[TG3]: Limit 5784 / 5764 to MAC LED mode
[linux-2.6] / drivers / net / qla3xxx.c
1 /*
2  * QLogic QLA3xxx NIC HBA Driver
3  * Copyright (c)  2003-2006 QLogic Corporation
4  *
5  * See LICENSE.qla3xxx for copyright and licensing details.
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/dmapool.h>
18 #include <linux/mempool.h>
19 #include <linux/spinlock.h>
20 #include <linux/kthread.h>
21 #include <linux/interrupt.h>
22 #include <linux/errno.h>
23 #include <linux/ioport.h>
24 #include <linux/ip.h>
25 #include <linux/in.h>
26 #include <linux/if_arp.h>
27 #include <linux/if_ether.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/skbuff.h>
32 #include <linux/rtnetlink.h>
33 #include <linux/if_vlan.h>
34 #include <linux/delay.h>
35 #include <linux/mm.h>
36
37 #include "qla3xxx.h"
38
39 #define DRV_NAME        "qla3xxx"
40 #define DRV_STRING      "QLogic ISP3XXX Network Driver"
41 #define DRV_VERSION     "v2.03.00-k4"
42 #define PFX             DRV_NAME " "
43
44 static const char ql3xxx_driver_name[] = DRV_NAME;
45 static const char ql3xxx_driver_version[] = DRV_VERSION;
46
47 MODULE_AUTHOR("QLogic Corporation");
48 MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
49 MODULE_LICENSE("GPL");
50 MODULE_VERSION(DRV_VERSION);
51
52 static const u32 default_msg
53     = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
54     | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
55
56 static int debug = -1;          /* defaults above */
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static int msi;
61 module_param(msi, int, 0);
62 MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
63
64 static struct pci_device_id ql3xxx_pci_tbl[] __devinitdata = {
65         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
66         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
67         /* required last entry */
68         {0,}
69 };
70
71 MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
72
73 /*
74  *  These are the known PHY's which are used
75  */
76 typedef enum {
77    PHY_TYPE_UNKNOWN   = 0,
78    PHY_VITESSE_VSC8211,
79    PHY_AGERE_ET1011C,
80    MAX_PHY_DEV_TYPES
81 } PHY_DEVICE_et;
82
83 typedef struct {
84         PHY_DEVICE_et phyDevice;
85         u32             phyIdOUI;
86         u16             phyIdModel;
87         char            *name;
88 } PHY_DEVICE_INFO_t;
89
90 static const PHY_DEVICE_INFO_t PHY_DEVICES[] =
91         {{PHY_TYPE_UNKNOWN,    0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
92          {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
93          {PHY_AGERE_ET1011C,   0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
94 };
95
96
97 /*
98  * Caller must take hw_lock.
99  */
100 static int ql_sem_spinlock(struct ql3_adapter *qdev,
101                             u32 sem_mask, u32 sem_bits)
102 {
103         struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
104         u32 value;
105         unsigned int seconds = 3;
106
107         do {
108                 writel((sem_mask | sem_bits),
109                        &port_regs->CommonRegs.semaphoreReg);
110                 value = readl(&port_regs->CommonRegs.semaphoreReg);
111                 if ((value & (sem_mask >> 16)) == sem_bits)
112                         return 0;
113                 ssleep(1);
114         } while(--seconds);
115         return -1;
116 }
117
118 static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
119 {
120         struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
121         writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
122         readl(&port_regs->CommonRegs.semaphoreReg);
123 }
124
125 static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
126 {
127         struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
128         u32 value;
129
130         writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
131         value = readl(&port_regs->CommonRegs.semaphoreReg);
132         return ((value & (sem_mask >> 16)) == sem_bits);
133 }
134
135 /*
136  * Caller holds hw_lock.
137  */
138 static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
139 {
140         int i = 0;
141
142         while (1) {
143                 if (!ql_sem_lock(qdev,
144                                  QL_DRVR_SEM_MASK,
145                                  (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
146                                   * 2) << 1)) {
147                         if (i < 10) {
148                                 ssleep(1);
149                                 i++;
150                         } else {
151                                 printk(KERN_ERR PFX "%s: Timed out waiting for "
152                                        "driver lock...\n",
153                                        qdev->ndev->name);
154                                 return 0;
155                         }
156                 } else {
157                         printk(KERN_DEBUG PFX
158                                "%s: driver lock acquired.\n",
159                                qdev->ndev->name);
160                         return 1;
161                 }
162         }
163 }
164
165 static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
166 {
167         struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
168
169         writel(((ISP_CONTROL_NP_MASK << 16) | page),
170                         &port_regs->CommonRegs.ispControlStatus);
171         readl(&port_regs->CommonRegs.ispControlStatus);
172         qdev->current_page = page;
173 }
174
175 static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
176                               u32 __iomem * reg)
177 {
178         u32 value;
179         unsigned long hw_flags;
180
181         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
182         value = readl(reg);
183         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
184
185         return value;
186 }
187
188 static u32 ql_read_common_reg(struct ql3_adapter *qdev,
189                               u32 __iomem * reg)
190 {
191         return readl(reg);
192 }
193
194 static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
195 {
196         u32 value;
197         unsigned long hw_flags;
198
199         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
200
201         if (qdev->current_page != 0)
202                 ql_set_register_page(qdev,0);
203         value = readl(reg);
204
205         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
206         return value;
207 }
208
209 static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
210 {
211         if (qdev->current_page != 0)
212                 ql_set_register_page(qdev,0);
213         return readl(reg);
214 }
215
216 static void ql_write_common_reg_l(struct ql3_adapter *qdev,
217                                 u32 __iomem *reg, u32 value)
218 {
219         unsigned long hw_flags;
220
221         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
222         writel(value, reg);
223         readl(reg);
224         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
225         return;
226 }
227
228 static void ql_write_common_reg(struct ql3_adapter *qdev,
229                                 u32 __iomem *reg, u32 value)
230 {
231         writel(value, reg);
232         readl(reg);
233         return;
234 }
235
236 static void ql_write_nvram_reg(struct ql3_adapter *qdev,
237                                 u32 __iomem *reg, u32 value)
238 {
239         writel(value, reg);
240         readl(reg);
241         udelay(1);
242         return;
243 }
244
245 static void ql_write_page0_reg(struct ql3_adapter *qdev,
246                                u32 __iomem *reg, u32 value)
247 {
248         if (qdev->current_page != 0)
249                 ql_set_register_page(qdev,0);
250         writel(value, reg);
251         readl(reg);
252         return;
253 }
254
255 /*
256  * Caller holds hw_lock. Only called during init.
257  */
258 static void ql_write_page1_reg(struct ql3_adapter *qdev,
259                                u32 __iomem *reg, u32 value)
260 {
261         if (qdev->current_page != 1)
262                 ql_set_register_page(qdev,1);
263         writel(value, reg);
264         readl(reg);
265         return;
266 }
267
268 /*
269  * Caller holds hw_lock. Only called during init.
270  */
271 static void ql_write_page2_reg(struct ql3_adapter *qdev,
272                                u32 __iomem *reg, u32 value)
273 {
274         if (qdev->current_page != 2)
275                 ql_set_register_page(qdev,2);
276         writel(value, reg);
277         readl(reg);
278         return;
279 }
280
281 static void ql_disable_interrupts(struct ql3_adapter *qdev)
282 {
283         struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
284
285         ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
286                             (ISP_IMR_ENABLE_INT << 16));
287
288 }
289
290 static void ql_enable_interrupts(struct ql3_adapter *qdev)
291 {
292         struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
293
294         ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
295                             ((0xff << 16) | ISP_IMR_ENABLE_INT));
296
297 }
298
299 static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
300                                             struct ql_rcv_buf_cb *lrg_buf_cb)
301 {
302         dma_addr_t map;
303         int err;
304         lrg_buf_cb->next = NULL;
305
306         if (qdev->lrg_buf_free_tail == NULL) {  /* The list is empty  */
307                 qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
308         } else {
309                 qdev->lrg_buf_free_tail->next = lrg_buf_cb;
310                 qdev->lrg_buf_free_tail = lrg_buf_cb;
311         }
312
313         if (!lrg_buf_cb->skb) {
314                 lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
315                                                    qdev->lrg_buffer_len);
316                 if (unlikely(!lrg_buf_cb->skb)) {
317                         printk(KERN_ERR PFX "%s: failed netdev_alloc_skb().\n",
318                                qdev->ndev->name);
319                         qdev->lrg_buf_skb_check++;
320                 } else {
321                         /*
322                          * We save some space to copy the ethhdr from first
323                          * buffer
324                          */
325                         skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
326                         map = pci_map_single(qdev->pdev,
327                                              lrg_buf_cb->skb->data,
328                                              qdev->lrg_buffer_len -
329                                              QL_HEADER_SPACE,
330                                              PCI_DMA_FROMDEVICE);
331                         err = pci_dma_mapping_error(map);
332                         if(err) {
333                                 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
334                                        qdev->ndev->name, err);
335                                 dev_kfree_skb(lrg_buf_cb->skb);
336                                 lrg_buf_cb->skb = NULL;
337
338                                 qdev->lrg_buf_skb_check++;
339                                 return;
340                         }
341
342                         lrg_buf_cb->buf_phy_addr_low =
343                             cpu_to_le32(LS_64BITS(map));
344                         lrg_buf_cb->buf_phy_addr_high =
345                             cpu_to_le32(MS_64BITS(map));
346                         pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
347                         pci_unmap_len_set(lrg_buf_cb, maplen,
348                                           qdev->lrg_buffer_len -
349                                           QL_HEADER_SPACE);
350                 }
351         }
352
353         qdev->lrg_buf_free_count++;
354 }
355
356 static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
357                                                            *qdev)
358 {
359         struct ql_rcv_buf_cb *lrg_buf_cb;
360
361         if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
362                 if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
363                         qdev->lrg_buf_free_tail = NULL;
364                 qdev->lrg_buf_free_count--;
365         }
366
367         return lrg_buf_cb;
368 }
369
370 static u32 addrBits = EEPROM_NO_ADDR_BITS;
371 static u32 dataBits = EEPROM_NO_DATA_BITS;
372
373 static void fm93c56a_deselect(struct ql3_adapter *qdev);
374 static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
375                             unsigned short *value);
376
377 /*
378  * Caller holds hw_lock.
379  */
380 static void fm93c56a_select(struct ql3_adapter *qdev)
381 {
382         struct ql3xxx_port_registers __iomem *port_regs =
383                         qdev->mem_map_registers;
384
385         qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
386         ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
387                             ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
388         ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
389                             ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
390 }
391
392 /*
393  * Caller holds hw_lock.
394  */
395 static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
396 {
397         int i;
398         u32 mask;
399         u32 dataBit;
400         u32 previousBit;
401         struct ql3xxx_port_registers __iomem *port_regs =
402                         qdev->mem_map_registers;
403
404         /* Clock in a zero, then do the start bit */
405         ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
406                             ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
407                             AUBURN_EEPROM_DO_1);
408         ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
409                             ISP_NVRAM_MASK | qdev->
410                             eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
411                             AUBURN_EEPROM_CLK_RISE);
412         ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
413                             ISP_NVRAM_MASK | qdev->
414                             eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
415                             AUBURN_EEPROM_CLK_FALL);
416
417         mask = 1 << (FM93C56A_CMD_BITS - 1);
418         /* Force the previous data bit to be different */
419         previousBit = 0xffff;
420         for (i = 0; i < FM93C56A_CMD_BITS; i++) {
421                 dataBit =
422                     (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
423                 if (previousBit != dataBit) {
424                         /*
425                          * If the bit changed, then change the DO state to
426                          * match
427                          */
428                         ql_write_nvram_reg(qdev,
429                                             &port_regs->CommonRegs.
430                                             serialPortInterfaceReg,
431                                             ISP_NVRAM_MASK | qdev->
432                                             eeprom_cmd_data | dataBit);
433                         previousBit = dataBit;
434                 }
435                 ql_write_nvram_reg(qdev,
436                                     &port_regs->CommonRegs.
437                                     serialPortInterfaceReg,
438                                     ISP_NVRAM_MASK | qdev->
439                                     eeprom_cmd_data | dataBit |
440                                     AUBURN_EEPROM_CLK_RISE);
441                 ql_write_nvram_reg(qdev,
442                                     &port_regs->CommonRegs.
443                                     serialPortInterfaceReg,
444                                     ISP_NVRAM_MASK | qdev->
445                                     eeprom_cmd_data | dataBit |
446                                     AUBURN_EEPROM_CLK_FALL);
447                 cmd = cmd << 1;
448         }
449
450         mask = 1 << (addrBits - 1);
451         /* Force the previous data bit to be different */
452         previousBit = 0xffff;
453         for (i = 0; i < addrBits; i++) {
454                 dataBit =
455                     (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
456                     AUBURN_EEPROM_DO_0;
457                 if (previousBit != dataBit) {
458                         /*
459                          * If the bit changed, then change the DO state to
460                          * match
461                          */
462                         ql_write_nvram_reg(qdev,
463                                             &port_regs->CommonRegs.
464                                             serialPortInterfaceReg,
465                                             ISP_NVRAM_MASK | qdev->
466                                             eeprom_cmd_data | dataBit);
467                         previousBit = dataBit;
468                 }
469                 ql_write_nvram_reg(qdev,
470                                     &port_regs->CommonRegs.
471                                     serialPortInterfaceReg,
472                                     ISP_NVRAM_MASK | qdev->
473                                     eeprom_cmd_data | dataBit |
474                                     AUBURN_EEPROM_CLK_RISE);
475                 ql_write_nvram_reg(qdev,
476                                     &port_regs->CommonRegs.
477                                     serialPortInterfaceReg,
478                                     ISP_NVRAM_MASK | qdev->
479                                     eeprom_cmd_data | dataBit |
480                                     AUBURN_EEPROM_CLK_FALL);
481                 eepromAddr = eepromAddr << 1;
482         }
483 }
484
485 /*
486  * Caller holds hw_lock.
487  */
488 static void fm93c56a_deselect(struct ql3_adapter *qdev)
489 {
490         struct ql3xxx_port_registers __iomem *port_regs =
491                         qdev->mem_map_registers;
492         qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
493         ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
494                             ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
495 }
496
497 /*
498  * Caller holds hw_lock.
499  */
500 static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
501 {
502         int i;
503         u32 data = 0;
504         u32 dataBit;
505         struct ql3xxx_port_registers __iomem *port_regs =
506                         qdev->mem_map_registers;
507
508         /* Read the data bits */
509         /* The first bit is a dummy.  Clock right over it. */
510         for (i = 0; i < dataBits; i++) {
511                 ql_write_nvram_reg(qdev,
512                                     &port_regs->CommonRegs.
513                                     serialPortInterfaceReg,
514                                     ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
515                                     AUBURN_EEPROM_CLK_RISE);
516                 ql_write_nvram_reg(qdev,
517                                     &port_regs->CommonRegs.
518                                     serialPortInterfaceReg,
519                                     ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
520                                     AUBURN_EEPROM_CLK_FALL);
521                 dataBit =
522                     (ql_read_common_reg
523                      (qdev,
524                       &port_regs->CommonRegs.
525                       serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
526                 data = (data << 1) | dataBit;
527         }
528         *value = (u16) data;
529 }
530
531 /*
532  * Caller holds hw_lock.
533  */
534 static void eeprom_readword(struct ql3_adapter *qdev,
535                             u32 eepromAddr, unsigned short *value)
536 {
537         fm93c56a_select(qdev);
538         fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
539         fm93c56a_datain(qdev, value);
540         fm93c56a_deselect(qdev);
541 }
542
543 static void ql_swap_mac_addr(u8 * macAddress)
544 {
545 #ifdef __BIG_ENDIAN
546         u8 temp;
547         temp = macAddress[0];
548         macAddress[0] = macAddress[1];
549         macAddress[1] = temp;
550         temp = macAddress[2];
551         macAddress[2] = macAddress[3];
552         macAddress[3] = temp;
553         temp = macAddress[4];
554         macAddress[4] = macAddress[5];
555         macAddress[5] = temp;
556 #endif
557 }
558
559 static int ql_get_nvram_params(struct ql3_adapter *qdev)
560 {
561         u16 *pEEPROMData;
562         u16 checksum = 0;
563         u32 index;
564         unsigned long hw_flags;
565
566         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
567
568         pEEPROMData = (u16 *) & qdev->nvram_data;
569         qdev->eeprom_cmd_data = 0;
570         if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
571                         (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
572                          2) << 10)) {
573                 printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
574                         __func__);
575                 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
576                 return -1;
577         }
578
579         for (index = 0; index < EEPROM_SIZE; index++) {
580                 eeprom_readword(qdev, index, pEEPROMData);
581                 checksum += *pEEPROMData;
582                 pEEPROMData++;
583         }
584         ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
585
586         if (checksum != 0) {
587                 printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
588                        qdev->ndev->name, checksum);
589                 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
590                 return -1;
591         }
592
593         /*
594          * We have a problem with endianness for the MAC addresses
595          * and the two 8-bit values version, and numPorts.  We
596          * have to swap them on big endian systems.
597          */
598         ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn0.macAddress);
599         ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn1.macAddress);
600         ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn2.macAddress);
601         ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn3.macAddress);
602         pEEPROMData = (u16 *) & qdev->nvram_data.version;
603         *pEEPROMData = le16_to_cpu(*pEEPROMData);
604
605         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
606         return checksum;
607 }
608
609 static const u32 PHYAddr[2] = {
610         PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
611 };
612
613 static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
614 {
615         struct ql3xxx_port_registers __iomem *port_regs =
616                         qdev->mem_map_registers;
617         u32 temp;
618         int count = 1000;
619
620         while (count) {
621                 temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
622                 if (!(temp & MAC_MII_STATUS_BSY))
623                         return 0;
624                 udelay(10);
625                 count--;
626         }
627         return -1;
628 }
629
630 static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
631 {
632         struct ql3xxx_port_registers __iomem *port_regs =
633                         qdev->mem_map_registers;
634         u32 scanControl;
635
636         if (qdev->numPorts > 1) {
637                 /* Auto scan will cycle through multiple ports */
638                 scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
639         } else {
640                 scanControl = MAC_MII_CONTROL_SC;
641         }
642
643         /*
644          * Scan register 1 of PHY/PETBI,
645          * Set up to scan both devices
646          * The autoscan starts from the first register, completes
647          * the last one before rolling over to the first
648          */
649         ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
650                            PHYAddr[0] | MII_SCAN_REGISTER);
651
652         ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
653                            (scanControl) |
654                            ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
655 }
656
657 static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
658 {
659         u8 ret;
660         struct ql3xxx_port_registers __iomem *port_regs =
661                                         qdev->mem_map_registers;
662
663         /* See if scan mode is enabled before we turn it off */
664         if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
665             (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
666                 /* Scan is enabled */
667                 ret = 1;
668         } else {
669                 /* Scan is disabled */
670                 ret = 0;
671         }
672
673         /*
674          * When disabling scan mode you must first change the MII register
675          * address
676          */
677         ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
678                            PHYAddr[0] | MII_SCAN_REGISTER);
679
680         ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
681                            ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
682                              MAC_MII_CONTROL_RC) << 16));
683
684         return ret;
685 }
686
687 static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
688                                u16 regAddr, u16 value, u32 phyAddr)
689 {
690         struct ql3xxx_port_registers __iomem *port_regs =
691                         qdev->mem_map_registers;
692         u8 scanWasEnabled;
693
694         scanWasEnabled = ql_mii_disable_scan_mode(qdev);
695
696         if (ql_wait_for_mii_ready(qdev)) {
697                 if (netif_msg_link(qdev))
698                         printk(KERN_WARNING PFX
699                                "%s Timed out waiting for management port to "
700                                "get free before issuing command.\n",
701                                qdev->ndev->name);
702                 return -1;
703         }
704
705         ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
706                            phyAddr | regAddr);
707
708         ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
709
710         /* Wait for write to complete 9/10/04 SJP */
711         if (ql_wait_for_mii_ready(qdev)) {
712                 if (netif_msg_link(qdev))
713                         printk(KERN_WARNING PFX
714                                "%s: Timed out waiting for management port to"
715                                "get free before issuing command.\n",
716                                qdev->ndev->name);
717                 return -1;
718         }
719
720         if (scanWasEnabled)
721                 ql_mii_enable_scan_mode(qdev);
722
723         return 0;
724 }
725
726 static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
727                               u16 * value, u32 phyAddr)
728 {
729         struct ql3xxx_port_registers __iomem *port_regs =
730                         qdev->mem_map_registers;
731         u8 scanWasEnabled;
732         u32 temp;
733
734         scanWasEnabled = ql_mii_disable_scan_mode(qdev);
735
736         if (ql_wait_for_mii_ready(qdev)) {
737                 if (netif_msg_link(qdev))
738                         printk(KERN_WARNING PFX
739                                "%s: Timed out waiting for management port to "
740                                "get free before issuing command.\n",
741                                qdev->ndev->name);
742                 return -1;
743         }
744
745         ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
746                            phyAddr | regAddr);
747
748         ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
749                            (MAC_MII_CONTROL_RC << 16));
750
751         ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
752                            (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
753
754         /* Wait for the read to complete */
755         if (ql_wait_for_mii_ready(qdev)) {
756                 if (netif_msg_link(qdev))
757                         printk(KERN_WARNING PFX
758                                "%s: Timed out waiting for management port to "
759                                "get free after issuing command.\n",
760                                qdev->ndev->name);
761                 return -1;
762         }
763
764         temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
765         *value = (u16) temp;
766
767         if (scanWasEnabled)
768                 ql_mii_enable_scan_mode(qdev);
769
770         return 0;
771 }
772
773 static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
774 {
775         struct ql3xxx_port_registers __iomem *port_regs =
776                         qdev->mem_map_registers;
777
778         ql_mii_disable_scan_mode(qdev);
779
780         if (ql_wait_for_mii_ready(qdev)) {
781                 if (netif_msg_link(qdev))
782                         printk(KERN_WARNING PFX
783                                "%s: Timed out waiting for management port to "
784                                "get free before issuing command.\n",
785                                qdev->ndev->name);
786                 return -1;
787         }
788
789         ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
790                            qdev->PHYAddr | regAddr);
791
792         ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
793
794         /* Wait for write to complete. */
795         if (ql_wait_for_mii_ready(qdev)) {
796                 if (netif_msg_link(qdev))
797                         printk(KERN_WARNING PFX
798                                "%s: Timed out waiting for management port to "
799                                "get free before issuing command.\n",
800                                qdev->ndev->name);
801                 return -1;
802         }
803
804         ql_mii_enable_scan_mode(qdev);
805
806         return 0;
807 }
808
809 static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
810 {
811         u32 temp;
812         struct ql3xxx_port_registers __iomem *port_regs =
813                         qdev->mem_map_registers;
814
815         ql_mii_disable_scan_mode(qdev);
816
817         if (ql_wait_for_mii_ready(qdev)) {
818                 if (netif_msg_link(qdev))
819                         printk(KERN_WARNING PFX
820                                "%s: Timed out waiting for management port to "
821                                "get free before issuing command.\n",
822                                qdev->ndev->name);
823                 return -1;
824         }
825
826         ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
827                            qdev->PHYAddr | regAddr);
828
829         ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
830                            (MAC_MII_CONTROL_RC << 16));
831
832         ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
833                            (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
834
835         /* Wait for the read to complete */
836         if (ql_wait_for_mii_ready(qdev)) {
837                 if (netif_msg_link(qdev))
838                         printk(KERN_WARNING PFX
839                                "%s: Timed out waiting for management port to "
840                                "get free before issuing command.\n",
841                                qdev->ndev->name);
842                 return -1;
843         }
844
845         temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
846         *value = (u16) temp;
847
848         ql_mii_enable_scan_mode(qdev);
849
850         return 0;
851 }
852
853 static void ql_petbi_reset(struct ql3_adapter *qdev)
854 {
855         ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
856 }
857
858 static void ql_petbi_start_neg(struct ql3_adapter *qdev)
859 {
860         u16 reg;
861
862         /* Enable Auto-negotiation sense */
863         ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
864         reg |= PETBI_TBI_AUTO_SENSE;
865         ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
866
867         ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
868                          PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
869
870         ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
871                          PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
872                          PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
873
874 }
875
876 static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
877 {
878         ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
879                             PHYAddr[qdev->mac_index]);
880 }
881
882 static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
883 {
884         u16 reg;
885
886         /* Enable Auto-negotiation sense */
887         ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
888                            PHYAddr[qdev->mac_index]);
889         reg |= PETBI_TBI_AUTO_SENSE;
890         ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
891                             PHYAddr[qdev->mac_index]);
892
893         ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
894                             PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
895                             PHYAddr[qdev->mac_index]);
896
897         ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
898                             PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
899                             PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
900                             PHYAddr[qdev->mac_index]);
901 }
902
903 static void ql_petbi_init(struct ql3_adapter *qdev)
904 {
905         ql_petbi_reset(qdev);
906         ql_petbi_start_neg(qdev);
907 }
908
909 static void ql_petbi_init_ex(struct ql3_adapter *qdev)
910 {
911         ql_petbi_reset_ex(qdev);
912         ql_petbi_start_neg_ex(qdev);
913 }
914
915 static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
916 {
917         u16 reg;
918
919         if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
920                 return 0;
921
922         return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
923 }
924
925 static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
926 {
927         printk(KERN_INFO "%s: enabling Agere specific PHY\n", qdev->ndev->name);
928         /* power down device bit 11 = 1 */
929         ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
930         /* enable diagnostic mode bit 2 = 1 */
931         ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
932         /* 1000MB amplitude adjust (see Agere errata) */
933         ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
934         /* 1000MB amplitude adjust (see Agere errata) */
935         ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
936         /* 100MB amplitude adjust (see Agere errata) */
937         ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
938         /* 100MB amplitude adjust (see Agere errata) */
939         ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
940         /* 10MB amplitude adjust (see Agere errata) */
941         ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
942         /* 10MB amplitude adjust (see Agere errata) */
943         ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
944         /* point to hidden reg 0x2806 */
945         ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
946         /* Write new PHYAD w/bit 5 set */
947         ql_mii_write_reg_ex(qdev, 0x11, 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
948         /*
949          * Disable diagnostic mode bit 2 = 0
950          * Power up device bit 11 = 0
951          * Link up (on) and activity (blink)
952          */
953         ql_mii_write_reg(qdev, 0x12, 0x840a);
954         ql_mii_write_reg(qdev, 0x00, 0x1140);
955         ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
956 }
957
958 static PHY_DEVICE_et getPhyType (struct ql3_adapter *qdev,
959                                  u16 phyIdReg0, u16 phyIdReg1)
960 {
961         PHY_DEVICE_et result = PHY_TYPE_UNKNOWN;
962         u32   oui;
963         u16   model;
964         int i;
965
966         if (phyIdReg0 == 0xffff) {
967                 return result;
968         }
969
970         if (phyIdReg1 == 0xffff) {
971                 return result;
972         }
973
974         /* oui is split between two registers */
975         oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
976
977         model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
978
979         /* Scan table for this PHY */
980         for(i = 0; i < MAX_PHY_DEV_TYPES; i++) {
981                 if ((oui == PHY_DEVICES[i].phyIdOUI) && (model == PHY_DEVICES[i].phyIdModel))
982                 {
983                         result = PHY_DEVICES[i].phyDevice;
984
985                         printk(KERN_INFO "%s: Phy: %s\n",
986                                 qdev->ndev->name, PHY_DEVICES[i].name);
987
988                         break;
989                 }
990         }
991
992         return result;
993 }
994
995 static int ql_phy_get_speed(struct ql3_adapter *qdev)
996 {
997         u16 reg;
998
999         switch(qdev->phyType) {
1000         case PHY_AGERE_ET1011C:
1001         {
1002                 if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
1003                         return 0;
1004
1005                 reg = (reg >> 8) & 3;
1006                 break;
1007         }
1008         default:
1009         if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
1010                 return 0;
1011
1012         reg = (((reg & 0x18) >> 3) & 3);
1013         }
1014
1015         switch(reg) {
1016                 case 2:
1017                 return SPEED_1000;
1018                 case 1:
1019                 return SPEED_100;
1020                 case 0:
1021                 return SPEED_10;
1022                 default:
1023                 return -1;
1024         }
1025 }
1026
1027 static int ql_is_full_dup(struct ql3_adapter *qdev)
1028 {
1029         u16 reg;
1030
1031         switch(qdev->phyType) {
1032         case PHY_AGERE_ET1011C:
1033         {
1034                 if (ql_mii_read_reg(qdev, 0x1A, &reg))
1035                         return 0;
1036
1037                 return ((reg & 0x0080) && (reg & 0x1000)) != 0;
1038         }
1039         case PHY_VITESSE_VSC8211:
1040         default:
1041         {
1042                 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
1043                         return 0;
1044                 return (reg & PHY_AUX_DUPLEX_STAT) != 0;
1045         }
1046         }
1047 }
1048
1049 static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
1050 {
1051         u16 reg;
1052
1053         if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
1054                 return 0;
1055
1056         return (reg & PHY_NEG_PAUSE) != 0;
1057 }
1058
1059 static int PHY_Setup(struct ql3_adapter *qdev)
1060 {
1061         u16   reg1;
1062         u16   reg2;
1063         bool  agereAddrChangeNeeded = false;
1064         u32 miiAddr = 0;
1065         int err;
1066
1067         /*  Determine the PHY we are using by reading the ID's */
1068         err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
1069         if(err != 0) {
1070                 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
1071                        qdev->ndev->name);
1072                 return err;
1073         }
1074
1075         err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
1076         if(err != 0) {
1077                 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
1078                        qdev->ndev->name);
1079                 return err;
1080         }
1081
1082         /*  Check if we have a Agere PHY */
1083         if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
1084
1085                 /* Determine which MII address we should be using
1086                    determined by the index of the card */
1087                 if (qdev->mac_index == 0) {
1088                         miiAddr = MII_AGERE_ADDR_1;
1089                 } else {
1090                         miiAddr = MII_AGERE_ADDR_2;
1091                 }
1092
1093                 err =ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
1094                 if(err != 0) {
1095                         printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
1096                                qdev->ndev->name);
1097                         return err;
1098                 }
1099
1100                 err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
1101                 if(err != 0) {
1102                         printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
1103                                qdev->ndev->name);
1104                         return err;
1105                 }
1106
1107                 /*  We need to remember to initialize the Agere PHY */
1108                 agereAddrChangeNeeded = true;
1109         }
1110
1111         /*  Determine the particular PHY we have on board to apply
1112             PHY specific initializations */
1113         qdev->phyType = getPhyType(qdev, reg1, reg2);
1114
1115         if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
1116                 /* need this here so address gets changed */
1117                 phyAgereSpecificInit(qdev, miiAddr);
1118         } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
1119                 printk(KERN_ERR "%s: PHY is unknown\n", qdev->ndev->name);
1120                 return -EIO;
1121         }
1122
1123         return 0;
1124 }
1125
1126 /*
1127  * Caller holds hw_lock.
1128  */
1129 static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
1130 {
1131         struct ql3xxx_port_registers __iomem *port_regs =
1132                         qdev->mem_map_registers;
1133         u32 value;
1134
1135         if (enable)
1136                 value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
1137         else
1138                 value = (MAC_CONFIG_REG_PE << 16);
1139
1140         if (qdev->mac_index)
1141                 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1142         else
1143                 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1144 }
1145
1146 /*
1147  * Caller holds hw_lock.
1148  */
1149 static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
1150 {
1151         struct ql3xxx_port_registers __iomem *port_regs =
1152                         qdev->mem_map_registers;
1153         u32 value;
1154
1155         if (enable)
1156                 value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
1157         else
1158                 value = (MAC_CONFIG_REG_SR << 16);
1159
1160         if (qdev->mac_index)
1161                 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1162         else
1163                 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1164 }
1165
1166 /*
1167  * Caller holds hw_lock.
1168  */
1169 static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
1170 {
1171         struct ql3xxx_port_registers __iomem *port_regs =
1172                         qdev->mem_map_registers;
1173         u32 value;
1174
1175         if (enable)
1176                 value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
1177         else
1178                 value = (MAC_CONFIG_REG_GM << 16);
1179
1180         if (qdev->mac_index)
1181                 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1182         else
1183                 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1184 }
1185
1186 /*
1187  * Caller holds hw_lock.
1188  */
1189 static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
1190 {
1191         struct ql3xxx_port_registers __iomem *port_regs =
1192                         qdev->mem_map_registers;
1193         u32 value;
1194
1195         if (enable)
1196                 value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
1197         else
1198                 value = (MAC_CONFIG_REG_FD << 16);
1199
1200         if (qdev->mac_index)
1201                 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1202         else
1203                 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1204 }
1205
1206 /*
1207  * Caller holds hw_lock.
1208  */
1209 static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
1210 {
1211         struct ql3xxx_port_registers __iomem *port_regs =
1212                         qdev->mem_map_registers;
1213         u32 value;
1214
1215         if (enable)
1216                 value =
1217                     ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
1218                      ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
1219         else
1220                 value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
1221
1222         if (qdev->mac_index)
1223                 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1224         else
1225                 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1226 }
1227
1228 /*
1229  * Caller holds hw_lock.
1230  */
1231 static int ql_is_fiber(struct ql3_adapter *qdev)
1232 {
1233         struct ql3xxx_port_registers __iomem *port_regs =
1234                         qdev->mem_map_registers;
1235         u32 bitToCheck = 0;
1236         u32 temp;
1237
1238         switch (qdev->mac_index) {
1239         case 0:
1240                 bitToCheck = PORT_STATUS_SM0;
1241                 break;
1242         case 1:
1243                 bitToCheck = PORT_STATUS_SM1;
1244                 break;
1245         }
1246
1247         temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1248         return (temp & bitToCheck) != 0;
1249 }
1250
1251 static int ql_is_auto_cfg(struct ql3_adapter *qdev)
1252 {
1253         u16 reg;
1254         ql_mii_read_reg(qdev, 0x00, &reg);
1255         return (reg & 0x1000) != 0;
1256 }
1257
1258 /*
1259  * Caller holds hw_lock.
1260  */
1261 static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
1262 {
1263         struct ql3xxx_port_registers __iomem *port_regs =
1264                         qdev->mem_map_registers;
1265         u32 bitToCheck = 0;
1266         u32 temp;
1267
1268         switch (qdev->mac_index) {
1269         case 0:
1270                 bitToCheck = PORT_STATUS_AC0;
1271                 break;
1272         case 1:
1273                 bitToCheck = PORT_STATUS_AC1;
1274                 break;
1275         }
1276
1277         temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1278         if (temp & bitToCheck) {
1279                 if (netif_msg_link(qdev))
1280                         printk(KERN_INFO PFX
1281                                "%s: Auto-Negotiate complete.\n",
1282                                qdev->ndev->name);
1283                 return 1;
1284         } else {
1285                 if (netif_msg_link(qdev))
1286                         printk(KERN_WARNING PFX
1287                                "%s: Auto-Negotiate incomplete.\n",
1288                                qdev->ndev->name);
1289                 return 0;
1290         }
1291 }
1292
1293 /*
1294  *  ql_is_neg_pause() returns 1 if pause was negotiated to be on
1295  */
1296 static int ql_is_neg_pause(struct ql3_adapter *qdev)
1297 {
1298         if (ql_is_fiber(qdev))
1299                 return ql_is_petbi_neg_pause(qdev);
1300         else
1301                 return ql_is_phy_neg_pause(qdev);
1302 }
1303
1304 static int ql_auto_neg_error(struct ql3_adapter *qdev)
1305 {
1306         struct ql3xxx_port_registers __iomem *port_regs =
1307                         qdev->mem_map_registers;
1308         u32 bitToCheck = 0;
1309         u32 temp;
1310
1311         switch (qdev->mac_index) {
1312         case 0:
1313                 bitToCheck = PORT_STATUS_AE0;
1314                 break;
1315         case 1:
1316                 bitToCheck = PORT_STATUS_AE1;
1317                 break;
1318         }
1319         temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1320         return (temp & bitToCheck) != 0;
1321 }
1322
1323 static u32 ql_get_link_speed(struct ql3_adapter *qdev)
1324 {
1325         if (ql_is_fiber(qdev))
1326                 return SPEED_1000;
1327         else
1328                 return ql_phy_get_speed(qdev);
1329 }
1330
1331 static int ql_is_link_full_dup(struct ql3_adapter *qdev)
1332 {
1333         if (ql_is_fiber(qdev))
1334                 return 1;
1335         else
1336                 return ql_is_full_dup(qdev);
1337 }
1338
1339 /*
1340  * Caller holds hw_lock.
1341  */
1342 static int ql_link_down_detect(struct ql3_adapter *qdev)
1343 {
1344         struct ql3xxx_port_registers __iomem *port_regs =
1345                         qdev->mem_map_registers;
1346         u32 bitToCheck = 0;
1347         u32 temp;
1348
1349         switch (qdev->mac_index) {
1350         case 0:
1351                 bitToCheck = ISP_CONTROL_LINK_DN_0;
1352                 break;
1353         case 1:
1354                 bitToCheck = ISP_CONTROL_LINK_DN_1;
1355                 break;
1356         }
1357
1358         temp =
1359             ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
1360         return (temp & bitToCheck) != 0;
1361 }
1362
1363 /*
1364  * Caller holds hw_lock.
1365  */
1366 static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
1367 {
1368         struct ql3xxx_port_registers __iomem *port_regs =
1369                         qdev->mem_map_registers;
1370
1371         switch (qdev->mac_index) {
1372         case 0:
1373                 ql_write_common_reg(qdev,
1374                                     &port_regs->CommonRegs.ispControlStatus,
1375                                     (ISP_CONTROL_LINK_DN_0) |
1376                                     (ISP_CONTROL_LINK_DN_0 << 16));
1377                 break;
1378
1379         case 1:
1380                 ql_write_common_reg(qdev,
1381                                     &port_regs->CommonRegs.ispControlStatus,
1382                                     (ISP_CONTROL_LINK_DN_1) |
1383                                     (ISP_CONTROL_LINK_DN_1 << 16));
1384                 break;
1385
1386         default:
1387                 return 1;
1388         }
1389
1390         return 0;
1391 }
1392
1393 /*
1394  * Caller holds hw_lock.
1395  */
1396 static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
1397 {
1398         struct ql3xxx_port_registers __iomem *port_regs =
1399                         qdev->mem_map_registers;
1400         u32 bitToCheck = 0;
1401         u32 temp;
1402
1403         switch (qdev->mac_index) {
1404         case 0:
1405                 bitToCheck = PORT_STATUS_F1_ENABLED;
1406                 break;
1407         case 1:
1408                 bitToCheck = PORT_STATUS_F3_ENABLED;
1409                 break;
1410         default:
1411                 break;
1412         }
1413
1414         temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1415         if (temp & bitToCheck) {
1416                 if (netif_msg_link(qdev))
1417                         printk(KERN_DEBUG PFX
1418                                "%s: is not link master.\n", qdev->ndev->name);
1419                 return 0;
1420         } else {
1421                 if (netif_msg_link(qdev))
1422                         printk(KERN_DEBUG PFX
1423                                "%s: is link master.\n", qdev->ndev->name);
1424                 return 1;
1425         }
1426 }
1427
1428 static void ql_phy_reset_ex(struct ql3_adapter *qdev)
1429 {
1430         ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
1431                             PHYAddr[qdev->mac_index]);
1432 }
1433
1434 static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
1435 {
1436         u16 reg;
1437         u16 portConfiguration;
1438
1439         if(qdev->phyType == PHY_AGERE_ET1011C) {
1440                 /* turn off external loopback */
1441                 ql_mii_write_reg(qdev, 0x13, 0x0000);
1442         }
1443
1444         if(qdev->mac_index == 0)
1445                 portConfiguration = qdev->nvram_data.macCfg_port0.portConfiguration;
1446         else
1447                 portConfiguration = qdev->nvram_data.macCfg_port1.portConfiguration;
1448
1449         /*  Some HBA's in the field are set to 0 and they need to
1450             be reinterpreted with a default value */
1451         if(portConfiguration == 0)
1452                 portConfiguration = PORT_CONFIG_DEFAULT;
1453
1454         /* Set the 1000 advertisements */
1455         ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
1456                            PHYAddr[qdev->mac_index]);
1457         reg &= ~PHY_GIG_ALL_PARAMS;
1458
1459         if(portConfiguration & PORT_CONFIG_1000MB_SPEED) {
1460                 if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) 
1461                         reg |= PHY_GIG_ADV_1000F;
1462                 else 
1463                         reg |= PHY_GIG_ADV_1000H;
1464         }
1465
1466         ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
1467                             PHYAddr[qdev->mac_index]);
1468
1469         /* Set the 10/100 & pause negotiation advertisements */
1470         ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
1471                            PHYAddr[qdev->mac_index]);
1472         reg &= ~PHY_NEG_ALL_PARAMS;
1473
1474         if(portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
1475                 reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
1476
1477         if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
1478                 if(portConfiguration & PORT_CONFIG_100MB_SPEED)
1479                         reg |= PHY_NEG_ADV_100F;
1480
1481                 if(portConfiguration & PORT_CONFIG_10MB_SPEED)
1482                         reg |= PHY_NEG_ADV_10F;
1483         }
1484
1485         if(portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
1486                 if(portConfiguration & PORT_CONFIG_100MB_SPEED)
1487                         reg |= PHY_NEG_ADV_100H;
1488
1489                 if(portConfiguration & PORT_CONFIG_10MB_SPEED)
1490                         reg |= PHY_NEG_ADV_10H;
1491         }
1492
1493         if(portConfiguration &
1494            PORT_CONFIG_1000MB_SPEED) {
1495                 reg |= 1;
1496         }
1497
1498         ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
1499                             PHYAddr[qdev->mac_index]);
1500
1501         ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
1502
1503         ql_mii_write_reg_ex(qdev, CONTROL_REG,
1504                             reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
1505                             PHYAddr[qdev->mac_index]);
1506 }
1507
1508 static void ql_phy_init_ex(struct ql3_adapter *qdev)
1509 {
1510         ql_phy_reset_ex(qdev);
1511         PHY_Setup(qdev);
1512         ql_phy_start_neg_ex(qdev);
1513 }
1514
1515 /*
1516  * Caller holds hw_lock.
1517  */
1518 static u32 ql_get_link_state(struct ql3_adapter *qdev)
1519 {
1520         struct ql3xxx_port_registers __iomem *port_regs =
1521                         qdev->mem_map_registers;
1522         u32 bitToCheck = 0;
1523         u32 temp, linkState;
1524
1525         switch (qdev->mac_index) {
1526         case 0:
1527                 bitToCheck = PORT_STATUS_UP0;
1528                 break;
1529         case 1:
1530                 bitToCheck = PORT_STATUS_UP1;
1531                 break;
1532         }
1533         temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1534         if (temp & bitToCheck) {
1535                 linkState = LS_UP;
1536         } else {
1537                 linkState = LS_DOWN;
1538                 if (netif_msg_link(qdev))
1539                         printk(KERN_WARNING PFX
1540                                "%s: Link is down.\n", qdev->ndev->name);
1541         }
1542         return linkState;
1543 }
1544
1545 static int ql_port_start(struct ql3_adapter *qdev)
1546 {
1547         if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1548                 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1549                          2) << 7)) {
1550                 printk(KERN_ERR "%s: Could not get hw lock for GIO\n",
1551                        qdev->ndev->name);
1552                 return -1;
1553         }
1554
1555         if (ql_is_fiber(qdev)) {
1556                 ql_petbi_init(qdev);
1557         } else {
1558                 /* Copper port */
1559                 ql_phy_init_ex(qdev);
1560         }
1561
1562         ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1563         return 0;
1564 }
1565
1566 static int ql_finish_auto_neg(struct ql3_adapter *qdev)
1567 {
1568
1569         if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1570                 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1571                          2) << 7))
1572                 return -1;
1573
1574         if (!ql_auto_neg_error(qdev)) {
1575                 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1576                         /* configure the MAC */
1577                         if (netif_msg_link(qdev))
1578                                 printk(KERN_DEBUG PFX
1579                                        "%s: Configuring link.\n",
1580                                        qdev->ndev->
1581                                        name);
1582                         ql_mac_cfg_soft_reset(qdev, 1);
1583                         ql_mac_cfg_gig(qdev,
1584                                        (ql_get_link_speed
1585                                         (qdev) ==
1586                                         SPEED_1000));
1587                         ql_mac_cfg_full_dup(qdev,
1588                                             ql_is_link_full_dup
1589                                             (qdev));
1590                         ql_mac_cfg_pause(qdev,
1591                                          ql_is_neg_pause
1592                                          (qdev));
1593                         ql_mac_cfg_soft_reset(qdev, 0);
1594
1595                         /* enable the MAC */
1596                         if (netif_msg_link(qdev))
1597                                 printk(KERN_DEBUG PFX
1598                                        "%s: Enabling mac.\n",
1599                                        qdev->ndev->
1600                                                name);
1601                         ql_mac_enable(qdev, 1);
1602                 }
1603
1604                 if (netif_msg_link(qdev))
1605                         printk(KERN_DEBUG PFX
1606                                "%s: Change port_link_state LS_DOWN to LS_UP.\n",
1607                                qdev->ndev->name);
1608                 qdev->port_link_state = LS_UP;
1609                 netif_start_queue(qdev->ndev);
1610                 netif_carrier_on(qdev->ndev);
1611                 if (netif_msg_link(qdev))
1612                         printk(KERN_INFO PFX
1613                                "%s: Link is up at %d Mbps, %s duplex.\n",
1614                                qdev->ndev->name,
1615                                ql_get_link_speed(qdev),
1616                                ql_is_link_full_dup(qdev)
1617                                ? "full" : "half");
1618
1619         } else {        /* Remote error detected */
1620
1621                 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1622                         if (netif_msg_link(qdev))
1623                                 printk(KERN_DEBUG PFX
1624                                        "%s: Remote error detected. "
1625                                        "Calling ql_port_start().\n",
1626                                        qdev->ndev->
1627                                        name);
1628                         /*
1629                          * ql_port_start() is shared code and needs
1630                          * to lock the PHY on it's own.
1631                          */
1632                         ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1633                         if(ql_port_start(qdev)) {/* Restart port */
1634                                 return -1;
1635                         } else
1636                                 return 0;
1637                 }
1638         }
1639         ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1640         return 0;
1641 }
1642
1643 static void ql_link_state_machine_work(struct work_struct *work)
1644 {
1645         struct ql3_adapter *qdev =
1646                 container_of(work, struct ql3_adapter, link_state_work.work);
1647
1648         u32 curr_link_state;
1649         unsigned long hw_flags;
1650
1651         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1652
1653         curr_link_state = ql_get_link_state(qdev);
1654
1655         if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
1656                 if (netif_msg_link(qdev))
1657                         printk(KERN_INFO PFX
1658                                "%s: Reset in progress, skip processing link "
1659                                "state.\n", qdev->ndev->name);
1660
1661                 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1662
1663                 /* Restart timer on 2 second interval. */
1664                 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);\
1665
1666                 return;
1667         }
1668
1669         switch (qdev->port_link_state) {
1670         default:
1671                 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1672                         ql_port_start(qdev);
1673                 }
1674                 qdev->port_link_state = LS_DOWN;
1675                 /* Fall Through */
1676
1677         case LS_DOWN:
1678                 if (netif_msg_link(qdev))
1679                         printk(KERN_DEBUG PFX
1680                                "%s: port_link_state = LS_DOWN.\n",
1681                                qdev->ndev->name);
1682                 if (curr_link_state == LS_UP) {
1683                         if (netif_msg_link(qdev))
1684                                 printk(KERN_DEBUG PFX
1685                                        "%s: curr_link_state = LS_UP.\n",
1686                                        qdev->ndev->name);
1687                         if (ql_is_auto_neg_complete(qdev))
1688                                 ql_finish_auto_neg(qdev);
1689
1690                         if (qdev->port_link_state == LS_UP)
1691                                 ql_link_down_detect_clear(qdev);
1692
1693                 }
1694                 break;
1695
1696         case LS_UP:
1697                 /*
1698                  * See if the link is currently down or went down and came
1699                  * back up
1700                  */
1701                 if ((curr_link_state == LS_DOWN) || ql_link_down_detect(qdev)) {
1702                         if (netif_msg_link(qdev))
1703                                 printk(KERN_INFO PFX "%s: Link is down.\n",
1704                                        qdev->ndev->name);
1705                         qdev->port_link_state = LS_DOWN;
1706                 }
1707                 break;
1708         }
1709         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1710
1711         /* Restart timer on 2 second interval. */
1712         mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1713 }
1714
1715 /*
1716  * Caller must take hw_lock and QL_PHY_GIO_SEM.
1717  */
1718 static void ql_get_phy_owner(struct ql3_adapter *qdev)
1719 {
1720         if (ql_this_adapter_controls_port(qdev))
1721                 set_bit(QL_LINK_MASTER,&qdev->flags);
1722         else
1723                 clear_bit(QL_LINK_MASTER,&qdev->flags);
1724 }
1725
1726 /*
1727  * Caller must take hw_lock and QL_PHY_GIO_SEM.
1728  */
1729 static void ql_init_scan_mode(struct ql3_adapter *qdev)
1730 {
1731         ql_mii_enable_scan_mode(qdev);
1732
1733         if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1734                 if (ql_this_adapter_controls_port(qdev))
1735                         ql_petbi_init_ex(qdev);
1736         } else {
1737                 if (ql_this_adapter_controls_port(qdev))
1738                         ql_phy_init_ex(qdev);
1739         }
1740 }
1741
1742 /*
1743  * MII_Setup needs to be called before taking the PHY out of reset so that the
1744  * management interface clock speed can be set properly.  It would be better if
1745  * we had a way to disable MDC until after the PHY is out of reset, but we
1746  * don't have that capability.
1747  */
1748 static int ql_mii_setup(struct ql3_adapter *qdev)
1749 {
1750         u32 reg;
1751         struct ql3xxx_port_registers __iomem *port_regs =
1752                         qdev->mem_map_registers;
1753
1754         if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1755                         (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1756                          2) << 7))
1757                 return -1;
1758
1759         if (qdev->device_id == QL3032_DEVICE_ID)
1760                 ql_write_page0_reg(qdev,
1761                         &port_regs->macMIIMgmtControlReg, 0x0f00000);
1762
1763         /* Divide 125MHz clock by 28 to meet PHY timing requirements */
1764         reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
1765
1766         ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
1767                            reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
1768
1769         ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1770         return 0;
1771 }
1772
1773 static u32 ql_supported_modes(struct ql3_adapter *qdev)
1774 {
1775         u32 supported;
1776
1777         if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1778                 supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
1779                     | SUPPORTED_Autoneg;
1780         } else {
1781                 supported = SUPPORTED_10baseT_Half
1782                     | SUPPORTED_10baseT_Full
1783                     | SUPPORTED_100baseT_Half
1784                     | SUPPORTED_100baseT_Full
1785                     | SUPPORTED_1000baseT_Half
1786                     | SUPPORTED_1000baseT_Full
1787                     | SUPPORTED_Autoneg | SUPPORTED_TP;
1788         }
1789
1790         return supported;
1791 }
1792
1793 static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
1794 {
1795         int status;
1796         unsigned long hw_flags;
1797         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1798         if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1799                 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1800                          2) << 7)) {
1801                 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1802                 return 0;
1803         }
1804         status = ql_is_auto_cfg(qdev);
1805         ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1806         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1807         return status;
1808 }
1809
1810 static u32 ql_get_speed(struct ql3_adapter *qdev)
1811 {
1812         u32 status;
1813         unsigned long hw_flags;
1814         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1815         if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1816                 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1817                          2) << 7)) {
1818                 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1819                 return 0;
1820         }
1821         status = ql_get_link_speed(qdev);
1822         ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1823         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1824         return status;
1825 }
1826
1827 static int ql_get_full_dup(struct ql3_adapter *qdev)
1828 {
1829         int status;
1830         unsigned long hw_flags;
1831         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1832         if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1833                 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1834                          2) << 7)) {
1835                 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1836                 return 0;
1837         }
1838         status = ql_is_link_full_dup(qdev);
1839         ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1840         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1841         return status;
1842 }
1843
1844
1845 static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1846 {
1847         struct ql3_adapter *qdev = netdev_priv(ndev);
1848
1849         ecmd->transceiver = XCVR_INTERNAL;
1850         ecmd->supported = ql_supported_modes(qdev);
1851
1852         if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1853                 ecmd->port = PORT_FIBRE;
1854         } else {
1855                 ecmd->port = PORT_TP;
1856                 ecmd->phy_address = qdev->PHYAddr;
1857         }
1858         ecmd->advertising = ql_supported_modes(qdev);
1859         ecmd->autoneg = ql_get_auto_cfg_status(qdev);
1860         ecmd->speed = ql_get_speed(qdev);
1861         ecmd->duplex = ql_get_full_dup(qdev);
1862         return 0;
1863 }
1864
1865 static void ql_get_drvinfo(struct net_device *ndev,
1866                            struct ethtool_drvinfo *drvinfo)
1867 {
1868         struct ql3_adapter *qdev = netdev_priv(ndev);
1869         strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
1870         strncpy(drvinfo->version, ql3xxx_driver_version, 32);
1871         strncpy(drvinfo->fw_version, "N/A", 32);
1872         strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
1873         drvinfo->regdump_len = 0;
1874         drvinfo->eedump_len = 0;
1875 }
1876
1877 static u32 ql_get_msglevel(struct net_device *ndev)
1878 {
1879         struct ql3_adapter *qdev = netdev_priv(ndev);
1880         return qdev->msg_enable;
1881 }
1882
1883 static void ql_set_msglevel(struct net_device *ndev, u32 value)
1884 {
1885         struct ql3_adapter *qdev = netdev_priv(ndev);
1886         qdev->msg_enable = value;
1887 }
1888
1889 static void ql_get_pauseparam(struct net_device *ndev,
1890                               struct ethtool_pauseparam *pause)
1891 {
1892         struct ql3_adapter *qdev = netdev_priv(ndev);
1893         struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
1894
1895         u32 reg;
1896         if(qdev->mac_index == 0)
1897                 reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
1898         else
1899                 reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
1900
1901         pause->autoneg  = ql_get_auto_cfg_status(qdev);
1902         pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
1903         pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
1904 }
1905
1906 static const struct ethtool_ops ql3xxx_ethtool_ops = {
1907         .get_settings = ql_get_settings,
1908         .get_drvinfo = ql_get_drvinfo,
1909         .get_link = ethtool_op_get_link,
1910         .get_msglevel = ql_get_msglevel,
1911         .set_msglevel = ql_set_msglevel,
1912         .get_pauseparam = ql_get_pauseparam,
1913 };
1914
1915 static int ql_populate_free_queue(struct ql3_adapter *qdev)
1916 {
1917         struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
1918         dma_addr_t map;
1919         int err;
1920
1921         while (lrg_buf_cb) {
1922                 if (!lrg_buf_cb->skb) {
1923                         lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
1924                                                            qdev->lrg_buffer_len);
1925                         if (unlikely(!lrg_buf_cb->skb)) {
1926                                 printk(KERN_DEBUG PFX
1927                                        "%s: Failed netdev_alloc_skb().\n",
1928                                        qdev->ndev->name);
1929                                 break;
1930                         } else {
1931                                 /*
1932                                  * We save some space to copy the ethhdr from
1933                                  * first buffer
1934                                  */
1935                                 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
1936                                 map = pci_map_single(qdev->pdev,
1937                                                      lrg_buf_cb->skb->data,
1938                                                      qdev->lrg_buffer_len -
1939                                                      QL_HEADER_SPACE,
1940                                                      PCI_DMA_FROMDEVICE);
1941
1942                                 err = pci_dma_mapping_error(map);
1943                                 if(err) {
1944                                         printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
1945                                                qdev->ndev->name, err);
1946                                         dev_kfree_skb(lrg_buf_cb->skb);
1947                                         lrg_buf_cb->skb = NULL;
1948                                         break;
1949                                 }
1950
1951
1952                                 lrg_buf_cb->buf_phy_addr_low =
1953                                     cpu_to_le32(LS_64BITS(map));
1954                                 lrg_buf_cb->buf_phy_addr_high =
1955                                     cpu_to_le32(MS_64BITS(map));
1956                                 pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
1957                                 pci_unmap_len_set(lrg_buf_cb, maplen,
1958                                                   qdev->lrg_buffer_len -
1959                                                   QL_HEADER_SPACE);
1960                                 --qdev->lrg_buf_skb_check;
1961                                 if (!qdev->lrg_buf_skb_check)
1962                                         return 1;
1963                         }
1964                 }
1965                 lrg_buf_cb = lrg_buf_cb->next;
1966         }
1967         return 0;
1968 }
1969
1970 /*
1971  * Caller holds hw_lock.
1972  */
1973 static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
1974 {
1975         struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
1976         if (qdev->small_buf_release_cnt >= 16) {
1977                 while (qdev->small_buf_release_cnt >= 16) {
1978                         qdev->small_buf_q_producer_index++;
1979
1980                         if (qdev->small_buf_q_producer_index ==
1981                             NUM_SBUFQ_ENTRIES)
1982                                 qdev->small_buf_q_producer_index = 0;
1983                         qdev->small_buf_release_cnt -= 8;
1984                 }
1985                 wmb();
1986                 writel(qdev->small_buf_q_producer_index,
1987                         &port_regs->CommonRegs.rxSmallQProducerIndex);
1988         }
1989 }
1990
1991 /*
1992  * Caller holds hw_lock.
1993  */
1994 static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
1995 {
1996         struct bufq_addr_element *lrg_buf_q_ele;
1997         int i;
1998         struct ql_rcv_buf_cb *lrg_buf_cb;
1999         struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2000
2001         if ((qdev->lrg_buf_free_count >= 8)
2002             && (qdev->lrg_buf_release_cnt >= 16)) {
2003
2004                 if (qdev->lrg_buf_skb_check)
2005                         if (!ql_populate_free_queue(qdev))
2006                                 return;
2007
2008                 lrg_buf_q_ele = qdev->lrg_buf_next_free;
2009
2010                 while ((qdev->lrg_buf_release_cnt >= 16)
2011                        && (qdev->lrg_buf_free_count >= 8)) {
2012
2013                         for (i = 0; i < 8; i++) {
2014                                 lrg_buf_cb =
2015                                     ql_get_from_lrg_buf_free_list(qdev);
2016                                 lrg_buf_q_ele->addr_high =
2017                                     lrg_buf_cb->buf_phy_addr_high;
2018                                 lrg_buf_q_ele->addr_low =
2019                                     lrg_buf_cb->buf_phy_addr_low;
2020                                 lrg_buf_q_ele++;
2021
2022                                 qdev->lrg_buf_release_cnt--;
2023                         }
2024
2025                         qdev->lrg_buf_q_producer_index++;
2026
2027                         if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries)
2028                                 qdev->lrg_buf_q_producer_index = 0;
2029
2030                         if (qdev->lrg_buf_q_producer_index ==
2031                             (qdev->num_lbufq_entries - 1)) {
2032                                 lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
2033                         }
2034                 }
2035                 wmb();
2036                 qdev->lrg_buf_next_free = lrg_buf_q_ele;
2037                 writel(qdev->lrg_buf_q_producer_index,
2038                         &port_regs->CommonRegs.rxLargeQProducerIndex);
2039         }
2040 }
2041
2042 static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
2043                                    struct ob_mac_iocb_rsp *mac_rsp)
2044 {
2045         struct ql_tx_buf_cb *tx_cb;
2046         int i;
2047         int retval = 0;
2048
2049         if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
2050                 printk(KERN_WARNING "Frame short but, frame was padded and sent.\n");
2051         }
2052
2053         tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
2054
2055         /*  Check the transmit response flags for any errors */
2056         if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
2057                 printk(KERN_ERR "Frame too short to be legal, frame not sent.\n");
2058
2059                 qdev->ndev->stats.tx_errors++;
2060                 retval = -EIO;
2061                 goto frame_not_sent;
2062         }
2063
2064         if(tx_cb->seg_count == 0) {
2065                 printk(KERN_ERR "tx_cb->seg_count == 0: %d\n", mac_rsp->transaction_id);
2066
2067                 qdev->ndev->stats.tx_errors++;
2068                 retval = -EIO;
2069                 goto invalid_seg_count;
2070         }
2071
2072         pci_unmap_single(qdev->pdev,
2073                          pci_unmap_addr(&tx_cb->map[0], mapaddr),
2074                          pci_unmap_len(&tx_cb->map[0], maplen),
2075                          PCI_DMA_TODEVICE);
2076         tx_cb->seg_count--;
2077         if (tx_cb->seg_count) {
2078                 for (i = 1; i < tx_cb->seg_count; i++) {
2079                         pci_unmap_page(qdev->pdev,
2080                                        pci_unmap_addr(&tx_cb->map[i],
2081                                                       mapaddr),
2082                                        pci_unmap_len(&tx_cb->map[i], maplen),
2083                                        PCI_DMA_TODEVICE);
2084                 }
2085         }
2086         qdev->ndev->stats.tx_packets++;
2087         qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
2088
2089 frame_not_sent:
2090         dev_kfree_skb_irq(tx_cb->skb);
2091         tx_cb->skb = NULL;
2092
2093 invalid_seg_count:
2094         atomic_inc(&qdev->tx_count);
2095 }
2096
2097 static void ql_get_sbuf(struct ql3_adapter *qdev)
2098 {
2099         if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
2100                 qdev->small_buf_index = 0;
2101         qdev->small_buf_release_cnt++;
2102 }
2103
2104 static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
2105 {
2106         struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
2107         lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
2108         qdev->lrg_buf_release_cnt++;
2109         if (++qdev->lrg_buf_index == qdev->num_large_buffers)
2110                 qdev->lrg_buf_index = 0;
2111         return(lrg_buf_cb);
2112 }
2113
2114 /*
2115  * The difference between 3022 and 3032 for inbound completions:
2116  * 3022 uses two buffers per completion.  The first buffer contains
2117  * (some) header info, the second the remainder of the headers plus
2118  * the data.  For this chip we reserve some space at the top of the
2119  * receive buffer so that the header info in buffer one can be
2120  * prepended to the buffer two.  Buffer two is the sent up while
2121  * buffer one is returned to the hardware to be reused.
2122  * 3032 receives all of it's data and headers in one buffer for a
2123  * simpler process.  3032 also supports checksum verification as
2124  * can be seen in ql_process_macip_rx_intr().
2125  */
2126 static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
2127                                    struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
2128 {
2129         struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2130         struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2131         struct sk_buff *skb;
2132         u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
2133
2134         /*
2135          * Get the inbound address list (small buffer).
2136          */
2137         ql_get_sbuf(qdev);
2138
2139         if (qdev->device_id == QL3022_DEVICE_ID)
2140                 lrg_buf_cb1 = ql_get_lbuf(qdev);
2141
2142         /* start of second buffer */
2143         lrg_buf_cb2 = ql_get_lbuf(qdev);
2144         skb = lrg_buf_cb2->skb;
2145
2146         qdev->ndev->stats.rx_packets++;
2147         qdev->ndev->stats.rx_bytes += length;
2148
2149         skb_put(skb, length);
2150         pci_unmap_single(qdev->pdev,
2151                          pci_unmap_addr(lrg_buf_cb2, mapaddr),
2152                          pci_unmap_len(lrg_buf_cb2, maplen),
2153                          PCI_DMA_FROMDEVICE);
2154         prefetch(skb->data);
2155         skb->ip_summed = CHECKSUM_NONE;
2156         skb->protocol = eth_type_trans(skb, qdev->ndev);
2157
2158         netif_receive_skb(skb);
2159         qdev->ndev->last_rx = jiffies;
2160         lrg_buf_cb2->skb = NULL;
2161
2162         if (qdev->device_id == QL3022_DEVICE_ID)
2163                 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2164         ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2165 }
2166
2167 static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
2168                                      struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
2169 {
2170         struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2171         struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2172         struct sk_buff *skb1 = NULL, *skb2;
2173         struct net_device *ndev = qdev->ndev;
2174         u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
2175         u16 size = 0;
2176
2177         /*
2178          * Get the inbound address list (small buffer).
2179          */
2180
2181         ql_get_sbuf(qdev);
2182
2183         if (qdev->device_id == QL3022_DEVICE_ID) {
2184                 /* start of first buffer on 3022 */
2185                 lrg_buf_cb1 = ql_get_lbuf(qdev);
2186                 skb1 = lrg_buf_cb1->skb;
2187                 size = ETH_HLEN;
2188                 if (*((u16 *) skb1->data) != 0xFFFF)
2189                         size += VLAN_ETH_HLEN - ETH_HLEN;
2190         }
2191
2192         /* start of second buffer */
2193         lrg_buf_cb2 = ql_get_lbuf(qdev);
2194         skb2 = lrg_buf_cb2->skb;
2195
2196         skb_put(skb2, length);  /* Just the second buffer length here. */
2197         pci_unmap_single(qdev->pdev,
2198                          pci_unmap_addr(lrg_buf_cb2, mapaddr),
2199                          pci_unmap_len(lrg_buf_cb2, maplen),
2200                          PCI_DMA_FROMDEVICE);
2201         prefetch(skb2->data);
2202
2203         skb2->ip_summed = CHECKSUM_NONE;
2204         if (qdev->device_id == QL3022_DEVICE_ID) {
2205                 /*
2206                  * Copy the ethhdr from first buffer to second. This
2207                  * is necessary for 3022 IP completions.
2208                  */
2209                 skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
2210                                                  skb_push(skb2, size), size);
2211         } else {
2212                 u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
2213                 if (checksum &
2214                         (IB_IP_IOCB_RSP_3032_ICE |
2215                          IB_IP_IOCB_RSP_3032_CE)) {
2216                         printk(KERN_ERR
2217                                "%s: Bad checksum for this %s packet, checksum = %x.\n",
2218                                __func__,
2219                                ((checksum &
2220                                 IB_IP_IOCB_RSP_3032_TCP) ? "TCP" :
2221                                 "UDP"),checksum);
2222                 } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
2223                                 (checksum & IB_IP_IOCB_RSP_3032_UDP &&
2224                                 !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
2225                         skb2->ip_summed = CHECKSUM_UNNECESSARY;
2226                 }
2227         }
2228         skb2->protocol = eth_type_trans(skb2, qdev->ndev);
2229
2230         netif_receive_skb(skb2);
2231         ndev->stats.rx_packets++;
2232         ndev->stats.rx_bytes += length;
2233         ndev->last_rx = jiffies;
2234         lrg_buf_cb2->skb = NULL;
2235
2236         if (qdev->device_id == QL3022_DEVICE_ID)
2237                 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2238         ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2239 }
2240
2241 static int ql_tx_rx_clean(struct ql3_adapter *qdev,
2242                           int *tx_cleaned, int *rx_cleaned, int work_to_do)
2243 {
2244         struct net_rsp_iocb *net_rsp;
2245         struct net_device *ndev = qdev->ndev;
2246         int work_done = 0;
2247
2248         /* While there are entries in the completion queue. */
2249         while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
2250                 qdev->rsp_consumer_index) && (work_done < work_to_do)) {
2251
2252                 net_rsp = qdev->rsp_current;
2253                 rmb();
2254                 /*
2255                  * Fix 4032 chipe undocumented "feature" where bit-8 is set if the
2256                  * inbound completion is for a VLAN.
2257                  */
2258                 if (qdev->device_id == QL3032_DEVICE_ID)
2259                         net_rsp->opcode &= 0x7f;
2260                 switch (net_rsp->opcode) {
2261
2262                 case OPCODE_OB_MAC_IOCB_FN0:
2263                 case OPCODE_OB_MAC_IOCB_FN2:
2264                         ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
2265                                                net_rsp);
2266                         (*tx_cleaned)++;
2267                         break;
2268
2269                 case OPCODE_IB_MAC_IOCB:
2270                 case OPCODE_IB_3032_MAC_IOCB:
2271                         ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
2272                                                net_rsp);
2273                         (*rx_cleaned)++;
2274                         break;
2275
2276                 case OPCODE_IB_IP_IOCB:
2277                 case OPCODE_IB_3032_IP_IOCB:
2278                         ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
2279                                                  net_rsp);
2280                         (*rx_cleaned)++;
2281                         break;
2282                 default:
2283                         {
2284                                 u32 *tmp = (u32 *) net_rsp;
2285                                 printk(KERN_ERR PFX
2286                                        "%s: Hit default case, not "
2287                                        "handled!\n"
2288                                        "        dropping the packet, opcode = "
2289                                        "%x.\n",
2290                                        ndev->name, net_rsp->opcode);
2291                                 printk(KERN_ERR PFX
2292                                        "0x%08lx 0x%08lx 0x%08lx 0x%08lx \n",
2293                                        (unsigned long int)tmp[0],
2294                                        (unsigned long int)tmp[1],
2295                                        (unsigned long int)tmp[2],
2296                                        (unsigned long int)tmp[3]);
2297                         }
2298                 }
2299
2300                 qdev->rsp_consumer_index++;
2301
2302                 if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
2303                         qdev->rsp_consumer_index = 0;
2304                         qdev->rsp_current = qdev->rsp_q_virt_addr;
2305                 } else {
2306                         qdev->rsp_current++;
2307                 }
2308
2309                 work_done = *tx_cleaned + *rx_cleaned;
2310         }
2311
2312         return work_done;
2313 }
2314
2315 static int ql_poll(struct napi_struct *napi, int budget)
2316 {
2317         struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
2318         struct net_device *ndev = qdev->ndev;
2319         int rx_cleaned = 0, tx_cleaned = 0;
2320         unsigned long hw_flags;
2321         struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2322
2323         if (!netif_carrier_ok(ndev))
2324                 goto quit_polling;
2325
2326         ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
2327
2328         if (tx_cleaned + rx_cleaned != budget ||
2329             !netif_running(ndev)) {
2330 quit_polling:
2331                 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
2332                 __netif_rx_complete(ndev, napi);
2333                 ql_update_small_bufq_prod_index(qdev);
2334                 ql_update_lrg_bufq_prod_index(qdev);
2335                 writel(qdev->rsp_consumer_index,
2336                             &port_regs->CommonRegs.rspQConsumerIndex);
2337                 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
2338
2339                 ql_enable_interrupts(qdev);
2340         }
2341         return tx_cleaned + rx_cleaned;
2342 }
2343
2344 static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
2345 {
2346
2347         struct net_device *ndev = dev_id;
2348         struct ql3_adapter *qdev = netdev_priv(ndev);
2349         struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2350         u32 value;
2351         int handled = 1;
2352         u32 var;
2353
2354         port_regs = qdev->mem_map_registers;
2355
2356         value =
2357             ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
2358
2359         if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
2360                 spin_lock(&qdev->adapter_lock);
2361                 netif_stop_queue(qdev->ndev);
2362                 netif_carrier_off(qdev->ndev);
2363                 ql_disable_interrupts(qdev);
2364                 qdev->port_link_state = LS_DOWN;
2365                 set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
2366
2367                 if (value & ISP_CONTROL_FE) {
2368                         /*
2369                          * Chip Fatal Error.
2370                          */
2371                         var =
2372                             ql_read_page0_reg_l(qdev,
2373                                               &port_regs->PortFatalErrStatus);
2374                         printk(KERN_WARNING PFX
2375                                "%s: Resetting chip. PortFatalErrStatus "
2376                                "register = 0x%x\n", ndev->name, var);
2377                         set_bit(QL_RESET_START,&qdev->flags) ;
2378                 } else {
2379                         /*
2380                          * Soft Reset Requested.
2381                          */
2382                         set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
2383                         printk(KERN_ERR PFX
2384                                "%s: Another function issued a reset to the "
2385                                "chip. ISR value = %x.\n", ndev->name, value);
2386                 }
2387                 queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
2388                 spin_unlock(&qdev->adapter_lock);
2389         } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
2390                 ql_disable_interrupts(qdev);
2391                 if (likely(netif_rx_schedule_prep(ndev, &qdev->napi))) {
2392                         __netif_rx_schedule(ndev, &qdev->napi);
2393                 }
2394         } else {
2395                 return IRQ_NONE;
2396         }
2397
2398         return IRQ_RETVAL(handled);
2399 }
2400
2401 /*
2402  * Get the total number of segments needed for the
2403  * given number of fragments.  This is necessary because
2404  * outbound address lists (OAL) will be used when more than
2405  * two frags are given.  Each address list has 5 addr/len
2406  * pairs.  The 5th pair in each AOL is used to  point to
2407  * the next AOL if more frags are coming.
2408  * That is why the frags:segment count  ratio is not linear.
2409  */
2410 static int ql_get_seg_count(struct ql3_adapter *qdev,
2411                             unsigned short frags)
2412 {
2413         if (qdev->device_id == QL3022_DEVICE_ID)
2414                 return 1;
2415
2416         switch(frags) {
2417         case 0: return 1;       /* just the skb->data seg */
2418         case 1: return 2;       /* skb->data + 1 frag */
2419         case 2: return 3;       /* skb->data + 2 frags */
2420         case 3: return 5;       /* skb->data + 1 frag + 1 AOL containting 2 frags */
2421         case 4: return 6;
2422         case 5: return 7;
2423         case 6: return 8;
2424         case 7: return 10;
2425         case 8: return 11;
2426         case 9: return 12;
2427         case 10: return 13;
2428         case 11: return 15;
2429         case 12: return 16;
2430         case 13: return 17;
2431         case 14: return 18;
2432         case 15: return 20;
2433         case 16: return 21;
2434         case 17: return 22;
2435         case 18: return 23;
2436         }
2437         return -1;
2438 }
2439
2440 static void ql_hw_csum_setup(const struct sk_buff *skb,
2441                              struct ob_mac_iocb_req *mac_iocb_ptr)
2442 {
2443         const struct iphdr *ip = ip_hdr(skb);
2444
2445         mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
2446         mac_iocb_ptr->ip_hdr_len = ip->ihl;
2447
2448         if (ip->protocol == IPPROTO_TCP) {
2449                 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
2450                         OB_3032MAC_IOCB_REQ_IC;
2451         } else {
2452                 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
2453                         OB_3032MAC_IOCB_REQ_IC;
2454         }
2455
2456 }
2457
2458 /*
2459  * Map the buffers for this transmit.  This will return
2460  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
2461  */
2462 static int ql_send_map(struct ql3_adapter *qdev,
2463                                 struct ob_mac_iocb_req *mac_iocb_ptr,
2464                                 struct ql_tx_buf_cb *tx_cb,
2465                                 struct sk_buff *skb)
2466 {
2467         struct oal *oal;
2468         struct oal_entry *oal_entry;
2469         int len = skb_headlen(skb);
2470         dma_addr_t map;
2471         int err;
2472         int completed_segs, i;
2473         int seg_cnt, seg = 0;
2474         int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
2475
2476         seg_cnt = tx_cb->seg_count;
2477         /*
2478          * Map the skb buffer first.
2479          */
2480         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
2481
2482         err = pci_dma_mapping_error(map);
2483         if(err) {
2484                 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
2485                        qdev->ndev->name, err);
2486
2487                 return NETDEV_TX_BUSY;
2488         }
2489
2490         oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2491         oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2492         oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2493         oal_entry->len = cpu_to_le32(len);
2494         pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2495         pci_unmap_len_set(&tx_cb->map[seg], maplen, len);
2496         seg++;
2497
2498         if (seg_cnt == 1) {
2499                 /* Terminate the last segment. */
2500                 oal_entry->len =
2501                     cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
2502         } else {
2503                 oal = tx_cb->oal;
2504                 for (completed_segs=0; completed_segs<frag_cnt; completed_segs++,seg++) {
2505                         skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
2506                         oal_entry++;
2507                         if ((seg == 2 && seg_cnt > 3) ||        /* Check for continuation */
2508                             (seg == 7 && seg_cnt > 8) ||        /* requirements. It's strange */
2509                             (seg == 12 && seg_cnt > 13) ||      /* but necessary. */
2510                             (seg == 17 && seg_cnt > 18)) {
2511                                 /* Continuation entry points to outbound address list. */
2512                                 map = pci_map_single(qdev->pdev, oal,
2513                                                      sizeof(struct oal),
2514                                                      PCI_DMA_TODEVICE);
2515
2516                                 err = pci_dma_mapping_error(map);
2517                                 if(err) {
2518
2519                                         printk(KERN_ERR "%s: PCI mapping outbound address list with error: %d\n",
2520                                                qdev->ndev->name, err);
2521                                         goto map_error;
2522                                 }
2523
2524                                 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2525                                 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2526                                 oal_entry->len =
2527                                     cpu_to_le32(sizeof(struct oal) |
2528                                                 OAL_CONT_ENTRY);
2529                                 pci_unmap_addr_set(&tx_cb->map[seg], mapaddr,
2530                                                    map);
2531                                 pci_unmap_len_set(&tx_cb->map[seg], maplen,
2532                                                   sizeof(struct oal));
2533                                 oal_entry = (struct oal_entry *)oal;
2534                                 oal++;
2535                                 seg++;
2536                         }
2537
2538                         map =
2539                             pci_map_page(qdev->pdev, frag->page,
2540                                          frag->page_offset, frag->size,
2541                                          PCI_DMA_TODEVICE);
2542
2543                         err = pci_dma_mapping_error(map);
2544                         if(err) {
2545                                 printk(KERN_ERR "%s: PCI mapping frags failed with error: %d\n",
2546                                        qdev->ndev->name, err);
2547                                 goto map_error;
2548                         }
2549
2550                         oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2551                         oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2552                         oal_entry->len = cpu_to_le32(frag->size);
2553                         pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2554                         pci_unmap_len_set(&tx_cb->map[seg], maplen,
2555                                           frag->size);
2556                 }
2557                 /* Terminate the last segment. */
2558                 oal_entry->len =
2559                     cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
2560         }
2561
2562         return NETDEV_TX_OK;
2563
2564 map_error:
2565         /* A PCI mapping failed and now we will need to back out
2566          * We need to traverse through the oal's and associated pages which
2567          * have been mapped and now we must unmap them to clean up properly
2568          */
2569
2570         seg = 1;
2571         oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2572         oal = tx_cb->oal;
2573         for (i=0; i<completed_segs; i++,seg++) {
2574                 oal_entry++;
2575
2576                 if((seg == 2 && seg_cnt > 3) ||        /* Check for continuation */
2577                    (seg == 7 && seg_cnt > 8) ||        /* requirements. It's strange */
2578                    (seg == 12 && seg_cnt > 13) ||      /* but necessary. */
2579                    (seg == 17 && seg_cnt > 18)) {
2580                         pci_unmap_single(qdev->pdev,
2581                                 pci_unmap_addr(&tx_cb->map[seg], mapaddr),
2582                                 pci_unmap_len(&tx_cb->map[seg], maplen),
2583                                  PCI_DMA_TODEVICE);
2584                         oal++;
2585                         seg++;
2586                 }
2587
2588                 pci_unmap_page(qdev->pdev,
2589                                pci_unmap_addr(&tx_cb->map[seg], mapaddr),
2590                                pci_unmap_len(&tx_cb->map[seg], maplen),
2591                                PCI_DMA_TODEVICE);
2592         }
2593
2594         pci_unmap_single(qdev->pdev,
2595                          pci_unmap_addr(&tx_cb->map[0], mapaddr),
2596                          pci_unmap_addr(&tx_cb->map[0], maplen),
2597                          PCI_DMA_TODEVICE);
2598
2599         return NETDEV_TX_BUSY;
2600
2601 }
2602
2603 /*
2604  * The difference between 3022 and 3032 sends:
2605  * 3022 only supports a simple single segment transmission.
2606  * 3032 supports checksumming and scatter/gather lists (fragments).
2607  * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
2608  * in the IOCB plus a chain of outbound address lists (OAL) that
2609  * each contain 5 ALPs.  The last ALP of the IOCB (3rd) or OAL (5th)
2610  * will used to point to an OAL when more ALP entries are required.
2611  * The IOCB is always the top of the chain followed by one or more
2612  * OALs (when necessary).
2613  */
2614 static int ql3xxx_send(struct sk_buff *skb, struct net_device *ndev)
2615 {
2616         struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
2617         struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2618         struct ql_tx_buf_cb *tx_cb;
2619         u32 tot_len = skb->len;
2620         struct ob_mac_iocb_req *mac_iocb_ptr;
2621
2622         if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
2623                 return NETDEV_TX_BUSY;
2624         }
2625
2626         tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
2627         if((tx_cb->seg_count = ql_get_seg_count(qdev,
2628                                                 (skb_shinfo(skb)->nr_frags))) == -1) {
2629                 printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
2630                 return NETDEV_TX_OK;
2631         }
2632
2633         mac_iocb_ptr = tx_cb->queue_entry;
2634         memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
2635         mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
2636         mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
2637         mac_iocb_ptr->flags |= qdev->mb_bit_mask;
2638         mac_iocb_ptr->transaction_id = qdev->req_producer_index;
2639         mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
2640         tx_cb->skb = skb;
2641         if (qdev->device_id == QL3032_DEVICE_ID &&
2642             skb->ip_summed == CHECKSUM_PARTIAL)
2643                 ql_hw_csum_setup(skb, mac_iocb_ptr);
2644
2645         if(ql_send_map(qdev,mac_iocb_ptr,tx_cb,skb) != NETDEV_TX_OK) {
2646                 printk(KERN_ERR PFX"%s: Could not map the segments!\n",__func__);
2647                 return NETDEV_TX_BUSY;
2648         }
2649
2650         wmb();
2651         qdev->req_producer_index++;
2652         if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
2653                 qdev->req_producer_index = 0;
2654         wmb();
2655         ql_write_common_reg_l(qdev,
2656                             &port_regs->CommonRegs.reqQProducerIndex,
2657                             qdev->req_producer_index);
2658
2659         ndev->trans_start = jiffies;
2660         if (netif_msg_tx_queued(qdev))
2661                 printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
2662                        ndev->name, qdev->req_producer_index, skb->len);
2663
2664         atomic_dec(&qdev->tx_count);
2665         return NETDEV_TX_OK;
2666 }
2667
2668 static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
2669 {
2670         qdev->req_q_size =
2671             (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
2672
2673         qdev->req_q_virt_addr =
2674             pci_alloc_consistent(qdev->pdev,
2675                                  (size_t) qdev->req_q_size,
2676                                  &qdev->req_q_phy_addr);
2677
2678         if ((qdev->req_q_virt_addr == NULL) ||
2679             LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
2680                 printk(KERN_ERR PFX "%s: reqQ failed.\n",
2681                        qdev->ndev->name);
2682                 return -ENOMEM;
2683         }
2684
2685         qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
2686
2687         qdev->rsp_q_virt_addr =
2688             pci_alloc_consistent(qdev->pdev,
2689                                  (size_t) qdev->rsp_q_size,
2690                                  &qdev->rsp_q_phy_addr);
2691
2692         if ((qdev->rsp_q_virt_addr == NULL) ||
2693             LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
2694                 printk(KERN_ERR PFX
2695                        "%s: rspQ allocation failed\n",
2696                        qdev->ndev->name);
2697                 pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
2698                                     qdev->req_q_virt_addr,
2699                                     qdev->req_q_phy_addr);
2700                 return -ENOMEM;
2701         }
2702
2703         set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
2704
2705         return 0;
2706 }
2707
2708 static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
2709 {
2710         if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
2711                 printk(KERN_INFO PFX
2712                        "%s: Already done.\n", qdev->ndev->name);
2713                 return;
2714         }
2715
2716         pci_free_consistent(qdev->pdev,
2717                             qdev->req_q_size,
2718                             qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2719
2720         qdev->req_q_virt_addr = NULL;
2721
2722         pci_free_consistent(qdev->pdev,
2723                             qdev->rsp_q_size,
2724                             qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
2725
2726         qdev->rsp_q_virt_addr = NULL;
2727
2728         clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
2729 }
2730
2731 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
2732 {
2733         /* Create Large Buffer Queue */
2734         qdev->lrg_buf_q_size =
2735             qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
2736         if (qdev->lrg_buf_q_size < PAGE_SIZE)
2737                 qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
2738         else
2739                 qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
2740
2741         qdev->lrg_buf = kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),GFP_KERNEL);
2742         if (qdev->lrg_buf == NULL) {
2743                 printk(KERN_ERR PFX
2744                        "%s: qdev->lrg_buf alloc failed.\n", qdev->ndev->name);
2745                 return -ENOMEM;
2746         }
2747
2748         qdev->lrg_buf_q_alloc_virt_addr =
2749             pci_alloc_consistent(qdev->pdev,
2750                                  qdev->lrg_buf_q_alloc_size,
2751                                  &qdev->lrg_buf_q_alloc_phy_addr);
2752
2753         if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
2754                 printk(KERN_ERR PFX
2755                        "%s: lBufQ failed\n", qdev->ndev->name);
2756                 return -ENOMEM;
2757         }
2758         qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
2759         qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
2760
2761         /* Create Small Buffer Queue */
2762         qdev->small_buf_q_size =
2763             NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
2764         if (qdev->small_buf_q_size < PAGE_SIZE)
2765                 qdev->small_buf_q_alloc_size = PAGE_SIZE;
2766         else
2767                 qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
2768
2769         qdev->small_buf_q_alloc_virt_addr =
2770             pci_alloc_consistent(qdev->pdev,
2771                                  qdev->small_buf_q_alloc_size,
2772                                  &qdev->small_buf_q_alloc_phy_addr);
2773
2774         if (qdev->small_buf_q_alloc_virt_addr == NULL) {
2775                 printk(KERN_ERR PFX
2776                        "%s: Small Buffer Queue allocation failed.\n",
2777                        qdev->ndev->name);
2778                 pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
2779                                     qdev->lrg_buf_q_alloc_virt_addr,
2780                                     qdev->lrg_buf_q_alloc_phy_addr);
2781                 return -ENOMEM;
2782         }
2783
2784         qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
2785         qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
2786         set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
2787         return 0;
2788 }
2789
2790 static void ql_free_buffer_queues(struct ql3_adapter *qdev)
2791 {
2792         if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
2793                 printk(KERN_INFO PFX
2794                        "%s: Already done.\n", qdev->ndev->name);
2795                 return;
2796         }
2797         if(qdev->lrg_buf) kfree(qdev->lrg_buf);
2798         pci_free_consistent(qdev->pdev,
2799                             qdev->lrg_buf_q_alloc_size,
2800                             qdev->lrg_buf_q_alloc_virt_addr,
2801                             qdev->lrg_buf_q_alloc_phy_addr);
2802
2803         qdev->lrg_buf_q_virt_addr = NULL;
2804
2805         pci_free_consistent(qdev->pdev,
2806                             qdev->small_buf_q_alloc_size,
2807                             qdev->small_buf_q_alloc_virt_addr,
2808                             qdev->small_buf_q_alloc_phy_addr);
2809
2810         qdev->small_buf_q_virt_addr = NULL;
2811
2812         clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
2813 }
2814
2815 static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
2816 {
2817         int i;
2818         struct bufq_addr_element *small_buf_q_entry;
2819
2820         /* Currently we allocate on one of memory and use it for smallbuffers */
2821         qdev->small_buf_total_size =
2822             (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
2823              QL_SMALL_BUFFER_SIZE);
2824
2825         qdev->small_buf_virt_addr =
2826             pci_alloc_consistent(qdev->pdev,
2827                                  qdev->small_buf_total_size,
2828                                  &qdev->small_buf_phy_addr);
2829
2830         if (qdev->small_buf_virt_addr == NULL) {
2831                 printk(KERN_ERR PFX
2832                        "%s: Failed to get small buffer memory.\n",
2833                        qdev->ndev->name);
2834                 return -ENOMEM;
2835         }
2836
2837         qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
2838         qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
2839
2840         small_buf_q_entry = qdev->small_buf_q_virt_addr;
2841
2842         /* Initialize the small buffer queue. */
2843         for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
2844                 small_buf_q_entry->addr_high =
2845                     cpu_to_le32(qdev->small_buf_phy_addr_high);
2846                 small_buf_q_entry->addr_low =
2847                     cpu_to_le32(qdev->small_buf_phy_addr_low +
2848                                 (i * QL_SMALL_BUFFER_SIZE));
2849                 small_buf_q_entry++;
2850         }
2851         qdev->small_buf_index = 0;
2852         set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
2853         return 0;
2854 }
2855
2856 static void ql_free_small_buffers(struct ql3_adapter *qdev)
2857 {
2858         if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
2859                 printk(KERN_INFO PFX
2860                        "%s: Already done.\n", qdev->ndev->name);
2861                 return;
2862         }
2863         if (qdev->small_buf_virt_addr != NULL) {
2864                 pci_free_consistent(qdev->pdev,
2865                                     qdev->small_buf_total_size,
2866                                     qdev->small_buf_virt_addr,
2867                                     qdev->small_buf_phy_addr);
2868
2869                 qdev->small_buf_virt_addr = NULL;
2870         }
2871 }
2872
2873 static void ql_free_large_buffers(struct ql3_adapter *qdev)
2874 {
2875         int i = 0;
2876         struct ql_rcv_buf_cb *lrg_buf_cb;
2877
2878         for (i = 0; i < qdev->num_large_buffers; i++) {
2879                 lrg_buf_cb = &qdev->lrg_buf[i];
2880                 if (lrg_buf_cb->skb) {
2881                         dev_kfree_skb(lrg_buf_cb->skb);
2882                         pci_unmap_single(qdev->pdev,
2883                                          pci_unmap_addr(lrg_buf_cb, mapaddr),
2884                                          pci_unmap_len(lrg_buf_cb, maplen),
2885                                          PCI_DMA_FROMDEVICE);
2886                         memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2887                 } else {
2888                         break;
2889                 }
2890         }
2891 }
2892
2893 static void ql_init_large_buffers(struct ql3_adapter *qdev)
2894 {
2895         int i;
2896         struct ql_rcv_buf_cb *lrg_buf_cb;
2897         struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
2898
2899         for (i = 0; i < qdev->num_large_buffers; i++) {
2900                 lrg_buf_cb = &qdev->lrg_buf[i];
2901                 buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
2902                 buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
2903                 buf_addr_ele++;
2904         }
2905         qdev->lrg_buf_index = 0;
2906         qdev->lrg_buf_skb_check = 0;
2907 }
2908
2909 static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
2910 {
2911         int i;
2912         struct ql_rcv_buf_cb *lrg_buf_cb;
2913         struct sk_buff *skb;
2914         dma_addr_t map;
2915         int err;
2916
2917         for (i = 0; i < qdev->num_large_buffers; i++) {
2918                 skb = netdev_alloc_skb(qdev->ndev,
2919                                        qdev->lrg_buffer_len);
2920                 if (unlikely(!skb)) {
2921                         /* Better luck next round */
2922                         printk(KERN_ERR PFX
2923                                "%s: large buff alloc failed, "
2924                                "for %d bytes at index %d.\n",
2925                                qdev->ndev->name,
2926                                qdev->lrg_buffer_len * 2, i);
2927                         ql_free_large_buffers(qdev);
2928                         return -ENOMEM;
2929                 } else {
2930
2931                         lrg_buf_cb = &qdev->lrg_buf[i];
2932                         memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2933                         lrg_buf_cb->index = i;
2934                         lrg_buf_cb->skb = skb;
2935                         /*
2936                          * We save some space to copy the ethhdr from first
2937                          * buffer
2938                          */
2939                         skb_reserve(skb, QL_HEADER_SPACE);
2940                         map = pci_map_single(qdev->pdev,
2941                                              skb->data,
2942                                              qdev->lrg_buffer_len -
2943                                              QL_HEADER_SPACE,
2944                                              PCI_DMA_FROMDEVICE);
2945
2946                         err = pci_dma_mapping_error(map);
2947                         if(err) {
2948                                 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
2949                                        qdev->ndev->name, err);
2950                                 ql_free_large_buffers(qdev);
2951                                 return -ENOMEM;
2952                         }
2953
2954                         pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
2955                         pci_unmap_len_set(lrg_buf_cb, maplen,
2956                                           qdev->lrg_buffer_len -
2957                                           QL_HEADER_SPACE);
2958                         lrg_buf_cb->buf_phy_addr_low =
2959                             cpu_to_le32(LS_64BITS(map));
2960                         lrg_buf_cb->buf_phy_addr_high =
2961                             cpu_to_le32(MS_64BITS(map));
2962                 }
2963         }
2964         return 0;
2965 }
2966
2967 static void ql_free_send_free_list(struct ql3_adapter *qdev)
2968 {
2969         struct ql_tx_buf_cb *tx_cb;
2970         int i;
2971
2972         tx_cb = &qdev->tx_buf[0];
2973         for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2974                 if (tx_cb->oal) {
2975                         kfree(tx_cb->oal);
2976                         tx_cb->oal = NULL;
2977                 }
2978                 tx_cb++;
2979         }
2980 }
2981
2982 static int ql_create_send_free_list(struct ql3_adapter *qdev)
2983 {
2984         struct ql_tx_buf_cb *tx_cb;
2985         int i;
2986         struct ob_mac_iocb_req *req_q_curr =
2987                                         qdev->req_q_virt_addr;
2988
2989         /* Create free list of transmit buffers */
2990         for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2991
2992                 tx_cb = &qdev->tx_buf[i];
2993                 tx_cb->skb = NULL;
2994                 tx_cb->queue_entry = req_q_curr;
2995                 req_q_curr++;
2996                 tx_cb->oal = kmalloc(512, GFP_KERNEL);
2997                 if (tx_cb->oal == NULL)
2998                         return -1;
2999         }
3000         return 0;
3001 }
3002
3003 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
3004 {
3005         if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
3006                 qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
3007                 qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
3008         }
3009         else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
3010                 /*
3011                  * Bigger buffers, so less of them.
3012                  */
3013                 qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
3014                 qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
3015         } else {
3016                 printk(KERN_ERR PFX
3017                        "%s: Invalid mtu size.  Only 1500 and 9000 are accepted.\n",
3018                        qdev->ndev->name);
3019                 return -ENOMEM;
3020         }
3021         qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
3022         qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
3023         qdev->max_frame_size =
3024             (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
3025
3026         /*
3027          * First allocate a page of shared memory and use it for shadow
3028          * locations of Network Request Queue Consumer Address Register and
3029          * Network Completion Queue Producer Index Register
3030          */
3031         qdev->shadow_reg_virt_addr =
3032             pci_alloc_consistent(qdev->pdev,
3033                                  PAGE_SIZE, &qdev->shadow_reg_phy_addr);
3034
3035         if (qdev->shadow_reg_virt_addr != NULL) {
3036                 qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
3037                 qdev->req_consumer_index_phy_addr_high =
3038                     MS_64BITS(qdev->shadow_reg_phy_addr);
3039                 qdev->req_consumer_index_phy_addr_low =
3040                     LS_64BITS(qdev->shadow_reg_phy_addr);
3041
3042                 qdev->prsp_producer_index =
3043                     (u32 *) (((u8 *) qdev->preq_consumer_index) + 8);
3044                 qdev->rsp_producer_index_phy_addr_high =
3045                     qdev->req_consumer_index_phy_addr_high;
3046                 qdev->rsp_producer_index_phy_addr_low =
3047                     qdev->req_consumer_index_phy_addr_low + 8;
3048         } else {
3049                 printk(KERN_ERR PFX
3050                        "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
3051                 return -ENOMEM;
3052         }
3053
3054         if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
3055                 printk(KERN_ERR PFX
3056                        "%s: ql_alloc_net_req_rsp_queues failed.\n",
3057                        qdev->ndev->name);
3058                 goto err_req_rsp;
3059         }
3060
3061         if (ql_alloc_buffer_queues(qdev) != 0) {
3062                 printk(KERN_ERR PFX
3063                        "%s: ql_alloc_buffer_queues failed.\n",
3064                        qdev->ndev->name);
3065                 goto err_buffer_queues;
3066         }
3067
3068         if (ql_alloc_small_buffers(qdev) != 0) {
3069                 printk(KERN_ERR PFX
3070                        "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
3071                 goto err_small_buffers;
3072         }
3073
3074         if (ql_alloc_large_buffers(qdev) != 0) {
3075                 printk(KERN_ERR PFX
3076                        "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
3077                 goto err_small_buffers;
3078         }
3079
3080         /* Initialize the large buffer queue. */
3081         ql_init_large_buffers(qdev);
3082         if (ql_create_send_free_list(qdev))
3083                 goto err_free_list;
3084
3085         qdev->rsp_current = qdev->rsp_q_virt_addr;
3086
3087         return 0;
3088 err_free_list:
3089         ql_free_send_free_list(qdev);
3090 err_small_buffers:
3091         ql_free_buffer_queues(qdev);
3092 err_buffer_queues:
3093         ql_free_net_req_rsp_queues(qdev);
3094 err_req_rsp:
3095         pci_free_consistent(qdev->pdev,
3096                             PAGE_SIZE,
3097                             qdev->shadow_reg_virt_addr,
3098                             qdev->shadow_reg_phy_addr);
3099
3100         return -ENOMEM;
3101 }
3102
3103 static void ql_free_mem_resources(struct ql3_adapter *qdev)
3104 {
3105         ql_free_send_free_list(qdev);
3106         ql_free_large_buffers(qdev);
3107         ql_free_small_buffers(qdev);
3108         ql_free_buffer_queues(qdev);
3109         ql_free_net_req_rsp_queues(qdev);
3110         if (qdev->shadow_reg_virt_addr != NULL) {
3111                 pci_free_consistent(qdev->pdev,
3112                                     PAGE_SIZE,
3113                                     qdev->shadow_reg_virt_addr,
3114                                     qdev->shadow_reg_phy_addr);
3115                 qdev->shadow_reg_virt_addr = NULL;
3116         }
3117 }
3118
3119 static int ql_init_misc_registers(struct ql3_adapter *qdev)
3120 {
3121         struct ql3xxx_local_ram_registers __iomem *local_ram =
3122             (void __iomem *)qdev->mem_map_registers;
3123
3124         if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
3125                         (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3126                          2) << 4))
3127                 return -1;
3128
3129         ql_write_page2_reg(qdev,
3130                            &local_ram->bufletSize, qdev->nvram_data.bufletSize);
3131
3132         ql_write_page2_reg(qdev,
3133                            &local_ram->maxBufletCount,
3134                            qdev->nvram_data.bufletCount);
3135
3136         ql_write_page2_reg(qdev,
3137                            &local_ram->freeBufletThresholdLow,
3138                            (qdev->nvram_data.tcpWindowThreshold25 << 16) |
3139                            (qdev->nvram_data.tcpWindowThreshold0));
3140
3141         ql_write_page2_reg(qdev,
3142                            &local_ram->freeBufletThresholdHigh,
3143                            qdev->nvram_data.tcpWindowThreshold50);
3144
3145         ql_write_page2_reg(qdev,
3146                            &local_ram->ipHashTableBase,
3147                            (qdev->nvram_data.ipHashTableBaseHi << 16) |
3148                            qdev->nvram_data.ipHashTableBaseLo);
3149         ql_write_page2_reg(qdev,
3150                            &local_ram->ipHashTableCount,
3151                            qdev->nvram_data.ipHashTableSize);
3152         ql_write_page2_reg(qdev,
3153                            &local_ram->tcpHashTableBase,
3154                            (qdev->nvram_data.tcpHashTableBaseHi << 16) |
3155                            qdev->nvram_data.tcpHashTableBaseLo);
3156         ql_write_page2_reg(qdev,
3157                            &local_ram->tcpHashTableCount,
3158                            qdev->nvram_data.tcpHashTableSize);
3159         ql_write_page2_reg(qdev,
3160                            &local_ram->ncbBase,
3161                            (qdev->nvram_data.ncbTableBaseHi << 16) |
3162                            qdev->nvram_data.ncbTableBaseLo);
3163         ql_write_page2_reg(qdev,
3164                            &local_ram->maxNcbCount,
3165                            qdev->nvram_data.ncbTableSize);
3166         ql_write_page2_reg(qdev,
3167                            &local_ram->drbBase,
3168                            (qdev->nvram_data.drbTableBaseHi << 16) |
3169                            qdev->nvram_data.drbTableBaseLo);
3170         ql_write_page2_reg(qdev,
3171                            &local_ram->maxDrbCount,
3172                            qdev->nvram_data.drbTableSize);
3173         ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
3174         return 0;
3175 }
3176
3177 static int ql_adapter_initialize(struct ql3_adapter *qdev)
3178 {
3179         u32 value;
3180         struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3181         struct ql3xxx_host_memory_registers __iomem *hmem_regs =
3182                                                 (void __iomem *)port_regs;
3183         u32 delay = 10;
3184         int status = 0;
3185
3186         if(ql_mii_setup(qdev))
3187                 return -1;
3188
3189         /* Bring out PHY out of reset */
3190         ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
3191                             (ISP_SERIAL_PORT_IF_WE |
3192                              (ISP_SERIAL_PORT_IF_WE << 16)));
3193
3194         qdev->port_link_state = LS_DOWN;
3195         netif_carrier_off(qdev->ndev);
3196
3197         /* V2 chip fix for ARS-39168. */
3198         ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
3199                             (ISP_SERIAL_PORT_IF_SDE |
3200                              (ISP_SERIAL_PORT_IF_SDE << 16)));
3201
3202         /* Request Queue Registers */
3203         *((u32 *) (qdev->preq_consumer_index)) = 0;
3204         atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
3205         qdev->req_producer_index = 0;
3206
3207         ql_write_page1_reg(qdev,
3208                            &hmem_regs->reqConsumerIndexAddrHigh,
3209                            qdev->req_consumer_index_phy_addr_high);
3210         ql_write_page1_reg(qdev,
3211                            &hmem_regs->reqConsumerIndexAddrLow,
3212                            qdev->req_consumer_index_phy_addr_low);
3213
3214         ql_write_page1_reg(qdev,
3215                            &hmem_regs->reqBaseAddrHigh,
3216                            MS_64BITS(qdev->req_q_phy_addr));
3217         ql_write_page1_reg(qdev,
3218                            &hmem_regs->reqBaseAddrLow,
3219                            LS_64BITS(qdev->req_q_phy_addr));
3220         ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
3221
3222         /* Response Queue Registers */
3223         *((u16 *) (qdev->prsp_producer_index)) = 0;
3224         qdev->rsp_consumer_index = 0;
3225         qdev->rsp_current = qdev->rsp_q_virt_addr;
3226
3227         ql_write_page1_reg(qdev,
3228                            &hmem_regs->rspProducerIndexAddrHigh,
3229                            qdev->rsp_producer_index_phy_addr_high);
3230
3231         ql_write_page1_reg(qdev,
3232                            &hmem_regs->rspProducerIndexAddrLow,
3233                            qdev->rsp_producer_index_phy_addr_low);
3234
3235         ql_write_page1_reg(qdev,
3236                            &hmem_regs->rspBaseAddrHigh,
3237                            MS_64BITS(qdev->rsp_q_phy_addr));
3238
3239         ql_write_page1_reg(qdev,
3240                            &hmem_regs->rspBaseAddrLow,
3241                            LS_64BITS(qdev->rsp_q_phy_addr));
3242
3243         ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
3244
3245         /* Large Buffer Queue */
3246         ql_write_page1_reg(qdev,
3247                            &hmem_regs->rxLargeQBaseAddrHigh,
3248                            MS_64BITS(qdev->lrg_buf_q_phy_addr));
3249
3250         ql_write_page1_reg(qdev,
3251                            &hmem_regs->rxLargeQBaseAddrLow,
3252                            LS_64BITS(qdev->lrg_buf_q_phy_addr));
3253
3254         ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries);
3255
3256         ql_write_page1_reg(qdev,
3257                            &hmem_regs->rxLargeBufferLength,
3258                            qdev->lrg_buffer_len);
3259
3260         /* Small Buffer Queue */
3261         ql_write_page1_reg(qdev,
3262                            &hmem_regs->rxSmallQBaseAddrHigh,
3263                            MS_64BITS(qdev->small_buf_q_phy_addr));
3264
3265         ql_write_page1_reg(qdev,
3266                            &hmem_regs->rxSmallQBaseAddrLow,
3267                            LS_64BITS(qdev->small_buf_q_phy_addr));
3268
3269         ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
3270         ql_write_page1_reg(qdev,
3271                            &hmem_regs->rxSmallBufferLength,
3272                            QL_SMALL_BUFFER_SIZE);
3273
3274         qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
3275         qdev->small_buf_release_cnt = 8;
3276         qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
3277         qdev->lrg_buf_release_cnt = 8;
3278         qdev->lrg_buf_next_free =
3279             (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
3280         qdev->small_buf_index = 0;
3281         qdev->lrg_buf_index = 0;
3282         qdev->lrg_buf_free_count = 0;
3283         qdev->lrg_buf_free_head = NULL;
3284         qdev->lrg_buf_free_tail = NULL;
3285
3286         ql_write_common_reg(qdev,
3287                             &port_regs->CommonRegs.
3288                             rxSmallQProducerIndex,
3289                             qdev->small_buf_q_producer_index);
3290         ql_write_common_reg(qdev,
3291                             &port_regs->CommonRegs.
3292                             rxLargeQProducerIndex,
3293                             qdev->lrg_buf_q_producer_index);
3294
3295         /*
3296          * Find out if the chip has already been initialized.  If it has, then
3297          * we skip some of the initialization.
3298          */
3299         clear_bit(QL_LINK_MASTER, &qdev->flags);
3300         value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3301         if ((value & PORT_STATUS_IC) == 0) {
3302
3303                 /* Chip has not been configured yet, so let it rip. */
3304                 if(ql_init_misc_registers(qdev)) {
3305                         status = -1;
3306                         goto out;
3307                 }
3308
3309                 value = qdev->nvram_data.tcpMaxWindowSize;
3310                 ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
3311
3312                 value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
3313
3314                 if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
3315                                 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
3316                                  * 2) << 13)) {
3317                         status = -1;
3318                         goto out;
3319                 }
3320                 ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
3321                 ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
3322                                    (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
3323                                      16) | (INTERNAL_CHIP_SD |
3324                                             INTERNAL_CHIP_WE)));
3325                 ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
3326         }
3327
3328         if (qdev->mac_index)
3329                 ql_write_page0_reg(qdev,
3330                                    &port_regs->mac1MaxFrameLengthReg,
3331                                    qdev->max_frame_size);
3332         else
3333                 ql_write_page0_reg(qdev,
3334                                            &port_regs->mac0MaxFrameLengthReg,
3335                                            qdev->max_frame_size);
3336
3337         if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
3338                         (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3339                          2) << 7)) {
3340                 status = -1;
3341                 goto out;
3342         }
3343
3344         PHY_Setup(qdev);
3345         ql_init_scan_mode(qdev);
3346         ql_get_phy_owner(qdev);
3347
3348         /* Load the MAC Configuration */
3349
3350         /* Program lower 32 bits of the MAC address */
3351         ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3352                            (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3353         ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3354                            ((qdev->ndev->dev_addr[2] << 24)
3355                             | (qdev->ndev->dev_addr[3] << 16)
3356                             | (qdev->ndev->dev_addr[4] << 8)
3357                             | qdev->ndev->dev_addr[5]));
3358
3359         /* Program top 16 bits of the MAC address */
3360         ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3361                            ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3362         ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3363                            ((qdev->ndev->dev_addr[0] << 8)
3364                             | qdev->ndev->dev_addr[1]));
3365
3366         /* Enable Primary MAC */
3367         ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3368                            ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
3369                             MAC_ADDR_INDIRECT_PTR_REG_PE));
3370
3371         /* Clear Primary and Secondary IP addresses */
3372         ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3373                            ((IP_ADDR_INDEX_REG_MASK << 16) |
3374                             (qdev->mac_index << 2)));
3375         ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3376
3377         ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3378                            ((IP_ADDR_INDEX_REG_MASK << 16) |
3379                             ((qdev->mac_index << 2) + 1)));
3380         ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3381
3382         ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
3383
3384         /* Indicate Configuration Complete */
3385         ql_write_page0_reg(qdev,
3386                            &port_regs->portControl,
3387                            ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
3388
3389         do {
3390                 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3391                 if (value & PORT_STATUS_IC)
3392                         break;
3393                 msleep(500);
3394         } while (--delay);
3395
3396         if (delay == 0) {
3397                 printk(KERN_ERR PFX
3398                        "%s: Hw Initialization timeout.\n", qdev->ndev->name);
3399                 status = -1;
3400                 goto out;
3401         }
3402
3403         /* Enable Ethernet Function */
3404         if (qdev->device_id == QL3032_DEVICE_ID) {
3405                 value =
3406                     (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
3407                      QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
3408                         QL3032_PORT_CONTROL_ET);
3409                 ql_write_page0_reg(qdev, &port_regs->functionControl,
3410                                    ((value << 16) | value));
3411         } else {
3412                 value =
3413                     (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
3414                      PORT_CONTROL_HH);
3415                 ql_write_page0_reg(qdev, &port_regs->portControl,
3416                                    ((value << 16) | value));
3417         }
3418
3419
3420 out:
3421         return status;
3422 }
3423
3424 /*
3425  * Caller holds hw_lock.
3426  */
3427 static int ql_adapter_reset(struct ql3_adapter *qdev)
3428 {
3429         struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3430         int status = 0;
3431         u16 value;
3432         int max_wait_time;
3433
3434         set_bit(QL_RESET_ACTIVE, &qdev->flags);
3435         clear_bit(QL_RESET_DONE, &qdev->flags);
3436
3437         /*
3438          * Issue soft reset to chip.
3439          */
3440         printk(KERN_DEBUG PFX
3441                "%s: Issue soft reset to chip.\n",
3442                qdev->ndev->name);
3443         ql_write_common_reg(qdev,
3444                             &port_regs->CommonRegs.ispControlStatus,
3445                             ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
3446
3447         /* Wait 3 seconds for reset to complete. */
3448         printk(KERN_DEBUG PFX
3449                "%s: Wait 10 milliseconds for reset to complete.\n",
3450                qdev->ndev->name);
3451
3452         /* Wait until the firmware tells us the Soft Reset is done */
3453         max_wait_time = 5;
3454         do {
3455                 value =
3456                     ql_read_common_reg(qdev,
3457                                        &port_regs->CommonRegs.ispControlStatus);
3458                 if ((value & ISP_CONTROL_SR) == 0)
3459                         break;
3460
3461                 ssleep(1);
3462         } while ((--max_wait_time));
3463
3464         /*
3465          * Also, make sure that the Network Reset Interrupt bit has been
3466          * cleared after the soft reset has taken place.
3467          */
3468         value =
3469             ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
3470         if (value & ISP_CONTROL_RI) {
3471                 printk(KERN_DEBUG PFX
3472                        "ql_adapter_reset: clearing RI after reset.\n");
3473                 ql_write_common_reg(qdev,
3474                                     &port_regs->CommonRegs.
3475                                     ispControlStatus,
3476                                     ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3477         }
3478
3479         if (max_wait_time == 0) {
3480                 /* Issue Force Soft Reset */
3481                 ql_write_common_reg(qdev,
3482                                     &port_regs->CommonRegs.
3483                                     ispControlStatus,
3484                                     ((ISP_CONTROL_FSR << 16) |
3485                                      ISP_CONTROL_FSR));
3486                 /*
3487                  * Wait until the firmware tells us the Force Soft Reset is
3488                  * done
3489                  */
3490                 max_wait_time = 5;
3491                 do {
3492                         value =
3493                             ql_read_common_reg(qdev,
3494                                                &port_regs->CommonRegs.
3495                                                ispControlStatus);
3496                         if ((value & ISP_CONTROL_FSR) == 0) {
3497                                 break;
3498                         }
3499                         ssleep(1);
3500                 } while ((--max_wait_time));
3501         }
3502         if (max_wait_time == 0)
3503                 status = 1;
3504
3505         clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3506         set_bit(QL_RESET_DONE, &qdev->flags);
3507         return status;
3508 }
3509
3510 static void ql_set_mac_info(struct ql3_adapter *qdev)
3511 {
3512         struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3513         u32 value, port_status;
3514         u8 func_number;
3515
3516         /* Get the function number */
3517         value =
3518             ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
3519         func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
3520         port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
3521         switch (value & ISP_CONTROL_FN_MASK) {
3522         case ISP_CONTROL_FN0_NET:
3523                 qdev->mac_index = 0;
3524                 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3525                 qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
3526                 qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
3527                 qdev->mb_bit_mask = FN0_MA_BITS_MASK;
3528                 qdev->PHYAddr = PORT0_PHY_ADDRESS;
3529                 if (port_status & PORT_STATUS_SM0)
3530                         set_bit(QL_LINK_OPTICAL,&qdev->flags);
3531                 else
3532                         clear_bit(QL_LINK_OPTICAL,&qdev->flags);
3533                 break;
3534
3535         case ISP_CONTROL_FN1_NET:
3536                 qdev->mac_index = 1;
3537                 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3538                 qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
3539                 qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
3540                 qdev->mb_bit_mask = FN1_MA_BITS_MASK;
3541                 qdev->PHYAddr = PORT1_PHY_ADDRESS;
3542                 if (port_status & PORT_STATUS_SM1)
3543                         set_bit(QL_LINK_OPTICAL,&qdev->flags);
3544                 else
3545                         clear_bit(QL_LINK_OPTICAL,&qdev->flags);
3546                 break;
3547
3548         case ISP_CONTROL_FN0_SCSI:
3549         case ISP_CONTROL_FN1_SCSI:
3550         default:
3551                 printk(KERN_DEBUG PFX
3552                        "%s: Invalid function number, ispControlStatus = 0x%x\n",
3553                        qdev->ndev->name,value);
3554                 break;
3555         }
3556         qdev->numPorts = qdev->nvram_data.numPorts;
3557 }
3558
3559 static void ql_display_dev_info(struct net_device *ndev)
3560 {
3561         struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3562         struct pci_dev *pdev = qdev->pdev;
3563         DECLARE_MAC_BUF(mac);
3564
3565         printk(KERN_INFO PFX
3566                "\n%s Adapter %d RevisionID %d found %s on PCI slot %d.\n",
3567                DRV_NAME, qdev->index, qdev->chip_rev_id,
3568                (qdev->device_id == QL3032_DEVICE_ID) ? "QLA3032" : "QLA3022",
3569                qdev->pci_slot);
3570         printk(KERN_INFO PFX
3571                "%s Interface.\n",
3572                test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
3573
3574         /*
3575          * Print PCI bus width/type.
3576          */
3577         printk(KERN_INFO PFX
3578                "Bus interface is %s %s.\n",
3579                ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
3580                ((qdev->pci_x) ? "PCI-X" : "PCI"));
3581
3582         printk(KERN_INFO PFX
3583                "mem  IO base address adjusted = 0x%p\n",
3584                qdev->mem_map_registers);
3585         printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
3586
3587         if (netif_msg_probe(qdev))
3588                 printk(KERN_INFO PFX
3589                        "%s: MAC address %s\n",
3590                        ndev->name, print_mac(mac, ndev->dev_addr));
3591 }
3592
3593 static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
3594 {
3595         struct net_device *ndev = qdev->ndev;
3596         int retval = 0;
3597
3598         netif_stop_queue(ndev);
3599         netif_carrier_off(ndev);
3600
3601         clear_bit(QL_ADAPTER_UP,&qdev->flags);
3602         clear_bit(QL_LINK_MASTER,&qdev->flags);
3603
3604         ql_disable_interrupts(qdev);
3605
3606         free_irq(qdev->pdev->irq, ndev);
3607
3608         if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
3609                 printk(KERN_INFO PFX
3610                        "%s: calling pci_disable_msi().\n", qdev->ndev->name);
3611                 clear_bit(QL_MSI_ENABLED,&qdev->flags);
3612                 pci_disable_msi(qdev->pdev);
3613         }
3614
3615         del_timer_sync(&qdev->adapter_timer);
3616
3617         napi_disable(&qdev->napi);
3618
3619         if (do_reset) {
3620                 int soft_reset;
3621                 unsigned long hw_flags;
3622
3623                 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3624                 if (ql_wait_for_drvr_lock(qdev)) {
3625                         if ((soft_reset = ql_adapter_reset(qdev))) {
3626                                 printk(KERN_ERR PFX
3627                                        "%s: ql_adapter_reset(%d) FAILED!\n",
3628                                        ndev->name, qdev->index);
3629                         }
3630                         printk(KERN_ERR PFX
3631                                 "%s: Releaseing driver lock via chip reset.\n",ndev->name);
3632                 } else {
3633                         printk(KERN_ERR PFX
3634                                "%s: Could not acquire driver lock to do "
3635                                "reset!\n", ndev->name);
3636                         retval = -1;
3637                 }
3638                 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3639         }
3640         ql_free_mem_resources(qdev);
3641         return retval;
3642 }
3643
3644 static int ql_adapter_up(struct ql3_adapter *qdev)
3645 {
3646         struct net_device *ndev = qdev->ndev;
3647         int err;
3648         unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
3649         unsigned long hw_flags;
3650
3651         if (ql_alloc_mem_resources(qdev)) {
3652                 printk(KERN_ERR PFX
3653                        "%s Unable to  allocate buffers.\n", ndev->name);
3654                 return -ENOMEM;
3655         }
3656
3657         if (qdev->msi) {
3658                 if (pci_enable_msi(qdev->pdev)) {
3659                         printk(KERN_ERR PFX
3660                                "%s: User requested MSI, but MSI failed to "
3661                                "initialize.  Continuing without MSI.\n",
3662                                qdev->ndev->name);
3663                         qdev->msi = 0;
3664                 } else {
3665                         printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
3666                         set_bit(QL_MSI_ENABLED,&qdev->flags);
3667                         irq_flags &= ~IRQF_SHARED;
3668                 }
3669         }
3670
3671         if ((err = request_irq(qdev->pdev->irq,
3672                                ql3xxx_isr,
3673                                irq_flags, ndev->name, ndev))) {
3674                 printk(KERN_ERR PFX
3675                        "%s: Failed to reserve interrupt %d already in use.\n",
3676                        ndev->name, qdev->pdev->irq);
3677                 goto err_irq;
3678         }
3679
3680         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3681
3682         if ((err = ql_wait_for_drvr_lock(qdev))) {
3683                 if ((err = ql_adapter_initialize(qdev))) {
3684                         printk(KERN_ERR PFX
3685                                "%s: Unable to initialize adapter.\n",
3686                                ndev->name);
3687                         goto err_init;
3688                 }
3689                 printk(KERN_ERR PFX
3690                                 "%s: Releaseing driver lock.\n",ndev->name);
3691                 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3692         } else {
3693                 printk(KERN_ERR PFX
3694                        "%s: Could not aquire driver lock.\n",
3695                        ndev->name);
3696                 goto err_lock;
3697         }
3698
3699         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3700
3701         set_bit(QL_ADAPTER_UP,&qdev->flags);
3702
3703         mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3704
3705         napi_enable(&qdev->napi);
3706         ql_enable_interrupts(qdev);
3707         return 0;
3708
3709 err_init:
3710         ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3711 err_lock:
3712         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3713         free_irq(qdev->pdev->irq, ndev);
3714 err_irq:
3715         if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
3716                 printk(KERN_INFO PFX
3717                        "%s: calling pci_disable_msi().\n",
3718                        qdev->ndev->name);
3719                 clear_bit(QL_MSI_ENABLED,&qdev->flags);
3720                 pci_disable_msi(qdev->pdev);
3721         }
3722         return err;
3723 }
3724
3725 static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
3726 {
3727         if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
3728                 printk(KERN_ERR PFX
3729                                 "%s: Driver up/down cycle failed, "
3730                                 "closing device\n",qdev->ndev->name);
3731                 dev_close(qdev->ndev);
3732                 return -1;
3733         }
3734         return 0;
3735 }
3736
3737 static int ql3xxx_close(struct net_device *ndev)
3738 {
3739         struct ql3_adapter *qdev = netdev_priv(ndev);
3740
3741         /*
3742          * Wait for device to recover from a reset.
3743          * (Rarely happens, but possible.)
3744          */
3745         while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
3746                 msleep(50);
3747
3748         ql_adapter_down(qdev,QL_DO_RESET);
3749         return 0;
3750 }
3751
3752 static int ql3xxx_open(struct net_device *ndev)
3753 {
3754         struct ql3_adapter *qdev = netdev_priv(ndev);
3755         return (ql_adapter_up(qdev));
3756 }
3757
3758 static void ql3xxx_set_multicast_list(struct net_device *ndev)
3759 {
3760         /*
3761          * We are manually parsing the list in the net_device structure.
3762          */
3763         return;
3764 }
3765
3766 static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
3767 {
3768         struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3769         struct ql3xxx_port_registers __iomem *port_regs =
3770                         qdev->mem_map_registers;
3771         struct sockaddr *addr = p;
3772         unsigned long hw_flags;
3773
3774         if (netif_running(ndev))
3775                 return -EBUSY;
3776
3777         if (!is_valid_ether_addr(addr->sa_data))
3778                 return -EADDRNOTAVAIL;
3779
3780         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3781
3782         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3783         /* Program lower 32 bits of the MAC address */
3784         ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3785                            (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3786         ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3787                            ((ndev->dev_addr[2] << 24) | (ndev->
3788                                                          dev_addr[3] << 16) |
3789                             (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
3790
3791         /* Program top 16 bits of the MAC address */
3792         ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3793                            ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3794         ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3795                            ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
3796         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3797
3798         return 0;
3799 }
3800
3801 static void ql3xxx_tx_timeout(struct net_device *ndev)
3802 {
3803         struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3804
3805         printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
3806         /*
3807          * Stop the queues, we've got a problem.
3808          */
3809         netif_stop_queue(ndev);
3810
3811         /*
3812          * Wake up the worker to process this event.
3813          */
3814         queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
3815 }
3816
3817 static void ql_reset_work(struct work_struct *work)
3818 {
3819         struct ql3_adapter *qdev =
3820                 container_of(work, struct ql3_adapter, reset_work.work);
3821         struct net_device *ndev = qdev->ndev;
3822         u32 value;
3823         struct ql_tx_buf_cb *tx_cb;
3824         int max_wait_time, i;
3825         struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3826         unsigned long hw_flags;
3827
3828         if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
3829                 clear_bit(QL_LINK_MASTER,&qdev->flags);
3830
3831                 /*
3832                  * Loop through the active list and return the skb.
3833                  */
3834                 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
3835                         int j;
3836                         tx_cb = &qdev->tx_buf[i];
3837                         if (tx_cb->skb) {
3838                                 printk(KERN_DEBUG PFX
3839                                        "%s: Freeing lost SKB.\n",
3840                                        qdev->ndev->name);
3841                                 pci_unmap_single(qdev->pdev,
3842                                          pci_unmap_addr(&tx_cb->map[0], mapaddr),
3843                                          pci_unmap_len(&tx_cb->map[0], maplen),
3844                                          PCI_DMA_TODEVICE);
3845                                 for(j=1;j<tx_cb->seg_count;j++) {
3846                                         pci_unmap_page(qdev->pdev,
3847                                                pci_unmap_addr(&tx_cb->map[j],mapaddr),
3848                                                pci_unmap_len(&tx_cb->map[j],maplen),
3849                                                PCI_DMA_TODEVICE);
3850                                 }
3851                                 dev_kfree_skb(tx_cb->skb);
3852                                 tx_cb->skb = NULL;
3853                         }
3854                 }
3855
3856                 printk(KERN_ERR PFX
3857                        "%s: Clearing NRI after reset.\n", qdev->ndev->name);
3858                 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3859                 ql_write_common_reg(qdev,
3860                                     &port_regs->CommonRegs.
3861                                     ispControlStatus,
3862                                     ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3863                 /*
3864                  * Wait the for Soft Reset to Complete.
3865                  */
3866                 max_wait_time = 10;
3867                 do {
3868                         value = ql_read_common_reg(qdev,
3869                                                    &port_regs->CommonRegs.
3870
3871                                                    ispControlStatus);
3872                         if ((value & ISP_CONTROL_SR) == 0) {
3873                                 printk(KERN_DEBUG PFX
3874                                        "%s: reset completed.\n",
3875                                        qdev->ndev->name);
3876                                 break;
3877                         }
3878
3879                         if (value & ISP_CONTROL_RI) {
3880                                 printk(KERN_DEBUG PFX
3881                                        "%s: clearing NRI after reset.\n",
3882                                        qdev->ndev->name);
3883                                 ql_write_common_reg(qdev,
3884                                                     &port_regs->
3885                                                     CommonRegs.
3886                                                     ispControlStatus,
3887                                                     ((ISP_CONTROL_RI <<
3888                                                       16) | ISP_CONTROL_RI));
3889                         }
3890
3891                         ssleep(1);
3892                 } while (--max_wait_time);
3893                 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3894
3895                 if (value & ISP_CONTROL_SR) {
3896
3897                         /*
3898                          * Set the reset flags and clear the board again.
3899                          * Nothing else to do...
3900                          */
3901                         printk(KERN_ERR PFX
3902                                "%s: Timed out waiting for reset to "
3903                                "complete.\n", ndev->name);
3904                         printk(KERN_ERR PFX
3905                                "%s: Do a reset.\n", ndev->name);
3906                         clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
3907                         clear_bit(QL_RESET_START,&qdev->flags);
3908                         ql_cycle_adapter(qdev,QL_DO_RESET);
3909                         return;
3910                 }
3911
3912                 clear_bit(QL_RESET_ACTIVE,&qdev->flags);
3913                 clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
3914                 clear_bit(QL_RESET_START,&qdev->flags);
3915                 ql_cycle_adapter(qdev,QL_NO_RESET);
3916         }
3917 }
3918
3919 static void ql_tx_timeout_work(struct work_struct *work)
3920 {
3921         struct ql3_adapter *qdev =
3922                 container_of(work, struct ql3_adapter, tx_timeout_work.work);
3923
3924         ql_cycle_adapter(qdev, QL_DO_RESET);
3925 }
3926
3927 static void ql_get_board_info(struct ql3_adapter *qdev)
3928 {
3929         struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3930         u32 value;
3931
3932         value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
3933
3934         qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
3935         if (value & PORT_STATUS_64)
3936                 qdev->pci_width = 64;
3937         else
3938                 qdev->pci_width = 32;
3939         if (value & PORT_STATUS_X)
3940                 qdev->pci_x = 1;
3941         else
3942                 qdev->pci_x = 0;
3943         qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
3944 }
3945
3946 static void ql3xxx_timer(unsigned long ptr)
3947 {
3948         struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
3949         queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
3950 }
3951
3952 static int __devinit ql3xxx_probe(struct pci_dev *pdev,
3953                                   const struct pci_device_id *pci_entry)
3954 {
3955         struct net_device *ndev = NULL;
3956         struct ql3_adapter *qdev = NULL;
3957         static int cards_found = 0;
3958         int pci_using_dac, err;
3959
3960         err = pci_enable_device(pdev);
3961         if (err) {
3962                 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3963                        pci_name(pdev));
3964                 goto err_out;
3965         }
3966
3967         err = pci_request_regions(pdev, DRV_NAME);
3968         if (err) {
3969                 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3970                        pci_name(pdev));
3971                 goto err_out_disable_pdev;
3972         }
3973
3974         pci_set_master(pdev);
3975
3976         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3977                 pci_using_dac = 1;
3978                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3979         } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3980                 pci_using_dac = 0;
3981                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3982         }
3983
3984         if (err) {
3985                 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3986                        pci_name(pdev));
3987                 goto err_out_free_regions;
3988         }
3989
3990         ndev = alloc_etherdev(sizeof(struct ql3_adapter));
3991         if (!ndev) {
3992                 printk(KERN_ERR PFX "%s could not alloc etherdev\n",
3993                        pci_name(pdev));
3994                 err = -ENOMEM;
3995                 goto err_out_free_regions;
3996         }
3997
3998         SET_NETDEV_DEV(ndev, &pdev->dev);
3999
4000         pci_set_drvdata(pdev, ndev);
4001
4002         qdev = netdev_priv(ndev);
4003         qdev->index = cards_found;
4004         qdev->ndev = ndev;
4005         qdev->pdev = pdev;
4006         qdev->device_id = pci_entry->device;
4007         qdev->port_link_state = LS_DOWN;
4008         if (msi)
4009                 qdev->msi = 1;
4010
4011         qdev->msg_enable = netif_msg_init(debug, default_msg);
4012
4013         if (pci_using_dac)
4014                 ndev->features |= NETIF_F_HIGHDMA;
4015         if (qdev->device_id == QL3032_DEVICE_ID)
4016                 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
4017
4018         qdev->mem_map_registers =
4019             ioremap_nocache(pci_resource_start(pdev, 1),
4020                             pci_resource_len(qdev->pdev, 1));
4021         if (!qdev->mem_map_registers) {
4022                 printk(KERN_ERR PFX "%s: cannot map device registers\n",
4023                        pci_name(pdev));
4024                 err = -EIO;
4025                 goto err_out_free_ndev;
4026         }
4027
4028         spin_lock_init(&qdev->adapter_lock);
4029         spin_lock_init(&qdev->hw_lock);
4030
4031         /* Set driver entry points */
4032         ndev->open = ql3xxx_open;
4033         ndev->hard_start_xmit = ql3xxx_send;
4034         ndev->stop = ql3xxx_close;
4035         ndev->set_multicast_list = ql3xxx_set_multicast_list;
4036         SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
4037         ndev->set_mac_address = ql3xxx_set_mac_address;
4038         ndev->tx_timeout = ql3xxx_tx_timeout;
4039         ndev->watchdog_timeo = 5 * HZ;
4040
4041         netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
4042
4043         ndev->irq = pdev->irq;
4044
4045         /* make sure the EEPROM is good */
4046         if (ql_get_nvram_params(qdev)) {
4047                 printk(KERN_ALERT PFX
4048                        "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
4049                        qdev->index);
4050                 err = -EIO;
4051                 goto err_out_iounmap;
4052         }
4053
4054         ql_set_mac_info(qdev);
4055
4056         /* Validate and set parameters */
4057         if (qdev->mac_index) {
4058                 ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
4059                 memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn2.macAddress,
4060                        ETH_ALEN);
4061         } else {
4062                 ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
4063                 memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn0.macAddress,
4064                        ETH_ALEN);
4065         }
4066         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4067
4068         ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
4069
4070         /* Turn off support for multicasting */
4071         ndev->flags &= ~IFF_MULTICAST;
4072
4073         /* Record PCI bus information. */
4074         ql_get_board_info(qdev);
4075
4076         /*
4077          * Set the Maximum Memory Read Byte Count value. We do this to handle
4078          * jumbo frames.
4079          */
4080         if (qdev->pci_x) {
4081                 pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
4082         }
4083
4084         err = register_netdev(ndev);
4085         if (err) {
4086                 printk(KERN_ERR PFX "%s: cannot register net device\n",
4087                        pci_name(pdev));
4088                 goto err_out_iounmap;
4089         }
4090
4091         /* we're going to reset, so assume we have no link for now */
4092
4093         netif_carrier_off(ndev);
4094         netif_stop_queue(ndev);
4095
4096         qdev->workqueue = create_singlethread_workqueue(ndev->name);
4097         INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
4098         INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
4099         INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
4100
4101         init_timer(&qdev->adapter_timer);
4102         qdev->adapter_timer.function = ql3xxx_timer;
4103         qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
4104         qdev->adapter_timer.data = (unsigned long)qdev;
4105
4106         if(!cards_found) {
4107                 printk(KERN_ALERT PFX "%s\n", DRV_STRING);
4108                 printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
4109                    DRV_NAME, DRV_VERSION);
4110         }
4111         ql_display_dev_info(ndev);
4112
4113         cards_found++;
4114         return 0;
4115
4116 err_out_iounmap:
4117         iounmap(qdev->mem_map_registers);
4118 err_out_free_ndev:
4119         free_netdev(ndev);
4120 err_out_free_regions:
4121         pci_release_regions(pdev);
4122 err_out_disable_pdev:
4123         pci_disable_device(pdev);
4124         pci_set_drvdata(pdev, NULL);
4125 err_out:
4126         return err;
4127 }
4128
4129 static void __devexit ql3xxx_remove(struct pci_dev *pdev)
4130 {
4131         struct net_device *ndev = pci_get_drvdata(pdev);
4132         struct ql3_adapter *qdev = netdev_priv(ndev);
4133
4134         unregister_netdev(ndev);
4135         qdev = netdev_priv(ndev);
4136
4137         ql_disable_interrupts(qdev);
4138
4139         if (qdev->workqueue) {
4140                 cancel_delayed_work(&qdev->reset_work);
4141                 cancel_delayed_work(&qdev->tx_timeout_work);
4142                 destroy_workqueue(qdev->workqueue);
4143                 qdev->workqueue = NULL;
4144         }
4145
4146         iounmap(qdev->mem_map_registers);
4147         pci_release_regions(pdev);
4148         pci_set_drvdata(pdev, NULL);
4149         free_netdev(ndev);
4150 }
4151
4152 static struct pci_driver ql3xxx_driver = {
4153
4154         .name = DRV_NAME,
4155         .id_table = ql3xxx_pci_tbl,
4156         .probe = ql3xxx_probe,
4157         .remove = __devexit_p(ql3xxx_remove),
4158 };
4159
4160 static int __init ql3xxx_init_module(void)
4161 {
4162         return pci_register_driver(&ql3xxx_driver);
4163 }
4164
4165 static void __exit ql3xxx_exit(void)
4166 {
4167         pci_unregister_driver(&ql3xxx_driver);
4168 }
4169
4170 module_init(ql3xxx_init_module);
4171 module_exit(ql3xxx_exit);