677                 spin_unlock_irqrestore(&priv->lock, flags);
1678
1679                 ptask->addr = addr;
1680                 ptask->dest_node = dest_node;
1681         }
1682
1683         ptask->tx_type = tx_type;
1684         ptask->max_payload = max_payload;
1685         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1686                                         proto, &ptask->hdr, dg_size, dgl);
1687
1688         /* Add the encapsulation header to the fragment */
1689         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1690         dev->trans_start = jiffies;
1691         if (ether1394_send_packet(ptask, tx_len))
1692                 goto fail;
1693
1694         netif_wake_queue(dev);
1695         return 0;
1696 fail:
1697         if (ptask)
1698                 kmem_cache_free(packet_task_cache, ptask);
1699
1700         if (skb != NULL)
1701                 dev_kfree_skb(skb);
1702
1703         spin_lock_irqsave(&priv->lock, flags);
1704         priv->stats.tx_dropped++;
1705         priv->stats.tx_errors++;
1706         spin_unlock_irqrestore(&priv->lock, flags);
1707
1708         if (netif_queue_stopped(dev))
1709                 netif_wake_queue(dev);
1710
1711         return 0;  /* returning non-zero causes serious problems */
1712 }
1713
1714 static void ether1394_get_drvinfo(struct net_device *dev,
1715                                   struct ethtool_drvinfo *info)
1716 {
1717         strcpy(info->driver, driver_name);
1718         strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1719 }
1720
1721 static struct ethtool_ops ethtool_ops = {
1722         .get_drvinfo = ether1394_get_drvinfo
1723 };
1724
1725 static int __init ether1394_init_module (void)
1726 {
1727         packet_task_cache = kmem_cache_create("packet_task",
1728                                               sizeof(struct packet_task),
1729                                               0, 0, NULL, NULL);
1730
1731         hpsb_register_highlevel(&eth1394_highlevel);
1732         return hpsb_register_protocol(&eth1394_proto_driver);
1733 }
1734
1735 static void __exit ether1394_exit_module (void)
1736 {
1737         hpsb_unregister_protocol(&eth1394_proto_driver);
1738         hpsb_unregister_highlevel(&eth1394_highlevel);
1739         kmem_cache_destroy(packet_task_cache);
1740 }
1741
1742 module_init(ether1394_init_module);
1743 module_exit(ether1394_exit_module);