mips, x86: optimize the i8259 code a bit
[linux-2.6] / arch / x86 / kernel / tsc_64.c
1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/interrupt.h>
4 #include <linux/init.h>
5 #include <linux/clocksource.h>
6 #include <linux/time.h>
7 #include <linux/acpi.h>
8 #include <linux/cpufreq.h>
9 #include <linux/acpi_pmtmr.h>
10
11 #include <asm/hpet.h>
12 #include <asm/timex.h>
13 #include <asm/timer.h>
14
15 static int notsc __initdata = 0;
16
17 unsigned int cpu_khz;           /* TSC clocks / usec, not used here */
18 EXPORT_SYMBOL(cpu_khz);
19 unsigned int tsc_khz;
20 EXPORT_SYMBOL(tsc_khz);
21
22 /* Accelerators for sched_clock()
23  * convert from cycles(64bits) => nanoseconds (64bits)
24  *  basic equation:
25  *              ns = cycles / (freq / ns_per_sec)
26  *              ns = cycles * (ns_per_sec / freq)
27  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
28  *              ns = cycles * (10^6 / cpu_khz)
29  *
30  *      Then we use scaling math (suggested by george@mvista.com) to get:
31  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
32  *              ns = cycles * cyc2ns_scale / SC
33  *
34  *      And since SC is a constant power of two, we can convert the div
35  *  into a shift.
36  *
37  *  We can use khz divisor instead of mhz to keep a better precision, since
38  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
39  *  (mathieu.desnoyers@polymtl.ca)
40  *
41  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
42  */
43 DEFINE_PER_CPU(unsigned long, cyc2ns);
44
45 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
46 {
47         unsigned long flags, prev_scale, *scale;
48         unsigned long long tsc_now, ns_now;
49
50         local_irq_save(flags);
51         sched_clock_idle_sleep_event();
52
53         scale = &per_cpu(cyc2ns, cpu);
54
55         rdtscll(tsc_now);
56         ns_now = __cycles_2_ns(tsc_now);
57
58         prev_scale = *scale;
59         if (cpu_khz)
60                 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
61
62         sched_clock_idle_wakeup_event(0);
63         local_irq_restore(flags);
64 }
65
66 unsigned long long sched_clock(void)
67 {
68         unsigned long a = 0;
69
70         /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
71          * which means it is not completely exact and may not be monotonous
72          * between CPUs. But the errors should be too small to matter for
73          * scheduling purposes.
74          */
75
76         rdtscll(a);
77         return cycles_2_ns(a);
78 }
79
80 static int tsc_unstable;
81
82 inline int check_tsc_unstable(void)
83 {
84         return tsc_unstable;
85 }
86 #ifdef CONFIG_CPU_FREQ
87
88 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
89  * changes.
90  *
91  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
92  * not that important because current Opteron setups do not support
93  * scaling on SMP anyroads.
94  *
95  * Should fix up last_tsc too. Currently gettimeofday in the
96  * first tick after the change will be slightly wrong.
97  */
98
99 static unsigned int  ref_freq;
100 static unsigned long loops_per_jiffy_ref;
101 static unsigned long tsc_khz_ref;
102
103 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
104                                  void *data)
105 {
106         struct cpufreq_freqs *freq = data;
107         unsigned long *lpj, dummy;
108
109         if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
110                 return 0;
111
112         lpj = &dummy;
113         if (!(freq->flags & CPUFREQ_CONST_LOOPS))
114 #ifdef CONFIG_SMP
115                 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
116 #else
117                 lpj = &boot_cpu_data.loops_per_jiffy;
118 #endif
119
120         if (!ref_freq) {
121                 ref_freq = freq->old;
122                 loops_per_jiffy_ref = *lpj;
123                 tsc_khz_ref = tsc_khz;
124         }
125         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
126                 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
127                 (val == CPUFREQ_RESUMECHANGE)) {
128                 *lpj =
129                 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
130
131                 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
132                 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
133                         mark_tsc_unstable("cpufreq changes");
134         }
135
136         preempt_disable();
137         set_cyc2ns_scale(tsc_khz_ref, smp_processor_id());
138         preempt_enable();
139
140         return 0;
141 }
142
143 static struct notifier_block time_cpufreq_notifier_block = {
144         .notifier_call  = time_cpufreq_notifier
145 };
146
147 static int __init cpufreq_tsc(void)
148 {
149         cpufreq_register_notifier(&time_cpufreq_notifier_block,
150                                   CPUFREQ_TRANSITION_NOTIFIER);
151         return 0;
152 }
153
154 core_initcall(cpufreq_tsc);
155
156 #endif
157
158 #define MAX_RETRIES     5
159 #define SMI_TRESHOLD    50000
160
161 /*
162  * Read TSC and the reference counters. Take care of SMI disturbance
163  */
164 static unsigned long __init tsc_read_refs(unsigned long *pm,
165                                           unsigned long *hpet)
166 {
167         unsigned long t1, t2;
168         int i;
169
170         for (i = 0; i < MAX_RETRIES; i++) {
171                 t1 = get_cycles_sync();
172                 if (hpet)
173                         *hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
174                 else
175                         *pm = acpi_pm_read_early();
176                 t2 = get_cycles_sync();
177                 if ((t2 - t1) < SMI_TRESHOLD)
178                         return t2;
179         }
180         return ULONG_MAX;
181 }
182
183 /**
184  * tsc_calibrate - calibrate the tsc on boot
185  */
186 void __init tsc_calibrate(void)
187 {
188         unsigned long flags, tsc1, tsc2, tr1, tr2, pm1, pm2, hpet1, hpet2;
189         int hpet = is_hpet_enabled(), cpu;
190
191         local_irq_save(flags);
192
193         tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL);
194
195         outb((inb(0x61) & ~0x02) | 0x01, 0x61);
196
197         outb(0xb0, 0x43);
198         outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
199         outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42);
200         tr1 = get_cycles_sync();
201         while ((inb(0x61) & 0x20) == 0);
202         tr2 = get_cycles_sync();
203
204         tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL);
205
206         local_irq_restore(flags);
207
208         /*
209          * Preset the result with the raw and inaccurate PIT
210          * calibration value
211          */
212         tsc_khz = (tr2 - tr1) / 50;
213
214         /* hpet or pmtimer available ? */
215         if (!hpet && !pm1 && !pm2) {
216                 printk(KERN_INFO "TSC calibrated against PIT\n");
217                 return;
218         }
219
220         /* Check, whether the sampling was disturbed by an SMI */
221         if (tsc1 == ULONG_MAX || tsc2 == ULONG_MAX) {
222                 printk(KERN_WARNING "TSC calibration disturbed by SMI, "
223                        "using PIT calibration result\n");
224                 return;
225         }
226
227         tsc2 = (tsc2 - tsc1) * 1000000L;
228
229         if (hpet) {
230                 printk(KERN_INFO "TSC calibrated against HPET\n");
231                 if (hpet2 < hpet1)
232                         hpet2 += 0x100000000;
233                 hpet2 -= hpet1;
234                 tsc1 = (hpet2 * hpet_readl(HPET_PERIOD)) / 1000000;
235         } else {
236                 printk(KERN_INFO "TSC calibrated against PM_TIMER\n");
237                 if (pm2 < pm1)
238                         pm2 += ACPI_PM_OVRRUN;
239                 pm2 -= pm1;
240                 tsc1 = (pm2 * 1000000000) / PMTMR_TICKS_PER_SEC;
241         }
242
243         tsc_khz = tsc2 / tsc1;
244
245         for_each_possible_cpu(cpu)
246                 set_cyc2ns_scale(tsc_khz, cpu);
247 }
248
249 /*
250  * Make an educated guess if the TSC is trustworthy and synchronized
251  * over all CPUs.
252  */
253 __cpuinit int unsynchronized_tsc(void)
254 {
255         if (tsc_unstable)
256                 return 1;
257
258 #ifdef CONFIG_SMP
259         if (apic_is_clustered_box())
260                 return 1;
261 #endif
262         /* Most intel systems have synchronized TSCs except for
263            multi node systems */
264         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
265 #ifdef CONFIG_ACPI
266                 /* But TSC doesn't tick in C3 so don't use it there */
267                 if (acpi_gbl_FADT.header.length > 0 &&
268                     acpi_gbl_FADT.C3latency < 1000)
269                         return 1;
270 #endif
271                 return 0;
272         }
273
274         /* Assume multi socket systems are not synchronized */
275         return num_present_cpus() > 1;
276 }
277
278 int __init notsc_setup(char *s)
279 {
280         notsc = 1;
281         return 1;
282 }
283
284 __setup("notsc", notsc_setup);
285
286
287 /* clock source code: */
288 static cycle_t read_tsc(void)
289 {
290         cycle_t ret = (cycle_t)get_cycles_sync();
291         return ret;
292 }
293
294 static cycle_t __vsyscall_fn vread_tsc(void)
295 {
296         cycle_t ret = (cycle_t)get_cycles_sync();
297         return ret;
298 }
299
300 static struct clocksource clocksource_tsc = {
301         .name                   = "tsc",
302         .rating                 = 300,
303         .read                   = read_tsc,
304         .mask                   = CLOCKSOURCE_MASK(64),
305         .shift                  = 22,
306         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
307                                   CLOCK_SOURCE_MUST_VERIFY,
308         .vread                  = vread_tsc,
309 };
310
311 void mark_tsc_unstable(char *reason)
312 {
313         if (!tsc_unstable) {
314                 tsc_unstable = 1;
315                 printk("Marking TSC unstable due to %s\n", reason);
316                 /* Change only the rating, when not registered */
317                 if (clocksource_tsc.mult)
318                         clocksource_change_rating(&clocksource_tsc, 0);
319                 else
320                         clocksource_tsc.rating = 0;
321         }
322 }
323 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
324
325 void __init init_tsc_clocksource(void)
326 {
327         if (!notsc) {
328                 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
329                                                         clocksource_tsc.shift);
330                 if (check_tsc_unstable())
331                         clocksource_tsc.rating = 0;
332
333                 clocksource_register(&clocksource_tsc);
334         }
335 }