4 * Kernel internal timers, kernel timekeeping, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
40 #include <asm/uaccess.h>
41 #include <asm/unistd.h>
42 #include <asm/div64.h>
43 #include <asm/timex.h>
46 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
48 EXPORT_SYMBOL(jiffies_64);
51 * per-CPU timer vector definitions:
53 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
54 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
55 #define TVN_SIZE (1 << TVN_BITS)
56 #define TVR_SIZE (1 << TVR_BITS)
57 #define TVN_MASK (TVN_SIZE - 1)
58 #define TVR_MASK (TVR_SIZE - 1)
60 typedef struct tvec_s {
61 struct list_head vec[TVN_SIZE];
64 typedef struct tvec_root_s {
65 struct list_head vec[TVR_SIZE];
68 struct tvec_t_base_s {
70 struct timer_list *running_timer;
71 unsigned long timer_jiffies;
77 } ____cacheline_aligned_in_smp;
79 typedef struct tvec_t_base_s tvec_base_t;
81 tvec_base_t boot_tvec_bases;
82 EXPORT_SYMBOL(boot_tvec_bases);
83 static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
86 * __round_jiffies - function to round jiffies to a full second
87 * @j: the time in (absolute) jiffies that should be rounded
88 * @cpu: the processor number on which the timeout will happen
90 * __round_jiffies() rounds an absolute time in the future (in jiffies)
91 * up or down to (approximately) full seconds. This is useful for timers
92 * for which the exact time they fire does not matter too much, as long as
93 * they fire approximately every X seconds.
95 * By rounding these timers to whole seconds, all such timers will fire
96 * at the same time, rather than at various times spread out. The goal
97 * of this is to have the CPU wake up less, which saves power.
99 * The exact rounding is skewed for each processor to avoid all
100 * processors firing at the exact same time, which could lead
101 * to lock contention or spurious cache line bouncing.
103 * The return value is the rounded version of the @j parameter.
105 unsigned long __round_jiffies(unsigned long j, int cpu)
108 unsigned long original = j;
111 * We don't want all cpus firing their timers at once hitting the
112 * same lock or cachelines, so we skew each extra cpu with an extra
113 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
115 * The skew is done by adding 3*cpunr, then round, then subtract this
116 * extra offset again.
123 * If the target jiffie is just after a whole second (which can happen
124 * due to delays of the timer irq, long irq off times etc etc) then
125 * we should round down to the whole second, not up. Use 1/4th second
126 * as cutoff for this rounding as an extreme upper bound for this.
128 if (rem < HZ/4) /* round down */
133 /* now that we have rounded, subtract the extra skew again */
136 if (j <= jiffies) /* rounding ate our timeout entirely; */
140 EXPORT_SYMBOL_GPL(__round_jiffies);
143 * __round_jiffies_relative - function to round jiffies to a full second
144 * @j: the time in (relative) jiffies that should be rounded
145 * @cpu: the processor number on which the timeout will happen
147 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
148 * up or down to (approximately) full seconds. This is useful for timers
149 * for which the exact time they fire does not matter too much, as long as
150 * they fire approximately every X seconds.
152 * By rounding these timers to whole seconds, all such timers will fire
153 * at the same time, rather than at various times spread out. The goal
154 * of this is to have the CPU wake up less, which saves power.
156 * The exact rounding is skewed for each processor to avoid all
157 * processors firing at the exact same time, which could lead
158 * to lock contention or spurious cache line bouncing.
160 * The return value is the rounded version of the @j parameter.
162 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
165 * In theory the following code can skip a jiffy in case jiffies
166 * increments right between the addition and the later subtraction.
167 * However since the entire point of this function is to use approximate
168 * timeouts, it's entirely ok to not handle that.
170 return __round_jiffies(j + jiffies, cpu) - jiffies;
172 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
175 * round_jiffies - function to round jiffies to a full second
176 * @j: the time in (absolute) jiffies that should be rounded
178 * round_jiffies() rounds an absolute time in the future (in jiffies)
179 * up or down to (approximately) full seconds. This is useful for timers
180 * for which the exact time they fire does not matter too much, as long as
181 * they fire approximately every X seconds.
183 * By rounding these timers to whole seconds, all such timers will fire
184 * at the same time, rather than at various times spread out. The goal
185 * of this is to have the CPU wake up less, which saves power.
187 * The return value is the rounded version of the @j parameter.
189 unsigned long round_jiffies(unsigned long j)
191 return __round_jiffies(j, raw_smp_processor_id());
193 EXPORT_SYMBOL_GPL(round_jiffies);
196 * round_jiffies_relative - function to round jiffies to a full second
197 * @j: the time in (relative) jiffies that should be rounded
199 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
200 * up or down to (approximately) full seconds. This is useful for timers
201 * for which the exact time they fire does not matter too much, as long as
202 * they fire approximately every X seconds.
204 * By rounding these timers to whole seconds, all such timers will fire
205 * at the same time, rather than at various times spread out. The goal
206 * of this is to have the CPU wake up less, which saves power.
208 * The return value is the rounded version of the @j parameter.
210 unsigned long round_jiffies_relative(unsigned long j)
212 return __round_jiffies_relative(j, raw_smp_processor_id());
214 EXPORT_SYMBOL_GPL(round_jiffies_relative);
217 static inline void set_running_timer(tvec_base_t *base,
218 struct timer_list *timer)
221 base->running_timer = timer;
225 static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
227 unsigned long expires = timer->expires;
228 unsigned long idx = expires - base->timer_jiffies;
229 struct list_head *vec;
231 if (idx < TVR_SIZE) {
232 int i = expires & TVR_MASK;
233 vec = base->tv1.vec + i;
234 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
235 int i = (expires >> TVR_BITS) & TVN_MASK;
236 vec = base->tv2.vec + i;
237 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
238 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
239 vec = base->tv3.vec + i;
240 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
241 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
242 vec = base->tv4.vec + i;
243 } else if ((signed long) idx < 0) {
245 * Can happen if you add a timer with expires == jiffies,
246 * or you set a timer to go off in the past
248 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
251 /* If the timeout is larger than 0xffffffff on 64-bit
252 * architectures then we use the maximum timeout:
254 if (idx > 0xffffffffUL) {
256 expires = idx + base->timer_jiffies;
258 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
259 vec = base->tv5.vec + i;
264 list_add_tail(&timer->entry, vec);
267 #ifdef CONFIG_TIMER_STATS
268 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
270 if (timer->start_site)
273 timer->start_site = addr;
274 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
275 timer->start_pid = current->pid;
280 * init_timer - initialize a timer.
281 * @timer: the timer to be initialized
283 * init_timer() must be done to a timer prior calling *any* of the
284 * other timer functions.
286 void fastcall init_timer(struct timer_list *timer)
288 timer->entry.next = NULL;
289 timer->base = __raw_get_cpu_var(tvec_bases);
290 #ifdef CONFIG_TIMER_STATS
291 timer->start_site = NULL;
292 timer->start_pid = -1;
293 memset(timer->start_comm, 0, TASK_COMM_LEN);
296 EXPORT_SYMBOL(init_timer);
298 static inline void detach_timer(struct timer_list *timer,
301 struct list_head *entry = &timer->entry;
303 __list_del(entry->prev, entry->next);
306 entry->prev = LIST_POISON2;
310 * We are using hashed locking: holding per_cpu(tvec_bases).lock
311 * means that all timers which are tied to this base via timer->base are
312 * locked, and the base itself is locked too.
314 * So __run_timers/migrate_timers can safely modify all timers which could
315 * be found on ->tvX lists.
317 * When the timer's base is locked, and the timer removed from list, it is
318 * possible to set timer->base = NULL and drop the lock: the timer remains
321 static tvec_base_t *lock_timer_base(struct timer_list *timer,
322 unsigned long *flags)
323 __acquires(timer->base->lock)
329 if (likely(base != NULL)) {
330 spin_lock_irqsave(&base->lock, *flags);
331 if (likely(base == timer->base))
333 /* The timer has migrated to another CPU */
334 spin_unlock_irqrestore(&base->lock, *flags);
340 int __mod_timer(struct timer_list *timer, unsigned long expires)
342 tvec_base_t *base, *new_base;
346 timer_stats_timer_set_start_info(timer);
347 BUG_ON(!timer->function);
349 base = lock_timer_base(timer, &flags);
351 if (timer_pending(timer)) {
352 detach_timer(timer, 0);
356 new_base = __get_cpu_var(tvec_bases);
358 if (base != new_base) {
360 * We are trying to schedule the timer on the local CPU.
361 * However we can't change timer's base while it is running,
362 * otherwise del_timer_sync() can't detect that the timer's
363 * handler yet has not finished. This also guarantees that
364 * the timer is serialized wrt itself.
366 if (likely(base->running_timer != timer)) {
367 /* See the comment in lock_timer_base() */
369 spin_unlock(&base->lock);
371 spin_lock(&base->lock);
376 timer->expires = expires;
377 internal_add_timer(base, timer);
378 spin_unlock_irqrestore(&base->lock, flags);
383 EXPORT_SYMBOL(__mod_timer);
386 * add_timer_on - start a timer on a particular CPU
387 * @timer: the timer to be added
388 * @cpu: the CPU to start it on
390 * This is not very scalable on SMP. Double adds are not possible.
392 void add_timer_on(struct timer_list *timer, int cpu)
394 tvec_base_t *base = per_cpu(tvec_bases, cpu);
397 timer_stats_timer_set_start_info(timer);
398 BUG_ON(timer_pending(timer) || !timer->function);
399 spin_lock_irqsave(&base->lock, flags);
401 internal_add_timer(base, timer);
402 spin_unlock_irqrestore(&base->lock, flags);
407 * mod_timer - modify a timer's timeout
408 * @timer: the timer to be modified
409 * @expires: new timeout in jiffies
411 * mod_timer() is a more efficient way to update the expire field of an
412 * active timer (if the timer is inactive it will be activated)
414 * mod_timer(timer, expires) is equivalent to:
416 * del_timer(timer); timer->expires = expires; add_timer(timer);
418 * Note that if there are multiple unserialized concurrent users of the
419 * same timer, then mod_timer() is the only safe way to modify the timeout,
420 * since add_timer() cannot modify an already running timer.
422 * The function returns whether it has modified a pending timer or not.
423 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
424 * active timer returns 1.)
426 int mod_timer(struct timer_list *timer, unsigned long expires)
428 BUG_ON(!timer->function);
430 timer_stats_timer_set_start_info(timer);
432 * This is a common optimization triggered by the
433 * networking code - if the timer is re-modified
434 * to be the same thing then just return:
436 if (timer->expires == expires && timer_pending(timer))
439 return __mod_timer(timer, expires);
442 EXPORT_SYMBOL(mod_timer);
445 * del_timer - deactive a timer.
446 * @timer: the timer to be deactivated
448 * del_timer() deactivates a timer - this works on both active and inactive
451 * The function returns whether it has deactivated a pending timer or not.
452 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
453 * active timer returns 1.)
455 int del_timer(struct timer_list *timer)
461 timer_stats_timer_clear_start_info(timer);
462 if (timer_pending(timer)) {
463 base = lock_timer_base(timer, &flags);
464 if (timer_pending(timer)) {
465 detach_timer(timer, 1);
468 spin_unlock_irqrestore(&base->lock, flags);
474 EXPORT_SYMBOL(del_timer);
478 * try_to_del_timer_sync - Try to deactivate a timer
479 * @timer: timer do del
481 * This function tries to deactivate a timer. Upon successful (ret >= 0)
482 * exit the timer is not queued and the handler is not running on any CPU.
484 * It must not be called from interrupt contexts.
486 int try_to_del_timer_sync(struct timer_list *timer)
492 base = lock_timer_base(timer, &flags);
494 if (base->running_timer == timer)
498 if (timer_pending(timer)) {
499 detach_timer(timer, 1);
503 spin_unlock_irqrestore(&base->lock, flags);
509 * del_timer_sync - deactivate a timer and wait for the handler to finish.
510 * @timer: the timer to be deactivated
512 * This function only differs from del_timer() on SMP: besides deactivating
513 * the timer it also makes sure the handler has finished executing on other
516 * Synchronization rules: Callers must prevent restarting of the timer,
517 * otherwise this function is meaningless. It must not be called from
518 * interrupt contexts. The caller must not hold locks which would prevent
519 * completion of the timer's handler. The timer's handler must not call
520 * add_timer_on(). Upon exit the timer is not queued and the handler is
521 * not running on any CPU.
523 * The function returns whether it has deactivated a pending timer or not.
525 int del_timer_sync(struct timer_list *timer)
528 int ret = try_to_del_timer_sync(timer);
535 EXPORT_SYMBOL(del_timer_sync);
538 static int cascade(tvec_base_t *base, tvec_t *tv, int index)
540 /* cascade all the timers from tv up one level */
541 struct timer_list *timer, *tmp;
542 struct list_head tv_list;
544 list_replace_init(tv->vec + index, &tv_list);
547 * We are removing _all_ timers from the list, so we
548 * don't have to detach them individually.
550 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
551 BUG_ON(timer->base != base);
552 internal_add_timer(base, timer);
558 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
561 * __run_timers - run all expired timers (if any) on this CPU.
562 * @base: the timer vector to be processed.
564 * This function cascades all vectors and executes all expired timer
567 static inline void __run_timers(tvec_base_t *base)
569 struct timer_list *timer;
571 spin_lock_irq(&base->lock);
572 while (time_after_eq(jiffies, base->timer_jiffies)) {
573 struct list_head work_list;
574 struct list_head *head = &work_list;
575 int index = base->timer_jiffies & TVR_MASK;
581 (!cascade(base, &base->tv2, INDEX(0))) &&
582 (!cascade(base, &base->tv3, INDEX(1))) &&
583 !cascade(base, &base->tv4, INDEX(2)))
584 cascade(base, &base->tv5, INDEX(3));
585 ++base->timer_jiffies;
586 list_replace_init(base->tv1.vec + index, &work_list);
587 while (!list_empty(head)) {
588 void (*fn)(unsigned long);
591 timer = list_entry(head->next,struct timer_list,entry);
592 fn = timer->function;
595 timer_stats_account_timer(timer);
597 set_running_timer(base, timer);
598 detach_timer(timer, 1);
599 spin_unlock_irq(&base->lock);
601 int preempt_count = preempt_count();
603 if (preempt_count != preempt_count()) {
604 printk(KERN_WARNING "huh, entered %p "
605 "with preempt_count %08x, exited"
612 spin_lock_irq(&base->lock);
615 set_running_timer(base, NULL);
616 spin_unlock_irq(&base->lock);
619 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
621 * Find out when the next timer event is due to happen. This
622 * is used on S/390 to stop all activity when a cpus is idle.
623 * This functions needs to be called disabled.
625 static unsigned long __next_timer_interrupt(tvec_base_t *base)
627 unsigned long timer_jiffies = base->timer_jiffies;
628 unsigned long expires = timer_jiffies + (LONG_MAX >> 1);
629 int index, slot, array, found = 0;
630 struct timer_list *nte;
633 /* Look for timer events in tv1. */
634 index = slot = timer_jiffies & TVR_MASK;
636 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
638 expires = nte->expires;
639 /* Look at the cascade bucket(s)? */
640 if (!index || slot < index)
644 slot = (slot + 1) & TVR_MASK;
645 } while (slot != index);
648 /* Calculate the next cascade event */
650 timer_jiffies += TVR_SIZE - index;
651 timer_jiffies >>= TVR_BITS;
654 varray[0] = &base->tv2;
655 varray[1] = &base->tv3;
656 varray[2] = &base->tv4;
657 varray[3] = &base->tv5;
659 for (array = 0; array < 4; array++) {
660 tvec_t *varp = varray[array];
662 index = slot = timer_jiffies & TVN_MASK;
664 list_for_each_entry(nte, varp->vec + slot, entry) {
666 if (time_before(nte->expires, expires))
667 expires = nte->expires;
670 * Do we still search for the first timer or are
671 * we looking up the cascade buckets ?
674 /* Look at the cascade bucket(s)? */
675 if (!index || slot < index)
679 slot = (slot + 1) & TVN_MASK;
680 } while (slot != index);
683 timer_jiffies += TVN_SIZE - index;
684 timer_jiffies >>= TVN_BITS;
690 * Check, if the next hrtimer event is before the next timer wheel
693 static unsigned long cmp_next_hrtimer_event(unsigned long now,
694 unsigned long expires)
696 ktime_t hr_delta = hrtimer_get_next_event();
697 struct timespec tsdelta;
700 if (hr_delta.tv64 == KTIME_MAX)
704 * Expired timer available, let it expire in the next tick
706 if (hr_delta.tv64 <= 0)
709 tsdelta = ktime_to_timespec(hr_delta);
710 delta = timespec_to_jiffies(&tsdelta);
712 * Take rounding errors in to account and make sure, that it
713 * expires in the next tick. Otherwise we go into an endless
714 * ping pong due to tick_nohz_stop_sched_tick() retriggering
720 if (time_before(now, expires))
726 * next_timer_interrupt - return the jiffy of the next pending timer
727 * @now: current time (in jiffies)
729 unsigned long get_next_timer_interrupt(unsigned long now)
731 tvec_base_t *base = __get_cpu_var(tvec_bases);
732 unsigned long expires;
734 spin_lock(&base->lock);
735 expires = __next_timer_interrupt(base);
736 spin_unlock(&base->lock);
738 if (time_before_eq(expires, now))
741 return cmp_next_hrtimer_event(now, expires);
744 #ifdef CONFIG_NO_IDLE_HZ
745 unsigned long next_timer_interrupt(void)
747 return get_next_timer_interrupt(jiffies);
753 /******************************************************************/
757 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
758 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
759 * at zero at system boot time, so wall_to_monotonic will be negative,
760 * however, we will ALWAYS keep the tv_nsec part positive so we can use
761 * the usual normalization.
763 struct timespec xtime __attribute__ ((aligned (16)));
764 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
766 EXPORT_SYMBOL(xtime);
769 /* XXX - all of this timekeeping code should be later moved to time.c */
770 #include <linux/clocksource.h>
771 static struct clocksource *clock; /* pointer to current clocksource */
773 #ifdef CONFIG_GENERIC_TIME
775 * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
777 * private function, must hold xtime_lock lock when being
778 * called. Returns the number of nanoseconds since the
779 * last call to update_wall_time() (adjusted by NTP scaling)
781 static inline s64 __get_nsec_offset(void)
783 cycle_t cycle_now, cycle_delta;
786 /* read clocksource: */
787 cycle_now = clocksource_read(clock);
789 /* calculate the delta since the last update_wall_time: */
790 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
792 /* convert to nanoseconds: */
793 ns_offset = cyc2ns(clock, cycle_delta);
799 * __get_realtime_clock_ts - Returns the time of day in a timespec
800 * @ts: pointer to the timespec to be set
802 * Returns the time of day in a timespec. Used by
803 * do_gettimeofday() and get_realtime_clock_ts().
805 static inline void __get_realtime_clock_ts(struct timespec *ts)
811 seq = read_seqbegin(&xtime_lock);
814 nsecs = __get_nsec_offset();
816 } while (read_seqretry(&xtime_lock, seq));
818 timespec_add_ns(ts, nsecs);
822 * getnstimeofday - Returns the time of day in a timespec
823 * @ts: pointer to the timespec to be set
825 * Returns the time of day in a timespec.
827 void getnstimeofday(struct timespec *ts)
829 __get_realtime_clock_ts(ts);
832 EXPORT_SYMBOL(getnstimeofday);
835 * do_gettimeofday - Returns the time of day in a timeval
836 * @tv: pointer to the timeval to be set
838 * NOTE: Users should be converted to using get_realtime_clock_ts()
840 void do_gettimeofday(struct timeval *tv)
844 __get_realtime_clock_ts(&now);
845 tv->tv_sec = now.tv_sec;
846 tv->tv_usec = now.tv_nsec/1000;
849 EXPORT_SYMBOL(do_gettimeofday);
851 * do_settimeofday - Sets the time of day
852 * @tv: pointer to the timespec variable containing the new time
854 * Sets the time of day to the new time and update NTP and notify hrtimers
856 int do_settimeofday(struct timespec *tv)
859 time_t wtm_sec, sec = tv->tv_sec;
860 long wtm_nsec, nsec = tv->tv_nsec;
862 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
865 write_seqlock_irqsave(&xtime_lock, flags);
867 nsec -= __get_nsec_offset();
869 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
870 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
872 set_normalized_timespec(&xtime, sec, nsec);
873 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
878 update_vsyscall(&xtime, clock);
880 write_sequnlock_irqrestore(&xtime_lock, flags);
882 /* signal hrtimers about time change */
888 EXPORT_SYMBOL(do_settimeofday);
891 * change_clocksource - Swaps clocksources if a new one is available
893 * Accumulates current time interval and initializes new clocksource
895 static void change_clocksource(void)
897 struct clocksource *new;
901 new = clocksource_get_next();
906 now = clocksource_read(new);
907 nsec = __get_nsec_offset();
908 timespec_add_ns(&xtime, nsec);
911 clock->cycle_last = now;
914 clock->xtime_nsec = 0;
915 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
919 printk(KERN_INFO "Time: %s clocksource has been installed.\n",
923 static inline void change_clocksource(void) { }
927 * timekeeping_is_continuous - check to see if timekeeping is free running
929 int timekeeping_is_continuous(void)
935 seq = read_seqbegin(&xtime_lock);
937 ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
939 } while (read_seqretry(&xtime_lock, seq));
945 * read_persistent_clock - Return time in seconds from the persistent clock.
947 * Weak dummy function for arches that do not yet support it.
948 * Returns seconds from epoch using the battery backed persistent clock.
949 * Returns zero if unsupported.
951 * XXX - Do be sure to remove it once all arches implement it.
953 unsigned long __attribute__((weak)) read_persistent_clock(void)
959 * timekeeping_init - Initializes the clocksource and common timekeeping values
961 void __init timekeeping_init(void)
964 unsigned long sec = read_persistent_clock();
966 write_seqlock_irqsave(&xtime_lock, flags);
970 clock = clocksource_get_next();
971 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
972 clock->cycle_last = clocksource_read(clock);
976 set_normalized_timespec(&wall_to_monotonic,
977 -xtime.tv_sec, -xtime.tv_nsec);
979 write_sequnlock_irqrestore(&xtime_lock, flags);
982 /* flag for if timekeeping is suspended */
983 static int timekeeping_suspended;
984 /* time in seconds when suspend began */
985 static unsigned long timekeeping_suspend_time;
988 * timekeeping_resume - Resumes the generic timekeeping subsystem.
991 * This is for the generic clocksource timekeeping.
992 * xtime/wall_to_monotonic/jiffies/etc are
993 * still managed by arch specific suspend/resume code.
995 static int timekeeping_resume(struct sys_device *dev)
998 unsigned long now = read_persistent_clock();
1000 write_seqlock_irqsave(&xtime_lock, flags);
1002 if (now && (now > timekeeping_suspend_time)) {
1003 unsigned long sleep_length = now - timekeeping_suspend_time;
1005 xtime.tv_sec += sleep_length;
1006 wall_to_monotonic.tv_sec -= sleep_length;
1008 /* re-base the last cycle value */
1009 clock->cycle_last = clocksource_read(clock);
1011 timekeeping_suspended = 0;
1012 write_sequnlock_irqrestore(&xtime_lock, flags);
1014 touch_softlockup_watchdog();
1016 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1018 /* Resume hrtimers */
1019 hres_timers_resume();
1024 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
1026 unsigned long flags;
1028 write_seqlock_irqsave(&xtime_lock, flags);
1029 timekeeping_suspended = 1;
1030 timekeeping_suspend_time = read_persistent_clock();
1031 write_sequnlock_irqrestore(&xtime_lock, flags);
1033 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1038 /* sysfs resume/suspend bits for timekeeping */
1039 static struct sysdev_class timekeeping_sysclass = {
1040 .resume = timekeeping_resume,
1041 .suspend = timekeeping_suspend,
1042 set_kset_name("timekeeping"),
1045 static struct sys_device device_timer = {
1047 .cls = &timekeeping_sysclass,
1050 static int __init timekeeping_init_device(void)
1052 int error = sysdev_class_register(&timekeeping_sysclass);
1054 error = sysdev_register(&device_timer);
1058 device_initcall(timekeeping_init_device);
1061 * If the error is already larger, we look ahead even further
1062 * to compensate for late or lost adjustments.
1064 static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
1068 u32 look_ahead, adj;
1072 * Use the current error value to determine how much to look ahead.
1073 * The larger the error the slower we adjust for it to avoid problems
1074 * with losing too many ticks, otherwise we would overadjust and
1075 * produce an even larger error. The smaller the adjustment the
1076 * faster we try to adjust for it, as lost ticks can do less harm
1077 * here. This is tuned so that an error of about 1 msec is adusted
1078 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1080 error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
1081 error2 = abs(error2);
1082 for (look_ahead = 0; error2 > 0; look_ahead++)
1086 * Now calculate the error in (1 << look_ahead) ticks, but first
1087 * remove the single look ahead already included in the error.
1089 tick_error = current_tick_length() >>
1090 (TICK_LENGTH_SHIFT - clock->shift + 1);
1091 tick_error -= clock->xtime_interval >> 1;
1092 error = ((error - tick_error) >> look_ahead) + tick_error;
1094 /* Finally calculate the adjustment shift value. */
1099 *interval = -*interval;
1103 for (adj = 0; error > i; adj++)
1112 * Adjust the multiplier to reduce the error value,
1113 * this is optimized for the most common adjustments of -1,0,1,
1114 * for other values we can do a bit more work.
1116 static void clocksource_adjust(struct clocksource *clock, s64 offset)
1118 s64 error, interval = clock->cycle_interval;
1121 error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
1122 if (error > interval) {
1124 if (likely(error <= interval))
1127 adj = clocksource_bigadjust(error, &interval, &offset);
1128 } else if (error < -interval) {
1130 if (likely(error >= -interval)) {
1132 interval = -interval;
1135 adj = clocksource_bigadjust(error, &interval, &offset);
1140 clock->xtime_interval += interval;
1141 clock->xtime_nsec -= offset;
1142 clock->error -= (interval - offset) <<
1143 (TICK_LENGTH_SHIFT - clock->shift);
1147 * update_wall_time - Uses the current clocksource to increment the wall time
1149 * Called from the timer interrupt, must hold a write on xtime_lock.
1151 static void update_wall_time(void)
1155 /* Make sure we're fully resumed: */
1156 if (unlikely(timekeeping_suspended))
1159 #ifdef CONFIG_GENERIC_TIME
1160 offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
1162 offset = clock->cycle_interval;
1164 clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
1166 /* normally this loop will run just once, however in the
1167 * case of lost or late ticks, it will accumulate correctly.
1169 while (offset >= clock->cycle_interval) {
1170 /* accumulate one interval */
1171 clock->xtime_nsec += clock->xtime_interval;
1172 clock->cycle_last += clock->cycle_interval;
1173 offset -= clock->cycle_interval;
1175 if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
1176 clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
1181 /* interpolator bits */
1182 time_interpolator_update(clock->xtime_interval
1185 /* accumulate error between NTP and clock interval */
1186 clock->error += current_tick_length();
1187 clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
1190 /* correct the clock when NTP error is too big */
1191 clocksource_adjust(clock, offset);
1193 /* store full nanoseconds into xtime */
1194 xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
1195 clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
1197 /* check to see if there is a new clocksource to use */
1198 change_clocksource();
1199 update_vsyscall(&xtime, clock);
1203 * Called from the timer interrupt handler to charge one tick to the current
1204 * process. user_tick is 1 if the tick is user time, 0 for system.
1206 void update_process_times(int user_tick)
1208 struct task_struct *p = current;
1209 int cpu = smp_processor_id();
1211 /* Note: this timer irq context must be accounted for as well. */
1213 account_user_time(p, jiffies_to_cputime(1));
1215 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
1217 if (rcu_pending(cpu))
1218 rcu_check_callbacks(cpu, user_tick);
1220 run_posix_cpu_timers(p);
1224 * Nr of active tasks - counted in fixed-point numbers
1226 static unsigned long count_active_tasks(void)
1228 return nr_active() * FIXED_1;
1232 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1233 * imply that avenrun[] is the standard name for this kind of thing.
1234 * Nothing else seems to be standardized: the fractional size etc
1235 * all seem to differ on different machines.
1237 * Requires xtime_lock to access.
1239 unsigned long avenrun[3];
1241 EXPORT_SYMBOL(avenrun);
1244 * calc_load - given tick count, update the avenrun load estimates.
1245 * This is called while holding a write_lock on xtime_lock.
1247 static inline void calc_load(unsigned long ticks)
1249 unsigned long active_tasks; /* fixed-point */
1250 static int count = LOAD_FREQ;
1253 if (unlikely(count < 0)) {
1254 active_tasks = count_active_tasks();
1256 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1257 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1258 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1260 } while (count < 0);
1265 * This read-write spinlock protects us from races in SMP while
1266 * playing with xtime and avenrun.
1268 __attribute__((weak)) __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
1270 EXPORT_SYMBOL(xtime_lock);
1273 * This function runs timers and the timer-tq in bottom half context.
1275 static void run_timer_softirq(struct softirq_action *h)
1277 tvec_base_t *base = __get_cpu_var(tvec_bases);
1279 hrtimer_run_queues();
1281 if (time_after_eq(jiffies, base->timer_jiffies))
1286 * Called by the local, per-CPU timer interrupt on SMP.
1288 void run_local_timers(void)
1290 raise_softirq(TIMER_SOFTIRQ);
1295 * Called by the timer interrupt. xtime_lock must already be taken
1298 static inline void update_times(unsigned long ticks)
1305 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1306 * without sampling the sequence number in xtime_lock.
1307 * jiffies is defined in the linker script...
1310 void do_timer(unsigned long ticks)
1312 jiffies_64 += ticks;
1313 update_times(ticks);
1316 #ifdef __ARCH_WANT_SYS_ALARM
1319 * For backwards compatibility? This can be done in libc so Alpha
1320 * and all newer ports shouldn't need it.
1322 asmlinkage unsigned long sys_alarm(unsigned int seconds)
1324 return alarm_setitimer(seconds);
1332 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1333 * should be moved into arch/i386 instead?
1337 * sys_getpid - return the thread group id of the current process
1339 * Note, despite the name, this returns the tgid not the pid. The tgid and
1340 * the pid are identical unless CLONE_THREAD was specified on clone() in
1341 * which case the tgid is the same in all threads of the same group.
1343 * This is SMP safe as current->tgid does not change.
1345 asmlinkage long sys_getpid(void)
1347 return current->tgid;
1351 * Accessing ->real_parent is not SMP-safe, it could
1352 * change from under us. However, we can use a stale
1353 * value of ->real_parent under rcu_read_lock(), see
1354 * release_task()->call_rcu(delayed_put_task_struct).
1356 asmlinkage long sys_getppid(void)
1361 pid = rcu_dereference(current->real_parent)->tgid;
1367 asmlinkage long sys_getuid(void)
1369 /* Only we change this so SMP safe */
1370 return current->uid;
1373 asmlinkage long sys_geteuid(void)
1375 /* Only we change this so SMP safe */
1376 return current->euid;
1379 asmlinkage long sys_getgid(void)
1381 /* Only we change this so SMP safe */
1382 return current->gid;
1385 asmlinkage long sys_getegid(void)
1387 /* Only we change this so SMP safe */
1388 return current->egid;
1393 static void process_timeout(unsigned long __data)
1395 wake_up_process((struct task_struct *)__data);
1399 * schedule_timeout - sleep until timeout
1400 * @timeout: timeout value in jiffies
1402 * Make the current task sleep until @timeout jiffies have
1403 * elapsed. The routine will return immediately unless
1404 * the current task state has been set (see set_current_state()).
1406 * You can set the task state as follows -
1408 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1409 * pass before the routine returns. The routine will return 0
1411 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1412 * delivered to the current task. In this case the remaining time
1413 * in jiffies will be returned, or 0 if the timer expired in time
1415 * The current task state is guaranteed to be TASK_RUNNING when this
1418 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1419 * the CPU away without a bound on the timeout. In this case the return
1420 * value will be %MAX_SCHEDULE_TIMEOUT.
1422 * In all cases the return value is guaranteed to be non-negative.
1424 fastcall signed long __sched schedule_timeout(signed long timeout)
1426 struct timer_list timer;
1427 unsigned long expire;
1431 case MAX_SCHEDULE_TIMEOUT:
1433 * These two special cases are useful to be comfortable
1434 * in the caller. Nothing more. We could take
1435 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1436 * but I' d like to return a valid offset (>=0) to allow
1437 * the caller to do everything it want with the retval.
1443 * Another bit of PARANOID. Note that the retval will be
1444 * 0 since no piece of kernel is supposed to do a check
1445 * for a negative retval of schedule_timeout() (since it
1446 * should never happens anyway). You just have the printk()
1447 * that will tell you if something is gone wrong and where.
1450 printk(KERN_ERR "schedule_timeout: wrong timeout "
1451 "value %lx\n", timeout);
1453 current->state = TASK_RUNNING;
1458 expire = timeout + jiffies;
1460 setup_timer(&timer, process_timeout, (unsigned long)current);
1461 __mod_timer(&timer, expire);
1463 del_singleshot_timer_sync(&timer);
1465 timeout = expire - jiffies;
1468 return timeout < 0 ? 0 : timeout;
1470 EXPORT_SYMBOL(schedule_timeout);
1473 * We can use __set_current_state() here because schedule_timeout() calls
1474 * schedule() unconditionally.
1476 signed long __sched schedule_timeout_interruptible(signed long timeout)
1478 __set_current_state(TASK_INTERRUPTIBLE);
1479 return schedule_timeout(timeout);
1481 EXPORT_SYMBOL(schedule_timeout_interruptible);
1483 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1485 __set_current_state(TASK_UNINTERRUPTIBLE);
1486 return schedule_timeout(timeout);
1488 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1490 /* Thread ID - the internal kernel "pid" */
1491 asmlinkage long sys_gettid(void)
1493 return current->pid;
1497 * do_sysinfo - fill in sysinfo struct
1498 * @info: pointer to buffer to fill
1500 int do_sysinfo(struct sysinfo *info)
1502 unsigned long mem_total, sav_total;
1503 unsigned int mem_unit, bitcount;
1506 memset(info, 0, sizeof(struct sysinfo));
1510 seq = read_seqbegin(&xtime_lock);
1513 * This is annoying. The below is the same thing
1514 * posix_get_clock_monotonic() does, but it wants to
1515 * take the lock which we want to cover the loads stuff
1519 getnstimeofday(&tp);
1520 tp.tv_sec += wall_to_monotonic.tv_sec;
1521 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1522 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1523 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1526 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1528 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1529 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1530 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1532 info->procs = nr_threads;
1533 } while (read_seqretry(&xtime_lock, seq));
1539 * If the sum of all the available memory (i.e. ram + swap)
1540 * is less than can be stored in a 32 bit unsigned long then
1541 * we can be binary compatible with 2.2.x kernels. If not,
1542 * well, in that case 2.2.x was broken anyways...
1544 * -Erik Andersen <andersee@debian.org>
1547 mem_total = info->totalram + info->totalswap;
1548 if (mem_total < info->totalram || mem_total < info->totalswap)
1551 mem_unit = info->mem_unit;
1552 while (mem_unit > 1) {
1555 sav_total = mem_total;
1557 if (mem_total < sav_total)
1562 * If mem_total did not overflow, multiply all memory values by
1563 * info->mem_unit and set it to 1. This leaves things compatible
1564 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1569 info->totalram <<= bitcount;
1570 info->freeram <<= bitcount;
1571 info->sharedram <<= bitcount;
1572 info->bufferram <<= bitcount;
1573 info->totalswap <<= bitcount;
1574 info->freeswap <<= bitcount;
1575 info->totalhigh <<= bitcount;
1576 info->freehigh <<= bitcount;
1582 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1588 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1595 * lockdep: we want to track each per-CPU base as a separate lock-class,
1596 * but timer-bases are kmalloc()-ed, so we need to attach separate
1599 static struct lock_class_key base_lock_keys[NR_CPUS];
1601 static int __devinit init_timers_cpu(int cpu)
1605 static char __devinitdata tvec_base_done[NR_CPUS];
1607 if (!tvec_base_done[cpu]) {
1608 static char boot_done;
1612 * The APs use this path later in boot
1614 base = kmalloc_node(sizeof(*base), GFP_KERNEL,
1618 memset(base, 0, sizeof(*base));
1619 per_cpu(tvec_bases, cpu) = base;
1622 * This is for the boot CPU - we use compile-time
1623 * static initialisation because per-cpu memory isn't
1624 * ready yet and because the memory allocators are not
1625 * initialised either.
1628 base = &boot_tvec_bases;
1630 tvec_base_done[cpu] = 1;
1632 base = per_cpu(tvec_bases, cpu);
1635 spin_lock_init(&base->lock);
1636 lockdep_set_class(&base->lock, base_lock_keys + cpu);
1638 for (j = 0; j < TVN_SIZE; j++) {
1639 INIT_LIST_HEAD(base->tv5.vec + j);
1640 INIT_LIST_HEAD(base->tv4.vec + j);
1641 INIT_LIST_HEAD(base->tv3.vec + j);
1642 INIT_LIST_HEAD(base->tv2.vec + j);
1644 for (j = 0; j < TVR_SIZE; j++)
1645 INIT_LIST_HEAD(base->tv1.vec + j);
1647 base->timer_jiffies = jiffies;
1651 #ifdef CONFIG_HOTPLUG_CPU
1652 static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1654 struct timer_list *timer;
1656 while (!list_empty(head)) {
1657 timer = list_entry(head->next, struct timer_list, entry);
1658 detach_timer(timer, 0);
1659 timer->base = new_base;
1660 internal_add_timer(new_base, timer);
1664 static void __devinit migrate_timers(int cpu)
1666 tvec_base_t *old_base;
1667 tvec_base_t *new_base;
1670 BUG_ON(cpu_online(cpu));
1671 old_base = per_cpu(tvec_bases, cpu);
1672 new_base = get_cpu_var(tvec_bases);
1674 local_irq_disable();
1675 double_spin_lock(&new_base->lock, &old_base->lock,
1676 smp_processor_id() < cpu);
1678 BUG_ON(old_base->running_timer);
1680 for (i = 0; i < TVR_SIZE; i++)
1681 migrate_timer_list(new_base, old_base->tv1.vec + i);
1682 for (i = 0; i < TVN_SIZE; i++) {
1683 migrate_timer_list(new_base, old_base->tv2.vec + i);
1684 migrate_timer_list(new_base, old_base->tv3.vec + i);
1685 migrate_timer_list(new_base, old_base->tv4.vec + i);
1686 migrate_timer_list(new_base, old_base->tv5.vec + i);
1689 double_spin_unlock(&new_base->lock, &old_base->lock,
1690 smp_processor_id() < cpu);
1692 put_cpu_var(tvec_bases);
1694 #endif /* CONFIG_HOTPLUG_CPU */
1696 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1697 unsigned long action, void *hcpu)
1699 long cpu = (long)hcpu;
1701 case CPU_UP_PREPARE:
1702 if (init_timers_cpu(cpu) < 0)
1705 #ifdef CONFIG_HOTPLUG_CPU
1707 migrate_timers(cpu);
1716 static struct notifier_block __cpuinitdata timers_nb = {
1717 .notifier_call = timer_cpu_notify,
1721 void __init init_timers(void)
1723 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1724 (void *)(long)smp_processor_id());
1728 BUG_ON(err == NOTIFY_BAD);
1729 register_cpu_notifier(&timers_nb);
1730 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1733 #ifdef CONFIG_TIME_INTERPOLATION
1735 struct time_interpolator *time_interpolator __read_mostly;
1736 static struct time_interpolator *time_interpolator_list __read_mostly;
1737 static DEFINE_SPINLOCK(time_interpolator_lock);
1739 static inline cycles_t time_interpolator_get_cycles(unsigned int src)
1741 unsigned long (*x)(void);
1745 case TIME_SOURCE_FUNCTION:
1746 x = time_interpolator->addr;
1749 case TIME_SOURCE_MMIO64 :
1750 return readq_relaxed((void __iomem *)time_interpolator->addr);
1752 case TIME_SOURCE_MMIO32 :
1753 return readl_relaxed((void __iomem *)time_interpolator->addr);
1755 default: return get_cycles();
1759 static inline u64 time_interpolator_get_counter(int writelock)
1761 unsigned int src = time_interpolator->source;
1763 if (time_interpolator->jitter)
1769 lcycle = time_interpolator->last_cycle;
1770 now = time_interpolator_get_cycles(src);
1771 if (lcycle && time_after(lcycle, now))
1774 /* When holding the xtime write lock, there's no need
1775 * to add the overhead of the cmpxchg. Readers are
1776 * force to retry until the write lock is released.
1779 time_interpolator->last_cycle = now;
1782 /* Keep track of the last timer value returned. The use of cmpxchg here
1783 * will cause contention in an SMP environment.
1785 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1789 return time_interpolator_get_cycles(src);
1792 void time_interpolator_reset(void)
1794 time_interpolator->offset = 0;
1795 time_interpolator->last_counter = time_interpolator_get_counter(1);
1798 #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1800 unsigned long time_interpolator_get_offset(void)
1802 /* If we do not have a time interpolator set up then just return zero */
1803 if (!time_interpolator)
1806 return time_interpolator->offset +
1807 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1810 #define INTERPOLATOR_ADJUST 65536
1811 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1813 void time_interpolator_update(long delta_nsec)
1816 unsigned long offset;
1818 /* If there is no time interpolator set up then do nothing */
1819 if (!time_interpolator)
1823 * The interpolator compensates for late ticks by accumulating the late
1824 * time in time_interpolator->offset. A tick earlier than expected will
1825 * lead to a reset of the offset and a corresponding jump of the clock
1826 * forward. Again this only works if the interpolator clock is running
1827 * slightly slower than the regular clock and the tuning logic insures
1831 counter = time_interpolator_get_counter(1);
1832 offset = time_interpolator->offset +
1833 GET_TI_NSECS(counter, time_interpolator);
1835 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1836 time_interpolator->offset = offset - delta_nsec;
1838 time_interpolator->skips++;
1839 time_interpolator->ns_skipped += delta_nsec - offset;
1840 time_interpolator->offset = 0;
1842 time_interpolator->last_counter = counter;
1844 /* Tuning logic for time interpolator invoked every minute or so.
1845 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1846 * Increase interpolator clock speed if we skip too much time.
1848 if (jiffies % INTERPOLATOR_ADJUST == 0)
1850 if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
1851 time_interpolator->nsec_per_cyc--;
1852 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1853 time_interpolator->nsec_per_cyc++;
1854 time_interpolator->skips = 0;
1855 time_interpolator->ns_skipped = 0;
1860 is_better_time_interpolator(struct time_interpolator *new)
1862 if (!time_interpolator)
1864 return new->frequency > 2*time_interpolator->frequency ||
1865 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1869 register_time_interpolator(struct time_interpolator *ti)
1871 unsigned long flags;
1874 BUG_ON(ti->frequency == 0 || ti->mask == 0);
1876 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1877 spin_lock(&time_interpolator_lock);
1878 write_seqlock_irqsave(&xtime_lock, flags);
1879 if (is_better_time_interpolator(ti)) {
1880 time_interpolator = ti;
1881 time_interpolator_reset();
1883 write_sequnlock_irqrestore(&xtime_lock, flags);
1885 ti->next = time_interpolator_list;
1886 time_interpolator_list = ti;
1887 spin_unlock(&time_interpolator_lock);
1891 unregister_time_interpolator(struct time_interpolator *ti)
1893 struct time_interpolator *curr, **prev;
1894 unsigned long flags;
1896 spin_lock(&time_interpolator_lock);
1897 prev = &time_interpolator_list;
1898 for (curr = *prev; curr; curr = curr->next) {
1906 write_seqlock_irqsave(&xtime_lock, flags);
1907 if (ti == time_interpolator) {
1908 /* we lost the best time-interpolator: */
1909 time_interpolator = NULL;
1910 /* find the next-best interpolator */
1911 for (curr = time_interpolator_list; curr; curr = curr->next)
1912 if (is_better_time_interpolator(curr))
1913 time_interpolator = curr;
1914 time_interpolator_reset();
1916 write_sequnlock_irqrestore(&xtime_lock, flags);
1917 spin_unlock(&time_interpolator_lock);
1919 #endif /* CONFIG_TIME_INTERPOLATION */
1922 * msleep - sleep safely even with waitqueue interruptions
1923 * @msecs: Time in milliseconds to sleep for
1925 void msleep(unsigned int msecs)
1927 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1930 timeout = schedule_timeout_uninterruptible(timeout);
1933 EXPORT_SYMBOL(msleep);
1936 * msleep_interruptible - sleep waiting for signals
1937 * @msecs: Time in milliseconds to sleep for
1939 unsigned long msleep_interruptible(unsigned int msecs)
1941 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1943 while (timeout && !signal_pending(current))
1944 timeout = schedule_timeout_interruptible(timeout);
1945 return jiffies_to_msecs(timeout);
1948 EXPORT_SYMBOL(msleep_interruptible);