4 * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
6 * This driver is based on work from Andreas Busse, but most of
7 * the code is rewritten.
9 * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
11 * Core code included by system sonic drivers
15 * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
16 * National Semiconductors data sheet for the DP83932B Sonic Ethernet
17 * controller, and the files "8390.c" and "skeleton.c" in this directory.
23 * Open/initialize the SONIC controller.
25 * This routine should set everything up anew at each open, even
26 * registers that "should" only need to be set once at boot, so that
27 * there is non-reboot way to recover if something goes wrong.
29 static int sonic_open(struct net_device *dev)
32 printk("sonic_open: initializing sonic driver.\n");
35 * We don't need to deal with auto-irq stuff since we
36 * hardwire the sonic interrupt.
39 * XXX Horrible work around: We install sonic_interrupt as fast interrupt.
40 * This means that during execution of the handler interrupt are disabled
41 * covering another bug otherwise corrupting data. This doesn't mean
42 * this glue works ok under all situations.
44 // if (sonic_request_irq(dev->irq, &sonic_interrupt, 0, "sonic", dev)) {
45 if (sonic_request_irq(dev->irq, &sonic_interrupt, SA_INTERRUPT,
47 printk("\n%s: unable to get IRQ %d .\n", dev->name, dev->irq);
52 * Initialize the SONIC
56 netif_start_queue(dev);
59 printk("sonic_open: Initialization done.\n");
66 * Close the SONIC device
68 static int sonic_close(struct net_device *dev)
70 unsigned int base_addr = dev->base_addr;
73 printk("sonic_close\n");
75 netif_stop_queue(dev);
78 * stop the SONIC, disable interrupts
80 SONIC_WRITE(SONIC_ISR, 0x7fff);
81 SONIC_WRITE(SONIC_IMR, 0);
82 SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
84 sonic_free_irq(dev->irq, dev); /* release the IRQ */
89 static void sonic_tx_timeout(struct net_device *dev)
91 struct sonic_local *lp = (struct sonic_local *) dev->priv;
92 printk("%s: transmit timed out.\n", dev->name);
94 /* Try to restart the adaptor. */
96 lp->stats.tx_errors++;
97 dev->trans_start = jiffies;
98 netif_wake_queue(dev);
104 static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
106 struct sonic_local *lp = (struct sonic_local *) dev->priv;
107 unsigned int base_addr = dev->base_addr;
111 netif_stop_queue(dev);
114 printk("sonic_send_packet: skb=%p, dev=%p\n", skb, dev);
117 * Map the packet data into the logical DMA address space
119 if ((laddr = vdma_alloc(CPHYSADDR(skb->data), skb->len)) == ~0UL) {
120 printk("%s: no VDMA entry for transmit available.\n",
123 netif_start_queue(dev);
126 entry = lp->cur_tx & SONIC_TDS_MASK;
127 lp->tx_laddr[entry] = laddr;
128 lp->tx_skb[entry] = skb;
130 length = (skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len;
134 * Setup the transmit descriptor and issue the transmit command.
136 lp->tda[entry].tx_status = 0; /* clear status */
137 lp->tda[entry].tx_frag_count = 1; /* single fragment */
138 lp->tda[entry].tx_pktsize = length; /* length of packet */
139 lp->tda[entry].tx_frag_ptr_l = laddr & 0xffff;
140 lp->tda[entry].tx_frag_ptr_h = laddr >> 16;
141 lp->tda[entry].tx_frag_size = length;
143 lp->stats.tx_bytes += length;
146 printk("sonic_send_packet: issueing Tx command\n");
148 SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
150 dev->trans_start = jiffies;
152 if (lp->cur_tx < lp->dirty_tx + SONIC_NUM_TDS)
153 netif_start_queue(dev);
161 * The typical workload of the driver:
162 * Handle the network interface interrupts.
164 static irqreturn_t sonic_interrupt(int irq, void *dev_id, struct pt_regs *regs)
166 struct net_device *dev = (struct net_device *) dev_id;
167 unsigned int base_addr = dev->base_addr;
168 struct sonic_local *lp;
172 printk("sonic_interrupt: irq %d for unknown device.\n", irq);
176 lp = (struct sonic_local *) dev->priv;
178 status = SONIC_READ(SONIC_ISR);
179 SONIC_WRITE(SONIC_ISR, 0x7fff); /* clear all bits */
182 printk("sonic_interrupt: ISR=%x\n", status);
184 if (status & SONIC_INT_PKTRX) {
185 sonic_rx(dev); /* got packet(s) */
188 if (status & SONIC_INT_TXDN) {
189 int dirty_tx = lp->dirty_tx;
191 while (dirty_tx < lp->cur_tx) {
192 int entry = dirty_tx & SONIC_TDS_MASK;
193 int status = lp->tda[entry].tx_status;
197 ("sonic_interrupt: status %d, cur_tx %d, dirty_tx %d\n",
198 status, lp->cur_tx, lp->dirty_tx);
201 /* It still hasn't been Txed, kick the sonic again */
202 SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
206 /* put back EOL and free descriptor */
207 lp->tda[entry].tx_frag_count = 0;
208 lp->tda[entry].tx_status = 0;
211 lp->stats.tx_packets++;
213 lp->stats.tx_errors++;
215 lp->stats.tx_aborted_errors++;
217 lp->stats.tx_carrier_errors++;
219 lp->stats.tx_window_errors++;
221 lp->stats.tx_fifo_errors++;
224 /* We must free the original skb */
225 if (lp->tx_skb[entry]) {
226 dev_kfree_skb_irq(lp->tx_skb[entry]);
227 lp->tx_skb[entry] = 0;
229 /* and the VDMA address */
230 vdma_free(lp->tx_laddr[entry]);
235 && dirty_tx + SONIC_NUM_TDS > lp->cur_tx + 2) {
236 /* The ring is no longer full, clear tbusy. */
238 netif_wake_queue(dev);
241 lp->dirty_tx = dirty_tx;
245 * check error conditions
247 if (status & SONIC_INT_RFO) {
248 printk("%s: receive fifo underrun\n", dev->name);
249 lp->stats.rx_fifo_errors++;
251 if (status & SONIC_INT_RDE) {
252 printk("%s: receive descriptors exhausted\n", dev->name);
253 lp->stats.rx_dropped++;
255 if (status & SONIC_INT_RBE) {
256 printk("%s: receive buffer exhausted\n", dev->name);
257 lp->stats.rx_dropped++;
259 if (status & SONIC_INT_RBAE) {
260 printk("%s: receive buffer area exhausted\n", dev->name);
261 lp->stats.rx_dropped++;
264 /* counter overruns; all counters are 16bit wide */
265 if (status & SONIC_INT_FAE)
266 lp->stats.rx_frame_errors += 65536;
267 if (status & SONIC_INT_CRC)
268 lp->stats.rx_crc_errors += 65536;
269 if (status & SONIC_INT_MP)
270 lp->stats.rx_missed_errors += 65536;
273 if (status & SONIC_INT_TXER)
274 lp->stats.tx_errors++;
277 * clear interrupt bits and return
279 SONIC_WRITE(SONIC_ISR, status);
284 * We have a good packet(s), get it/them out of the buffers.
286 static void sonic_rx(struct net_device *dev)
288 unsigned int base_addr = dev->base_addr;
289 struct sonic_local *lp = (struct sonic_local *) dev->priv;
290 sonic_rd_t *rd = &lp->rda[lp->cur_rx & SONIC_RDS_MASK];
293 while (rd->in_use == 0) {
296 unsigned char *pkt_ptr;
298 status = rd->rx_status;
300 printk("status %x, cur_rx %d, cur_rra %x\n",
301 status, lp->cur_rx, lp->cur_rra);
302 if (status & SONIC_RCR_PRX) {
303 pkt_len = rd->rx_pktlen;
306 sonic_chiptomem((rd->rx_pktptr_h << 16) +
311 ("pktptr %p (rba %p) h:%x l:%x, bsize h:%x l:%x\n",
312 pkt_ptr, lp->rba, rd->rx_pktptr_h,
314 SONIC_READ(SONIC_RBWC1),
315 SONIC_READ(SONIC_RBWC0));
317 /* Malloc up new buffer. */
318 skb = dev_alloc_skb(pkt_len + 2);
321 ("%s: Memory squeeze, dropping packet.\n",
323 lp->stats.rx_dropped++;
327 skb_reserve(skb, 2); /* 16 byte align */
328 skb_put(skb, pkt_len); /* Make room */
329 eth_copy_and_sum(skb, pkt_ptr, pkt_len, 0);
330 skb->protocol = eth_type_trans(skb, dev);
331 netif_rx(skb); /* pass the packet to upper layers */
332 dev->last_rx = jiffies;
333 lp->stats.rx_packets++;
334 lp->stats.rx_bytes += pkt_len;
337 /* This should only happen, if we enable accepting broken packets. */
338 lp->stats.rx_errors++;
339 if (status & SONIC_RCR_FAER)
340 lp->stats.rx_frame_errors++;
341 if (status & SONIC_RCR_CRCR)
342 lp->stats.rx_crc_errors++;
346 rd = &lp->rda[(++lp->cur_rx) & SONIC_RDS_MASK];
347 /* now give back the buffer to the receive buffer area */
348 if (status & SONIC_RCR_LPKT) {
350 * this was the last packet out of the current receice buffer
351 * give the buffer back to the SONIC
353 lp->cur_rra += sizeof(sonic_rr_t);
357 1) * sizeof(sonic_rr_t))) lp->cur_rra =
359 SONIC_WRITE(SONIC_RWP, lp->cur_rra & 0xffff);
362 ("%s: rx desc without RCR_LPKT. Shouldn't happen !?\n",
366 * If any worth-while packets have been received, dev_rint()
367 * has done a mark_bh(NET_BH) for us and will work on them
368 * when we get to the bottom-half routine.
374 * Get the current statistics.
375 * This may be called with the device open or closed.
377 static struct net_device_stats *sonic_get_stats(struct net_device *dev)
379 struct sonic_local *lp = (struct sonic_local *) dev->priv;
380 unsigned int base_addr = dev->base_addr;
382 /* read the tally counter from the SONIC and reset them */
383 lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
384 SONIC_WRITE(SONIC_CRCT, 0xffff);
385 lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
386 SONIC_WRITE(SONIC_FAET, 0xffff);
387 lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
388 SONIC_WRITE(SONIC_MPT, 0xffff);
395 * Set or clear the multicast filter for this adaptor.
397 static void sonic_multicast_list(struct net_device *dev)
399 struct sonic_local *lp = (struct sonic_local *) dev->priv;
400 unsigned int base_addr = dev->base_addr;
402 struct dev_mc_list *dmi = dev->mc_list;
406 rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
407 rcr |= SONIC_RCR_BRD; /* accept broadcast packets */
409 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
410 rcr |= SONIC_RCR_PRO;
412 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 15)) {
413 rcr |= SONIC_RCR_AMC;
417 ("sonic_multicast_list: mc_count %d\n",
419 lp->cda.cam_enable = 1; /* always enable our own address */
420 for (i = 1; i <= dev->mc_count; i++) {
421 addr = dmi->dmi_addr;
423 lp->cda.cam_desc[i].cam_cap0 =
424 addr[1] << 8 | addr[0];
425 lp->cda.cam_desc[i].cam_cap1 =
426 addr[3] << 8 | addr[2];
427 lp->cda.cam_desc[i].cam_cap2 =
428 addr[5] << 8 | addr[4];
429 lp->cda.cam_enable |= (1 << i);
431 SONIC_WRITE(SONIC_CDC, 16);
432 /* issue Load CAM command */
433 SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
434 SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
439 printk("sonic_multicast_list: setting RCR=%x\n", rcr);
441 SONIC_WRITE(SONIC_RCR, rcr);
446 * Initialize the SONIC ethernet controller.
448 static int sonic_init(struct net_device *dev)
450 unsigned int base_addr = dev->base_addr;
452 struct sonic_local *lp = (struct sonic_local *) dev->priv;
453 unsigned int rra_start;
454 unsigned int rra_end;
458 * put the Sonic into software-reset mode and
459 * disable all interrupts
461 SONIC_WRITE(SONIC_ISR, 0x7fff);
462 SONIC_WRITE(SONIC_IMR, 0);
463 SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
466 * clear software reset flag, disable receiver, clear and
467 * enable interrupts, then completely initialize the SONIC
469 SONIC_WRITE(SONIC_CMD, 0);
470 SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
473 * initialize the receive resource area
476 printk("sonic_init: initialize receive resource area\n");
478 rra_start = lp->rra_laddr & 0xffff;
480 (rra_start + (SONIC_NUM_RRS * sizeof(sonic_rr_t))) & 0xffff;
482 for (i = 0; i < SONIC_NUM_RRS; i++) {
483 lp->rra[i].rx_bufadr_l =
484 (lp->rba_laddr + i * SONIC_RBSIZE) & 0xffff;
485 lp->rra[i].rx_bufadr_h =
486 (lp->rba_laddr + i * SONIC_RBSIZE) >> 16;
487 lp->rra[i].rx_bufsize_l = SONIC_RBSIZE >> 1;
488 lp->rra[i].rx_bufsize_h = 0;
491 /* initialize all RRA registers */
492 SONIC_WRITE(SONIC_RSA, rra_start);
493 SONIC_WRITE(SONIC_REA, rra_end);
494 SONIC_WRITE(SONIC_RRP, rra_start);
495 SONIC_WRITE(SONIC_RWP, rra_end);
496 SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
497 SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE - 2) >> 1);
500 lp->rra_laddr + (SONIC_NUM_RRS - 1) * sizeof(sonic_rr_t);
502 /* load the resource pointers */
504 printk("sonic_init: issueing RRRA command\n");
506 SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
509 if (SONIC_READ(SONIC_CMD) & SONIC_CR_RRRA)
514 printk("sonic_init: status=%x\n", SONIC_READ(SONIC_CMD));
517 * Initialize the receive descriptors so that they
518 * become a circular linked list, ie. let the last
519 * descriptor point to the first again.
522 printk("sonic_init: initialize receive descriptors\n");
523 for (i = 0; i < SONIC_NUM_RDS; i++) {
524 lp->rda[i].rx_status = 0;
525 lp->rda[i].rx_pktlen = 0;
526 lp->rda[i].rx_pktptr_l = 0;
527 lp->rda[i].rx_pktptr_h = 0;
528 lp->rda[i].rx_seqno = 0;
529 lp->rda[i].in_use = 1;
531 lp->rda_laddr + (i + 1) * sizeof(sonic_rd_t);
533 /* fix last descriptor */
534 lp->rda[SONIC_NUM_RDS - 1].link = lp->rda_laddr;
536 SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
537 SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);
540 * initialize transmit descriptors
543 printk("sonic_init: initialize transmit descriptors\n");
544 for (i = 0; i < SONIC_NUM_TDS; i++) {
545 lp->tda[i].tx_status = 0;
546 lp->tda[i].tx_config = 0;
547 lp->tda[i].tx_pktsize = 0;
548 lp->tda[i].tx_frag_count = 0;
551 (i + 1) * sizeof(sonic_td_t)) | SONIC_END_OF_LINKS;
553 lp->tda[SONIC_NUM_TDS - 1].link =
554 (lp->tda_laddr & 0xffff) | SONIC_END_OF_LINKS;
556 SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
557 SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
558 lp->cur_tx = lp->dirty_tx = 0;
561 * put our own address to CAM desc[0]
563 lp->cda.cam_desc[0].cam_cap0 =
564 dev->dev_addr[1] << 8 | dev->dev_addr[0];
565 lp->cda.cam_desc[0].cam_cap1 =
566 dev->dev_addr[3] << 8 | dev->dev_addr[2];
567 lp->cda.cam_desc[0].cam_cap2 =
568 dev->dev_addr[5] << 8 | dev->dev_addr[4];
569 lp->cda.cam_enable = 1;
571 for (i = 0; i < 16; i++)
572 lp->cda.cam_desc[i].cam_entry_pointer = i;
575 * initialize CAM registers
577 SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
578 SONIC_WRITE(SONIC_CDC, 16);
583 SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
587 if (SONIC_READ(SONIC_ISR) & SONIC_INT_LCD)
590 if (sonic_debug > 2) {
591 printk("sonic_init: CMD=%x, ISR=%x\n",
592 SONIC_READ(SONIC_CMD), SONIC_READ(SONIC_ISR));
596 * enable receiver, disable loopback
597 * and enable all interrupts
599 SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN | SONIC_CR_STP);
600 SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
601 SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
602 SONIC_WRITE(SONIC_ISR, 0x7fff);
603 SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
605 cmd = SONIC_READ(SONIC_CMD);
606 if ((cmd & SONIC_CR_RXEN) == 0 || (cmd & SONIC_CR_STP) == 0)
607 printk("sonic_init: failed, status=%x\n", cmd);
610 printk("sonic_init: new status=%x\n",
611 SONIC_READ(SONIC_CMD));
616 MODULE_LICENSE("GPL");