2 * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
4 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5 * 2000 Bonin Franck <boninf@free.fr>
6 * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
8 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 * This driver intends to support RFC 2734, which describes a method for
27 * transporting IPv4 datagrams over IEEE-1394 serial busses.
31 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33 * Non-RFC 2734 related:
34 * - Handle fragmented skb's coming from the networking layer.
35 * - Move generic GASP reception to core 1394 code
36 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37 * - Stability improvements
38 * - Performance enhancements
39 * - Consider garbage collecting old partial datagrams after X amount of time
42 #include <linux/module.h>
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
51 #include <linux/netdevice.h>
52 #include <linux/inetdevice.h>
53 #include <linux/etherdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
67 #include "config_roms.h"
70 #include "highlevel.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80 printk(level "%s: " fmt, driver_name, ## args)
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83 printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
85 struct fragment_info {
86 struct list_head list;
91 struct partial_datagram {
92 struct list_head list;
98 struct list_head frag_info;
102 struct list_head list; /* partial datagram list per node */
103 unsigned int sz; /* partial datagram list size per node */
104 spinlock_t lock; /* partial datagram lock */
107 struct eth1394_host_info {
108 struct hpsb_host *host;
109 struct net_device *dev;
112 struct eth1394_node_ref {
113 struct unit_directory *ud;
114 struct list_head list;
117 struct eth1394_node_info {
118 u16 maxpayload; /* max payload */
119 u8 sspd; /* max speed */
120 u64 fifo; /* FIFO address */
121 struct pdg_list pdg; /* partial RX datagram lists */
122 int dgl; /* outgoing datagram label */
125 static const char driver_name[] = "eth1394";
127 static struct kmem_cache *packet_task_cache;
129 static struct hpsb_highlevel eth1394_highlevel;
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133 sizeof(struct eth1394_uf_hdr),
134 sizeof(struct eth1394_ff_hdr),
135 sizeof(struct eth1394_sf_hdr),
136 sizeof(struct eth1394_sf_hdr)
139 /* For now, this needs to be 1500, so that XP works with us */
140 #define ETH1394_DATA_LEN ETH_DATA_LEN
142 static const u16 eth1394_speedto_maxpayload[] = {
143 /* S100, S200, S400, S800, S1600, S3200 */
144 512, 1024, 2048, 4096, 4096, 4096
147 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
148 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
149 MODULE_LICENSE("GPL");
152 * The max_partial_datagrams parameter is the maximum number of fragmented
153 * datagrams per node that eth1394 will keep in memory. Providing an upper
154 * bound allows us to limit the amount of memory that partial datagrams
155 * consume in the event that some partial datagrams are never completed.
157 static int max_partial_datagrams = 25;
158 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
159 MODULE_PARM_DESC(max_partial_datagrams,
160 "Maximum number of partially received fragmented datagrams "
164 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
165 unsigned short type, void *daddr, void *saddr,
167 static int ether1394_rebuild_header(struct sk_buff *skb);
168 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
169 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
170 static void ether1394_header_cache_update(struct hh_cache *hh,
171 struct net_device *dev,
172 unsigned char *haddr);
173 static int ether1394_mac_addr(struct net_device *dev, void *p);
175 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
176 static void ether1394_iso(struct hpsb_iso *iso);
178 static struct ethtool_ops ethtool_ops;
180 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
181 quadlet_t *data, u64 addr, size_t len, u16 flags);
182 static void ether1394_add_host(struct hpsb_host *host);
183 static void ether1394_remove_host(struct hpsb_host *host);
184 static void ether1394_host_reset(struct hpsb_host *host);
186 /* Function for incoming 1394 packets */
187 static struct hpsb_address_ops addr_ops = {
188 .write = ether1394_write,
191 /* Ieee1394 highlevel driver functions */
192 static struct hpsb_highlevel eth1394_highlevel = {
194 .add_host = ether1394_add_host,
195 .remove_host = ether1394_remove_host,
196 .host_reset = ether1394_host_reset,
199 static int ether1394_recv_init(struct net_device *dev)
201 struct eth1394_priv *priv = netdev_priv(dev);
202 unsigned int iso_buf_size;
204 /* FIXME: rawiso limits us to PAGE_SIZE */
205 iso_buf_size = min((unsigned int)PAGE_SIZE,
206 2 * (1U << (priv->host->csr.max_rec + 1)));
208 priv->iso = hpsb_iso_recv_init(priv->host,
209 ETHER1394_GASP_BUFFERS * iso_buf_size,
210 ETHER1394_GASP_BUFFERS,
211 priv->broadcast_channel,
212 HPSB_ISO_DMA_PACKET_PER_BUFFER,
214 if (priv->iso == NULL) {
215 ETH1394_PRINT(KERN_ERR, dev->name,
216 "Could not allocate isochronous receive "
217 "context for the broadcast channel\n");
218 priv->bc_state = ETHER1394_BC_ERROR;
222 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
223 priv->bc_state = ETHER1394_BC_STOPPED;
225 priv->bc_state = ETHER1394_BC_RUNNING;
229 /* This is called after an "ifup" */
230 static int ether1394_open(struct net_device *dev)
232 struct eth1394_priv *priv = netdev_priv(dev);
235 if (priv->bc_state == ETHER1394_BC_ERROR) {
236 ret = ether1394_recv_init(dev);
240 netif_start_queue(dev);
244 /* This is called after an "ifdown" */
245 static int ether1394_stop(struct net_device *dev)
247 netif_stop_queue(dev);
251 /* Return statistics to the caller */
252 static struct net_device_stats *ether1394_stats(struct net_device *dev)
254 return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
257 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
258 * so that's what we do. Should we increment the stat counters too? */
259 static void ether1394_tx_timeout(struct net_device *dev)
261 struct hpsb_host *host =
262 ((struct eth1394_priv *)netdev_priv(dev))->host;
264 ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host %s\n",
266 highlevel_host_reset(host);
267 netif_wake_queue(dev);
270 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
273 ((struct eth1394_priv *)netdev_priv(dev))->host->csr.max_rec;
276 new_mtu > ETH1394_DATA_LEN ||
277 new_mtu > (1 << (max_rec + 1)) - sizeof(union eth1394_hdr) -
278 ETHER1394_GASP_OVERHEAD)
285 static void purge_partial_datagram(struct list_head *old)
287 struct partial_datagram *pd;
288 struct list_head *lh, *n;
289 struct fragment_info *fi;
291 pd = list_entry(old, struct partial_datagram, list);
293 list_for_each_safe(lh, n, &pd->frag_info) {
294 fi = list_entry(lh, struct fragment_info, list);
303 /******************************************
304 * 1394 bus activity functions
305 ******************************************/
307 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
308 struct unit_directory *ud)
310 struct eth1394_node_ref *node;
312 list_for_each_entry(node, inl, list)
319 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
322 struct eth1394_node_ref *node;
324 list_for_each_entry(node, inl, list)
325 if (node->ud->ne->guid == guid)
331 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
334 struct eth1394_node_ref *node;
336 list_for_each_entry(node, inl, list)
337 if (node->ud->ne->nodeid == nodeid)
343 static int eth1394_probe(struct device *dev)
345 struct unit_directory *ud;
346 struct eth1394_host_info *hi;
347 struct eth1394_priv *priv;
348 struct eth1394_node_ref *new_node;
349 struct eth1394_node_info *node_info;
351 ud = container_of(dev, struct unit_directory, device);
353 hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host);
357 new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
361 node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
367 spin_lock_init(&node_info->pdg.lock);
368 INIT_LIST_HEAD(&node_info->pdg.list);
369 node_info->pdg.sz = 0;
370 node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
372 ud->device.driver_data = node_info;
375 priv = netdev_priv(hi->dev);
376 list_add_tail(&new_node->list, &priv->ip_node_list);
381 static int eth1394_remove(struct device *dev)
383 struct unit_directory *ud;
384 struct eth1394_host_info *hi;
385 struct eth1394_priv *priv;
386 struct eth1394_node_ref *old_node;
387 struct eth1394_node_info *node_info;
388 struct list_head *lh, *n;
391 ud = container_of(dev, struct unit_directory, device);
392 hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host);
396 priv = netdev_priv(hi->dev);
398 old_node = eth1394_find_node(&priv->ip_node_list, ud);
402 list_del(&old_node->list);
405 node_info = (struct eth1394_node_info*)ud->device.driver_data;
407 spin_lock_irqsave(&node_info->pdg.lock, flags);
408 /* The partial datagram list should be empty, but we'll just
409 * make sure anyway... */
410 list_for_each_safe(lh, n, &node_info->pdg.list)
411 purge_partial_datagram(lh);
412 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
415 ud->device.driver_data = NULL;
419 static int eth1394_update(struct unit_directory *ud)
421 struct eth1394_host_info *hi;
422 struct eth1394_priv *priv;
423 struct eth1394_node_ref *node;
424 struct eth1394_node_info *node_info;
426 hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host);
430 priv = netdev_priv(hi->dev);
432 node = eth1394_find_node(&priv->ip_node_list, ud);
436 node = kmalloc(sizeof(*node), GFP_KERNEL);
440 node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
446 spin_lock_init(&node_info->pdg.lock);
447 INIT_LIST_HEAD(&node_info->pdg.list);
448 node_info->pdg.sz = 0;
450 ud->device.driver_data = node_info;
453 priv = netdev_priv(hi->dev);
454 list_add_tail(&node->list, &priv->ip_node_list);
458 static struct ieee1394_device_id eth1394_id_table[] = {
460 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
461 IEEE1394_MATCH_VERSION),
462 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
463 .version = ETHER1394_GASP_VERSION,
468 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
470 static struct hpsb_protocol_driver eth1394_proto_driver = {
472 .id_table = eth1394_id_table,
473 .update = eth1394_update,
475 .probe = eth1394_probe,
476 .remove = eth1394_remove,
480 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
484 struct eth1394_priv *priv = netdev_priv(dev);
485 struct hpsb_host *host = priv->host;
486 u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
487 int max_speed = IEEE1394_SPEED_MAX;
489 spin_lock_irqsave(&priv->lock, flags);
491 memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
492 priv->bc_maxpayload = 512;
494 /* Determine speed limit */
495 for (i = 0; i < host->node_count; i++)
496 if (max_speed > host->speed[i])
497 max_speed = host->speed[i];
498 priv->bc_sspd = max_speed;
500 /* We'll use our maximum payload as the default MTU */
502 int max_payload = 1 << (host->csr.max_rec + 1);
504 dev->mtu = min(ETH1394_DATA_LEN,
505 (int)(max_payload - sizeof(union eth1394_hdr) -
506 ETHER1394_GASP_OVERHEAD));
508 /* Set our hardware address while we're at it */
509 memcpy(dev->dev_addr, &guid, sizeof(u64));
510 memset(dev->broadcast, 0xff, sizeof(u64));
513 spin_unlock_irqrestore(&priv->lock, flags);
516 /* This function is called right before register_netdev */
517 static void ether1394_init_dev(struct net_device *dev)
520 dev->open = ether1394_open;
521 dev->stop = ether1394_stop;
522 dev->hard_start_xmit = ether1394_tx;
523 dev->get_stats = ether1394_stats;
524 dev->tx_timeout = ether1394_tx_timeout;
525 dev->change_mtu = ether1394_change_mtu;
527 dev->hard_header = ether1394_header;
528 dev->rebuild_header = ether1394_rebuild_header;
529 dev->hard_header_cache = ether1394_header_cache;
530 dev->header_cache_update= ether1394_header_cache_update;
531 dev->hard_header_parse = ether1394_header_parse;
532 dev->set_mac_address = ether1394_mac_addr;
533 SET_ETHTOOL_OPS(dev, ðtool_ops);
536 dev->watchdog_timeo = ETHER1394_TIMEOUT;
537 dev->flags = IFF_BROADCAST | IFF_MULTICAST;
538 dev->features = NETIF_F_HIGHDMA;
539 dev->addr_len = ETH1394_ALEN;
540 dev->hard_header_len = ETH1394_HLEN;
541 dev->type = ARPHRD_IEEE1394;
543 ether1394_reset_priv(dev, 1);
547 * This function is called every time a card is found. It is generally called
548 * when the module is installed. This is where we add all of our ethernet
549 * devices. One for each host.
551 static void ether1394_add_host(struct hpsb_host *host)
553 struct eth1394_host_info *hi = NULL;
554 struct net_device *dev = NULL;
555 struct eth1394_priv *priv;
558 if (hpsb_config_rom_ip1394_add(host) != 0) {
559 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
563 fifo_addr = hpsb_allocate_and_register_addrspace(
564 ð1394_highlevel, host, &addr_ops,
565 ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
566 CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
567 if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
568 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
569 hpsb_config_rom_ip1394_remove(host);
573 /* We should really have our own alloc_hpsbdev() function in
574 * net_init.c instead of calling the one for ethernet then hijacking
575 * it for ourselves. That way we'd be a real networking device. */
576 dev = alloc_etherdev(sizeof (struct eth1394_priv));
579 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
580 "etherdevice for IEEE 1394 device %s-%d\n",
581 host->driver->name, host->id);
585 SET_MODULE_OWNER(dev);
587 /* FIXME - Is this the correct parent device anyway? */
588 SET_NETDEV_DEV(dev, &host->device);
591 priv = netdev_priv(dev);
593 INIT_LIST_HEAD(&priv->ip_node_list);
595 spin_lock_init(&priv->lock);
597 priv->local_fifo = fifo_addr;
599 hi = hpsb_create_hostinfo(ð1394_highlevel, host, sizeof(*hi));
602 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
603 "hostinfo for IEEE 1394 device %s-%d\n",
604 host->driver->name, host->id);
608 ether1394_init_dev(dev);
610 if (register_netdev (dev)) {
611 ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
615 ETH1394_PRINT (KERN_INFO, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
621 /* Ignore validity in hopes that it will be set in the future. It'll
622 * be checked when the eth device is opened. */
623 priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
625 ether1394_recv_init(dev);
631 hpsb_destroy_hostinfo(ð1394_highlevel, host);
632 hpsb_unregister_addrspace(ð1394_highlevel, host, fifo_addr);
633 hpsb_config_rom_ip1394_remove(host);
636 /* Remove a card from our list */
637 static void ether1394_remove_host(struct hpsb_host *host)
639 struct eth1394_host_info *hi;
640 struct eth1394_priv *priv;
642 hi = hpsb_get_hostinfo(ð1394_highlevel, host);
645 priv = netdev_priv(hi->dev);
646 hpsb_unregister_addrspace(ð1394_highlevel, host, priv->local_fifo);
647 hpsb_config_rom_ip1394_remove(host);
649 hpsb_iso_shutdown(priv->iso);
650 unregister_netdev(hi->dev);
651 free_netdev(hi->dev);
654 /* A bus reset happened */
655 static void ether1394_host_reset(struct hpsb_host *host)
657 struct eth1394_host_info *hi;
658 struct eth1394_priv *priv;
659 struct net_device *dev;
660 struct list_head *lh, *n;
661 struct eth1394_node_ref *node;
662 struct eth1394_node_info *node_info;
665 hi = hpsb_get_hostinfo(ð1394_highlevel, host);
667 /* This can happen for hosts that we don't use */
672 priv = netdev_priv(dev);
674 /* Reset our private host data, but not our MTU */
675 netif_stop_queue(dev);
676 ether1394_reset_priv(dev, 0);
678 list_for_each_entry(node, &priv->ip_node_list, list) {
679 node_info = node->ud->device.driver_data;
681 spin_lock_irqsave(&node_info->pdg.lock, flags);
683 list_for_each_safe(lh, n, &node_info->pdg.list)
684 purge_partial_datagram(lh);
686 INIT_LIST_HEAD(&(node_info->pdg.list));
687 node_info->pdg.sz = 0;
689 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
692 netif_wake_queue(dev);
695 /******************************************
696 * HW Header net device functions
697 ******************************************/
698 /* These functions have been adapted from net/ethernet/eth.c */
700 /* Create a fake MAC header for an arbitrary protocol layer.
701 * saddr=NULL means use device source address
702 * daddr=NULL means leave destination address (eg unresolved arp). */
703 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
704 unsigned short type, void *daddr, void *saddr,
707 struct eth1394hdr *eth =
708 (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
710 eth->h_proto = htons(type);
712 if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
713 memset(eth->h_dest, 0, dev->addr_len);
714 return dev->hard_header_len;
718 memcpy(eth->h_dest, daddr, dev->addr_len);
719 return dev->hard_header_len;
722 return -dev->hard_header_len;
725 /* Rebuild the faked MAC header. This is called after an ARP
726 * (or in future other address resolution) has completed on this
727 * sk_buff. We now let ARP fill in the other fields.
729 * This routine CANNOT use cached dst->neigh!
730 * Really, it is used only when dst->neigh is wrong.
732 static int ether1394_rebuild_header(struct sk_buff *skb)
734 struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
735 struct net_device *dev = skb->dev;
737 switch (eth->h_proto) {
740 case __constant_htons(ETH_P_IP):
741 return arp_find((unsigned char *)ð->h_dest, skb);
744 ETH1394_PRINT(KERN_DEBUG, dev->name,
745 "unable to resolve type %04x addresses.\n",
746 ntohs(eth->h_proto));
753 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
755 struct net_device *dev = skb->dev;
757 memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
761 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
763 unsigned short type = hh->hh_type;
764 struct net_device *dev = neigh->dev;
765 struct eth1394hdr *eth =
766 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
768 if (type == htons(ETH_P_802_3))
772 memcpy(eth->h_dest, neigh->ha, dev->addr_len);
774 hh->hh_len = ETH1394_HLEN;
778 /* Called by Address Resolution module to notify changes in address. */
779 static void ether1394_header_cache_update(struct hh_cache *hh,
780 struct net_device *dev,
781 unsigned char * haddr)
783 memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
786 static int ether1394_mac_addr(struct net_device *dev, void *p)
788 if (netif_running(dev))
791 /* Not going to allow setting the MAC address, we really need to use
792 * the real one supplied by the hardware */
796 /******************************************
797 * Datagram reception code
798 ******************************************/
800 /* Copied from net/ethernet/eth.c */
801 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
803 struct eth1394hdr *eth;
806 skb_reset_mac_header(skb);
807 skb_pull(skb, ETH1394_HLEN);
808 eth = eth1394_hdr(skb);
810 if (*eth->h_dest & 1) {
811 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
812 skb->pkt_type = PACKET_BROADCAST;
815 skb->pkt_type = PACKET_MULTICAST;
818 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
819 skb->pkt_type = PACKET_OTHERHOST;
822 if (ntohs(eth->h_proto) >= 1536)
827 if (*(unsigned short *)rawp == 0xFFFF)
828 return htons(ETH_P_802_3);
830 return htons(ETH_P_802_2);
833 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
834 * We also perform ARP translation here, if need be. */
835 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
836 nodeid_t srcid, nodeid_t destid,
839 struct eth1394_priv *priv = netdev_priv(dev);
841 unsigned short ret = 0;
843 /* Setup our hw addresses. We use these to build the ethernet header. */
844 if (destid == (LOCAL_BUS | ALL_NODES))
845 dest_hw = ~0ULL; /* broadcast */
847 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
848 priv->host->csr.guid_lo);
850 /* If this is an ARP packet, convert it. First, we want to make
851 * use of some of the fields, since they tell us a little bit
852 * about the sending machine. */
853 if (ether_type == htons(ETH_P_ARP)) {
854 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
855 struct arphdr *arp = (struct arphdr *)skb->data;
856 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
857 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
858 ntohl(arp1394->fifo_lo);
859 u8 max_rec = min(priv->host->csr.max_rec,
860 (u8)(arp1394->max_rec));
861 int sspd = arp1394->sspd;
863 struct eth1394_node_ref *node;
864 struct eth1394_node_info *node_info;
867 /* Sanity check. MacOSX seems to be sending us 131 in this
868 * field (atleast on my Panther G5). Not sure why. */
869 if (sspd > 5 || sspd < 0)
872 maxpayload = min(eth1394_speedto_maxpayload[sspd],
873 (u16)(1 << (max_rec + 1)));
875 guid = get_unaligned(&arp1394->s_uniq_id);
876 node = eth1394_find_node_guid(&priv->ip_node_list,
882 (struct eth1394_node_info *)node->ud->device.driver_data;
884 /* Update our speed/payload/fifo_offset table */
885 node_info->maxpayload = maxpayload;
886 node_info->sspd = sspd;
887 node_info->fifo = fifo_addr;
889 /* Now that we're done with the 1394 specific stuff, we'll
890 * need to alter some of the data. Believe it or not, all
891 * that needs to be done is sender_IP_address needs to be
892 * moved, the destination hardware address get stuffed
893 * in and the hardware address length set to 8.
895 * IMPORTANT: The code below overwrites 1394 specific data
896 * needed above so keep the munging of the data for the
897 * higher level IP stack last. */
900 arp_ptr += arp->ar_hln; /* skip over sender unique id */
901 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
902 arp_ptr += arp->ar_pln; /* skip over sender IP addr */
904 if (arp->ar_op == htons(ARPOP_REQUEST))
905 memset(arp_ptr, 0, sizeof(u64));
907 memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
910 /* Now add the ethernet header. */
911 if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
913 ret = ether1394_type_trans(skb, dev);
918 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
920 struct fragment_info *fi;
922 list_for_each_entry(fi, frag_list, list) {
923 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
924 ((offset + len - 1) < fi->offset)))
930 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
932 struct partial_datagram *pd;
934 list_for_each_entry(pd, pdgl, list)
941 /* Assumes that new fragment does not overlap any existing fragments */
942 static int new_fragment(struct list_head *frag_info, int offset, int len)
944 struct list_head *lh;
945 struct fragment_info *fi, *fi2, *new;
947 list_for_each(lh, frag_info) {
948 fi = list_entry(lh, struct fragment_info, list);
949 if (fi->offset + fi->len == offset) {
950 /* The new fragment can be tacked on to the end */
952 /* Did the new fragment plug a hole? */
953 fi2 = list_entry(lh->next, struct fragment_info, list);
954 if (fi->offset + fi->len == fi2->offset) {
955 /* glue fragments together */
961 } else if (offset + len == fi->offset) {
962 /* The new fragment can be tacked on to the beginning */
965 /* Did the new fragment plug a hole? */
966 fi2 = list_entry(lh->prev, struct fragment_info, list);
967 if (fi2->offset + fi2->len == fi->offset) {
968 /* glue fragments together */
974 } else if (offset > fi->offset + fi->len) {
976 } else if (offset + len < fi->offset) {
982 new = kmalloc(sizeof(*new), GFP_ATOMIC);
986 new->offset = offset;
989 list_add(&new->list, lh);
993 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
994 int dgl, int dg_size, char *frag_buf,
995 int frag_off, int frag_len)
997 struct partial_datagram *new;
999 new = kmalloc(sizeof(*new), GFP_ATOMIC);
1003 INIT_LIST_HEAD(&new->frag_info);
1005 if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1011 new->dg_size = dg_size;
1013 new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1015 struct fragment_info *fi = list_entry(new->frag_info.next,
1016 struct fragment_info,
1023 skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1024 new->pbuf = skb_put(new->skb, dg_size);
1025 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1027 list_add(&new->list, pdgl);
1031 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1032 char *frag_buf, int frag_off, int frag_len)
1034 struct partial_datagram *pd =
1035 list_entry(lh, struct partial_datagram, list);
1037 if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1040 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1042 /* Move list entry to beginnig of list so that oldest partial
1043 * datagrams percolate to the end of the list */
1044 list_move(lh, pdgl);
1048 static int is_datagram_complete(struct list_head *lh, int dg_size)
1050 struct partial_datagram *pd;
1051 struct fragment_info *fi;
1053 pd = list_entry(lh, struct partial_datagram, list);
1054 fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1056 return (fi->len == dg_size);
1059 /* Packet reception. We convert the IP1394 encapsulation header to an
1060 * ethernet header, and fill it with some of our other fields. This is
1061 * an incoming packet from the 1394 bus. */
1062 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1065 struct sk_buff *skb;
1066 unsigned long flags;
1067 struct eth1394_priv *priv = netdev_priv(dev);
1068 union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1069 u16 ether_type = 0; /* initialized to clear warning */
1071 struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1072 struct eth1394_node_info *node_info;
1075 struct eth1394_node_ref *node;
1076 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1078 HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1079 "lookup failure: " NODE_BUS_FMT,
1080 NODE_BUS_ARGS(priv->host, srcid));
1081 priv->stats.rx_dropped++;
1086 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1089 node_info = (struct eth1394_node_info *)ud->device.driver_data;
1091 /* First, did we receive a fragmented or unfragmented datagram? */
1092 hdr->words.word1 = ntohs(hdr->words.word1);
1094 hdr_len = hdr_type_len[hdr->common.lf];
1096 if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1097 /* An unfragmented datagram has been received by the ieee1394
1098 * bus. Build an skbuff around it so we can pass it to the
1099 * high level network layer. */
1101 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1103 HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
1104 priv->stats.rx_dropped++;
1107 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1108 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1110 ether_type = hdr->uf.ether_type;
1112 /* A datagram fragment has been received, now the fun begins. */
1114 struct list_head *pdgl, *lh;
1115 struct partial_datagram *pd;
1117 int fg_len = len - hdr_len;
1121 struct pdg_list *pdg = &(node_info->pdg);
1123 hdr->words.word3 = ntohs(hdr->words.word3);
1124 /* The 4th header word is reserved so no need to do ntohs() */
1126 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1127 ether_type = hdr->ff.ether_type;
1129 dg_size = hdr->ff.dg_size + 1;
1132 hdr->words.word2 = ntohs(hdr->words.word2);
1134 dg_size = hdr->sf.dg_size + 1;
1135 fg_off = hdr->sf.fg_off;
1137 spin_lock_irqsave(&pdg->lock, flags);
1139 pdgl = &(pdg->list);
1140 lh = find_partial_datagram(pdgl, dgl);
1143 while (pdg->sz >= max_partial_datagrams) {
1144 /* remove the oldest */
1145 purge_partial_datagram(pdgl->prev);
1149 retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1150 buf + hdr_len, fg_off,
1153 spin_unlock_irqrestore(&pdg->lock, flags);
1157 lh = find_partial_datagram(pdgl, dgl);
1159 struct partial_datagram *pd;
1161 pd = list_entry(lh, struct partial_datagram, list);
1163 if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1164 /* Overlapping fragments, obliterate old
1165 * datagram and start new one. */
1166 purge_partial_datagram(lh);
1167 retval = new_partial_datagram(dev, pdgl, dgl,
1173 spin_unlock_irqrestore(&pdg->lock, flags);
1177 retval = update_partial_datagram(pdgl, lh,
1181 /* Couldn't save off fragment anyway
1182 * so might as well obliterate the
1184 purge_partial_datagram(lh);
1186 spin_unlock_irqrestore(&pdg->lock, flags);
1189 } /* fragment overlap */
1190 } /* new datagram or add to existing one */
1192 pd = list_entry(lh, struct partial_datagram, list);
1194 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1195 pd->ether_type = ether_type;
1197 if (is_datagram_complete(lh, dg_size)) {
1198 ether_type = pd->ether_type;
1200 skb = skb_get(pd->skb);
1201 purge_partial_datagram(lh);
1202 spin_unlock_irqrestore(&pdg->lock, flags);
1204 /* Datagram is not complete, we're done for the
1206 spin_unlock_irqrestore(&pdg->lock, flags);
1209 } /* unframgented datagram or fragmented one */
1211 /* Write metadata, and then pass to the receive level */
1213 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
1215 /* Parse the encapsulation header. This actually does the job of
1216 * converting to an ethernet frame header, aswell as arp
1217 * conversion if needed. ARP conversion is easier in this
1218 * direction, since we are using ethernet as our backend. */
1219 skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1222 spin_lock_irqsave(&priv->lock, flags);
1224 if (!skb->protocol) {
1225 priv->stats.rx_errors++;
1226 priv->stats.rx_dropped++;
1227 dev_kfree_skb_any(skb);
1231 if (netif_rx(skb) == NET_RX_DROP) {
1232 priv->stats.rx_errors++;
1233 priv->stats.rx_dropped++;
1238 priv->stats.rx_packets++;
1239 priv->stats.rx_bytes += skb->len;
1242 if (netif_queue_stopped(dev))
1243 netif_wake_queue(dev);
1244 spin_unlock_irqrestore(&priv->lock, flags);
1246 dev->last_rx = jiffies;
1251 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1252 quadlet_t *data, u64 addr, size_t len, u16 flags)
1254 struct eth1394_host_info *hi;
1256 hi = hpsb_get_hostinfo(ð1394_highlevel, host);
1258 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1259 host->driver->name);
1260 return RCODE_ADDRESS_ERROR;
1263 if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1264 return RCODE_ADDRESS_ERROR;
1266 return RCODE_COMPLETE;
1269 static void ether1394_iso(struct hpsb_iso *iso)
1273 struct eth1394_host_info *hi;
1274 struct net_device *dev;
1275 struct eth1394_priv *priv;
1282 hi = hpsb_get_hostinfo(ð1394_highlevel, iso->host);
1284 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1285 iso->host->driver->name);
1291 nready = hpsb_iso_n_ready(iso);
1292 for (i = 0; i < nready; i++) {
1293 struct hpsb_iso_packet_info *info =
1294 &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1295 data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1297 /* skip over GASP header */
1298 buf = (char *)data + 8;
1299 len = info->len - 8;
1301 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1302 (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1303 source_id = be32_to_cpu(data[0]) >> 16;
1305 priv = netdev_priv(dev);
1307 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1308 || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1309 /* This packet is not for us */
1312 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1316 hpsb_iso_recv_release_packets(iso, i);
1318 dev->last_rx = jiffies;
1321 /******************************************
1322 * Datagram transmission code
1323 ******************************************/
1325 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1326 * arphdr) is the same format as the ip1394 header, so they overlap. The rest
1327 * needs to be munged a bit. The remainder of the arphdr is formatted based
1328 * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
1331 * Now that the EUI is used for the hardware address all we need to do to make
1332 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1333 * speed, and unicast FIFO address information between the sender_unique_id
1334 * and the IP addresses.
1336 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1337 struct net_device *dev)
1339 struct eth1394_priv *priv = netdev_priv(dev);
1340 struct arphdr *arp = (struct arphdr *)skb->data;
1341 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1342 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1344 arp1394->hw_addr_len = 16;
1345 arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
1346 arp1394->max_rec = priv->host->csr.max_rec;
1347 arp1394->sspd = priv->host->csr.lnk_spd;
1348 arp1394->fifo_hi = htons(priv->local_fifo >> 32);
1349 arp1394->fifo_lo = htonl(priv->local_fifo & ~0x0);
1352 /* We need to encapsulate the standard header with our own. We use the
1353 * ethernet header's proto for our own. */
1354 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1356 union eth1394_hdr *hdr,
1357 u16 dg_size, u16 dgl)
1359 unsigned int adj_max_payload =
1360 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1362 /* Does it all fit in one packet? */
1363 if (dg_size <= adj_max_payload) {
1364 hdr->uf.lf = ETH1394_HDR_LF_UF;
1365 hdr->uf.ether_type = proto;
1367 hdr->ff.lf = ETH1394_HDR_LF_FF;
1368 hdr->ff.ether_type = proto;
1369 hdr->ff.dg_size = dg_size - 1;
1371 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1373 return (dg_size + adj_max_payload - 1) / adj_max_payload;
1376 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1377 unsigned int max_payload,
1378 union eth1394_hdr *hdr)
1380 union eth1394_hdr *bufhdr;
1381 int ftype = hdr->common.lf;
1382 int hdrsz = hdr_type_len[ftype];
1383 unsigned int adj_max_payload = max_payload - hdrsz;
1386 case ETH1394_HDR_LF_UF:
1387 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1388 bufhdr->words.word1 = htons(hdr->words.word1);
1389 bufhdr->words.word2 = hdr->words.word2;
1392 case ETH1394_HDR_LF_FF:
1393 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1394 bufhdr->words.word1 = htons(hdr->words.word1);
1395 bufhdr->words.word2 = hdr->words.word2;
1396 bufhdr->words.word3 = htons(hdr->words.word3);
1397 bufhdr->words.word4 = 0;
1399 /* Set frag type here for future interior fragments */
1400 hdr->common.lf = ETH1394_HDR_LF_IF;
1405 hdr->sf.fg_off += adj_max_payload;
1406 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1407 if (max_payload >= skb->len)
1408 hdr->common.lf = ETH1394_HDR_LF_LF;
1409 bufhdr->words.word1 = htons(hdr->words.word1);
1410 bufhdr->words.word2 = htons(hdr->words.word2);
1411 bufhdr->words.word3 = htons(hdr->words.word3);
1412 bufhdr->words.word4 = 0;
1414 return min(max_payload, skb->len);
1417 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1419 struct hpsb_packet *p;
1421 p = hpsb_alloc_packet(0);
1424 p->generation = get_hpsb_generation(host);
1425 p->type = hpsb_async;
1430 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1431 struct hpsb_host *host, nodeid_t node,
1432 u64 addr, void *data, int tx_len)
1437 p->tcode = TCODE_WRITEB;
1438 p->header[1] = host->node_id << 16 | addr >> 32;
1439 p->header[2] = addr & 0xffffffff;
1441 p->header_size = 16;
1442 p->expect_response = 1;
1444 if (hpsb_get_tlabel(p)) {
1445 ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
1446 "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
1450 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1452 p->header[3] = tx_len << 16;
1453 p->data_size = (tx_len + 3) & ~3;
1459 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1460 struct eth1394_priv *priv,
1461 struct sk_buff *skb, int length)
1464 p->tcode = TCODE_STREAM_DATA;
1466 p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1467 TCODE_STREAM_DATA << 4;
1468 p->data_size = length;
1469 p->data = (quadlet_t *)skb->data - 2;
1470 p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1471 ETHER1394_GASP_SPECIFIER_ID_HI);
1472 p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1473 ETHER1394_GASP_VERSION);
1475 /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1476 * prevents hpsb_send_packet() from setting the speed to an arbitrary
1477 * value based on packet->node_id if packet->node_id is not set. */
1478 p->node_id = ALL_NODES;
1479 p->speed_code = priv->bc_sspd;
1482 static void ether1394_free_packet(struct hpsb_packet *packet)
1484 if (packet->tcode != TCODE_STREAM_DATA)
1485 hpsb_free_tlabel(packet);
1486 hpsb_free_packet(packet);
1489 static void ether1394_complete_cb(void *__ptask);
1491 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1493 struct eth1394_priv *priv = ptask->priv;
1494 struct hpsb_packet *packet = NULL;
1496 packet = ether1394_alloc_common_packet(priv->host);
1500 if (ptask->tx_type == ETH1394_GASP) {
1501 int length = tx_len + 2 * sizeof(quadlet_t);
1503 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1504 } else if (ether1394_prep_write_packet(packet, priv->host,
1506 ptask->addr, ptask->skb->data,
1508 hpsb_free_packet(packet);
1512 ptask->packet = packet;
1513 hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1516 if (hpsb_send_packet(packet) < 0) {
1517 ether1394_free_packet(packet);
1524 /* Task function to be run when a datagram transmission is completed */
1525 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1527 struct sk_buff *skb = ptask->skb;
1528 struct eth1394_priv *priv = netdev_priv(skb->dev);
1529 unsigned long flags;
1532 spin_lock_irqsave(&priv->lock, flags);
1534 priv->stats.tx_dropped++;
1535 priv->stats.tx_errors++;
1537 priv->stats.tx_bytes += skb->len;
1538 priv->stats.tx_packets++;
1540 spin_unlock_irqrestore(&priv->lock, flags);
1542 dev_kfree_skb_any(skb);
1543 kmem_cache_free(packet_task_cache, ptask);
1546 /* Callback for when a packet has been sent and the status of that packet is
1548 static void ether1394_complete_cb(void *__ptask)
1550 struct packet_task *ptask = (struct packet_task *)__ptask;
1551 struct hpsb_packet *packet = ptask->packet;
1554 if (packet->tcode != TCODE_STREAM_DATA)
1555 fail = hpsb_packet_success(packet);
1557 ether1394_free_packet(packet);
1559 ptask->outstanding_pkts--;
1560 if (ptask->outstanding_pkts > 0 && !fail) {
1563 /* Add the encapsulation header to the fragment */
1564 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1566 if (ether1394_send_packet(ptask, tx_len))
1567 ether1394_dg_complete(ptask, 1);
1569 ether1394_dg_complete(ptask, fail);
1573 /* Transmit a packet (called by kernel) */
1574 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1576 gfp_t kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1577 struct eth1394hdr *eth;
1578 struct eth1394_priv *priv = netdev_priv(dev);
1580 unsigned long flags;
1582 eth1394_tx_type tx_type;
1584 unsigned int tx_len;
1585 unsigned int max_payload;
1588 struct packet_task *ptask;
1589 struct eth1394_node_ref *node;
1590 struct eth1394_node_info *node_info = NULL;
1592 ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1593 if (ptask == NULL) {
1598 /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1599 * it does not set our validity bit. We need to compensate for
1600 * that somewhere else, but not in eth1394. */
1602 if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1608 skb = skb_share_check(skb, kmflags);
1614 /* Get rid of the fake eth1394 header, but save a pointer */
1615 eth = (struct eth1394hdr *)skb->data;
1616 skb_pull(skb, ETH1394_HLEN);
1618 proto = eth->h_proto;
1621 /* Set the transmission type for the packet. ARP packets and IP
1622 * broadcast packets are sent via GASP. */
1623 if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1624 proto == htons(ETH_P_ARP) ||
1625 (proto == htons(ETH_P_IP) &&
1626 IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1627 tx_type = ETH1394_GASP;
1628 dest_node = LOCAL_BUS | ALL_NODES;
1629 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1630 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1632 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1635 __be64 guid = get_unaligned((u64 *)eth->h_dest);
1637 node = eth1394_find_node_guid(&priv->ip_node_list,
1644 (struct eth1394_node_info *)node->ud->device.driver_data;
1645 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE) {
1650 dest_node = node->ud->ne->nodeid;
1651 max_payload = node_info->maxpayload;
1652 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1654 dgl = node_info->dgl;
1655 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1657 tx_type = ETH1394_WRREQ;
1660 /* If this is an ARP packet, convert it */
1661 if (proto == htons(ETH_P_ARP))
1662 ether1394_arp_to_1394arp(skb, dev);
1664 ptask->hdr.words.word1 = 0;
1665 ptask->hdr.words.word2 = 0;
1666 ptask->hdr.words.word3 = 0;
1667 ptask->hdr.words.word4 = 0;
1670 ptask->tx_type = tx_type;
1672 if (tx_type != ETH1394_GASP) {
1675 spin_lock_irqsave(&priv->lock, flags);
1676 addr = node_info->fifo;
1677 spin_unlock_irqrestore(&priv->lock, flags);
1680 ptask->dest_node = dest_node;
1683 ptask->tx_type = tx_type;
1684 ptask->max_payload = max_payload;
1685 ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1686 proto, &ptask->hdr, dg_size, dgl);
1688 /* Add the encapsulation header to the fragment */
1689 tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1690 dev->trans_start = jiffies;
1691 if (ether1394_send_packet(ptask, tx_len))
1694 netif_wake_queue(dev);
1698 kmem_cache_free(packet_task_cache, ptask);
1703 spin_lock_irqsave(&priv->lock, flags);
1704 priv->stats.tx_dropped++;
1705 priv->stats.tx_errors++;
1706 spin_unlock_irqrestore(&priv->lock, flags);
1708 if (netif_queue_stopped(dev))
1709 netif_wake_queue(dev);
1711 return 0; /* returning non-zero causes serious problems */
1714 static void ether1394_get_drvinfo(struct net_device *dev,
1715 struct ethtool_drvinfo *info)
1717 strcpy(info->driver, driver_name);
1718 strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1721 static struct ethtool_ops ethtool_ops = {
1722 .get_drvinfo = ether1394_get_drvinfo
1725 static int __init ether1394_init_module (void)
1727 packet_task_cache = kmem_cache_create("packet_task",
1728 sizeof(struct packet_task),
1731 hpsb_register_highlevel(ð1394_highlevel);
1732 return hpsb_register_protocol(ð1394_proto_driver);
1735 static void __exit ether1394_exit_module (void)
1737 hpsb_unregister_protocol(ð1394_proto_driver);
1738 hpsb_unregister_highlevel(ð1394_highlevel);
1739 kmem_cache_destroy(packet_task_cache);
1742 module_init(ether1394_init_module);
1743 module_exit(ether1394_exit_module);