1 /*******************************************************************************
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
33 #include <asm/uaccess.h>
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
49 char stat_string[ETH_GSTRING_LEN];
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55 offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57 { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58 { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59 { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60 { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63 { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65 { "multicast", E1000_STAT(net_stats.multicast) },
66 { "collisions", E1000_STAT(net_stats.collisions) },
67 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69 { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71 { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73 { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
74 { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
75 { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
76 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
77 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
78 { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
79 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80 { "tx_deferred_ok", E1000_STAT(stats.dc) },
81 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83 { "rx_long_length_errors", E1000_STAT(stats.roc) },
84 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
85 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
86 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
87 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
88 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
89 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
90 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
91 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
92 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
93 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
94 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }
96 #define E1000_STATS_LEN \
97 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
98 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
99 "Register test (offline)", "Eeprom test (offline)",
100 "Interrupt test (offline)", "Loopback test (offline)",
101 "Link test (on/offline)"
103 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
106 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
108 struct e1000_adapter *adapter = netdev->priv;
109 struct e1000_hw *hw = &adapter->hw;
111 if(hw->media_type == e1000_media_type_copper) {
113 ecmd->supported = (SUPPORTED_10baseT_Half |
114 SUPPORTED_10baseT_Full |
115 SUPPORTED_100baseT_Half |
116 SUPPORTED_100baseT_Full |
117 SUPPORTED_1000baseT_Full|
121 ecmd->advertising = ADVERTISED_TP;
123 if(hw->autoneg == 1) {
124 ecmd->advertising |= ADVERTISED_Autoneg;
126 /* the e1000 autoneg seems to match ethtool nicely */
128 ecmd->advertising |= hw->autoneg_advertised;
131 ecmd->port = PORT_TP;
132 ecmd->phy_address = hw->phy_addr;
134 if(hw->mac_type == e1000_82543)
135 ecmd->transceiver = XCVR_EXTERNAL;
137 ecmd->transceiver = XCVR_INTERNAL;
140 ecmd->supported = (SUPPORTED_1000baseT_Full |
144 ecmd->advertising = (SUPPORTED_1000baseT_Full |
148 ecmd->port = PORT_FIBRE;
150 if(hw->mac_type >= e1000_82545)
151 ecmd->transceiver = XCVR_INTERNAL;
153 ecmd->transceiver = XCVR_EXTERNAL;
156 if(netif_carrier_ok(adapter->netdev)) {
158 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
159 &adapter->link_duplex);
160 ecmd->speed = adapter->link_speed;
162 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
163 * and HALF_DUPLEX != DUPLEX_HALF */
165 if(adapter->link_duplex == FULL_DUPLEX)
166 ecmd->duplex = DUPLEX_FULL;
168 ecmd->duplex = DUPLEX_HALF;
174 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
175 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
180 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
182 struct e1000_adapter *adapter = netdev->priv;
183 struct e1000_hw *hw = &adapter->hw;
185 if(ecmd->autoneg == AUTONEG_ENABLE) {
187 hw->autoneg_advertised = 0x002F;
188 ecmd->advertising = 0x002F;
190 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
195 if(netif_running(adapter->netdev)) {
197 e1000_reset(adapter);
200 e1000_reset(adapter);
206 e1000_get_pauseparam(struct net_device *netdev,
207 struct ethtool_pauseparam *pause)
209 struct e1000_adapter *adapter = netdev->priv;
210 struct e1000_hw *hw = &adapter->hw;
213 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
215 if(hw->fc == e1000_fc_rx_pause)
217 else if(hw->fc == e1000_fc_tx_pause)
219 else if(hw->fc == e1000_fc_full) {
226 e1000_set_pauseparam(struct net_device *netdev,
227 struct ethtool_pauseparam *pause)
229 struct e1000_adapter *adapter = netdev->priv;
230 struct e1000_hw *hw = &adapter->hw;
232 adapter->fc_autoneg = pause->autoneg;
234 if(pause->rx_pause && pause->tx_pause)
235 hw->fc = e1000_fc_full;
236 else if(pause->rx_pause && !pause->tx_pause)
237 hw->fc = e1000_fc_rx_pause;
238 else if(!pause->rx_pause && pause->tx_pause)
239 hw->fc = e1000_fc_tx_pause;
240 else if(!pause->rx_pause && !pause->tx_pause)
241 hw->fc = e1000_fc_none;
243 hw->original_fc = hw->fc;
245 if(adapter->fc_autoneg == AUTONEG_ENABLE) {
246 if(netif_running(adapter->netdev)) {
250 e1000_reset(adapter);
253 return ((hw->media_type == e1000_media_type_fiber) ?
254 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
260 e1000_get_rx_csum(struct net_device *netdev)
262 struct e1000_adapter *adapter = netdev->priv;
263 return adapter->rx_csum;
267 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
269 struct e1000_adapter *adapter = netdev->priv;
270 adapter->rx_csum = data;
272 if(netif_running(netdev)) {
276 e1000_reset(adapter);
281 e1000_get_tx_csum(struct net_device *netdev)
283 return (netdev->features & NETIF_F_HW_CSUM) != 0;
287 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
289 struct e1000_adapter *adapter = netdev->priv;
291 if(adapter->hw.mac_type < e1000_82543) {
298 netdev->features |= NETIF_F_HW_CSUM;
300 netdev->features &= ~NETIF_F_HW_CSUM;
307 e1000_set_tso(struct net_device *netdev, uint32_t data)
309 struct e1000_adapter *adapter = netdev->priv;
310 if ((adapter->hw.mac_type < e1000_82544) ||
311 (adapter->hw.mac_type == e1000_82547))
312 return data ? -EINVAL : 0;
315 netdev->features |= NETIF_F_TSO;
317 netdev->features &= ~NETIF_F_TSO;
320 #endif /* NETIF_F_TSO */
323 e1000_get_msglevel(struct net_device *netdev)
325 struct e1000_adapter *adapter = netdev->priv;
326 return adapter->msg_enable;
330 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
332 struct e1000_adapter *adapter = netdev->priv;
333 adapter->msg_enable = data;
337 e1000_get_regs_len(struct net_device *netdev)
339 #define E1000_REGS_LEN 32
340 return E1000_REGS_LEN * sizeof(uint32_t);
344 e1000_get_regs(struct net_device *netdev,
345 struct ethtool_regs *regs, void *p)
347 struct e1000_adapter *adapter = netdev->priv;
348 struct e1000_hw *hw = &adapter->hw;
349 uint32_t *regs_buff = p;
352 memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
354 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
356 regs_buff[0] = E1000_READ_REG(hw, CTRL);
357 regs_buff[1] = E1000_READ_REG(hw, STATUS);
359 regs_buff[2] = E1000_READ_REG(hw, RCTL);
360 regs_buff[3] = E1000_READ_REG(hw, RDLEN);
361 regs_buff[4] = E1000_READ_REG(hw, RDH);
362 regs_buff[5] = E1000_READ_REG(hw, RDT);
363 regs_buff[6] = E1000_READ_REG(hw, RDTR);
365 regs_buff[7] = E1000_READ_REG(hw, TCTL);
366 regs_buff[8] = E1000_READ_REG(hw, TDLEN);
367 regs_buff[9] = E1000_READ_REG(hw, TDH);
368 regs_buff[10] = E1000_READ_REG(hw, TDT);
369 regs_buff[11] = E1000_READ_REG(hw, TIDV);
371 regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
372 if(hw->phy_type == e1000_phy_igp) {
373 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
374 IGP01E1000_PHY_AGC_A);
375 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
376 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377 regs_buff[13] = (uint32_t)phy_data; /* cable length */
378 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379 IGP01E1000_PHY_AGC_B);
380 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
381 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382 regs_buff[14] = (uint32_t)phy_data; /* cable length */
383 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
384 IGP01E1000_PHY_AGC_C);
385 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
386 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
387 regs_buff[15] = (uint32_t)phy_data; /* cable length */
388 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
389 IGP01E1000_PHY_AGC_D);
390 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
391 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
392 regs_buff[16] = (uint32_t)phy_data; /* cable length */
393 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
394 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
395 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
396 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
397 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
398 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
399 IGP01E1000_PHY_PCS_INIT_REG);
400 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
401 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
402 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
403 regs_buff[20] = 0; /* polarity correction enabled (always) */
404 regs_buff[22] = 0; /* phy receive errors (unavailable) */
405 regs_buff[23] = regs_buff[18]; /* mdix mode */
406 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
408 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
409 regs_buff[13] = (uint32_t)phy_data; /* cable length */
410 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
411 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
412 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
413 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
414 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
415 regs_buff[18] = regs_buff[13]; /* cable polarity */
416 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
417 regs_buff[20] = regs_buff[17]; /* polarity correction */
418 /* phy receive errors */
419 regs_buff[22] = adapter->phy_stats.receive_errors;
420 regs_buff[23] = regs_buff[13]; /* mdix mode */
422 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
423 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
424 regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
425 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
426 if(hw->mac_type >= e1000_82540 &&
427 hw->media_type == e1000_media_type_copper) {
428 regs_buff[26] = E1000_READ_REG(hw, MANC);
433 e1000_get_eeprom_len(struct net_device *netdev)
435 struct e1000_adapter *adapter = netdev->priv;
436 return adapter->hw.eeprom.word_size * 2;
440 e1000_get_eeprom(struct net_device *netdev,
441 struct ethtool_eeprom *eeprom, uint8_t *bytes)
443 struct e1000_adapter *adapter = netdev->priv;
444 struct e1000_hw *hw = &adapter->hw;
445 uint16_t *eeprom_buff;
446 int first_word, last_word;
453 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
455 first_word = eeprom->offset >> 1;
456 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
458 eeprom_buff = kmalloc(sizeof(uint16_t) *
459 (last_word - first_word + 1), GFP_KERNEL);
463 if(hw->eeprom.type == e1000_eeprom_spi)
464 ret_val = e1000_read_eeprom(hw, first_word,
465 last_word - first_word + 1,
468 for (i = 0; i < last_word - first_word + 1; i++)
469 if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
474 /* Device's eeprom is always little-endian, word addressable */
475 for (i = 0; i < last_word - first_word + 1; i++)
476 le16_to_cpus(&eeprom_buff[i]);
478 memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
486 e1000_set_eeprom(struct net_device *netdev,
487 struct ethtool_eeprom *eeprom, uint8_t *bytes)
489 struct e1000_adapter *adapter = netdev->priv;
490 struct e1000_hw *hw = &adapter->hw;
491 uint16_t *eeprom_buff;
493 int max_len, first_word, last_word, ret_val = 0;
499 if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
502 max_len = hw->eeprom.word_size * 2;
504 first_word = eeprom->offset >> 1;
505 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
506 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
510 ptr = (void *)eeprom_buff;
512 if(eeprom->offset & 1) {
513 /* need read/modify/write of first changed EEPROM word */
514 /* only the second byte of the word is being modified */
515 ret_val = e1000_read_eeprom(hw, first_word, 1,
519 if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
520 /* need read/modify/write of last changed EEPROM word */
521 /* only the first byte of the word is being modified */
522 ret_val = e1000_read_eeprom(hw, last_word, 1,
523 &eeprom_buff[last_word - first_word]);
526 /* Device's eeprom is always little-endian, word addressable */
527 for (i = 0; i < last_word - first_word + 1; i++)
528 le16_to_cpus(&eeprom_buff[i]);
530 memcpy(ptr, bytes, eeprom->len);
532 for (i = 0; i < last_word - first_word + 1; i++)
533 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
535 ret_val = e1000_write_eeprom(hw, first_word,
536 last_word - first_word + 1, eeprom_buff);
538 /* Update the checksum over the first part of the EEPROM if needed */
539 if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
540 e1000_update_eeprom_checksum(hw);
547 e1000_get_drvinfo(struct net_device *netdev,
548 struct ethtool_drvinfo *drvinfo)
550 struct e1000_adapter *adapter = netdev->priv;
552 strncpy(drvinfo->driver, e1000_driver_name, 32);
553 strncpy(drvinfo->version, e1000_driver_version, 32);
554 strncpy(drvinfo->fw_version, "N/A", 32);
555 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
556 drvinfo->n_stats = E1000_STATS_LEN;
557 drvinfo->testinfo_len = E1000_TEST_LEN;
558 drvinfo->regdump_len = e1000_get_regs_len(netdev);
559 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
563 e1000_get_ringparam(struct net_device *netdev,
564 struct ethtool_ringparam *ring)
566 struct e1000_adapter *adapter = netdev->priv;
567 e1000_mac_type mac_type = adapter->hw.mac_type;
568 struct e1000_desc_ring *txdr = &adapter->tx_ring;
569 struct e1000_desc_ring *rxdr = &adapter->rx_ring;
571 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
573 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
575 ring->rx_mini_max_pending = 0;
576 ring->rx_jumbo_max_pending = 0;
577 ring->rx_pending = rxdr->count;
578 ring->tx_pending = txdr->count;
579 ring->rx_mini_pending = 0;
580 ring->rx_jumbo_pending = 0;
584 e1000_set_ringparam(struct net_device *netdev,
585 struct ethtool_ringparam *ring)
587 struct e1000_adapter *adapter = netdev->priv;
588 e1000_mac_type mac_type = adapter->hw.mac_type;
589 struct e1000_desc_ring *txdr = &adapter->tx_ring;
590 struct e1000_desc_ring *rxdr = &adapter->rx_ring;
591 struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new;
594 tx_old = adapter->tx_ring;
595 rx_old = adapter->rx_ring;
597 if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
600 if(netif_running(adapter->netdev))
603 rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
604 rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
605 E1000_MAX_RXD : E1000_MAX_82544_RXD));
606 E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
608 txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
609 txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
610 E1000_MAX_TXD : E1000_MAX_82544_TXD));
611 E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
613 if(netif_running(adapter->netdev)) {
614 /* Try to get new resources before deleting old */
615 if((err = e1000_setup_rx_resources(adapter)))
617 if((err = e1000_setup_tx_resources(adapter)))
620 /* save the new, restore the old in order to free it,
621 * then restore the new back again */
623 rx_new = adapter->rx_ring;
624 tx_new = adapter->tx_ring;
625 adapter->rx_ring = rx_old;
626 adapter->tx_ring = tx_old;
627 e1000_free_rx_resources(adapter);
628 e1000_free_tx_resources(adapter);
629 adapter->rx_ring = rx_new;
630 adapter->tx_ring = tx_new;
631 if((err = e1000_up(adapter)))
637 e1000_free_rx_resources(adapter);
639 adapter->rx_ring = rx_old;
640 adapter->tx_ring = tx_old;
645 #define REG_PATTERN_TEST(R, M, W) \
647 uint32_t pat, value; \
649 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
650 for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
651 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
652 value = E1000_READ_REG(&adapter->hw, R); \
653 if(value != (test[pat] & W & M)) { \
654 *data = (adapter->hw.mac_type < e1000_82543) ? \
655 E1000_82542_##R : E1000_##R; \
661 #define REG_SET_AND_CHECK(R, M, W) \
664 E1000_WRITE_REG(&adapter->hw, R, W & M); \
665 value = E1000_READ_REG(&adapter->hw, R); \
666 if ((W & M) != (value & M)) { \
667 *data = (adapter->hw.mac_type < e1000_82543) ? \
668 E1000_82542_##R : E1000_##R; \
674 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
679 /* The status register is Read Only, so a write should fail.
680 * Some bits that get toggled are ignored.
682 value = (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833));
683 E1000_WRITE_REG(&adapter->hw, STATUS, (0xFFFFFFFF));
684 if(value != (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833))) {
689 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
690 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
691 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
692 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
693 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
694 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
695 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
696 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
697 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
698 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
699 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
700 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
701 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
702 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
704 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
705 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
706 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
708 if(adapter->hw.mac_type >= e1000_82543) {
710 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
711 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
712 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
713 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
714 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
716 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
717 REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
719 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
725 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
726 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
727 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
728 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
732 for(i = 0; i < E1000_MC_TBL_SIZE; i++)
733 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
740 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
743 uint16_t checksum = 0;
747 /* Read and add up the contents of the EEPROM */
748 for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
749 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
756 /* If Checksum is not Correct return error else test passed */
757 if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
764 e1000_test_intr(int irq,
766 struct pt_regs *regs)
768 struct net_device *netdev = (struct net_device *) data;
769 struct e1000_adapter *adapter = netdev->priv;
771 adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
777 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
779 struct net_device *netdev = adapter->netdev;
780 uint32_t mask, i=0, shared_int = TRUE;
781 uint32_t irq = adapter->pdev->irq;
785 /* Hook up test interrupt handler just for this test */
786 if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
788 } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
789 netdev->name, netdev)){
794 /* Disable all the interrupts */
795 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
798 /* Test each interrupt */
801 /* Interrupt to test */
805 /* Disable the interrupt to be reported in
806 * the cause register and then force the same
807 * interrupt and see if one gets posted. If
808 * an interrupt was posted to the bus, the
811 adapter->test_icr = 0;
812 E1000_WRITE_REG(&adapter->hw, IMC, mask);
813 E1000_WRITE_REG(&adapter->hw, ICS, mask);
816 if(adapter->test_icr & mask) {
822 /* Enable the interrupt to be reported in
823 * the cause register and then force the same
824 * interrupt and see if one gets posted. If
825 * an interrupt was not posted to the bus, the
828 adapter->test_icr = 0;
829 E1000_WRITE_REG(&adapter->hw, IMS, mask);
830 E1000_WRITE_REG(&adapter->hw, ICS, mask);
833 if(!(adapter->test_icr & mask)) {
839 /* Disable the other interrupts to be reported in
840 * the cause register and then force the other
841 * interrupts and see if any get posted. If
842 * an interrupt was posted to the bus, the
845 adapter->test_icr = 0;
846 E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
847 E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
850 if(adapter->test_icr) {
857 /* Disable all the interrupts */
858 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
861 /* Unhook test interrupt handler */
862 free_irq(irq, netdev);
868 e1000_free_desc_rings(struct e1000_adapter *adapter)
870 struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
871 struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
872 struct pci_dev *pdev = adapter->pdev;
875 if(txdr->desc && txdr->buffer_info) {
876 for(i = 0; i < txdr->count; i++) {
877 if(txdr->buffer_info[i].dma)
878 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
879 txdr->buffer_info[i].length,
881 if(txdr->buffer_info[i].skb)
882 dev_kfree_skb(txdr->buffer_info[i].skb);
886 if(rxdr->desc && rxdr->buffer_info) {
887 for(i = 0; i < rxdr->count; i++) {
888 if(rxdr->buffer_info[i].dma)
889 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
890 rxdr->buffer_info[i].length,
892 if(rxdr->buffer_info[i].skb)
893 dev_kfree_skb(rxdr->buffer_info[i].skb);
898 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
900 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
902 if(txdr->buffer_info)
903 kfree(txdr->buffer_info);
904 if(rxdr->buffer_info)
905 kfree(rxdr->buffer_info);
911 e1000_setup_desc_rings(struct e1000_adapter *adapter)
913 struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
914 struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
915 struct pci_dev *pdev = adapter->pdev;
917 int size, i, ret_val;
919 /* Setup Tx descriptor ring and Tx buffers */
922 txdr->count = E1000_DEFAULT_TXD;
924 size = txdr->count * sizeof(struct e1000_buffer);
925 if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
929 memset(txdr->buffer_info, 0, size);
931 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
932 E1000_ROUNDUP(txdr->size, 4096);
933 if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
937 memset(txdr->desc, 0, txdr->size);
938 txdr->next_to_use = txdr->next_to_clean = 0;
940 E1000_WRITE_REG(&adapter->hw, TDBAL,
941 ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
942 E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
943 E1000_WRITE_REG(&adapter->hw, TDLEN,
944 txdr->count * sizeof(struct e1000_tx_desc));
945 E1000_WRITE_REG(&adapter->hw, TDH, 0);
946 E1000_WRITE_REG(&adapter->hw, TDT, 0);
947 E1000_WRITE_REG(&adapter->hw, TCTL,
948 E1000_TCTL_PSP | E1000_TCTL_EN |
949 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
950 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
952 for(i = 0; i < txdr->count; i++) {
953 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
955 unsigned int size = 1024;
957 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
962 txdr->buffer_info[i].skb = skb;
963 txdr->buffer_info[i].length = skb->len;
964 txdr->buffer_info[i].dma =
965 pci_map_single(pdev, skb->data, skb->len,
967 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
968 tx_desc->lower.data = cpu_to_le32(skb->len);
969 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
972 tx_desc->upper.data = 0;
975 /* Setup Rx descriptor ring and Rx buffers */
978 rxdr->count = E1000_DEFAULT_RXD;
980 size = rxdr->count * sizeof(struct e1000_buffer);
981 if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
985 memset(rxdr->buffer_info, 0, size);
987 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
988 if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
992 memset(rxdr->desc, 0, rxdr->size);
993 rxdr->next_to_use = rxdr->next_to_clean = 0;
995 rctl = E1000_READ_REG(&adapter->hw, RCTL);
996 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
997 E1000_WRITE_REG(&adapter->hw, RDBAL,
998 ((uint64_t) rxdr->dma & 0xFFFFFFFF));
999 E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1000 E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1001 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1002 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1003 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1004 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1005 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1006 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1008 for(i = 0; i < rxdr->count; i++) {
1009 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1010 struct sk_buff *skb;
1012 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1017 skb_reserve(skb, NET_IP_ALIGN);
1018 rxdr->buffer_info[i].skb = skb;
1019 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1020 rxdr->buffer_info[i].dma =
1021 pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1022 PCI_DMA_FROMDEVICE);
1023 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1024 memset(skb->data, 0x00, skb->len);
1030 e1000_free_desc_rings(adapter);
1035 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1037 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1038 e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1039 e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1040 e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1041 e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1045 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1049 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1050 * Extended PHY Specific Control Register to 25MHz clock. This
1051 * value defaults back to a 2.5MHz clock when the PHY is reset.
1053 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1054 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1055 e1000_write_phy_reg(&adapter->hw,
1056 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1058 /* In addition, because of the s/w reset above, we need to enable
1059 * CRS on TX. This must be set for both full and half duplex
1062 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1063 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1064 e1000_write_phy_reg(&adapter->hw,
1065 M88E1000_PHY_SPEC_CTRL, phy_reg);
1069 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1074 /* Setup the Device Control Register for PHY loopback test. */
1076 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1077 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1078 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1079 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1080 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1081 E1000_CTRL_FD); /* Force Duplex to FULL */
1083 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1085 /* Read the PHY Specific Control Register (0x10) */
1086 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1088 /* Clear Auto-Crossover bits in PHY Specific Control Register
1091 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1092 e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1094 /* Perform software reset on the PHY */
1095 e1000_phy_reset(&adapter->hw);
1097 /* Have to setup TX_CLK and TX_CRS after software reset */
1098 e1000_phy_reset_clk_and_crs(adapter);
1100 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1102 /* Wait for reset to complete. */
1105 /* Have to setup TX_CLK and TX_CRS after software reset */
1106 e1000_phy_reset_clk_and_crs(adapter);
1108 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1109 e1000_phy_disable_receiver(adapter);
1111 /* Set the loopback bit in the PHY control register. */
1112 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1113 phy_reg |= MII_CR_LOOPBACK;
1114 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1116 /* Setup TX_CLK and TX_CRS one more time. */
1117 e1000_phy_reset_clk_and_crs(adapter);
1119 /* Check Phy Configuration */
1120 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1121 if(phy_reg != 0x4100)
1124 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1125 if(phy_reg != 0x0070)
1128 e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1129 if(phy_reg != 0x001A)
1136 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1138 uint32_t ctrl_reg = 0;
1139 uint32_t stat_reg = 0;
1141 adapter->hw.autoneg = FALSE;
1143 if(adapter->hw.phy_type == e1000_phy_m88) {
1144 /* Auto-MDI/MDIX Off */
1145 e1000_write_phy_reg(&adapter->hw,
1146 M88E1000_PHY_SPEC_CTRL, 0x0808);
1147 /* reset to update Auto-MDI/MDIX */
1148 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1150 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1152 /* force 1000, set loopback */
1153 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1155 /* Now set up the MAC to the same speed/duplex as the PHY. */
1156 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1157 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1158 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1159 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1160 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1161 E1000_CTRL_FD); /* Force Duplex to FULL */
1163 if(adapter->hw.media_type == e1000_media_type_copper &&
1164 adapter->hw.phy_type == e1000_phy_m88) {
1165 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1167 /* Set the ILOS bit on the fiber Nic is half
1168 * duplex link is detected. */
1169 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1170 if((stat_reg & E1000_STATUS_FD) == 0)
1171 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1174 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1176 /* Disable the receiver on the PHY so when a cable is plugged in, the
1177 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1179 if(adapter->hw.phy_type == e1000_phy_m88)
1180 e1000_phy_disable_receiver(adapter);
1188 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1190 uint16_t phy_reg = 0;
1193 switch (adapter->hw.mac_type) {
1195 if(adapter->hw.media_type == e1000_media_type_copper) {
1196 /* Attempt to setup Loopback mode on Non-integrated PHY.
1197 * Some PHY registers get corrupted at random, so
1198 * attempt this 10 times.
1200 while(e1000_nonintegrated_phy_loopback(adapter) &&
1210 case e1000_82545_rev_3:
1212 case e1000_82546_rev_3:
1214 case e1000_82541_rev_2:
1216 case e1000_82547_rev_2:
1217 return e1000_integrated_phy_loopback(adapter);
1221 /* Default PHY loopback work is to read the MII
1222 * control register and assert bit 14 (loopback mode).
1224 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1225 phy_reg |= MII_CR_LOOPBACK;
1226 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1235 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1239 if(adapter->hw.media_type == e1000_media_type_fiber ||
1240 adapter->hw.media_type == e1000_media_type_internal_serdes) {
1241 if(adapter->hw.mac_type == e1000_82545 ||
1242 adapter->hw.mac_type == e1000_82546 ||
1243 adapter->hw.mac_type == e1000_82545_rev_3 ||
1244 adapter->hw.mac_type == e1000_82546_rev_3)
1245 return e1000_set_phy_loopback(adapter);
1247 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1248 rctl |= E1000_RCTL_LBM_TCVR;
1249 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1252 } else if(adapter->hw.media_type == e1000_media_type_copper)
1253 return e1000_set_phy_loopback(adapter);
1259 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1264 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1265 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1266 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1268 if(adapter->hw.media_type == e1000_media_type_copper ||
1269 ((adapter->hw.media_type == e1000_media_type_fiber ||
1270 adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1271 (adapter->hw.mac_type == e1000_82545 ||
1272 adapter->hw.mac_type == e1000_82546 ||
1273 adapter->hw.mac_type == e1000_82545_rev_3 ||
1274 adapter->hw.mac_type == e1000_82546_rev_3))) {
1275 adapter->hw.autoneg = TRUE;
1276 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1277 if(phy_reg & MII_CR_LOOPBACK) {
1278 phy_reg &= ~MII_CR_LOOPBACK;
1279 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1280 e1000_phy_reset(&adapter->hw);
1286 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1288 memset(skb->data, 0xFF, frame_size);
1289 frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1290 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1291 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1292 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1296 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1298 frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1299 if(*(skb->data + 3) == 0xFF) {
1300 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1301 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1309 e1000_run_loopback_test(struct e1000_adapter *adapter)
1311 struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
1312 struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
1313 struct pci_dev *pdev = adapter->pdev;
1314 int i, j, k, l, lc, good_cnt, ret_val=0;
1317 E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1319 /* Calculate the loop count based on the largest descriptor ring
1320 * The idea is to wrap the largest ring a number of times using 64
1321 * send/receive pairs during each loop
1324 if(rxdr->count <= txdr->count)
1325 lc = ((txdr->count / 64) * 2) + 1;
1327 lc = ((rxdr->count / 64) * 2) + 1;
1330 for(j = 0; j <= lc; j++) { /* loop count loop */
1331 for(i = 0; i < 64; i++) { /* send the packets */
1332 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1334 pci_dma_sync_single_for_device(pdev,
1335 txdr->buffer_info[k].dma,
1336 txdr->buffer_info[k].length,
1338 if(unlikely(++k == txdr->count)) k = 0;
1340 E1000_WRITE_REG(&adapter->hw, TDT, k);
1342 time = jiffies; /* set the start time for the receive */
1344 do { /* receive the sent packets */
1345 pci_dma_sync_single_for_cpu(pdev,
1346 rxdr->buffer_info[l].dma,
1347 rxdr->buffer_info[l].length,
1348 PCI_DMA_FROMDEVICE);
1350 ret_val = e1000_check_lbtest_frame(
1351 rxdr->buffer_info[l].skb,
1355 if(unlikely(++l == rxdr->count)) l = 0;
1356 /* time + 20 msecs (200 msecs on 2.4) is more than
1357 * enough time to complete the receives, if it's
1358 * exceeded, break and error off
1360 } while (good_cnt < 64 && jiffies < (time + 20));
1361 if(good_cnt != 64) {
1362 ret_val = 13; /* ret_val is the same as mis-compare */
1365 if(jiffies >= (time + 2)) {
1366 ret_val = 14; /* error code for time out error */
1369 } /* end loop count loop */
1374 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1376 if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
1377 if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
1378 *data = e1000_run_loopback_test(adapter);
1379 e1000_loopback_cleanup(adapter);
1380 e1000_free_desc_rings(adapter);
1386 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1389 if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1391 adapter->hw.serdes_link_down = TRUE;
1393 /* On some blade server designs, link establishment
1394 * could take as long as 2-3 minutes */
1396 e1000_check_for_link(&adapter->hw);
1397 if (adapter->hw.serdes_link_down == FALSE)
1400 } while (i++ < 3750);
1404 e1000_check_for_link(&adapter->hw);
1405 if(adapter->hw.autoneg) /* if auto_neg is set wait for it */
1408 if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1416 e1000_diag_test_count(struct net_device *netdev)
1418 return E1000_TEST_LEN;
1422 e1000_diag_test(struct net_device *netdev,
1423 struct ethtool_test *eth_test, uint64_t *data)
1425 struct e1000_adapter *adapter = netdev->priv;
1426 boolean_t if_running = netif_running(netdev);
1428 if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1431 /* save speed, duplex, autoneg settings */
1432 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1433 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1434 uint8_t autoneg = adapter->hw.autoneg;
1436 /* Link test performed before hardware reset so autoneg doesn't
1437 * interfere with test result */
1438 if(e1000_link_test(adapter, &data[4]))
1439 eth_test->flags |= ETH_TEST_FL_FAILED;
1442 e1000_down(adapter);
1444 e1000_reset(adapter);
1446 if(e1000_reg_test(adapter, &data[0]))
1447 eth_test->flags |= ETH_TEST_FL_FAILED;
1449 e1000_reset(adapter);
1450 if(e1000_eeprom_test(adapter, &data[1]))
1451 eth_test->flags |= ETH_TEST_FL_FAILED;
1453 e1000_reset(adapter);
1454 if(e1000_intr_test(adapter, &data[2]))
1455 eth_test->flags |= ETH_TEST_FL_FAILED;
1457 e1000_reset(adapter);
1458 if(e1000_loopback_test(adapter, &data[3]))
1459 eth_test->flags |= ETH_TEST_FL_FAILED;
1461 /* restore speed, duplex, autoneg settings */
1462 adapter->hw.autoneg_advertised = autoneg_advertised;
1463 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1464 adapter->hw.autoneg = autoneg;
1466 e1000_reset(adapter);
1471 if(e1000_link_test(adapter, &data[4]))
1472 eth_test->flags |= ETH_TEST_FL_FAILED;
1474 /* Offline tests aren't run; pass by default */
1483 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1485 struct e1000_adapter *adapter = netdev->priv;
1486 struct e1000_hw *hw = &adapter->hw;
1488 switch(adapter->hw.device_id) {
1489 case E1000_DEV_ID_82542:
1490 case E1000_DEV_ID_82543GC_FIBER:
1491 case E1000_DEV_ID_82543GC_COPPER:
1492 case E1000_DEV_ID_82544EI_FIBER:
1493 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1494 case E1000_DEV_ID_82545EM_FIBER:
1495 case E1000_DEV_ID_82545EM_COPPER:
1500 case E1000_DEV_ID_82546EB_FIBER:
1501 case E1000_DEV_ID_82546GB_FIBER:
1502 /* Wake events only supported on port A for dual fiber */
1503 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1511 wol->supported = WAKE_UCAST | WAKE_MCAST |
1512 WAKE_BCAST | WAKE_MAGIC;
1515 if(adapter->wol & E1000_WUFC_EX)
1516 wol->wolopts |= WAKE_UCAST;
1517 if(adapter->wol & E1000_WUFC_MC)
1518 wol->wolopts |= WAKE_MCAST;
1519 if(adapter->wol & E1000_WUFC_BC)
1520 wol->wolopts |= WAKE_BCAST;
1521 if(adapter->wol & E1000_WUFC_MAG)
1522 wol->wolopts |= WAKE_MAGIC;
1528 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1530 struct e1000_adapter *adapter = netdev->priv;
1531 struct e1000_hw *hw = &adapter->hw;
1533 switch(adapter->hw.device_id) {
1534 case E1000_DEV_ID_82542:
1535 case E1000_DEV_ID_82543GC_FIBER:
1536 case E1000_DEV_ID_82543GC_COPPER:
1537 case E1000_DEV_ID_82544EI_FIBER:
1538 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1539 case E1000_DEV_ID_82545EM_FIBER:
1540 case E1000_DEV_ID_82545EM_COPPER:
1541 return wol->wolopts ? -EOPNOTSUPP : 0;
1543 case E1000_DEV_ID_82546EB_FIBER:
1544 case E1000_DEV_ID_82546GB_FIBER:
1545 /* Wake events only supported on port A for dual fiber */
1546 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1547 return wol->wolopts ? -EOPNOTSUPP : 0;
1551 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1556 if(wol->wolopts & WAKE_UCAST)
1557 adapter->wol |= E1000_WUFC_EX;
1558 if(wol->wolopts & WAKE_MCAST)
1559 adapter->wol |= E1000_WUFC_MC;
1560 if(wol->wolopts & WAKE_BCAST)
1561 adapter->wol |= E1000_WUFC_BC;
1562 if(wol->wolopts & WAKE_MAGIC)
1563 adapter->wol |= E1000_WUFC_MAG;
1569 /* toggle LED 4 times per second = 2 "blinks" per second */
1570 #define E1000_ID_INTERVAL (HZ/4)
1572 /* bit defines for adapter->led_status */
1573 #define E1000_LED_ON 0
1576 e1000_led_blink_callback(unsigned long data)
1578 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1580 if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1581 e1000_led_off(&adapter->hw);
1583 e1000_led_on(&adapter->hw);
1585 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1589 e1000_phys_id(struct net_device *netdev, uint32_t data)
1591 struct e1000_adapter *adapter = netdev->priv;
1593 if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1594 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1596 if(!adapter->blink_timer.function) {
1597 init_timer(&adapter->blink_timer);
1598 adapter->blink_timer.function = e1000_led_blink_callback;
1599 adapter->blink_timer.data = (unsigned long) adapter;
1602 e1000_setup_led(&adapter->hw);
1603 mod_timer(&adapter->blink_timer, jiffies);
1605 msleep_interruptible(data * 1000);
1606 del_timer_sync(&adapter->blink_timer);
1607 e1000_led_off(&adapter->hw);
1608 clear_bit(E1000_LED_ON, &adapter->led_status);
1609 e1000_cleanup_led(&adapter->hw);
1615 e1000_nway_reset(struct net_device *netdev)
1617 struct e1000_adapter *adapter = netdev->priv;
1618 if(netif_running(netdev)) {
1619 e1000_down(adapter);
1626 e1000_get_stats_count(struct net_device *netdev)
1628 return E1000_STATS_LEN;
1632 e1000_get_ethtool_stats(struct net_device *netdev,
1633 struct ethtool_stats *stats, uint64_t *data)
1635 struct e1000_adapter *adapter = netdev->priv;
1638 e1000_update_stats(adapter);
1639 for(i = 0; i < E1000_STATS_LEN; i++) {
1640 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1641 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1642 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1647 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1653 memcpy(data, *e1000_gstrings_test,
1654 E1000_TEST_LEN*ETH_GSTRING_LEN);
1657 for (i=0; i < E1000_STATS_LEN; i++) {
1658 memcpy(data + i * ETH_GSTRING_LEN,
1659 e1000_gstrings_stats[i].stat_string,
1666 struct ethtool_ops e1000_ethtool_ops = {
1667 .get_settings = e1000_get_settings,
1668 .set_settings = e1000_set_settings,
1669 .get_drvinfo = e1000_get_drvinfo,
1670 .get_regs_len = e1000_get_regs_len,
1671 .get_regs = e1000_get_regs,
1672 .get_wol = e1000_get_wol,
1673 .set_wol = e1000_set_wol,
1674 .get_msglevel = e1000_get_msglevel,
1675 .set_msglevel = e1000_set_msglevel,
1676 .nway_reset = e1000_nway_reset,
1677 .get_link = ethtool_op_get_link,
1678 .get_eeprom_len = e1000_get_eeprom_len,
1679 .get_eeprom = e1000_get_eeprom,
1680 .set_eeprom = e1000_set_eeprom,
1681 .get_ringparam = e1000_get_ringparam,
1682 .set_ringparam = e1000_set_ringparam,
1683 .get_pauseparam = e1000_get_pauseparam,
1684 .set_pauseparam = e1000_set_pauseparam,
1685 .get_rx_csum = e1000_get_rx_csum,
1686 .set_rx_csum = e1000_set_rx_csum,
1687 .get_tx_csum = e1000_get_tx_csum,
1688 .set_tx_csum = e1000_set_tx_csum,
1689 .get_sg = ethtool_op_get_sg,
1690 .set_sg = ethtool_op_set_sg,
1692 .get_tso = ethtool_op_get_tso,
1693 .set_tso = e1000_set_tso,
1695 .self_test_count = e1000_diag_test_count,
1696 .self_test = e1000_diag_test,
1697 .get_strings = e1000_get_strings,
1698 .phys_id = e1000_phys_id,
1699 .get_stats_count = e1000_get_stats_count,
1700 .get_ethtool_stats = e1000_get_ethtool_stats,
1703 void e1000_set_ethtool_ops(struct net_device *netdev)
1705 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);