Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[linux-2.6] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33
34 #include <asm/page.h>
35 #include <asm/system.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "fw-ohci.h"
42 #include "fw-transaction.h"
43
44 #define DESCRIPTOR_OUTPUT_MORE          0
45 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
46 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
47 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
48 #define DESCRIPTOR_STATUS               (1 << 11)
49 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
50 #define DESCRIPTOR_PING                 (1 << 7)
51 #define DESCRIPTOR_YY                   (1 << 6)
52 #define DESCRIPTOR_NO_IRQ               (0 << 4)
53 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
54 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
55 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
56 #define DESCRIPTOR_WAIT                 (3 << 0)
57
58 struct descriptor {
59         __le16 req_count;
60         __le16 control;
61         __le32 data_address;
62         __le32 branch_address;
63         __le16 res_count;
64         __le16 transfer_status;
65 } __attribute__((aligned(16)));
66
67 struct db_descriptor {
68         __le16 first_size;
69         __le16 control;
70         __le16 second_req_count;
71         __le16 first_req_count;
72         __le32 branch_address;
73         __le16 second_res_count;
74         __le16 first_res_count;
75         __le32 reserved0;
76         __le32 first_buffer;
77         __le32 second_buffer;
78         __le32 reserved1;
79 } __attribute__((aligned(16)));
80
81 #define CONTROL_SET(regs)       (regs)
82 #define CONTROL_CLEAR(regs)     ((regs) + 4)
83 #define COMMAND_PTR(regs)       ((regs) + 12)
84 #define CONTEXT_MATCH(regs)     ((regs) + 16)
85
86 struct ar_buffer {
87         struct descriptor descriptor;
88         struct ar_buffer *next;
89         __le32 data[0];
90 };
91
92 struct ar_context {
93         struct fw_ohci *ohci;
94         struct ar_buffer *current_buffer;
95         struct ar_buffer *last_buffer;
96         void *pointer;
97         u32 regs;
98         struct tasklet_struct tasklet;
99 };
100
101 struct context;
102
103 typedef int (*descriptor_callback_t)(struct context *ctx,
104                                      struct descriptor *d,
105                                      struct descriptor *last);
106
107 /*
108  * A buffer that contains a block of DMA-able coherent memory used for
109  * storing a portion of a DMA descriptor program.
110  */
111 struct descriptor_buffer {
112         struct list_head list;
113         dma_addr_t buffer_bus;
114         size_t buffer_size;
115         size_t used;
116         struct descriptor buffer[0];
117 };
118
119 struct context {
120         struct fw_ohci *ohci;
121         u32 regs;
122         int total_allocation;
123
124         /*
125          * List of page-sized buffers for storing DMA descriptors.
126          * Head of list contains buffers in use and tail of list contains
127          * free buffers.
128          */
129         struct list_head buffer_list;
130
131         /*
132          * Pointer to a buffer inside buffer_list that contains the tail
133          * end of the current DMA program.
134          */
135         struct descriptor_buffer *buffer_tail;
136
137         /*
138          * The descriptor containing the branch address of the first
139          * descriptor that has not yet been filled by the device.
140          */
141         struct descriptor *last;
142
143         /*
144          * The last descriptor in the DMA program.  It contains the branch
145          * address that must be updated upon appending a new descriptor.
146          */
147         struct descriptor *prev;
148
149         descriptor_callback_t callback;
150
151         struct tasklet_struct tasklet;
152 };
153
154 #define IT_HEADER_SY(v)          ((v) <<  0)
155 #define IT_HEADER_TCODE(v)       ((v) <<  4)
156 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
157 #define IT_HEADER_TAG(v)         ((v) << 14)
158 #define IT_HEADER_SPEED(v)       ((v) << 16)
159 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
160
161 struct iso_context {
162         struct fw_iso_context base;
163         struct context context;
164         int excess_bytes;
165         void *header;
166         size_t header_length;
167 };
168
169 #define CONFIG_ROM_SIZE 1024
170
171 struct fw_ohci {
172         struct fw_card card;
173
174         u32 version;
175         __iomem char *registers;
176         dma_addr_t self_id_bus;
177         __le32 *self_id_cpu;
178         struct tasklet_struct bus_reset_tasklet;
179         int node_id;
180         int generation;
181         int request_generation; /* for timestamping incoming requests */
182         u32 bus_seconds;
183         bool old_uninorth;
184         bool bus_reset_packet_quirk;
185
186         /*
187          * Spinlock for accessing fw_ohci data.  Never call out of
188          * this driver with this lock held.
189          */
190         spinlock_t lock;
191         u32 self_id_buffer[512];
192
193         /* Config rom buffers */
194         __be32 *config_rom;
195         dma_addr_t config_rom_bus;
196         __be32 *next_config_rom;
197         dma_addr_t next_config_rom_bus;
198         u32 next_header;
199
200         struct ar_context ar_request_ctx;
201         struct ar_context ar_response_ctx;
202         struct context at_request_ctx;
203         struct context at_response_ctx;
204
205         u32 it_context_mask;
206         struct iso_context *it_context_list;
207         u32 ir_context_mask;
208         struct iso_context *ir_context_list;
209 };
210
211 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
212 {
213         return container_of(card, struct fw_ohci, card);
214 }
215
216 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
217 #define IR_CONTEXT_BUFFER_FILL          0x80000000
218 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
219 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
220 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
221 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
222
223 #define CONTEXT_RUN     0x8000
224 #define CONTEXT_WAKE    0x1000
225 #define CONTEXT_DEAD    0x0800
226 #define CONTEXT_ACTIVE  0x0400
227
228 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
229 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
230 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
231
232 #define FW_OHCI_MAJOR                   240
233 #define OHCI1394_REGISTER_SIZE          0x800
234 #define OHCI_LOOP_COUNT                 500
235 #define OHCI1394_PCI_HCI_Control        0x40
236 #define SELF_ID_BUF_SIZE                0x800
237 #define OHCI_TCODE_PHY_PACKET           0x0e
238 #define OHCI_VERSION_1_1                0x010010
239
240 static char ohci_driver_name[] = KBUILD_MODNAME;
241
242 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
243
244 #define OHCI_PARAM_DEBUG_AT_AR          1
245 #define OHCI_PARAM_DEBUG_SELFIDS        2
246 #define OHCI_PARAM_DEBUG_IRQS           4
247 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
248
249 static int param_debug;
250 module_param_named(debug, param_debug, int, 0644);
251 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
252         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
253         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
254         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
255         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
256         ", or a combination, or all = -1)");
257
258 static void log_irqs(u32 evt)
259 {
260         if (likely(!(param_debug &
261                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
262                 return;
263
264         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
265             !(evt & OHCI1394_busReset))
266                 return;
267
268         printk(KERN_DEBUG KBUILD_MODNAME ": IRQ "
269                "%08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
270                evt,
271                evt & OHCI1394_selfIDComplete    ? " selfID"             : "",
272                evt & OHCI1394_RQPkt             ? " AR_req"             : "",
273                evt & OHCI1394_RSPkt             ? " AR_resp"            : "",
274                evt & OHCI1394_reqTxComplete     ? " AT_req"             : "",
275                evt & OHCI1394_respTxComplete    ? " AT_resp"            : "",
276                evt & OHCI1394_isochRx           ? " IR"                 : "",
277                evt & OHCI1394_isochTx           ? " IT"                 : "",
278                evt & OHCI1394_postedWriteErr    ? " postedWriteErr"     : "",
279                evt & OHCI1394_cycleTooLong      ? " cycleTooLong"       : "",
280                evt & OHCI1394_cycle64Seconds    ? " cycle64Seconds"     : "",
281                evt & OHCI1394_regAccessFail     ? " regAccessFail"      : "",
282                evt & OHCI1394_busReset          ? " busReset"           : "",
283                evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
284                        OHCI1394_RSPkt | OHCI1394_reqTxComplete |
285                        OHCI1394_respTxComplete | OHCI1394_isochRx |
286                        OHCI1394_isochTx | OHCI1394_postedWriteErr |
287                        OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
288                        OHCI1394_regAccessFail | OHCI1394_busReset)
289                                                 ? " ?"                  : "");
290 }
291
292 static const char *speed[] = {
293         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
294 };
295 static const char *power[] = {
296         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
297         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
298 };
299 static const char port[] = { '.', '-', 'p', 'c', };
300
301 static char _p(u32 *s, int shift)
302 {
303         return port[*s >> shift & 3];
304 }
305
306 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
307 {
308         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
309                 return;
310
311         printk(KERN_DEBUG KBUILD_MODNAME ": %d selfIDs, generation %d, "
312                "local node ID %04x\n", self_id_count, generation, node_id);
313
314         for (; self_id_count--; ++s)
315                 if ((*s & 1 << 23) == 0)
316                         printk(KERN_DEBUG "selfID 0: %08x, phy %d [%c%c%c] "
317                                "%s gc=%d %s %s%s%s\n",
318                                *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
319                                speed[*s >> 14 & 3], *s >> 16 & 63,
320                                power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
321                                *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
322                 else
323                         printk(KERN_DEBUG "selfID n: %08x, phy %d "
324                                "[%c%c%c%c%c%c%c%c]\n",
325                                *s, *s >> 24 & 63,
326                                _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
327                                _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
328 }
329
330 static const char *evts[] = {
331         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
332         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
333         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
334         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
335         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
336         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
337         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
338         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
339         [0x10] = "-reserved-",          [0x11] = "ack_complete",
340         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
341         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
342         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
343         [0x18] = "-reserved-",          [0x19] = "-reserved-",
344         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
345         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
346         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
347         [0x20] = "pending/cancelled",
348 };
349 static const char *tcodes[] = {
350         [0x0] = "QW req",               [0x1] = "BW req",
351         [0x2] = "W resp",               [0x3] = "-reserved-",
352         [0x4] = "QR req",               [0x5] = "BR req",
353         [0x6] = "QR resp",              [0x7] = "BR resp",
354         [0x8] = "cycle start",          [0x9] = "Lk req",
355         [0xa] = "async stream packet",  [0xb] = "Lk resp",
356         [0xc] = "-reserved-",           [0xd] = "-reserved-",
357         [0xe] = "link internal",        [0xf] = "-reserved-",
358 };
359 static const char *phys[] = {
360         [0x0] = "phy config packet",    [0x1] = "link-on packet",
361         [0x2] = "self-id packet",       [0x3] = "-reserved-",
362 };
363
364 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
365 {
366         int tcode = header[0] >> 4 & 0xf;
367         char specific[12];
368
369         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
370                 return;
371
372         if (unlikely(evt >= ARRAY_SIZE(evts)))
373                         evt = 0x1f;
374
375         if (evt == OHCI1394_evt_bus_reset) {
376                 printk(KERN_DEBUG "A%c evt_bus_reset, generation %d\n",
377                        dir, (header[2] >> 16) & 0xff);
378                 return;
379         }
380
381         if (header[0] == ~header[1]) {
382                 printk(KERN_DEBUG "A%c %s, %s, %08x\n",
383                        dir, evts[evt], phys[header[0] >> 30 & 0x3],
384                        header[0]);
385                 return;
386         }
387
388         switch (tcode) {
389         case 0x0: case 0x6: case 0x8:
390                 snprintf(specific, sizeof(specific), " = %08x",
391                          be32_to_cpu((__force __be32)header[3]));
392                 break;
393         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
394                 snprintf(specific, sizeof(specific), " %x,%x",
395                          header[3] >> 16, header[3] & 0xffff);
396                 break;
397         default:
398                 specific[0] = '\0';
399         }
400
401         switch (tcode) {
402         case 0xe: case 0xa:
403                 printk(KERN_DEBUG "A%c %s, %s\n",
404                        dir, evts[evt], tcodes[tcode]);
405                 break;
406         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
407                 printk(KERN_DEBUG "A%c spd %x tl %02x, "
408                        "%04x -> %04x, %s, "
409                        "%s, %04x%08x%s\n",
410                        dir, speed, header[0] >> 10 & 0x3f,
411                        header[1] >> 16, header[0] >> 16, evts[evt],
412                        tcodes[tcode], header[1] & 0xffff, header[2], specific);
413                 break;
414         default:
415                 printk(KERN_DEBUG "A%c spd %x tl %02x, "
416                        "%04x -> %04x, %s, "
417                        "%s%s\n",
418                        dir, speed, header[0] >> 10 & 0x3f,
419                        header[1] >> 16, header[0] >> 16, evts[evt],
420                        tcodes[tcode], specific);
421         }
422 }
423
424 #else
425
426 #define log_irqs(evt)
427 #define log_selfids(node_id, generation, self_id_count, sid)
428 #define log_ar_at_event(dir, speed, header, evt)
429
430 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
431
432 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
433 {
434         writel(data, ohci->registers + offset);
435 }
436
437 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
438 {
439         return readl(ohci->registers + offset);
440 }
441
442 static inline void flush_writes(const struct fw_ohci *ohci)
443 {
444         /* Do a dummy read to flush writes. */
445         reg_read(ohci, OHCI1394_Version);
446 }
447
448 static int
449 ohci_update_phy_reg(struct fw_card *card, int addr,
450                     int clear_bits, int set_bits)
451 {
452         struct fw_ohci *ohci = fw_ohci(card);
453         u32 val, old;
454
455         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
456         flush_writes(ohci);
457         msleep(2);
458         val = reg_read(ohci, OHCI1394_PhyControl);
459         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
460                 fw_error("failed to set phy reg bits.\n");
461                 return -EBUSY;
462         }
463
464         old = OHCI1394_PhyControl_ReadData(val);
465         old = (old & ~clear_bits) | set_bits;
466         reg_write(ohci, OHCI1394_PhyControl,
467                   OHCI1394_PhyControl_Write(addr, old));
468
469         return 0;
470 }
471
472 static int ar_context_add_page(struct ar_context *ctx)
473 {
474         struct device *dev = ctx->ohci->card.device;
475         struct ar_buffer *ab;
476         dma_addr_t uninitialized_var(ab_bus);
477         size_t offset;
478
479         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
480         if (ab == NULL)
481                 return -ENOMEM;
482
483         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
484         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
485                                                     DESCRIPTOR_STATUS |
486                                                     DESCRIPTOR_BRANCH_ALWAYS);
487         offset = offsetof(struct ar_buffer, data);
488         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
489         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
490         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
491         ab->descriptor.branch_address = 0;
492
493         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
494         ctx->last_buffer->next = ab;
495         ctx->last_buffer = ab;
496
497         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
498         flush_writes(ctx->ohci);
499
500         return 0;
501 }
502
503 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
504 #define cond_le32_to_cpu(v) \
505         (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
506 #else
507 #define cond_le32_to_cpu(v) le32_to_cpu(v)
508 #endif
509
510 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
511 {
512         struct fw_ohci *ohci = ctx->ohci;
513         struct fw_packet p;
514         u32 status, length, tcode;
515         int evt;
516
517         p.header[0] = cond_le32_to_cpu(buffer[0]);
518         p.header[1] = cond_le32_to_cpu(buffer[1]);
519         p.header[2] = cond_le32_to_cpu(buffer[2]);
520
521         tcode = (p.header[0] >> 4) & 0x0f;
522         switch (tcode) {
523         case TCODE_WRITE_QUADLET_REQUEST:
524         case TCODE_READ_QUADLET_RESPONSE:
525                 p.header[3] = (__force __u32) buffer[3];
526                 p.header_length = 16;
527                 p.payload_length = 0;
528                 break;
529
530         case TCODE_READ_BLOCK_REQUEST :
531                 p.header[3] = cond_le32_to_cpu(buffer[3]);
532                 p.header_length = 16;
533                 p.payload_length = 0;
534                 break;
535
536         case TCODE_WRITE_BLOCK_REQUEST:
537         case TCODE_READ_BLOCK_RESPONSE:
538         case TCODE_LOCK_REQUEST:
539         case TCODE_LOCK_RESPONSE:
540                 p.header[3] = cond_le32_to_cpu(buffer[3]);
541                 p.header_length = 16;
542                 p.payload_length = p.header[3] >> 16;
543                 break;
544
545         case TCODE_WRITE_RESPONSE:
546         case TCODE_READ_QUADLET_REQUEST:
547         case OHCI_TCODE_PHY_PACKET:
548                 p.header_length = 12;
549                 p.payload_length = 0;
550                 break;
551         }
552
553         p.payload = (void *) buffer + p.header_length;
554
555         /* FIXME: What to do about evt_* errors? */
556         length = (p.header_length + p.payload_length + 3) / 4;
557         status = cond_le32_to_cpu(buffer[length]);
558         evt    = (status >> 16) & 0x1f;
559
560         p.ack        = evt - 16;
561         p.speed      = (status >> 21) & 0x7;
562         p.timestamp  = status & 0xffff;
563         p.generation = ohci->request_generation;
564
565         log_ar_at_event('R', p.speed, p.header, evt);
566
567         /*
568          * The OHCI bus reset handler synthesizes a phy packet with
569          * the new generation number when a bus reset happens (see
570          * section 8.4.2.3).  This helps us determine when a request
571          * was received and make sure we send the response in the same
572          * generation.  We only need this for requests; for responses
573          * we use the unique tlabel for finding the matching
574          * request.
575          *
576          * Alas some chips sometimes emit bus reset packets with a
577          * wrong generation.  We set the correct generation for these
578          * at a slightly incorrect time (in bus_reset_tasklet).
579          */
580         if (evt == OHCI1394_evt_bus_reset) {
581                 if (!ohci->bus_reset_packet_quirk)
582                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
583         } else if (ctx == &ohci->ar_request_ctx) {
584                 fw_core_handle_request(&ohci->card, &p);
585         } else {
586                 fw_core_handle_response(&ohci->card, &p);
587         }
588
589         return buffer + length + 1;
590 }
591
592 static void ar_context_tasklet(unsigned long data)
593 {
594         struct ar_context *ctx = (struct ar_context *)data;
595         struct fw_ohci *ohci = ctx->ohci;
596         struct ar_buffer *ab;
597         struct descriptor *d;
598         void *buffer, *end;
599
600         ab = ctx->current_buffer;
601         d = &ab->descriptor;
602
603         if (d->res_count == 0) {
604                 size_t size, rest, offset;
605                 dma_addr_t start_bus;
606                 void *start;
607
608                 /*
609                  * This descriptor is finished and we may have a
610                  * packet split across this and the next buffer. We
611                  * reuse the page for reassembling the split packet.
612                  */
613
614                 offset = offsetof(struct ar_buffer, data);
615                 start = buffer = ab;
616                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
617
618                 ab = ab->next;
619                 d = &ab->descriptor;
620                 size = buffer + PAGE_SIZE - ctx->pointer;
621                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
622                 memmove(buffer, ctx->pointer, size);
623                 memcpy(buffer + size, ab->data, rest);
624                 ctx->current_buffer = ab;
625                 ctx->pointer = (void *) ab->data + rest;
626                 end = buffer + size + rest;
627
628                 while (buffer < end)
629                         buffer = handle_ar_packet(ctx, buffer);
630
631                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
632                                   start, start_bus);
633                 ar_context_add_page(ctx);
634         } else {
635                 buffer = ctx->pointer;
636                 ctx->pointer = end =
637                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
638
639                 while (buffer < end)
640                         buffer = handle_ar_packet(ctx, buffer);
641         }
642 }
643
644 static int
645 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
646 {
647         struct ar_buffer ab;
648
649         ctx->regs        = regs;
650         ctx->ohci        = ohci;
651         ctx->last_buffer = &ab;
652         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
653
654         ar_context_add_page(ctx);
655         ar_context_add_page(ctx);
656         ctx->current_buffer = ab.next;
657         ctx->pointer = ctx->current_buffer->data;
658
659         return 0;
660 }
661
662 static void ar_context_run(struct ar_context *ctx)
663 {
664         struct ar_buffer *ab = ctx->current_buffer;
665         dma_addr_t ab_bus;
666         size_t offset;
667
668         offset = offsetof(struct ar_buffer, data);
669         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
670
671         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
672         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
673         flush_writes(ctx->ohci);
674 }
675
676 static struct descriptor *
677 find_branch_descriptor(struct descriptor *d, int z)
678 {
679         int b, key;
680
681         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
682         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
683
684         /* figure out which descriptor the branch address goes in */
685         if (z == 2 && (b == 3 || key == 2))
686                 return d;
687         else
688                 return d + z - 1;
689 }
690
691 static void context_tasklet(unsigned long data)
692 {
693         struct context *ctx = (struct context *) data;
694         struct descriptor *d, *last;
695         u32 address;
696         int z;
697         struct descriptor_buffer *desc;
698
699         desc = list_entry(ctx->buffer_list.next,
700                         struct descriptor_buffer, list);
701         last = ctx->last;
702         while (last->branch_address != 0) {
703                 struct descriptor_buffer *old_desc = desc;
704                 address = le32_to_cpu(last->branch_address);
705                 z = address & 0xf;
706                 address &= ~0xf;
707
708                 /* If the branch address points to a buffer outside of the
709                  * current buffer, advance to the next buffer. */
710                 if (address < desc->buffer_bus ||
711                                 address >= desc->buffer_bus + desc->used)
712                         desc = list_entry(desc->list.next,
713                                         struct descriptor_buffer, list);
714                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
715                 last = find_branch_descriptor(d, z);
716
717                 if (!ctx->callback(ctx, d, last))
718                         break;
719
720                 if (old_desc != desc) {
721                         /* If we've advanced to the next buffer, move the
722                          * previous buffer to the free list. */
723                         unsigned long flags;
724                         old_desc->used = 0;
725                         spin_lock_irqsave(&ctx->ohci->lock, flags);
726                         list_move_tail(&old_desc->list, &ctx->buffer_list);
727                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
728                 }
729                 ctx->last = last;
730         }
731 }
732
733 /*
734  * Allocate a new buffer and add it to the list of free buffers for this
735  * context.  Must be called with ohci->lock held.
736  */
737 static int
738 context_add_buffer(struct context *ctx)
739 {
740         struct descriptor_buffer *desc;
741         dma_addr_t uninitialized_var(bus_addr);
742         int offset;
743
744         /*
745          * 16MB of descriptors should be far more than enough for any DMA
746          * program.  This will catch run-away userspace or DoS attacks.
747          */
748         if (ctx->total_allocation >= 16*1024*1024)
749                 return -ENOMEM;
750
751         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
752                         &bus_addr, GFP_ATOMIC);
753         if (!desc)
754                 return -ENOMEM;
755
756         offset = (void *)&desc->buffer - (void *)desc;
757         desc->buffer_size = PAGE_SIZE - offset;
758         desc->buffer_bus = bus_addr + offset;
759         desc->used = 0;
760
761         list_add_tail(&desc->list, &ctx->buffer_list);
762         ctx->total_allocation += PAGE_SIZE;
763
764         return 0;
765 }
766
767 static int
768 context_init(struct context *ctx, struct fw_ohci *ohci,
769              u32 regs, descriptor_callback_t callback)
770 {
771         ctx->ohci = ohci;
772         ctx->regs = regs;
773         ctx->total_allocation = 0;
774
775         INIT_LIST_HEAD(&ctx->buffer_list);
776         if (context_add_buffer(ctx) < 0)
777                 return -ENOMEM;
778
779         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
780                         struct descriptor_buffer, list);
781
782         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
783         ctx->callback = callback;
784
785         /*
786          * We put a dummy descriptor in the buffer that has a NULL
787          * branch address and looks like it's been sent.  That way we
788          * have a descriptor to append DMA programs to.
789          */
790         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
791         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
792         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
793         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
794         ctx->last = ctx->buffer_tail->buffer;
795         ctx->prev = ctx->buffer_tail->buffer;
796
797         return 0;
798 }
799
800 static void
801 context_release(struct context *ctx)
802 {
803         struct fw_card *card = &ctx->ohci->card;
804         struct descriptor_buffer *desc, *tmp;
805
806         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
807                 dma_free_coherent(card->device, PAGE_SIZE, desc,
808                         desc->buffer_bus -
809                         ((void *)&desc->buffer - (void *)desc));
810 }
811
812 /* Must be called with ohci->lock held */
813 static struct descriptor *
814 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
815 {
816         struct descriptor *d = NULL;
817         struct descriptor_buffer *desc = ctx->buffer_tail;
818
819         if (z * sizeof(*d) > desc->buffer_size)
820                 return NULL;
821
822         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
823                 /* No room for the descriptor in this buffer, so advance to the
824                  * next one. */
825
826                 if (desc->list.next == &ctx->buffer_list) {
827                         /* If there is no free buffer next in the list,
828                          * allocate one. */
829                         if (context_add_buffer(ctx) < 0)
830                                 return NULL;
831                 }
832                 desc = list_entry(desc->list.next,
833                                 struct descriptor_buffer, list);
834                 ctx->buffer_tail = desc;
835         }
836
837         d = desc->buffer + desc->used / sizeof(*d);
838         memset(d, 0, z * sizeof(*d));
839         *d_bus = desc->buffer_bus + desc->used;
840
841         return d;
842 }
843
844 static void context_run(struct context *ctx, u32 extra)
845 {
846         struct fw_ohci *ohci = ctx->ohci;
847
848         reg_write(ohci, COMMAND_PTR(ctx->regs),
849                   le32_to_cpu(ctx->last->branch_address));
850         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
851         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
852         flush_writes(ohci);
853 }
854
855 static void context_append(struct context *ctx,
856                            struct descriptor *d, int z, int extra)
857 {
858         dma_addr_t d_bus;
859         struct descriptor_buffer *desc = ctx->buffer_tail;
860
861         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
862
863         desc->used += (z + extra) * sizeof(*d);
864         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
865         ctx->prev = find_branch_descriptor(d, z);
866
867         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
868         flush_writes(ctx->ohci);
869 }
870
871 static void context_stop(struct context *ctx)
872 {
873         u32 reg;
874         int i;
875
876         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
877         flush_writes(ctx->ohci);
878
879         for (i = 0; i < 10; i++) {
880                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
881                 if ((reg & CONTEXT_ACTIVE) == 0)
882                         break;
883
884                 fw_notify("context_stop: still active (0x%08x)\n", reg);
885                 mdelay(1);
886         }
887 }
888
889 struct driver_data {
890         struct fw_packet *packet;
891 };
892
893 /*
894  * This function apppends a packet to the DMA queue for transmission.
895  * Must always be called with the ochi->lock held to ensure proper
896  * generation handling and locking around packet queue manipulation.
897  */
898 static int
899 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
900 {
901         struct fw_ohci *ohci = ctx->ohci;
902         dma_addr_t d_bus, uninitialized_var(payload_bus);
903         struct driver_data *driver_data;
904         struct descriptor *d, *last;
905         __le32 *header;
906         int z, tcode;
907         u32 reg;
908
909         d = context_get_descriptors(ctx, 4, &d_bus);
910         if (d == NULL) {
911                 packet->ack = RCODE_SEND_ERROR;
912                 return -1;
913         }
914
915         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
916         d[0].res_count = cpu_to_le16(packet->timestamp);
917
918         /*
919          * The DMA format for asyncronous link packets is different
920          * from the IEEE1394 layout, so shift the fields around
921          * accordingly.  If header_length is 8, it's a PHY packet, to
922          * which we need to prepend an extra quadlet.
923          */
924
925         header = (__le32 *) &d[1];
926         if (packet->header_length > 8) {
927                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
928                                         (packet->speed << 16));
929                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
930                                         (packet->header[0] & 0xffff0000));
931                 header[2] = cpu_to_le32(packet->header[2]);
932
933                 tcode = (packet->header[0] >> 4) & 0x0f;
934                 if (TCODE_IS_BLOCK_PACKET(tcode))
935                         header[3] = cpu_to_le32(packet->header[3]);
936                 else
937                         header[3] = (__force __le32) packet->header[3];
938
939                 d[0].req_count = cpu_to_le16(packet->header_length);
940         } else {
941                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
942                                         (packet->speed << 16));
943                 header[1] = cpu_to_le32(packet->header[0]);
944                 header[2] = cpu_to_le32(packet->header[1]);
945                 d[0].req_count = cpu_to_le16(12);
946         }
947
948         driver_data = (struct driver_data *) &d[3];
949         driver_data->packet = packet;
950         packet->driver_data = driver_data;
951
952         if (packet->payload_length > 0) {
953                 payload_bus =
954                         dma_map_single(ohci->card.device, packet->payload,
955                                        packet->payload_length, DMA_TO_DEVICE);
956                 if (dma_mapping_error(payload_bus)) {
957                         packet->ack = RCODE_SEND_ERROR;
958                         return -1;
959                 }
960
961                 d[2].req_count    = cpu_to_le16(packet->payload_length);
962                 d[2].data_address = cpu_to_le32(payload_bus);
963                 last = &d[2];
964                 z = 3;
965         } else {
966                 last = &d[0];
967                 z = 2;
968         }
969
970         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
971                                      DESCRIPTOR_IRQ_ALWAYS |
972                                      DESCRIPTOR_BRANCH_ALWAYS);
973
974         /*
975          * If the controller and packet generations don't match, we need to
976          * bail out and try again.  If IntEvent.busReset is set, the AT context
977          * is halted, so appending to the context and trying to run it is
978          * futile.  Most controllers do the right thing and just flush the AT
979          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
980          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
981          * up stalling out.  So we just bail out in software and try again
982          * later, and everyone is happy.
983          * FIXME: Document how the locking works.
984          */
985         if (ohci->generation != packet->generation ||
986             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
987                 if (packet->payload_length > 0)
988                         dma_unmap_single(ohci->card.device, payload_bus,
989                                          packet->payload_length, DMA_TO_DEVICE);
990                 packet->ack = RCODE_GENERATION;
991                 return -1;
992         }
993
994         context_append(ctx, d, z, 4 - z);
995
996         /* If the context isn't already running, start it up. */
997         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
998         if ((reg & CONTEXT_RUN) == 0)
999                 context_run(ctx, 0);
1000
1001         return 0;
1002 }
1003
1004 static int handle_at_packet(struct context *context,
1005                             struct descriptor *d,
1006                             struct descriptor *last)
1007 {
1008         struct driver_data *driver_data;
1009         struct fw_packet *packet;
1010         struct fw_ohci *ohci = context->ohci;
1011         dma_addr_t payload_bus;
1012         int evt;
1013
1014         if (last->transfer_status == 0)
1015                 /* This descriptor isn't done yet, stop iteration. */
1016                 return 0;
1017
1018         driver_data = (struct driver_data *) &d[3];
1019         packet = driver_data->packet;
1020         if (packet == NULL)
1021                 /* This packet was cancelled, just continue. */
1022                 return 1;
1023
1024         payload_bus = le32_to_cpu(last->data_address);
1025         if (payload_bus != 0)
1026                 dma_unmap_single(ohci->card.device, payload_bus,
1027                                  packet->payload_length, DMA_TO_DEVICE);
1028
1029         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1030         packet->timestamp = le16_to_cpu(last->res_count);
1031
1032         log_ar_at_event('T', packet->speed, packet->header, evt);
1033
1034         switch (evt) {
1035         case OHCI1394_evt_timeout:
1036                 /* Async response transmit timed out. */
1037                 packet->ack = RCODE_CANCELLED;
1038                 break;
1039
1040         case OHCI1394_evt_flushed:
1041                 /*
1042                  * The packet was flushed should give same error as
1043                  * when we try to use a stale generation count.
1044                  */
1045                 packet->ack = RCODE_GENERATION;
1046                 break;
1047
1048         case OHCI1394_evt_missing_ack:
1049                 /*
1050                  * Using a valid (current) generation count, but the
1051                  * node is not on the bus or not sending acks.
1052                  */
1053                 packet->ack = RCODE_NO_ACK;
1054                 break;
1055
1056         case ACK_COMPLETE + 0x10:
1057         case ACK_PENDING + 0x10:
1058         case ACK_BUSY_X + 0x10:
1059         case ACK_BUSY_A + 0x10:
1060         case ACK_BUSY_B + 0x10:
1061         case ACK_DATA_ERROR + 0x10:
1062         case ACK_TYPE_ERROR + 0x10:
1063                 packet->ack = evt - 0x10;
1064                 break;
1065
1066         default:
1067                 packet->ack = RCODE_SEND_ERROR;
1068                 break;
1069         }
1070
1071         packet->callback(packet, &ohci->card, packet->ack);
1072
1073         return 1;
1074 }
1075
1076 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1077 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1078 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1079 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1080 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1081
1082 static void
1083 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1084 {
1085         struct fw_packet response;
1086         int tcode, length, i;
1087
1088         tcode = HEADER_GET_TCODE(packet->header[0]);
1089         if (TCODE_IS_BLOCK_PACKET(tcode))
1090                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1091         else
1092                 length = 4;
1093
1094         i = csr - CSR_CONFIG_ROM;
1095         if (i + length > CONFIG_ROM_SIZE) {
1096                 fw_fill_response(&response, packet->header,
1097                                  RCODE_ADDRESS_ERROR, NULL, 0);
1098         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1099                 fw_fill_response(&response, packet->header,
1100                                  RCODE_TYPE_ERROR, NULL, 0);
1101         } else {
1102                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1103                                  (void *) ohci->config_rom + i, length);
1104         }
1105
1106         fw_core_handle_response(&ohci->card, &response);
1107 }
1108
1109 static void
1110 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1111 {
1112         struct fw_packet response;
1113         int tcode, length, ext_tcode, sel;
1114         __be32 *payload, lock_old;
1115         u32 lock_arg, lock_data;
1116
1117         tcode = HEADER_GET_TCODE(packet->header[0]);
1118         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1119         payload = packet->payload;
1120         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1121
1122         if (tcode == TCODE_LOCK_REQUEST &&
1123             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1124                 lock_arg = be32_to_cpu(payload[0]);
1125                 lock_data = be32_to_cpu(payload[1]);
1126         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1127                 lock_arg = 0;
1128                 lock_data = 0;
1129         } else {
1130                 fw_fill_response(&response, packet->header,
1131                                  RCODE_TYPE_ERROR, NULL, 0);
1132                 goto out;
1133         }
1134
1135         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1136         reg_write(ohci, OHCI1394_CSRData, lock_data);
1137         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1138         reg_write(ohci, OHCI1394_CSRControl, sel);
1139
1140         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1141                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1142         else
1143                 fw_notify("swap not done yet\n");
1144
1145         fw_fill_response(&response, packet->header,
1146                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1147  out:
1148         fw_core_handle_response(&ohci->card, &response);
1149 }
1150
1151 static void
1152 handle_local_request(struct context *ctx, struct fw_packet *packet)
1153 {
1154         u64 offset;
1155         u32 csr;
1156
1157         if (ctx == &ctx->ohci->at_request_ctx) {
1158                 packet->ack = ACK_PENDING;
1159                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1160         }
1161
1162         offset =
1163                 ((unsigned long long)
1164                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1165                 packet->header[2];
1166         csr = offset - CSR_REGISTER_BASE;
1167
1168         /* Handle config rom reads. */
1169         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1170                 handle_local_rom(ctx->ohci, packet, csr);
1171         else switch (csr) {
1172         case CSR_BUS_MANAGER_ID:
1173         case CSR_BANDWIDTH_AVAILABLE:
1174         case CSR_CHANNELS_AVAILABLE_HI:
1175         case CSR_CHANNELS_AVAILABLE_LO:
1176                 handle_local_lock(ctx->ohci, packet, csr);
1177                 break;
1178         default:
1179                 if (ctx == &ctx->ohci->at_request_ctx)
1180                         fw_core_handle_request(&ctx->ohci->card, packet);
1181                 else
1182                         fw_core_handle_response(&ctx->ohci->card, packet);
1183                 break;
1184         }
1185
1186         if (ctx == &ctx->ohci->at_response_ctx) {
1187                 packet->ack = ACK_COMPLETE;
1188                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1189         }
1190 }
1191
1192 static void
1193 at_context_transmit(struct context *ctx, struct fw_packet *packet)
1194 {
1195         unsigned long flags;
1196         int retval;
1197
1198         spin_lock_irqsave(&ctx->ohci->lock, flags);
1199
1200         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1201             ctx->ohci->generation == packet->generation) {
1202                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1203                 handle_local_request(ctx, packet);
1204                 return;
1205         }
1206
1207         retval = at_context_queue_packet(ctx, packet);
1208         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1209
1210         if (retval < 0)
1211                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1212
1213 }
1214
1215 static void bus_reset_tasklet(unsigned long data)
1216 {
1217         struct fw_ohci *ohci = (struct fw_ohci *)data;
1218         int self_id_count, i, j, reg;
1219         int generation, new_generation;
1220         unsigned long flags;
1221         void *free_rom = NULL;
1222         dma_addr_t free_rom_bus = 0;
1223
1224         reg = reg_read(ohci, OHCI1394_NodeID);
1225         if (!(reg & OHCI1394_NodeID_idValid)) {
1226                 fw_notify("node ID not valid, new bus reset in progress\n");
1227                 return;
1228         }
1229         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1230                 fw_notify("malconfigured bus\n");
1231                 return;
1232         }
1233         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1234                                OHCI1394_NodeID_nodeNumber);
1235
1236         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1237         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1238                 fw_notify("inconsistent self IDs\n");
1239                 return;
1240         }
1241         /*
1242          * The count in the SelfIDCount register is the number of
1243          * bytes in the self ID receive buffer.  Since we also receive
1244          * the inverted quadlets and a header quadlet, we shift one
1245          * bit extra to get the actual number of self IDs.
1246          */
1247         self_id_count = (reg >> 3) & 0x3ff;
1248         if (self_id_count == 0) {
1249                 fw_notify("inconsistent self IDs\n");
1250                 return;
1251         }
1252         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1253         rmb();
1254
1255         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1256                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1257                         fw_notify("inconsistent self IDs\n");
1258                         return;
1259                 }
1260                 ohci->self_id_buffer[j] =
1261                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1262         }
1263         rmb();
1264
1265         /*
1266          * Check the consistency of the self IDs we just read.  The
1267          * problem we face is that a new bus reset can start while we
1268          * read out the self IDs from the DMA buffer. If this happens,
1269          * the DMA buffer will be overwritten with new self IDs and we
1270          * will read out inconsistent data.  The OHCI specification
1271          * (section 11.2) recommends a technique similar to
1272          * linux/seqlock.h, where we remember the generation of the
1273          * self IDs in the buffer before reading them out and compare
1274          * it to the current generation after reading them out.  If
1275          * the two generations match we know we have a consistent set
1276          * of self IDs.
1277          */
1278
1279         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1280         if (new_generation != generation) {
1281                 fw_notify("recursive bus reset detected, "
1282                           "discarding self ids\n");
1283                 return;
1284         }
1285
1286         /* FIXME: Document how the locking works. */
1287         spin_lock_irqsave(&ohci->lock, flags);
1288
1289         ohci->generation = generation;
1290         context_stop(&ohci->at_request_ctx);
1291         context_stop(&ohci->at_response_ctx);
1292         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1293
1294         if (ohci->bus_reset_packet_quirk)
1295                 ohci->request_generation = generation;
1296
1297         /*
1298          * This next bit is unrelated to the AT context stuff but we
1299          * have to do it under the spinlock also.  If a new config rom
1300          * was set up before this reset, the old one is now no longer
1301          * in use and we can free it. Update the config rom pointers
1302          * to point to the current config rom and clear the
1303          * next_config_rom pointer so a new udpate can take place.
1304          */
1305
1306         if (ohci->next_config_rom != NULL) {
1307                 if (ohci->next_config_rom != ohci->config_rom) {
1308                         free_rom      = ohci->config_rom;
1309                         free_rom_bus  = ohci->config_rom_bus;
1310                 }
1311                 ohci->config_rom      = ohci->next_config_rom;
1312                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1313                 ohci->next_config_rom = NULL;
1314
1315                 /*
1316                  * Restore config_rom image and manually update
1317                  * config_rom registers.  Writing the header quadlet
1318                  * will indicate that the config rom is ready, so we
1319                  * do that last.
1320                  */
1321                 reg_write(ohci, OHCI1394_BusOptions,
1322                           be32_to_cpu(ohci->config_rom[2]));
1323                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1324                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1325         }
1326
1327 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1328         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1329         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1330 #endif
1331
1332         spin_unlock_irqrestore(&ohci->lock, flags);
1333
1334         if (free_rom)
1335                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1336                                   free_rom, free_rom_bus);
1337
1338         log_selfids(ohci->node_id, generation,
1339                     self_id_count, ohci->self_id_buffer);
1340
1341         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1342                                  self_id_count, ohci->self_id_buffer);
1343 }
1344
1345 static irqreturn_t irq_handler(int irq, void *data)
1346 {
1347         struct fw_ohci *ohci = data;
1348         u32 event, iso_event, cycle_time;
1349         int i;
1350
1351         event = reg_read(ohci, OHCI1394_IntEventClear);
1352
1353         if (!event || !~event)
1354                 return IRQ_NONE;
1355
1356         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1357         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1358         log_irqs(event);
1359
1360         if (event & OHCI1394_selfIDComplete)
1361                 tasklet_schedule(&ohci->bus_reset_tasklet);
1362
1363         if (event & OHCI1394_RQPkt)
1364                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1365
1366         if (event & OHCI1394_RSPkt)
1367                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1368
1369         if (event & OHCI1394_reqTxComplete)
1370                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1371
1372         if (event & OHCI1394_respTxComplete)
1373                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1374
1375         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1376         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1377
1378         while (iso_event) {
1379                 i = ffs(iso_event) - 1;
1380                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1381                 iso_event &= ~(1 << i);
1382         }
1383
1384         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1385         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1386
1387         while (iso_event) {
1388                 i = ffs(iso_event) - 1;
1389                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1390                 iso_event &= ~(1 << i);
1391         }
1392
1393         if (unlikely(event & OHCI1394_regAccessFail))
1394                 fw_error("Register access failure - "
1395                          "please notify linux1394-devel@lists.sf.net\n");
1396
1397         if (unlikely(event & OHCI1394_postedWriteErr))
1398                 fw_error("PCI posted write error\n");
1399
1400         if (unlikely(event & OHCI1394_cycleTooLong)) {
1401                 if (printk_ratelimit())
1402                         fw_notify("isochronous cycle too long\n");
1403                 reg_write(ohci, OHCI1394_LinkControlSet,
1404                           OHCI1394_LinkControl_cycleMaster);
1405         }
1406
1407         if (event & OHCI1394_cycle64Seconds) {
1408                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1409                 if ((cycle_time & 0x80000000) == 0)
1410                         ohci->bus_seconds++;
1411         }
1412
1413         return IRQ_HANDLED;
1414 }
1415
1416 static int software_reset(struct fw_ohci *ohci)
1417 {
1418         int i;
1419
1420         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1421
1422         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1423                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1424                      OHCI1394_HCControl_softReset) == 0)
1425                         return 0;
1426                 msleep(1);
1427         }
1428
1429         return -EBUSY;
1430 }
1431
1432 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1433 {
1434         struct fw_ohci *ohci = fw_ohci(card);
1435         struct pci_dev *dev = to_pci_dev(card->device);
1436         u32 lps;
1437         int i;
1438
1439         if (software_reset(ohci)) {
1440                 fw_error("Failed to reset ohci card.\n");
1441                 return -EBUSY;
1442         }
1443
1444         /*
1445          * Now enable LPS, which we need in order to start accessing
1446          * most of the registers.  In fact, on some cards (ALI M5251),
1447          * accessing registers in the SClk domain without LPS enabled
1448          * will lock up the machine.  Wait 50msec to make sure we have
1449          * full link enabled.  However, with some cards (well, at least
1450          * a JMicron PCIe card), we have to try again sometimes.
1451          */
1452         reg_write(ohci, OHCI1394_HCControlSet,
1453                   OHCI1394_HCControl_LPS |
1454                   OHCI1394_HCControl_postedWriteEnable);
1455         flush_writes(ohci);
1456
1457         for (lps = 0, i = 0; !lps && i < 3; i++) {
1458                 msleep(50);
1459                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1460                       OHCI1394_HCControl_LPS;
1461         }
1462
1463         if (!lps) {
1464                 fw_error("Failed to set Link Power Status\n");
1465                 return -EIO;
1466         }
1467
1468         reg_write(ohci, OHCI1394_HCControlClear,
1469                   OHCI1394_HCControl_noByteSwapData);
1470
1471         reg_write(ohci, OHCI1394_LinkControlSet,
1472                   OHCI1394_LinkControl_rcvSelfID |
1473                   OHCI1394_LinkControl_cycleTimerEnable |
1474                   OHCI1394_LinkControl_cycleMaster);
1475
1476         reg_write(ohci, OHCI1394_ATRetries,
1477                   OHCI1394_MAX_AT_REQ_RETRIES |
1478                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1479                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1480
1481         ar_context_run(&ohci->ar_request_ctx);
1482         ar_context_run(&ohci->ar_response_ctx);
1483
1484         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1485         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1486         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1487         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1488         reg_write(ohci, OHCI1394_IntMaskSet,
1489                   OHCI1394_selfIDComplete |
1490                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1491                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1492                   OHCI1394_isochRx | OHCI1394_isochTx |
1493                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1494                   OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1495                   OHCI1394_masterIntEnable);
1496         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1497                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1498
1499         /* Activate link_on bit and contender bit in our self ID packets.*/
1500         if (ohci_update_phy_reg(card, 4, 0,
1501                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1502                 return -EIO;
1503
1504         /*
1505          * When the link is not yet enabled, the atomic config rom
1506          * update mechanism described below in ohci_set_config_rom()
1507          * is not active.  We have to update ConfigRomHeader and
1508          * BusOptions manually, and the write to ConfigROMmap takes
1509          * effect immediately.  We tie this to the enabling of the
1510          * link, so we have a valid config rom before enabling - the
1511          * OHCI requires that ConfigROMhdr and BusOptions have valid
1512          * values before enabling.
1513          *
1514          * However, when the ConfigROMmap is written, some controllers
1515          * always read back quadlets 0 and 2 from the config rom to
1516          * the ConfigRomHeader and BusOptions registers on bus reset.
1517          * They shouldn't do that in this initial case where the link
1518          * isn't enabled.  This means we have to use the same
1519          * workaround here, setting the bus header to 0 and then write
1520          * the right values in the bus reset tasklet.
1521          */
1522
1523         if (config_rom) {
1524                 ohci->next_config_rom =
1525                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1526                                            &ohci->next_config_rom_bus,
1527                                            GFP_KERNEL);
1528                 if (ohci->next_config_rom == NULL)
1529                         return -ENOMEM;
1530
1531                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1532                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1533         } else {
1534                 /*
1535                  * In the suspend case, config_rom is NULL, which
1536                  * means that we just reuse the old config rom.
1537                  */
1538                 ohci->next_config_rom = ohci->config_rom;
1539                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1540         }
1541
1542         ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1543         ohci->next_config_rom[0] = 0;
1544         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1545         reg_write(ohci, OHCI1394_BusOptions,
1546                   be32_to_cpu(ohci->next_config_rom[2]));
1547         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1548
1549         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1550
1551         if (request_irq(dev->irq, irq_handler,
1552                         IRQF_SHARED, ohci_driver_name, ohci)) {
1553                 fw_error("Failed to allocate shared interrupt %d.\n",
1554                          dev->irq);
1555                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1556                                   ohci->config_rom, ohci->config_rom_bus);
1557                 return -EIO;
1558         }
1559
1560         reg_write(ohci, OHCI1394_HCControlSet,
1561                   OHCI1394_HCControl_linkEnable |
1562                   OHCI1394_HCControl_BIBimageValid);
1563         flush_writes(ohci);
1564
1565         /*
1566          * We are ready to go, initiate bus reset to finish the
1567          * initialization.
1568          */
1569
1570         fw_core_initiate_bus_reset(&ohci->card, 1);
1571
1572         return 0;
1573 }
1574
1575 static int
1576 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1577 {
1578         struct fw_ohci *ohci;
1579         unsigned long flags;
1580         int retval = -EBUSY;
1581         __be32 *next_config_rom;
1582         dma_addr_t uninitialized_var(next_config_rom_bus);
1583
1584         ohci = fw_ohci(card);
1585
1586         /*
1587          * When the OHCI controller is enabled, the config rom update
1588          * mechanism is a bit tricky, but easy enough to use.  See
1589          * section 5.5.6 in the OHCI specification.
1590          *
1591          * The OHCI controller caches the new config rom address in a
1592          * shadow register (ConfigROMmapNext) and needs a bus reset
1593          * for the changes to take place.  When the bus reset is
1594          * detected, the controller loads the new values for the
1595          * ConfigRomHeader and BusOptions registers from the specified
1596          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1597          * shadow register. All automatically and atomically.
1598          *
1599          * Now, there's a twist to this story.  The automatic load of
1600          * ConfigRomHeader and BusOptions doesn't honor the
1601          * noByteSwapData bit, so with a be32 config rom, the
1602          * controller will load be32 values in to these registers
1603          * during the atomic update, even on litte endian
1604          * architectures.  The workaround we use is to put a 0 in the
1605          * header quadlet; 0 is endian agnostic and means that the
1606          * config rom isn't ready yet.  In the bus reset tasklet we
1607          * then set up the real values for the two registers.
1608          *
1609          * We use ohci->lock to avoid racing with the code that sets
1610          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1611          */
1612
1613         next_config_rom =
1614                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1615                                    &next_config_rom_bus, GFP_KERNEL);
1616         if (next_config_rom == NULL)
1617                 return -ENOMEM;
1618
1619         spin_lock_irqsave(&ohci->lock, flags);
1620
1621         if (ohci->next_config_rom == NULL) {
1622                 ohci->next_config_rom = next_config_rom;
1623                 ohci->next_config_rom_bus = next_config_rom_bus;
1624
1625                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1626                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1627                                   length * 4);
1628
1629                 ohci->next_header = config_rom[0];
1630                 ohci->next_config_rom[0] = 0;
1631
1632                 reg_write(ohci, OHCI1394_ConfigROMmap,
1633                           ohci->next_config_rom_bus);
1634                 retval = 0;
1635         }
1636
1637         spin_unlock_irqrestore(&ohci->lock, flags);
1638
1639         /*
1640          * Now initiate a bus reset to have the changes take
1641          * effect. We clean up the old config rom memory and DMA
1642          * mappings in the bus reset tasklet, since the OHCI
1643          * controller could need to access it before the bus reset
1644          * takes effect.
1645          */
1646         if (retval == 0)
1647                 fw_core_initiate_bus_reset(&ohci->card, 1);
1648         else
1649                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1650                                   next_config_rom, next_config_rom_bus);
1651
1652         return retval;
1653 }
1654
1655 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1656 {
1657         struct fw_ohci *ohci = fw_ohci(card);
1658
1659         at_context_transmit(&ohci->at_request_ctx, packet);
1660 }
1661
1662 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1663 {
1664         struct fw_ohci *ohci = fw_ohci(card);
1665
1666         at_context_transmit(&ohci->at_response_ctx, packet);
1667 }
1668
1669 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1670 {
1671         struct fw_ohci *ohci = fw_ohci(card);
1672         struct context *ctx = &ohci->at_request_ctx;
1673         struct driver_data *driver_data = packet->driver_data;
1674         int retval = -ENOENT;
1675
1676         tasklet_disable(&ctx->tasklet);
1677
1678         if (packet->ack != 0)
1679                 goto out;
1680
1681         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1682         driver_data->packet = NULL;
1683         packet->ack = RCODE_CANCELLED;
1684         packet->callback(packet, &ohci->card, packet->ack);
1685         retval = 0;
1686
1687  out:
1688         tasklet_enable(&ctx->tasklet);
1689
1690         return retval;
1691 }
1692
1693 static int
1694 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1695 {
1696 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1697         return 0;
1698 #else
1699         struct fw_ohci *ohci = fw_ohci(card);
1700         unsigned long flags;
1701         int n, retval = 0;
1702
1703         /*
1704          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1705          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1706          */
1707
1708         spin_lock_irqsave(&ohci->lock, flags);
1709
1710         if (ohci->generation != generation) {
1711                 retval = -ESTALE;
1712                 goto out;
1713         }
1714
1715         /*
1716          * Note, if the node ID contains a non-local bus ID, physical DMA is
1717          * enabled for _all_ nodes on remote buses.
1718          */
1719
1720         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1721         if (n < 32)
1722                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1723         else
1724                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1725
1726         flush_writes(ohci);
1727  out:
1728         spin_unlock_irqrestore(&ohci->lock, flags);
1729         return retval;
1730 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1731 }
1732
1733 static u64
1734 ohci_get_bus_time(struct fw_card *card)
1735 {
1736         struct fw_ohci *ohci = fw_ohci(card);
1737         u32 cycle_time;
1738         u64 bus_time;
1739
1740         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1741         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1742
1743         return bus_time;
1744 }
1745
1746 static int handle_ir_dualbuffer_packet(struct context *context,
1747                                        struct descriptor *d,
1748                                        struct descriptor *last)
1749 {
1750         struct iso_context *ctx =
1751                 container_of(context, struct iso_context, context);
1752         struct db_descriptor *db = (struct db_descriptor *) d;
1753         __le32 *ir_header;
1754         size_t header_length;
1755         void *p, *end;
1756         int i;
1757
1758         if (db->first_res_count != 0 && db->second_res_count != 0) {
1759                 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1760                         /* This descriptor isn't done yet, stop iteration. */
1761                         return 0;
1762                 }
1763                 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1764         }
1765
1766         header_length = le16_to_cpu(db->first_req_count) -
1767                 le16_to_cpu(db->first_res_count);
1768
1769         i = ctx->header_length;
1770         p = db + 1;
1771         end = p + header_length;
1772         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1773                 /*
1774                  * The iso header is byteswapped to little endian by
1775                  * the controller, but the remaining header quadlets
1776                  * are big endian.  We want to present all the headers
1777                  * as big endian, so we have to swap the first
1778                  * quadlet.
1779                  */
1780                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1781                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1782                 i += ctx->base.header_size;
1783                 ctx->excess_bytes +=
1784                         (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1785                 p += ctx->base.header_size + 4;
1786         }
1787         ctx->header_length = i;
1788
1789         ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1790                 le16_to_cpu(db->second_res_count);
1791
1792         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1793                 ir_header = (__le32 *) (db + 1);
1794                 ctx->base.callback(&ctx->base,
1795                                    le32_to_cpu(ir_header[0]) & 0xffff,
1796                                    ctx->header_length, ctx->header,
1797                                    ctx->base.callback_data);
1798                 ctx->header_length = 0;
1799         }
1800
1801         return 1;
1802 }
1803
1804 static int handle_ir_packet_per_buffer(struct context *context,
1805                                        struct descriptor *d,
1806                                        struct descriptor *last)
1807 {
1808         struct iso_context *ctx =
1809                 container_of(context, struct iso_context, context);
1810         struct descriptor *pd;
1811         __le32 *ir_header;
1812         void *p;
1813         int i;
1814
1815         for (pd = d; pd <= last; pd++) {
1816                 if (pd->transfer_status)
1817                         break;
1818         }
1819         if (pd > last)
1820                 /* Descriptor(s) not done yet, stop iteration */
1821                 return 0;
1822
1823         i   = ctx->header_length;
1824         p   = last + 1;
1825
1826         if (ctx->base.header_size > 0 &&
1827                         i + ctx->base.header_size <= PAGE_SIZE) {
1828                 /*
1829                  * The iso header is byteswapped to little endian by
1830                  * the controller, but the remaining header quadlets
1831                  * are big endian.  We want to present all the headers
1832                  * as big endian, so we have to swap the first quadlet.
1833                  */
1834                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1835                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1836                 ctx->header_length += ctx->base.header_size;
1837         }
1838
1839         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1840                 ir_header = (__le32 *) p;
1841                 ctx->base.callback(&ctx->base,
1842                                    le32_to_cpu(ir_header[0]) & 0xffff,
1843                                    ctx->header_length, ctx->header,
1844                                    ctx->base.callback_data);
1845                 ctx->header_length = 0;
1846         }
1847
1848         return 1;
1849 }
1850
1851 static int handle_it_packet(struct context *context,
1852                             struct descriptor *d,
1853                             struct descriptor *last)
1854 {
1855         struct iso_context *ctx =
1856                 container_of(context, struct iso_context, context);
1857
1858         if (last->transfer_status == 0)
1859                 /* This descriptor isn't done yet, stop iteration. */
1860                 return 0;
1861
1862         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1863                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1864                                    0, NULL, ctx->base.callback_data);
1865
1866         return 1;
1867 }
1868
1869 static struct fw_iso_context *
1870 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1871 {
1872         struct fw_ohci *ohci = fw_ohci(card);
1873         struct iso_context *ctx, *list;
1874         descriptor_callback_t callback;
1875         u32 *mask, regs;
1876         unsigned long flags;
1877         int index, retval = -ENOMEM;
1878
1879         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1880                 mask = &ohci->it_context_mask;
1881                 list = ohci->it_context_list;
1882                 callback = handle_it_packet;
1883         } else {
1884                 mask = &ohci->ir_context_mask;
1885                 list = ohci->ir_context_list;
1886                 if (ohci->version >= OHCI_VERSION_1_1)
1887                         callback = handle_ir_dualbuffer_packet;
1888                 else
1889                         callback = handle_ir_packet_per_buffer;
1890         }
1891
1892         spin_lock_irqsave(&ohci->lock, flags);
1893         index = ffs(*mask) - 1;
1894         if (index >= 0)
1895                 *mask &= ~(1 << index);
1896         spin_unlock_irqrestore(&ohci->lock, flags);
1897
1898         if (index < 0)
1899                 return ERR_PTR(-EBUSY);
1900
1901         if (type == FW_ISO_CONTEXT_TRANSMIT)
1902                 regs = OHCI1394_IsoXmitContextBase(index);
1903         else
1904                 regs = OHCI1394_IsoRcvContextBase(index);
1905
1906         ctx = &list[index];
1907         memset(ctx, 0, sizeof(*ctx));
1908         ctx->header_length = 0;
1909         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1910         if (ctx->header == NULL)
1911                 goto out;
1912
1913         retval = context_init(&ctx->context, ohci, regs, callback);
1914         if (retval < 0)
1915                 goto out_with_header;
1916
1917         return &ctx->base;
1918
1919  out_with_header:
1920         free_page((unsigned long)ctx->header);
1921  out:
1922         spin_lock_irqsave(&ohci->lock, flags);
1923         *mask |= 1 << index;
1924         spin_unlock_irqrestore(&ohci->lock, flags);
1925
1926         return ERR_PTR(retval);
1927 }
1928
1929 static int ohci_start_iso(struct fw_iso_context *base,
1930                           s32 cycle, u32 sync, u32 tags)
1931 {
1932         struct iso_context *ctx = container_of(base, struct iso_context, base);
1933         struct fw_ohci *ohci = ctx->context.ohci;
1934         u32 control, match;
1935         int index;
1936
1937         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1938                 index = ctx - ohci->it_context_list;
1939                 match = 0;
1940                 if (cycle >= 0)
1941                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1942                                 (cycle & 0x7fff) << 16;
1943
1944                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1945                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1946                 context_run(&ctx->context, match);
1947         } else {
1948                 index = ctx - ohci->ir_context_list;
1949                 control = IR_CONTEXT_ISOCH_HEADER;
1950                 if (ohci->version >= OHCI_VERSION_1_1)
1951                         control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1952                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1953                 if (cycle >= 0) {
1954                         match |= (cycle & 0x07fff) << 12;
1955                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1956                 }
1957
1958                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1959                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1960                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1961                 context_run(&ctx->context, control);
1962         }
1963
1964         return 0;
1965 }
1966
1967 static int ohci_stop_iso(struct fw_iso_context *base)
1968 {
1969         struct fw_ohci *ohci = fw_ohci(base->card);
1970         struct iso_context *ctx = container_of(base, struct iso_context, base);
1971         int index;
1972
1973         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1974                 index = ctx - ohci->it_context_list;
1975                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1976         } else {
1977                 index = ctx - ohci->ir_context_list;
1978                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1979         }
1980         flush_writes(ohci);
1981         context_stop(&ctx->context);
1982
1983         return 0;
1984 }
1985
1986 static void ohci_free_iso_context(struct fw_iso_context *base)
1987 {
1988         struct fw_ohci *ohci = fw_ohci(base->card);
1989         struct iso_context *ctx = container_of(base, struct iso_context, base);
1990         unsigned long flags;
1991         int index;
1992
1993         ohci_stop_iso(base);
1994         context_release(&ctx->context);
1995         free_page((unsigned long)ctx->header);
1996
1997         spin_lock_irqsave(&ohci->lock, flags);
1998
1999         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2000                 index = ctx - ohci->it_context_list;
2001                 ohci->it_context_mask |= 1 << index;
2002         } else {
2003                 index = ctx - ohci->ir_context_list;
2004                 ohci->ir_context_mask |= 1 << index;
2005         }
2006
2007         spin_unlock_irqrestore(&ohci->lock, flags);
2008 }
2009
2010 static int
2011 ohci_queue_iso_transmit(struct fw_iso_context *base,
2012                         struct fw_iso_packet *packet,
2013                         struct fw_iso_buffer *buffer,
2014                         unsigned long payload)
2015 {
2016         struct iso_context *ctx = container_of(base, struct iso_context, base);
2017         struct descriptor *d, *last, *pd;
2018         struct fw_iso_packet *p;
2019         __le32 *header;
2020         dma_addr_t d_bus, page_bus;
2021         u32 z, header_z, payload_z, irq;
2022         u32 payload_index, payload_end_index, next_page_index;
2023         int page, end_page, i, length, offset;
2024
2025         /*
2026          * FIXME: Cycle lost behavior should be configurable: lose
2027          * packet, retransmit or terminate..
2028          */
2029
2030         p = packet;
2031         payload_index = payload;
2032
2033         if (p->skip)
2034                 z = 1;
2035         else
2036                 z = 2;
2037         if (p->header_length > 0)
2038                 z++;
2039
2040         /* Determine the first page the payload isn't contained in. */
2041         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2042         if (p->payload_length > 0)
2043                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2044         else
2045                 payload_z = 0;
2046
2047         z += payload_z;
2048
2049         /* Get header size in number of descriptors. */
2050         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2051
2052         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2053         if (d == NULL)
2054                 return -ENOMEM;
2055
2056         if (!p->skip) {
2057                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2058                 d[0].req_count = cpu_to_le16(8);
2059
2060                 header = (__le32 *) &d[1];
2061                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2062                                         IT_HEADER_TAG(p->tag) |
2063                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2064                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2065                                         IT_HEADER_SPEED(ctx->base.speed));
2066                 header[1] =
2067                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2068                                                           p->payload_length));
2069         }
2070
2071         if (p->header_length > 0) {
2072                 d[2].req_count    = cpu_to_le16(p->header_length);
2073                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2074                 memcpy(&d[z], p->header, p->header_length);
2075         }
2076
2077         pd = d + z - payload_z;
2078         payload_end_index = payload_index + p->payload_length;
2079         for (i = 0; i < payload_z; i++) {
2080                 page               = payload_index >> PAGE_SHIFT;
2081                 offset             = payload_index & ~PAGE_MASK;
2082                 next_page_index    = (page + 1) << PAGE_SHIFT;
2083                 length             =
2084                         min(next_page_index, payload_end_index) - payload_index;
2085                 pd[i].req_count    = cpu_to_le16(length);
2086
2087                 page_bus = page_private(buffer->pages[page]);
2088                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2089
2090                 payload_index += length;
2091         }
2092
2093         if (p->interrupt)
2094                 irq = DESCRIPTOR_IRQ_ALWAYS;
2095         else
2096                 irq = DESCRIPTOR_NO_IRQ;
2097
2098         last = z == 2 ? d : d + z - 1;
2099         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2100                                      DESCRIPTOR_STATUS |
2101                                      DESCRIPTOR_BRANCH_ALWAYS |
2102                                      irq);
2103
2104         context_append(&ctx->context, d, z, header_z);
2105
2106         return 0;
2107 }
2108
2109 static int
2110 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2111                                   struct fw_iso_packet *packet,
2112                                   struct fw_iso_buffer *buffer,
2113                                   unsigned long payload)
2114 {
2115         struct iso_context *ctx = container_of(base, struct iso_context, base);
2116         struct db_descriptor *db = NULL;
2117         struct descriptor *d;
2118         struct fw_iso_packet *p;
2119         dma_addr_t d_bus, page_bus;
2120         u32 z, header_z, length, rest;
2121         int page, offset, packet_count, header_size;
2122
2123         /*
2124          * FIXME: Cycle lost behavior should be configurable: lose
2125          * packet, retransmit or terminate..
2126          */
2127
2128         p = packet;
2129         z = 2;
2130
2131         /*
2132          * The OHCI controller puts the status word in the header
2133          * buffer too, so we need 4 extra bytes per packet.
2134          */
2135         packet_count = p->header_length / ctx->base.header_size;
2136         header_size = packet_count * (ctx->base.header_size + 4);
2137
2138         /* Get header size in number of descriptors. */
2139         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2140         page     = payload >> PAGE_SHIFT;
2141         offset   = payload & ~PAGE_MASK;
2142         rest     = p->payload_length;
2143
2144         /* FIXME: make packet-per-buffer/dual-buffer a context option */
2145         while (rest > 0) {
2146                 d = context_get_descriptors(&ctx->context,
2147                                             z + header_z, &d_bus);
2148                 if (d == NULL)
2149                         return -ENOMEM;
2150
2151                 db = (struct db_descriptor *) d;
2152                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2153                                           DESCRIPTOR_BRANCH_ALWAYS);
2154                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
2155                 if (p->skip && rest == p->payload_length) {
2156                         db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2157                         db->first_req_count = db->first_size;
2158                 } else {
2159                         db->first_req_count = cpu_to_le16(header_size);
2160                 }
2161                 db->first_res_count = db->first_req_count;
2162                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2163
2164                 if (p->skip && rest == p->payload_length)
2165                         length = 4;
2166                 else if (offset + rest < PAGE_SIZE)
2167                         length = rest;
2168                 else
2169                         length = PAGE_SIZE - offset;
2170
2171                 db->second_req_count = cpu_to_le16(length);
2172                 db->second_res_count = db->second_req_count;
2173                 page_bus = page_private(buffer->pages[page]);
2174                 db->second_buffer = cpu_to_le32(page_bus + offset);
2175
2176                 if (p->interrupt && length == rest)
2177                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2178
2179                 context_append(&ctx->context, d, z, header_z);
2180                 offset = (offset + length) & ~PAGE_MASK;
2181                 rest -= length;
2182                 if (offset == 0)
2183                         page++;
2184         }
2185
2186         return 0;
2187 }
2188
2189 static int
2190 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2191                                          struct fw_iso_packet *packet,
2192                                          struct fw_iso_buffer *buffer,
2193                                          unsigned long payload)
2194 {
2195         struct iso_context *ctx = container_of(base, struct iso_context, base);
2196         struct descriptor *d = NULL, *pd = NULL;
2197         struct fw_iso_packet *p = packet;
2198         dma_addr_t d_bus, page_bus;
2199         u32 z, header_z, rest;
2200         int i, j, length;
2201         int page, offset, packet_count, header_size, payload_per_buffer;
2202
2203         /*
2204          * The OHCI controller puts the status word in the
2205          * buffer too, so we need 4 extra bytes per packet.
2206          */
2207         packet_count = p->header_length / ctx->base.header_size;
2208         header_size  = ctx->base.header_size + 4;
2209
2210         /* Get header size in number of descriptors. */
2211         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2212         page     = payload >> PAGE_SHIFT;
2213         offset   = payload & ~PAGE_MASK;
2214         payload_per_buffer = p->payload_length / packet_count;
2215
2216         for (i = 0; i < packet_count; i++) {
2217                 /* d points to the header descriptor */
2218                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2219                 d = context_get_descriptors(&ctx->context,
2220                                 z + header_z, &d_bus);
2221                 if (d == NULL)
2222                         return -ENOMEM;
2223
2224                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2225                                               DESCRIPTOR_INPUT_MORE);
2226                 if (p->skip && i == 0)
2227                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2228                 d->req_count    = cpu_to_le16(header_size);
2229                 d->res_count    = d->req_count;
2230                 d->transfer_status = 0;
2231                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2232
2233                 rest = payload_per_buffer;
2234                 for (j = 1; j < z; j++) {
2235                         pd = d + j;
2236                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2237                                                   DESCRIPTOR_INPUT_MORE);
2238
2239                         if (offset + rest < PAGE_SIZE)
2240                                 length = rest;
2241                         else
2242                                 length = PAGE_SIZE - offset;
2243                         pd->req_count = cpu_to_le16(length);
2244                         pd->res_count = pd->req_count;
2245                         pd->transfer_status = 0;
2246
2247                         page_bus = page_private(buffer->pages[page]);
2248                         pd->data_address = cpu_to_le32(page_bus + offset);
2249
2250                         offset = (offset + length) & ~PAGE_MASK;
2251                         rest -= length;
2252                         if (offset == 0)
2253                                 page++;
2254                 }
2255                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2256                                           DESCRIPTOR_INPUT_LAST |
2257                                           DESCRIPTOR_BRANCH_ALWAYS);
2258                 if (p->interrupt && i == packet_count - 1)
2259                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2260
2261                 context_append(&ctx->context, d, z, header_z);
2262         }
2263
2264         return 0;
2265 }
2266
2267 static int
2268 ohci_queue_iso(struct fw_iso_context *base,
2269                struct fw_iso_packet *packet,
2270                struct fw_iso_buffer *buffer,
2271                unsigned long payload)
2272 {
2273         struct iso_context *ctx = container_of(base, struct iso_context, base);
2274         unsigned long flags;
2275         int retval;
2276
2277         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2278         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2279                 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2280         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2281                 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2282                                                          buffer, payload);
2283         else
2284                 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2285                                                                 buffer,
2286                                                                 payload);
2287         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2288
2289         return retval;
2290 }
2291
2292 static const struct fw_card_driver ohci_driver = {
2293         .name                   = ohci_driver_name,
2294         .enable                 = ohci_enable,
2295         .update_phy_reg         = ohci_update_phy_reg,
2296         .set_config_rom         = ohci_set_config_rom,
2297         .send_request           = ohci_send_request,
2298         .send_response          = ohci_send_response,
2299         .cancel_packet          = ohci_cancel_packet,
2300         .enable_phys_dma        = ohci_enable_phys_dma,
2301         .get_bus_time           = ohci_get_bus_time,
2302
2303         .allocate_iso_context   = ohci_allocate_iso_context,
2304         .free_iso_context       = ohci_free_iso_context,
2305         .queue_iso              = ohci_queue_iso,
2306         .start_iso              = ohci_start_iso,
2307         .stop_iso               = ohci_stop_iso,
2308 };
2309
2310 #ifdef CONFIG_PPC_PMAC
2311 static void ohci_pmac_on(struct pci_dev *dev)
2312 {
2313         if (machine_is(powermac)) {
2314                 struct device_node *ofn = pci_device_to_OF_node(dev);
2315
2316                 if (ofn) {
2317                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2318                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2319                 }
2320         }
2321 }
2322
2323 static void ohci_pmac_off(struct pci_dev *dev)
2324 {
2325         if (machine_is(powermac)) {
2326                 struct device_node *ofn = pci_device_to_OF_node(dev);
2327
2328                 if (ofn) {
2329                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2330                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2331                 }
2332         }
2333 }
2334 #else
2335 #define ohci_pmac_on(dev)
2336 #define ohci_pmac_off(dev)
2337 #endif /* CONFIG_PPC_PMAC */
2338
2339 static int __devinit
2340 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2341 {
2342         struct fw_ohci *ohci;
2343         u32 bus_options, max_receive, link_speed;
2344         u64 guid;
2345         int err;
2346         size_t size;
2347
2348         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2349         if (ohci == NULL) {
2350                 fw_error("Could not malloc fw_ohci data.\n");
2351                 return -ENOMEM;
2352         }
2353
2354         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2355
2356         ohci_pmac_on(dev);
2357
2358         err = pci_enable_device(dev);
2359         if (err) {
2360                 fw_error("Failed to enable OHCI hardware.\n");
2361                 goto fail_free;
2362         }
2363
2364         pci_set_master(dev);
2365         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2366         pci_set_drvdata(dev, ohci);
2367
2368 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2369         ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2370                              dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2371 #endif
2372         ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2373
2374         spin_lock_init(&ohci->lock);
2375
2376         tasklet_init(&ohci->bus_reset_tasklet,
2377                      bus_reset_tasklet, (unsigned long)ohci);
2378
2379         err = pci_request_region(dev, 0, ohci_driver_name);
2380         if (err) {
2381                 fw_error("MMIO resource unavailable\n");
2382                 goto fail_disable;
2383         }
2384
2385         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2386         if (ohci->registers == NULL) {
2387                 fw_error("Failed to remap registers\n");
2388                 err = -ENXIO;
2389                 goto fail_iomem;
2390         }
2391
2392         ar_context_init(&ohci->ar_request_ctx, ohci,
2393                         OHCI1394_AsReqRcvContextControlSet);
2394
2395         ar_context_init(&ohci->ar_response_ctx, ohci,
2396                         OHCI1394_AsRspRcvContextControlSet);
2397
2398         context_init(&ohci->at_request_ctx, ohci,
2399                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2400
2401         context_init(&ohci->at_response_ctx, ohci,
2402                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2403
2404         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2405         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2406         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2407         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2408         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2409
2410         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2411         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2412         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2413         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2414         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2415
2416         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2417                 fw_error("Out of memory for it/ir contexts.\n");
2418                 err = -ENOMEM;
2419                 goto fail_registers;
2420         }
2421
2422         /* self-id dma buffer allocation */
2423         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2424                                                SELF_ID_BUF_SIZE,
2425                                                &ohci->self_id_bus,
2426                                                GFP_KERNEL);
2427         if (ohci->self_id_cpu == NULL) {
2428                 fw_error("Out of memory for self ID buffer.\n");
2429                 err = -ENOMEM;
2430                 goto fail_registers;
2431         }
2432
2433         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2434         max_receive = (bus_options >> 12) & 0xf;
2435         link_speed = bus_options & 0x7;
2436         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2437                 reg_read(ohci, OHCI1394_GUIDLo);
2438
2439         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2440         if (err < 0)
2441                 goto fail_self_id;
2442
2443         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2444         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2445                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2446         return 0;
2447
2448  fail_self_id:
2449         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2450                           ohci->self_id_cpu, ohci->self_id_bus);
2451  fail_registers:
2452         kfree(ohci->it_context_list);
2453         kfree(ohci->ir_context_list);
2454         pci_iounmap(dev, ohci->registers);
2455  fail_iomem:
2456         pci_release_region(dev, 0);
2457  fail_disable:
2458         pci_disable_device(dev);
2459  fail_free:
2460         kfree(&ohci->card);
2461         ohci_pmac_off(dev);
2462
2463         return err;
2464 }
2465
2466 static void pci_remove(struct pci_dev *dev)
2467 {
2468         struct fw_ohci *ohci;
2469
2470         ohci = pci_get_drvdata(dev);
2471         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2472         flush_writes(ohci);
2473         fw_core_remove_card(&ohci->card);
2474
2475         /*
2476          * FIXME: Fail all pending packets here, now that the upper
2477          * layers can't queue any more.
2478          */
2479
2480         software_reset(ohci);
2481         free_irq(dev->irq, ohci);
2482         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2483                           ohci->self_id_cpu, ohci->self_id_bus);
2484         kfree(ohci->it_context_list);
2485         kfree(ohci->ir_context_list);
2486         pci_iounmap(dev, ohci->registers);
2487         pci_release_region(dev, 0);
2488         pci_disable_device(dev);
2489         kfree(&ohci->card);
2490         ohci_pmac_off(dev);
2491
2492         fw_notify("Removed fw-ohci device.\n");
2493 }
2494
2495 #ifdef CONFIG_PM
2496 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2497 {
2498         struct fw_ohci *ohci = pci_get_drvdata(dev);
2499         int err;
2500
2501         software_reset(ohci);
2502         free_irq(dev->irq, ohci);
2503         err = pci_save_state(dev);
2504         if (err) {
2505                 fw_error("pci_save_state failed\n");
2506                 return err;
2507         }
2508         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2509         if (err)
2510                 fw_error("pci_set_power_state failed with %d\n", err);
2511         ohci_pmac_off(dev);
2512
2513         return 0;
2514 }
2515
2516 static int pci_resume(struct pci_dev *dev)
2517 {
2518         struct fw_ohci *ohci = pci_get_drvdata(dev);
2519         int err;
2520
2521         ohci_pmac_on(dev);
2522         pci_set_power_state(dev, PCI_D0);
2523         pci_restore_state(dev);
2524         err = pci_enable_device(dev);
2525         if (err) {
2526                 fw_error("pci_enable_device failed\n");
2527                 return err;
2528         }
2529
2530         return ohci_enable(&ohci->card, NULL, 0);
2531 }
2532 #endif
2533
2534 static struct pci_device_id pci_table[] = {
2535         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2536         { }
2537 };
2538
2539 MODULE_DEVICE_TABLE(pci, pci_table);
2540
2541 static struct pci_driver fw_ohci_pci_driver = {
2542         .name           = ohci_driver_name,
2543         .id_table       = pci_table,
2544         .probe          = pci_probe,
2545         .remove         = pci_remove,
2546 #ifdef CONFIG_PM
2547         .resume         = pci_resume,
2548         .suspend        = pci_suspend,
2549 #endif
2550 };
2551
2552 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2553 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2554 MODULE_LICENSE("GPL");
2555
2556 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2557 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2558 MODULE_ALIAS("ohci1394");
2559 #endif
2560
2561 static int __init fw_ohci_init(void)
2562 {
2563         return pci_register_driver(&fw_ohci_pci_driver);
2564 }
2565
2566 static void __exit fw_ohci_cleanup(void)
2567 {
2568         pci_unregister_driver(&fw_ohci_pci_driver);
2569 }
2570
2571 module_init(fw_ohci_init);
2572 module_exit(fw_ohci_cleanup);