2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
53 #include "xfs_filestream.h"
54 #include "xfs_vnodeops.h"
56 kmem_zone_t *xfs_ifork_zone;
57 kmem_zone_t *xfs_inode_zone;
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
63 #define XFS_ITRUNC_MAX_EXTENTS 2
65 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
72 * Make sure that the extents in the given memory buffer
82 xfs_bmbt_rec_host_t rec;
85 for (i = 0; i < nrecs; i++) {
86 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
87 rec.l0 = get_unaligned(&ep->l0);
88 rec.l1 = get_unaligned(&ep->l1);
89 xfs_bmbt_get_all(&rec, &irec);
90 if (fmt == XFS_EXTFMT_NOSTATE)
91 ASSERT(irec.br_state == XFS_EXT_NORM);
95 #define xfs_validate_extents(ifp, nrecs, fmt)
99 * Check that none of the inode's in the buffer have a next
100 * unlinked field of 0.
112 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
114 for (i = 0; i < j; i++) {
115 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
116 i * mp->m_sb.sb_inodesize);
117 if (!dip->di_next_unlinked) {
118 xfs_fs_cmn_err(CE_ALERT, mp,
119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
121 ASSERT(dip->di_next_unlinked);
128 * Find the buffer associated with the given inode map
129 * We do basic validation checks on the buffer once it has been
130 * retrieved from disk.
136 struct xfs_imap *imap,
146 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
147 (int)imap->im_len, buf_flags, &bp);
149 if (error != EAGAIN) {
151 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
152 "an error %d on %s. Returning error.",
153 error, mp->m_fsname);
155 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
161 * Validate the magic number and version of every inode in the buffer
162 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
165 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
166 #else /* usual case */
170 for (i = 0; i < ni; i++) {
174 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
175 (i << mp->m_sb.sb_inodelog));
176 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
177 XFS_DINODE_GOOD_VERSION(dip->di_version);
178 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
179 XFS_ERRTAG_ITOBP_INOTOBP,
180 XFS_RANDOM_ITOBP_INOTOBP))) {
181 if (iget_flags & XFS_IGET_BULKSTAT) {
182 xfs_trans_brelse(tp, bp);
183 return XFS_ERROR(EINVAL);
185 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 XFS_ERRLEVEL_HIGH, mp, dip);
189 "Device %s - bad inode magic/vsn "
190 "daddr %lld #%d (magic=%x)",
191 XFS_BUFTARG_NAME(mp->m_ddev_targp),
192 (unsigned long long)imap->im_blkno, i,
193 be16_to_cpu(dip->di_magic));
195 xfs_trans_brelse(tp, bp);
196 return XFS_ERROR(EFSCORRUPTED);
200 xfs_inobp_check(mp, bp);
203 * Mark the buffer as an inode buffer now that it looks good
205 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
212 * This routine is called to map an inode number within a file
213 * system to the buffer containing the on-disk version of the
214 * inode. It returns a pointer to the buffer containing the
215 * on-disk inode in the bpp parameter, and in the dip parameter
216 * it returns a pointer to the on-disk inode within that buffer.
218 * If a non-zero error is returned, then the contents of bpp and
219 * dipp are undefined.
221 * Use xfs_imap() to determine the size and location of the
222 * buffer to read from disk.
234 struct xfs_imap imap;
239 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
243 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
247 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
249 *offset = imap.im_boffset;
255 * This routine is called to map an inode to the buffer containing
256 * the on-disk version of the inode. It returns a pointer to the
257 * buffer containing the on-disk inode in the bpp parameter, and in
258 * the dip parameter it returns a pointer to the on-disk inode within
261 * If a non-zero error is returned, then the contents of bpp and
262 * dipp are undefined.
264 * The inode is expected to already been mapped to its buffer and read
265 * in once, thus we can use the mapping information stored in the inode
266 * rather than calling xfs_imap(). This allows us to avoid the overhead
267 * of looking at the inode btree for small block file systems
282 ASSERT(ip->i_imap.im_blkno != 0);
284 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
289 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
295 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
301 * Move inode type and inode format specific information from the
302 * on-disk inode to the in-core inode. For fifos, devs, and sockets
303 * this means set if_rdev to the proper value. For files, directories,
304 * and symlinks this means to bring in the in-line data or extent
305 * pointers. For a file in B-tree format, only the root is immediately
306 * brought in-core. The rest will be in-lined in if_extents when it
307 * is first referenced (see xfs_iread_extents()).
314 xfs_attr_shortform_t *atp;
318 ip->i_df.if_ext_max =
319 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
322 if (unlikely(be32_to_cpu(dip->di_nextents) +
323 be16_to_cpu(dip->di_anextents) >
324 be64_to_cpu(dip->di_nblocks))) {
325 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
326 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
327 (unsigned long long)ip->i_ino,
328 (int)(be32_to_cpu(dip->di_nextents) +
329 be16_to_cpu(dip->di_anextents)),
331 be64_to_cpu(dip->di_nblocks));
332 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
334 return XFS_ERROR(EFSCORRUPTED);
337 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
338 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
339 "corrupt dinode %Lu, forkoff = 0x%x.",
340 (unsigned long long)ip->i_ino,
342 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
344 return XFS_ERROR(EFSCORRUPTED);
347 switch (ip->i_d.di_mode & S_IFMT) {
352 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
353 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
355 return XFS_ERROR(EFSCORRUPTED);
359 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
365 switch (dip->di_format) {
366 case XFS_DINODE_FMT_LOCAL:
368 * no local regular files yet
370 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
371 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
373 "(local format for regular file).",
374 (unsigned long long) ip->i_ino);
375 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
378 return XFS_ERROR(EFSCORRUPTED);
381 di_size = be64_to_cpu(dip->di_size);
382 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
383 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
385 "(bad size %Ld for local inode).",
386 (unsigned long long) ip->i_ino,
387 (long long) di_size);
388 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
391 return XFS_ERROR(EFSCORRUPTED);
395 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
397 case XFS_DINODE_FMT_EXTENTS:
398 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
400 case XFS_DINODE_FMT_BTREE:
401 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
404 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
406 return XFS_ERROR(EFSCORRUPTED);
411 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
412 return XFS_ERROR(EFSCORRUPTED);
417 if (!XFS_DFORK_Q(dip))
419 ASSERT(ip->i_afp == NULL);
420 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
421 ip->i_afp->if_ext_max =
422 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
423 switch (dip->di_aformat) {
424 case XFS_DINODE_FMT_LOCAL:
425 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
426 size = be16_to_cpu(atp->hdr.totsize);
428 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
429 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
431 "(bad attr fork size %Ld).",
432 (unsigned long long) ip->i_ino,
434 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
437 return XFS_ERROR(EFSCORRUPTED);
440 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
442 case XFS_DINODE_FMT_EXTENTS:
443 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
445 case XFS_DINODE_FMT_BTREE:
446 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
449 error = XFS_ERROR(EFSCORRUPTED);
453 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
455 xfs_idestroy_fork(ip, XFS_DATA_FORK);
461 * The file is in-lined in the on-disk inode.
462 * If it fits into if_inline_data, then copy
463 * it there, otherwise allocate a buffer for it
464 * and copy the data there. Either way, set
465 * if_data to point at the data.
466 * If we allocate a buffer for the data, make
467 * sure that its size is a multiple of 4 and
468 * record the real size in i_real_bytes.
481 * If the size is unreasonable, then something
482 * is wrong and we just bail out rather than crash in
483 * kmem_alloc() or memcpy() below.
485 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
486 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
488 "(bad size %d for local fork, size = %d).",
489 (unsigned long long) ip->i_ino, size,
490 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
491 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
493 return XFS_ERROR(EFSCORRUPTED);
495 ifp = XFS_IFORK_PTR(ip, whichfork);
498 ifp->if_u1.if_data = NULL;
499 else if (size <= sizeof(ifp->if_u2.if_inline_data))
500 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
502 real_size = roundup(size, 4);
503 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
505 ifp->if_bytes = size;
506 ifp->if_real_bytes = real_size;
508 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
509 ifp->if_flags &= ~XFS_IFEXTENTS;
510 ifp->if_flags |= XFS_IFINLINE;
515 * The file consists of a set of extents all
516 * of which fit into the on-disk inode.
517 * If there are few enough extents to fit into
518 * the if_inline_ext, then copy them there.
519 * Otherwise allocate a buffer for them and copy
520 * them into it. Either way, set if_extents
521 * to point at the extents.
535 ifp = XFS_IFORK_PTR(ip, whichfork);
536 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
537 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
540 * If the number of extents is unreasonable, then something
541 * is wrong and we just bail out rather than crash in
542 * kmem_alloc() or memcpy() below.
544 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
545 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
546 "corrupt inode %Lu ((a)extents = %d).",
547 (unsigned long long) ip->i_ino, nex);
548 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
550 return XFS_ERROR(EFSCORRUPTED);
553 ifp->if_real_bytes = 0;
555 ifp->if_u1.if_extents = NULL;
556 else if (nex <= XFS_INLINE_EXTS)
557 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
559 xfs_iext_add(ifp, 0, nex);
561 ifp->if_bytes = size;
563 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
564 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
565 for (i = 0; i < nex; i++, dp++) {
566 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
567 ep->l0 = get_unaligned_be64(&dp->l0);
568 ep->l1 = get_unaligned_be64(&dp->l1);
570 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
571 if (whichfork != XFS_DATA_FORK ||
572 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
573 if (unlikely(xfs_check_nostate_extents(
575 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
578 return XFS_ERROR(EFSCORRUPTED);
581 ifp->if_flags |= XFS_IFEXTENTS;
586 * The file has too many extents to fit into
587 * the inode, so they are in B-tree format.
588 * Allocate a buffer for the root of the B-tree
589 * and copy the root into it. The i_extents
590 * field will remain NULL until all of the
591 * extents are read in (when they are needed).
599 xfs_bmdr_block_t *dfp;
605 ifp = XFS_IFORK_PTR(ip, whichfork);
606 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
607 size = XFS_BMAP_BROOT_SPACE(dfp);
608 nrecs = be16_to_cpu(dfp->bb_numrecs);
611 * blow out if -- fork has less extents than can fit in
612 * fork (fork shouldn't be a btree format), root btree
613 * block has more records than can fit into the fork,
614 * or the number of extents is greater than the number of
617 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
618 || XFS_BMDR_SPACE_CALC(nrecs) >
619 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
620 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
621 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
622 "corrupt inode %Lu (btree).",
623 (unsigned long long) ip->i_ino);
624 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
626 return XFS_ERROR(EFSCORRUPTED);
629 ifp->if_broot_bytes = size;
630 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
631 ASSERT(ifp->if_broot != NULL);
633 * Copy and convert from the on-disk structure
634 * to the in-memory structure.
636 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
637 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
638 ifp->if_broot, size);
639 ifp->if_flags &= ~XFS_IFEXTENTS;
640 ifp->if_flags |= XFS_IFBROOT;
646 xfs_dinode_from_disk(
650 to->di_magic = be16_to_cpu(from->di_magic);
651 to->di_mode = be16_to_cpu(from->di_mode);
652 to->di_version = from ->di_version;
653 to->di_format = from->di_format;
654 to->di_onlink = be16_to_cpu(from->di_onlink);
655 to->di_uid = be32_to_cpu(from->di_uid);
656 to->di_gid = be32_to_cpu(from->di_gid);
657 to->di_nlink = be32_to_cpu(from->di_nlink);
658 to->di_projid = be16_to_cpu(from->di_projid);
659 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
660 to->di_flushiter = be16_to_cpu(from->di_flushiter);
661 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
662 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
663 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
664 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
665 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
666 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
667 to->di_size = be64_to_cpu(from->di_size);
668 to->di_nblocks = be64_to_cpu(from->di_nblocks);
669 to->di_extsize = be32_to_cpu(from->di_extsize);
670 to->di_nextents = be32_to_cpu(from->di_nextents);
671 to->di_anextents = be16_to_cpu(from->di_anextents);
672 to->di_forkoff = from->di_forkoff;
673 to->di_aformat = from->di_aformat;
674 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
675 to->di_dmstate = be16_to_cpu(from->di_dmstate);
676 to->di_flags = be16_to_cpu(from->di_flags);
677 to->di_gen = be32_to_cpu(from->di_gen);
683 xfs_icdinode_t *from)
685 to->di_magic = cpu_to_be16(from->di_magic);
686 to->di_mode = cpu_to_be16(from->di_mode);
687 to->di_version = from ->di_version;
688 to->di_format = from->di_format;
689 to->di_onlink = cpu_to_be16(from->di_onlink);
690 to->di_uid = cpu_to_be32(from->di_uid);
691 to->di_gid = cpu_to_be32(from->di_gid);
692 to->di_nlink = cpu_to_be32(from->di_nlink);
693 to->di_projid = cpu_to_be16(from->di_projid);
694 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
695 to->di_flushiter = cpu_to_be16(from->di_flushiter);
696 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
697 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
698 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
699 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
700 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
701 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
702 to->di_size = cpu_to_be64(from->di_size);
703 to->di_nblocks = cpu_to_be64(from->di_nblocks);
704 to->di_extsize = cpu_to_be32(from->di_extsize);
705 to->di_nextents = cpu_to_be32(from->di_nextents);
706 to->di_anextents = cpu_to_be16(from->di_anextents);
707 to->di_forkoff = from->di_forkoff;
708 to->di_aformat = from->di_aformat;
709 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
710 to->di_dmstate = cpu_to_be16(from->di_dmstate);
711 to->di_flags = cpu_to_be16(from->di_flags);
712 to->di_gen = cpu_to_be32(from->di_gen);
721 if (di_flags & XFS_DIFLAG_ANY) {
722 if (di_flags & XFS_DIFLAG_REALTIME)
723 flags |= XFS_XFLAG_REALTIME;
724 if (di_flags & XFS_DIFLAG_PREALLOC)
725 flags |= XFS_XFLAG_PREALLOC;
726 if (di_flags & XFS_DIFLAG_IMMUTABLE)
727 flags |= XFS_XFLAG_IMMUTABLE;
728 if (di_flags & XFS_DIFLAG_APPEND)
729 flags |= XFS_XFLAG_APPEND;
730 if (di_flags & XFS_DIFLAG_SYNC)
731 flags |= XFS_XFLAG_SYNC;
732 if (di_flags & XFS_DIFLAG_NOATIME)
733 flags |= XFS_XFLAG_NOATIME;
734 if (di_flags & XFS_DIFLAG_NODUMP)
735 flags |= XFS_XFLAG_NODUMP;
736 if (di_flags & XFS_DIFLAG_RTINHERIT)
737 flags |= XFS_XFLAG_RTINHERIT;
738 if (di_flags & XFS_DIFLAG_PROJINHERIT)
739 flags |= XFS_XFLAG_PROJINHERIT;
740 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
741 flags |= XFS_XFLAG_NOSYMLINKS;
742 if (di_flags & XFS_DIFLAG_EXTSIZE)
743 flags |= XFS_XFLAG_EXTSIZE;
744 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
745 flags |= XFS_XFLAG_EXTSZINHERIT;
746 if (di_flags & XFS_DIFLAG_NODEFRAG)
747 flags |= XFS_XFLAG_NODEFRAG;
748 if (di_flags & XFS_DIFLAG_FILESTREAM)
749 flags |= XFS_XFLAG_FILESTREAM;
759 xfs_icdinode_t *dic = &ip->i_d;
761 return _xfs_dic2xflags(dic->di_flags) |
762 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
769 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
770 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
774 * Read the disk inode attributes into the in-core inode structure.
789 * Fill in the location information in the in-core inode.
791 ip->i_imap.im_blkno = bno;
792 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
795 ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
798 * Get pointers to the on-disk inode and the buffer containing it.
800 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
801 XFS_BUF_LOCK, iget_flags);
804 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
807 * If we got something that isn't an inode it means someone
808 * (nfs or dmi) has a stale handle.
810 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
812 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
813 "dip->di_magic (0x%x) != "
814 "XFS_DINODE_MAGIC (0x%x)",
815 be16_to_cpu(dip->di_magic),
818 error = XFS_ERROR(EINVAL);
823 * If the on-disk inode is already linked to a directory
824 * entry, copy all of the inode into the in-core inode.
825 * xfs_iformat() handles copying in the inode format
826 * specific information.
827 * Otherwise, just get the truly permanent information.
830 xfs_dinode_from_disk(&ip->i_d, dip);
831 error = xfs_iformat(ip, dip);
834 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
835 "xfs_iformat() returned error %d",
841 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
842 ip->i_d.di_version = dip->di_version;
843 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
844 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
846 * Make sure to pull in the mode here as well in
847 * case the inode is released without being used.
848 * This ensures that xfs_inactive() will see that
849 * the inode is already free and not try to mess
850 * with the uninitialized part of it.
854 * Initialize the per-fork minima and maxima for a new
855 * inode here. xfs_iformat will do it for old inodes.
857 ip->i_df.if_ext_max =
858 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
862 * The inode format changed when we moved the link count and
863 * made it 32 bits long. If this is an old format inode,
864 * convert it in memory to look like a new one. If it gets
865 * flushed to disk we will convert back before flushing or
866 * logging it. We zero out the new projid field and the old link
867 * count field. We'll handle clearing the pad field (the remains
868 * of the old uuid field) when we actually convert the inode to
869 * the new format. We don't change the version number so that we
870 * can distinguish this from a real new format inode.
872 if (ip->i_d.di_version == 1) {
873 ip->i_d.di_nlink = ip->i_d.di_onlink;
874 ip->i_d.di_onlink = 0;
875 ip->i_d.di_projid = 0;
878 ip->i_delayed_blks = 0;
879 ip->i_size = ip->i_d.di_size;
882 * Mark the buffer containing the inode as something to keep
883 * around for a while. This helps to keep recently accessed
884 * meta-data in-core longer.
886 XFS_BUF_SET_REF(bp, XFS_INO_REF);
889 * Use xfs_trans_brelse() to release the buffer containing the
890 * on-disk inode, because it was acquired with xfs_trans_read_buf()
891 * in xfs_itobp() above. If tp is NULL, this is just a normal
892 * brelse(). If we're within a transaction, then xfs_trans_brelse()
893 * will only release the buffer if it is not dirty within the
894 * transaction. It will be OK to release the buffer in this case,
895 * because inodes on disk are never destroyed and we will be
896 * locking the new in-core inode before putting it in the hash
897 * table where other processes can find it. Thus we don't have
898 * to worry about the inode being changed just because we released
902 xfs_trans_brelse(tp, bp);
907 * Read in extents from a btree-format inode.
908 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
918 xfs_extnum_t nextents;
921 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
922 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
924 return XFS_ERROR(EFSCORRUPTED);
926 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
927 size = nextents * sizeof(xfs_bmbt_rec_t);
928 ifp = XFS_IFORK_PTR(ip, whichfork);
931 * We know that the size is valid (it's checked in iformat_btree)
933 ifp->if_lastex = NULLEXTNUM;
934 ifp->if_bytes = ifp->if_real_bytes = 0;
935 ifp->if_flags |= XFS_IFEXTENTS;
936 xfs_iext_add(ifp, 0, nextents);
937 error = xfs_bmap_read_extents(tp, ip, whichfork);
939 xfs_iext_destroy(ifp);
940 ifp->if_flags &= ~XFS_IFEXTENTS;
943 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
948 * Allocate an inode on disk and return a copy of its in-core version.
949 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
950 * appropriately within the inode. The uid and gid for the inode are
951 * set according to the contents of the given cred structure.
953 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
954 * has a free inode available, call xfs_iget()
955 * to obtain the in-core version of the allocated inode. Finally,
956 * fill in the inode and log its initial contents. In this case,
957 * ialloc_context would be set to NULL and call_again set to false.
959 * If xfs_dialloc() does not have an available inode,
960 * it will replenish its supply by doing an allocation. Since we can
961 * only do one allocation within a transaction without deadlocks, we
962 * must commit the current transaction before returning the inode itself.
963 * In this case, therefore, we will set call_again to true and return.
964 * The caller should then commit the current transaction, start a new
965 * transaction, and call xfs_ialloc() again to actually get the inode.
967 * To ensure that some other process does not grab the inode that
968 * was allocated during the first call to xfs_ialloc(), this routine
969 * also returns the [locked] bp pointing to the head of the freelist
970 * as ialloc_context. The caller should hold this buffer across
971 * the commit and pass it back into this routine on the second call.
973 * If we are allocating quota inodes, we do not have a parent inode
974 * to attach to or associate with (i.e. pip == NULL) because they
975 * are not linked into the directory structure - they are attached
976 * directly to the superblock - and so have no parent.
988 xfs_buf_t **ialloc_context,
989 boolean_t *call_again,
1000 * Call the space management code to pick
1001 * the on-disk inode to be allocated.
1003 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1004 ialloc_context, call_again, &ino);
1007 if (*call_again || ino == NULLFSINO) {
1011 ASSERT(*ialloc_context == NULL);
1014 * Get the in-core inode with the lock held exclusively.
1015 * This is because we're setting fields here we need
1016 * to prevent others from looking at until we're done.
1018 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1019 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1024 ip->i_d.di_mode = (__uint16_t)mode;
1025 ip->i_d.di_onlink = 0;
1026 ip->i_d.di_nlink = nlink;
1027 ASSERT(ip->i_d.di_nlink == nlink);
1028 ip->i_d.di_uid = current_fsuid();
1029 ip->i_d.di_gid = current_fsgid();
1030 ip->i_d.di_projid = prid;
1031 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1034 * If the superblock version is up to where we support new format
1035 * inodes and this is currently an old format inode, then change
1036 * the inode version number now. This way we only do the conversion
1037 * here rather than here and in the flush/logging code.
1039 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1040 ip->i_d.di_version == 1) {
1041 ip->i_d.di_version = 2;
1043 * We've already zeroed the old link count, the projid field,
1044 * and the pad field.
1049 * Project ids won't be stored on disk if we are using a version 1 inode.
1051 if ((prid != 0) && (ip->i_d.di_version == 1))
1052 xfs_bump_ino_vers2(tp, ip);
1054 if (pip && XFS_INHERIT_GID(pip)) {
1055 ip->i_d.di_gid = pip->i_d.di_gid;
1056 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1057 ip->i_d.di_mode |= S_ISGID;
1062 * If the group ID of the new file does not match the effective group
1063 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1064 * (and only if the irix_sgid_inherit compatibility variable is set).
1066 if ((irix_sgid_inherit) &&
1067 (ip->i_d.di_mode & S_ISGID) &&
1068 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1069 ip->i_d.di_mode &= ~S_ISGID;
1072 ip->i_d.di_size = 0;
1074 ip->i_d.di_nextents = 0;
1075 ASSERT(ip->i_d.di_nblocks == 0);
1078 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1079 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1080 ip->i_d.di_atime = ip->i_d.di_mtime;
1081 ip->i_d.di_ctime = ip->i_d.di_mtime;
1084 * di_gen will have been taken care of in xfs_iread.
1086 ip->i_d.di_extsize = 0;
1087 ip->i_d.di_dmevmask = 0;
1088 ip->i_d.di_dmstate = 0;
1089 ip->i_d.di_flags = 0;
1090 flags = XFS_ILOG_CORE;
1091 switch (mode & S_IFMT) {
1096 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1097 ip->i_df.if_u2.if_rdev = rdev;
1098 ip->i_df.if_flags = 0;
1099 flags |= XFS_ILOG_DEV;
1103 * we can't set up filestreams until after the VFS inode
1104 * is set up properly.
1106 if (pip && xfs_inode_is_filestream(pip))
1110 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1113 if ((mode & S_IFMT) == S_IFDIR) {
1114 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1115 di_flags |= XFS_DIFLAG_RTINHERIT;
1116 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1117 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1118 ip->i_d.di_extsize = pip->i_d.di_extsize;
1120 } else if ((mode & S_IFMT) == S_IFREG) {
1121 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1122 di_flags |= XFS_DIFLAG_REALTIME;
1123 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1124 di_flags |= XFS_DIFLAG_EXTSIZE;
1125 ip->i_d.di_extsize = pip->i_d.di_extsize;
1128 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1129 xfs_inherit_noatime)
1130 di_flags |= XFS_DIFLAG_NOATIME;
1131 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1133 di_flags |= XFS_DIFLAG_NODUMP;
1134 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1136 di_flags |= XFS_DIFLAG_SYNC;
1137 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1138 xfs_inherit_nosymlinks)
1139 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1140 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1141 di_flags |= XFS_DIFLAG_PROJINHERIT;
1142 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1143 xfs_inherit_nodefrag)
1144 di_flags |= XFS_DIFLAG_NODEFRAG;
1145 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1146 di_flags |= XFS_DIFLAG_FILESTREAM;
1147 ip->i_d.di_flags |= di_flags;
1151 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1152 ip->i_df.if_flags = XFS_IFEXTENTS;
1153 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1154 ip->i_df.if_u1.if_extents = NULL;
1160 * Attribute fork settings for new inode.
1162 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1163 ip->i_d.di_anextents = 0;
1166 * Log the new values stuffed into the inode.
1168 xfs_trans_log_inode(tp, ip, flags);
1170 /* now that we have an i_mode we can setup inode ops and unlock */
1171 xfs_setup_inode(ip);
1173 /* now we have set up the vfs inode we can associate the filestream */
1175 error = xfs_filestream_associate(pip, ip);
1179 xfs_iflags_set(ip, XFS_IFILESTREAM);
1187 * Check to make sure that there are no blocks allocated to the
1188 * file beyond the size of the file. We don't check this for
1189 * files with fixed size extents or real time extents, but we
1190 * at least do it for regular files.
1199 xfs_fileoff_t map_first;
1201 xfs_bmbt_irec_t imaps[2];
1203 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1206 if (XFS_IS_REALTIME_INODE(ip))
1209 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1213 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1215 * The filesystem could be shutting down, so bmapi may return
1218 if (xfs_bmapi(NULL, ip, map_first,
1220 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1222 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1225 ASSERT(nimaps == 1);
1226 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1231 * Calculate the last possible buffered byte in a file. This must
1232 * include data that was buffered beyond the EOF by the write code.
1233 * This also needs to deal with overflowing the xfs_fsize_t type
1234 * which can happen for sizes near the limit.
1236 * We also need to take into account any blocks beyond the EOF. It
1237 * may be the case that they were buffered by a write which failed.
1238 * In that case the pages will still be in memory, but the inode size
1239 * will never have been updated.
1246 xfs_fsize_t last_byte;
1247 xfs_fileoff_t last_block;
1248 xfs_fileoff_t size_last_block;
1251 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1255 * Only check for blocks beyond the EOF if the extents have
1256 * been read in. This eliminates the need for the inode lock,
1257 * and it also saves us from looking when it really isn't
1260 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1261 xfs_ilock(ip, XFS_ILOCK_SHARED);
1262 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1264 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1271 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1272 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1274 last_byte = XFS_FSB_TO_B(mp, last_block);
1275 if (last_byte < 0) {
1276 return XFS_MAXIOFFSET(mp);
1278 last_byte += (1 << mp->m_writeio_log);
1279 if (last_byte < 0) {
1280 return XFS_MAXIOFFSET(mp);
1285 #if defined(XFS_RW_TRACE)
1291 xfs_fsize_t new_size,
1292 xfs_off_t toss_start,
1293 xfs_off_t toss_finish)
1295 if (ip->i_rwtrace == NULL) {
1299 ktrace_enter(ip->i_rwtrace,
1302 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1303 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1304 (void*)((long)flag),
1305 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1306 (void*)(unsigned long)(new_size & 0xffffffff),
1307 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1308 (void*)(unsigned long)(toss_start & 0xffffffff),
1309 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1310 (void*)(unsigned long)(toss_finish & 0xffffffff),
1311 (void*)(unsigned long)current_cpu(),
1312 (void*)(unsigned long)current_pid(),
1318 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1322 * Start the truncation of the file to new_size. The new size
1323 * must be smaller than the current size. This routine will
1324 * clear the buffer and page caches of file data in the removed
1325 * range, and xfs_itruncate_finish() will remove the underlying
1328 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1329 * must NOT have the inode lock held at all. This is because we're
1330 * calling into the buffer/page cache code and we can't hold the
1331 * inode lock when we do so.
1333 * We need to wait for any direct I/Os in flight to complete before we
1334 * proceed with the truncate. This is needed to prevent the extents
1335 * being read or written by the direct I/Os from being removed while the
1336 * I/O is in flight as there is no other method of synchronising
1337 * direct I/O with the truncate operation. Also, because we hold
1338 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1339 * started until the truncate completes and drops the lock. Essentially,
1340 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1341 * ordering between direct I/Os and the truncate operation.
1343 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1344 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1345 * in the case that the caller is locking things out of order and
1346 * may not be able to call xfs_itruncate_finish() with the inode lock
1347 * held without dropping the I/O lock. If the caller must drop the
1348 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1349 * must be called again with all the same restrictions as the initial
1353 xfs_itruncate_start(
1356 xfs_fsize_t new_size)
1358 xfs_fsize_t last_byte;
1359 xfs_off_t toss_start;
1363 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1364 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1365 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1366 (flags == XFS_ITRUNC_MAYBE));
1370 /* wait for the completion of any pending DIOs */
1371 if (new_size == 0 || new_size < ip->i_size)
1375 * Call toss_pages or flushinval_pages to get rid of pages
1376 * overlapping the region being removed. We have to use
1377 * the less efficient flushinval_pages in the case that the
1378 * caller may not be able to finish the truncate without
1379 * dropping the inode's I/O lock. Make sure
1380 * to catch any pages brought in by buffers overlapping
1381 * the EOF by searching out beyond the isize by our
1382 * block size. We round new_size up to a block boundary
1383 * so that we don't toss things on the same block as
1384 * new_size but before it.
1386 * Before calling toss_page or flushinval_pages, make sure to
1387 * call remapf() over the same region if the file is mapped.
1388 * This frees up mapped file references to the pages in the
1389 * given range and for the flushinval_pages case it ensures
1390 * that we get the latest mapped changes flushed out.
1392 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1393 toss_start = XFS_FSB_TO_B(mp, toss_start);
1394 if (toss_start < 0) {
1396 * The place to start tossing is beyond our maximum
1397 * file size, so there is no way that the data extended
1402 last_byte = xfs_file_last_byte(ip);
1403 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1405 if (last_byte > toss_start) {
1406 if (flags & XFS_ITRUNC_DEFINITE) {
1407 xfs_tosspages(ip, toss_start,
1408 -1, FI_REMAPF_LOCKED);
1410 error = xfs_flushinval_pages(ip, toss_start,
1411 -1, FI_REMAPF_LOCKED);
1416 if (new_size == 0) {
1417 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1424 * Shrink the file to the given new_size. The new size must be smaller than
1425 * the current size. This will free up the underlying blocks in the removed
1426 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1428 * The transaction passed to this routine must have made a permanent log
1429 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1430 * given transaction and start new ones, so make sure everything involved in
1431 * the transaction is tidy before calling here. Some transaction will be
1432 * returned to the caller to be committed. The incoming transaction must
1433 * already include the inode, and both inode locks must be held exclusively.
1434 * The inode must also be "held" within the transaction. On return the inode
1435 * will be "held" within the returned transaction. This routine does NOT
1436 * require any disk space to be reserved for it within the transaction.
1438 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1439 * indicates the fork which is to be truncated. For the attribute fork we only
1440 * support truncation to size 0.
1442 * We use the sync parameter to indicate whether or not the first transaction
1443 * we perform might have to be synchronous. For the attr fork, it needs to be
1444 * so if the unlink of the inode is not yet known to be permanent in the log.
1445 * This keeps us from freeing and reusing the blocks of the attribute fork
1446 * before the unlink of the inode becomes permanent.
1448 * For the data fork, we normally have to run synchronously if we're being
1449 * called out of the inactive path or we're being called out of the create path
1450 * where we're truncating an existing file. Either way, the truncate needs to
1451 * be sync so blocks don't reappear in the file with altered data in case of a
1452 * crash. wsync filesystems can run the first case async because anything that
1453 * shrinks the inode has to run sync so by the time we're called here from
1454 * inactive, the inode size is permanently set to 0.
1456 * Calls from the truncate path always need to be sync unless we're in a wsync
1457 * filesystem and the file has already been unlinked.
1459 * The caller is responsible for correctly setting the sync parameter. It gets
1460 * too hard for us to guess here which path we're being called out of just
1461 * based on inode state.
1463 * If we get an error, we must return with the inode locked and linked into the
1464 * current transaction. This keeps things simple for the higher level code,
1465 * because it always knows that the inode is locked and held in the transaction
1466 * that returns to it whether errors occur or not. We don't mark the inode
1467 * dirty on error so that transactions can be easily aborted if possible.
1470 xfs_itruncate_finish(
1473 xfs_fsize_t new_size,
1477 xfs_fsblock_t first_block;
1478 xfs_fileoff_t first_unmap_block;
1479 xfs_fileoff_t last_block;
1480 xfs_filblks_t unmap_len=0;
1485 xfs_bmap_free_t free_list;
1488 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1489 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1490 ASSERT(*tp != NULL);
1491 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1492 ASSERT(ip->i_transp == *tp);
1493 ASSERT(ip->i_itemp != NULL);
1494 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1498 mp = (ntp)->t_mountp;
1499 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1502 * We only support truncating the entire attribute fork.
1504 if (fork == XFS_ATTR_FORK) {
1507 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1508 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1510 * The first thing we do is set the size to new_size permanently
1511 * on disk. This way we don't have to worry about anyone ever
1512 * being able to look at the data being freed even in the face
1513 * of a crash. What we're getting around here is the case where
1514 * we free a block, it is allocated to another file, it is written
1515 * to, and then we crash. If the new data gets written to the
1516 * file but the log buffers containing the free and reallocation
1517 * don't, then we'd end up with garbage in the blocks being freed.
1518 * As long as we make the new_size permanent before actually
1519 * freeing any blocks it doesn't matter if they get writtten to.
1521 * The callers must signal into us whether or not the size
1522 * setting here must be synchronous. There are a few cases
1523 * where it doesn't have to be synchronous. Those cases
1524 * occur if the file is unlinked and we know the unlink is
1525 * permanent or if the blocks being truncated are guaranteed
1526 * to be beyond the inode eof (regardless of the link count)
1527 * and the eof value is permanent. Both of these cases occur
1528 * only on wsync-mounted filesystems. In those cases, we're
1529 * guaranteed that no user will ever see the data in the blocks
1530 * that are being truncated so the truncate can run async.
1531 * In the free beyond eof case, the file may wind up with
1532 * more blocks allocated to it than it needs if we crash
1533 * and that won't get fixed until the next time the file
1534 * is re-opened and closed but that's ok as that shouldn't
1535 * be too many blocks.
1537 * However, we can't just make all wsync xactions run async
1538 * because there's one call out of the create path that needs
1539 * to run sync where it's truncating an existing file to size
1540 * 0 whose size is > 0.
1542 * It's probably possible to come up with a test in this
1543 * routine that would correctly distinguish all the above
1544 * cases from the values of the function parameters and the
1545 * inode state but for sanity's sake, I've decided to let the
1546 * layers above just tell us. It's simpler to correctly figure
1547 * out in the layer above exactly under what conditions we
1548 * can run async and I think it's easier for others read and
1549 * follow the logic in case something has to be changed.
1550 * cscope is your friend -- rcc.
1552 * The attribute fork is much simpler.
1554 * For the attribute fork we allow the caller to tell us whether
1555 * the unlink of the inode that led to this call is yet permanent
1556 * in the on disk log. If it is not and we will be freeing extents
1557 * in this inode then we make the first transaction synchronous
1558 * to make sure that the unlink is permanent by the time we free
1561 if (fork == XFS_DATA_FORK) {
1562 if (ip->i_d.di_nextents > 0) {
1564 * If we are not changing the file size then do
1565 * not update the on-disk file size - we may be
1566 * called from xfs_inactive_free_eofblocks(). If we
1567 * update the on-disk file size and then the system
1568 * crashes before the contents of the file are
1569 * flushed to disk then the files may be full of
1570 * holes (ie NULL files bug).
1572 if (ip->i_size != new_size) {
1573 ip->i_d.di_size = new_size;
1574 ip->i_size = new_size;
1575 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1579 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1580 if (ip->i_d.di_anextents > 0)
1581 xfs_trans_set_sync(ntp);
1583 ASSERT(fork == XFS_DATA_FORK ||
1584 (fork == XFS_ATTR_FORK &&
1585 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1586 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1589 * Since it is possible for space to become allocated beyond
1590 * the end of the file (in a crash where the space is allocated
1591 * but the inode size is not yet updated), simply remove any
1592 * blocks which show up between the new EOF and the maximum
1593 * possible file size. If the first block to be removed is
1594 * beyond the maximum file size (ie it is the same as last_block),
1595 * then there is nothing to do.
1597 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1598 ASSERT(first_unmap_block <= last_block);
1600 if (last_block == first_unmap_block) {
1603 unmap_len = last_block - first_unmap_block + 1;
1607 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1608 * will tell us whether it freed the entire range or
1609 * not. If this is a synchronous mount (wsync),
1610 * then we can tell bunmapi to keep all the
1611 * transactions asynchronous since the unlink
1612 * transaction that made this inode inactive has
1613 * already hit the disk. There's no danger of
1614 * the freed blocks being reused, there being a
1615 * crash, and the reused blocks suddenly reappearing
1616 * in this file with garbage in them once recovery
1619 xfs_bmap_init(&free_list, &first_block);
1620 error = xfs_bunmapi(ntp, ip,
1621 first_unmap_block, unmap_len,
1622 xfs_bmapi_aflag(fork) |
1623 (sync ? 0 : XFS_BMAPI_ASYNC),
1624 XFS_ITRUNC_MAX_EXTENTS,
1625 &first_block, &free_list,
1629 * If the bunmapi call encounters an error,
1630 * return to the caller where the transaction
1631 * can be properly aborted. We just need to
1632 * make sure we're not holding any resources
1633 * that we were not when we came in.
1635 xfs_bmap_cancel(&free_list);
1640 * Duplicate the transaction that has the permanent
1641 * reservation and commit the old transaction.
1643 error = xfs_bmap_finish(tp, &free_list, &committed);
1646 /* link the inode into the next xact in the chain */
1647 xfs_trans_ijoin(ntp, ip,
1648 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1649 xfs_trans_ihold(ntp, ip);
1654 * If the bmap finish call encounters an error, return
1655 * to the caller where the transaction can be properly
1656 * aborted. We just need to make sure we're not
1657 * holding any resources that we were not when we came
1660 * Aborting from this point might lose some blocks in
1661 * the file system, but oh well.
1663 xfs_bmap_cancel(&free_list);
1669 * Mark the inode dirty so it will be logged and
1670 * moved forward in the log as part of every commit.
1672 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1675 ntp = xfs_trans_dup(ntp);
1676 error = xfs_trans_commit(*tp, 0);
1679 /* link the inode into the next transaction in the chain */
1680 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1681 xfs_trans_ihold(ntp, ip);
1686 * transaction commit worked ok so we can drop the extra ticket
1687 * reference that we gained in xfs_trans_dup()
1689 xfs_log_ticket_put(ntp->t_ticket);
1690 error = xfs_trans_reserve(ntp, 0,
1691 XFS_ITRUNCATE_LOG_RES(mp), 0,
1692 XFS_TRANS_PERM_LOG_RES,
1693 XFS_ITRUNCATE_LOG_COUNT);
1698 * Only update the size in the case of the data fork, but
1699 * always re-log the inode so that our permanent transaction
1700 * can keep on rolling it forward in the log.
1702 if (fork == XFS_DATA_FORK) {
1703 xfs_isize_check(mp, ip, new_size);
1705 * If we are not changing the file size then do
1706 * not update the on-disk file size - we may be
1707 * called from xfs_inactive_free_eofblocks(). If we
1708 * update the on-disk file size and then the system
1709 * crashes before the contents of the file are
1710 * flushed to disk then the files may be full of
1711 * holes (ie NULL files bug).
1713 if (ip->i_size != new_size) {
1714 ip->i_d.di_size = new_size;
1715 ip->i_size = new_size;
1718 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1719 ASSERT((new_size != 0) ||
1720 (fork == XFS_ATTR_FORK) ||
1721 (ip->i_delayed_blks == 0));
1722 ASSERT((new_size != 0) ||
1723 (fork == XFS_ATTR_FORK) ||
1724 (ip->i_d.di_nextents == 0));
1725 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1730 * This is called when the inode's link count goes to 0.
1731 * We place the on-disk inode on a list in the AGI. It
1732 * will be pulled from this list when the inode is freed.
1749 ASSERT(ip->i_d.di_nlink == 0);
1750 ASSERT(ip->i_d.di_mode != 0);
1751 ASSERT(ip->i_transp == tp);
1756 * Get the agi buffer first. It ensures lock ordering
1759 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1762 agi = XFS_BUF_TO_AGI(agibp);
1765 * Get the index into the agi hash table for the
1766 * list this inode will go on.
1768 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1770 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1771 ASSERT(agi->agi_unlinked[bucket_index]);
1772 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1774 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1776 * There is already another inode in the bucket we need
1777 * to add ourselves to. Add us at the front of the list.
1778 * Here we put the head pointer into our next pointer,
1779 * and then we fall through to point the head at us.
1781 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1785 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1786 /* both on-disk, don't endian flip twice */
1787 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1788 offset = ip->i_imap.im_boffset +
1789 offsetof(xfs_dinode_t, di_next_unlinked);
1790 xfs_trans_inode_buf(tp, ibp);
1791 xfs_trans_log_buf(tp, ibp, offset,
1792 (offset + sizeof(xfs_agino_t) - 1));
1793 xfs_inobp_check(mp, ibp);
1797 * Point the bucket head pointer at the inode being inserted.
1800 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1801 offset = offsetof(xfs_agi_t, agi_unlinked) +
1802 (sizeof(xfs_agino_t) * bucket_index);
1803 xfs_trans_log_buf(tp, agibp, offset,
1804 (offset + sizeof(xfs_agino_t) - 1));
1809 * Pull the on-disk inode from the AGI unlinked list.
1822 xfs_agnumber_t agno;
1824 xfs_agino_t next_agino;
1825 xfs_buf_t *last_ibp;
1826 xfs_dinode_t *last_dip = NULL;
1828 int offset, last_offset = 0;
1832 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1835 * Get the agi buffer first. It ensures lock ordering
1838 error = xfs_read_agi(mp, tp, agno, &agibp);
1842 agi = XFS_BUF_TO_AGI(agibp);
1845 * Get the index into the agi hash table for the
1846 * list this inode will go on.
1848 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1850 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1851 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1852 ASSERT(agi->agi_unlinked[bucket_index]);
1854 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1856 * We're at the head of the list. Get the inode's
1857 * on-disk buffer to see if there is anyone after us
1858 * on the list. Only modify our next pointer if it
1859 * is not already NULLAGINO. This saves us the overhead
1860 * of dealing with the buffer when there is no need to
1863 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1866 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1867 error, mp->m_fsname);
1870 next_agino = be32_to_cpu(dip->di_next_unlinked);
1871 ASSERT(next_agino != 0);
1872 if (next_agino != NULLAGINO) {
1873 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1874 offset = ip->i_imap.im_boffset +
1875 offsetof(xfs_dinode_t, di_next_unlinked);
1876 xfs_trans_inode_buf(tp, ibp);
1877 xfs_trans_log_buf(tp, ibp, offset,
1878 (offset + sizeof(xfs_agino_t) - 1));
1879 xfs_inobp_check(mp, ibp);
1881 xfs_trans_brelse(tp, ibp);
1884 * Point the bucket head pointer at the next inode.
1886 ASSERT(next_agino != 0);
1887 ASSERT(next_agino != agino);
1888 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1889 offset = offsetof(xfs_agi_t, agi_unlinked) +
1890 (sizeof(xfs_agino_t) * bucket_index);
1891 xfs_trans_log_buf(tp, agibp, offset,
1892 (offset + sizeof(xfs_agino_t) - 1));
1895 * We need to search the list for the inode being freed.
1897 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1899 while (next_agino != agino) {
1901 * If the last inode wasn't the one pointing to
1902 * us, then release its buffer since we're not
1903 * going to do anything with it.
1905 if (last_ibp != NULL) {
1906 xfs_trans_brelse(tp, last_ibp);
1908 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1909 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1910 &last_ibp, &last_offset, 0);
1913 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1914 error, mp->m_fsname);
1917 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1918 ASSERT(next_agino != NULLAGINO);
1919 ASSERT(next_agino != 0);
1922 * Now last_ibp points to the buffer previous to us on
1923 * the unlinked list. Pull us from the list.
1925 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1928 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1929 error, mp->m_fsname);
1932 next_agino = be32_to_cpu(dip->di_next_unlinked);
1933 ASSERT(next_agino != 0);
1934 ASSERT(next_agino != agino);
1935 if (next_agino != NULLAGINO) {
1936 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1937 offset = ip->i_imap.im_boffset +
1938 offsetof(xfs_dinode_t, di_next_unlinked);
1939 xfs_trans_inode_buf(tp, ibp);
1940 xfs_trans_log_buf(tp, ibp, offset,
1941 (offset + sizeof(xfs_agino_t) - 1));
1942 xfs_inobp_check(mp, ibp);
1944 xfs_trans_brelse(tp, ibp);
1947 * Point the previous inode on the list to the next inode.
1949 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1950 ASSERT(next_agino != 0);
1951 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1952 xfs_trans_inode_buf(tp, last_ibp);
1953 xfs_trans_log_buf(tp, last_ibp, offset,
1954 (offset + sizeof(xfs_agino_t) - 1));
1955 xfs_inobp_check(mp, last_ibp);
1962 xfs_inode_t *free_ip,
1966 xfs_mount_t *mp = free_ip->i_mount;
1967 int blks_per_cluster;
1970 int i, j, found, pre_flushed;
1973 xfs_inode_t *ip, **ip_found;
1974 xfs_inode_log_item_t *iip;
1975 xfs_log_item_t *lip;
1976 xfs_perag_t *pag = xfs_get_perag(mp, inum);
1978 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1979 blks_per_cluster = 1;
1980 ninodes = mp->m_sb.sb_inopblock;
1981 nbufs = XFS_IALLOC_BLOCKS(mp);
1983 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1984 mp->m_sb.sb_blocksize;
1985 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1986 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1989 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
1991 for (j = 0; j < nbufs; j++, inum += ninodes) {
1992 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1993 XFS_INO_TO_AGBNO(mp, inum));
1997 * Look for each inode in memory and attempt to lock it,
1998 * we can be racing with flush and tail pushing here.
1999 * any inode we get the locks on, add to an array of
2000 * inode items to process later.
2002 * The get the buffer lock, we could beat a flush
2003 * or tail pushing thread to the lock here, in which
2004 * case they will go looking for the inode buffer
2005 * and fail, we need some other form of interlock
2009 for (i = 0; i < ninodes; i++) {
2010 read_lock(&pag->pag_ici_lock);
2011 ip = radix_tree_lookup(&pag->pag_ici_root,
2012 XFS_INO_TO_AGINO(mp, (inum + i)));
2014 /* Inode not in memory or we found it already,
2017 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2018 read_unlock(&pag->pag_ici_lock);
2022 if (xfs_inode_clean(ip)) {
2023 read_unlock(&pag->pag_ici_lock);
2027 /* If we can get the locks then add it to the
2028 * list, otherwise by the time we get the bp lock
2029 * below it will already be attached to the
2033 /* This inode will already be locked - by us, lets
2037 if (ip == free_ip) {
2038 if (xfs_iflock_nowait(ip)) {
2039 xfs_iflags_set(ip, XFS_ISTALE);
2040 if (xfs_inode_clean(ip)) {
2043 ip_found[found++] = ip;
2046 read_unlock(&pag->pag_ici_lock);
2050 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2051 if (xfs_iflock_nowait(ip)) {
2052 xfs_iflags_set(ip, XFS_ISTALE);
2054 if (xfs_inode_clean(ip)) {
2056 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2058 ip_found[found++] = ip;
2061 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2064 read_unlock(&pag->pag_ici_lock);
2067 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2068 mp->m_bsize * blks_per_cluster,
2072 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2074 if (lip->li_type == XFS_LI_INODE) {
2075 iip = (xfs_inode_log_item_t *)lip;
2076 ASSERT(iip->ili_logged == 1);
2077 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2078 xfs_trans_ail_copy_lsn(mp->m_ail,
2079 &iip->ili_flush_lsn,
2080 &iip->ili_item.li_lsn);
2081 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2084 lip = lip->li_bio_list;
2087 for (i = 0; i < found; i++) {
2092 ip->i_update_core = 0;
2094 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2098 iip->ili_last_fields = iip->ili_format.ilf_fields;
2099 iip->ili_format.ilf_fields = 0;
2100 iip->ili_logged = 1;
2101 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2102 &iip->ili_item.li_lsn);
2104 xfs_buf_attach_iodone(bp,
2105 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2106 xfs_istale_done, (xfs_log_item_t *)iip);
2107 if (ip != free_ip) {
2108 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2112 if (found || pre_flushed)
2113 xfs_trans_stale_inode_buf(tp, bp);
2114 xfs_trans_binval(tp, bp);
2117 kmem_free(ip_found);
2118 xfs_put_perag(mp, pag);
2122 * This is called to return an inode to the inode free list.
2123 * The inode should already be truncated to 0 length and have
2124 * no pages associated with it. This routine also assumes that
2125 * the inode is already a part of the transaction.
2127 * The on-disk copy of the inode will have been added to the list
2128 * of unlinked inodes in the AGI. We need to remove the inode from
2129 * that list atomically with respect to freeing it here.
2135 xfs_bmap_free_t *flist)
2139 xfs_ino_t first_ino;
2143 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2144 ASSERT(ip->i_transp == tp);
2145 ASSERT(ip->i_d.di_nlink == 0);
2146 ASSERT(ip->i_d.di_nextents == 0);
2147 ASSERT(ip->i_d.di_anextents == 0);
2148 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2149 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2150 ASSERT(ip->i_d.di_nblocks == 0);
2153 * Pull the on-disk inode from the AGI unlinked list.
2155 error = xfs_iunlink_remove(tp, ip);
2160 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2164 ip->i_d.di_mode = 0; /* mark incore inode as free */
2165 ip->i_d.di_flags = 0;
2166 ip->i_d.di_dmevmask = 0;
2167 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2168 ip->i_df.if_ext_max =
2169 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2170 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2171 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2173 * Bump the generation count so no one will be confused
2174 * by reincarnations of this inode.
2178 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2180 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
2185 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2186 * from picking up this inode when it is reclaimed (its incore state
2187 * initialzed but not flushed to disk yet). The in-core di_mode is
2188 * already cleared and a corresponding transaction logged.
2189 * The hack here just synchronizes the in-core to on-disk
2190 * di_mode value in advance before the actual inode sync to disk.
2191 * This is OK because the inode is already unlinked and would never
2192 * change its di_mode again for this inode generation.
2193 * This is a temporary hack that would require a proper fix
2199 xfs_ifree_cluster(ip, tp, first_ino);
2206 * Reallocate the space for if_broot based on the number of records
2207 * being added or deleted as indicated in rec_diff. Move the records
2208 * and pointers in if_broot to fit the new size. When shrinking this
2209 * will eliminate holes between the records and pointers created by
2210 * the caller. When growing this will create holes to be filled in
2213 * The caller must not request to add more records than would fit in
2214 * the on-disk inode root. If the if_broot is currently NULL, then
2215 * if we adding records one will be allocated. The caller must also
2216 * not request that the number of records go below zero, although
2217 * it can go to zero.
2219 * ip -- the inode whose if_broot area is changing
2220 * ext_diff -- the change in the number of records, positive or negative,
2221 * requested for the if_broot array.
2229 struct xfs_mount *mp = ip->i_mount;
2232 struct xfs_btree_block *new_broot;
2239 * Handle the degenerate case quietly.
2241 if (rec_diff == 0) {
2245 ifp = XFS_IFORK_PTR(ip, whichfork);
2248 * If there wasn't any memory allocated before, just
2249 * allocate it now and get out.
2251 if (ifp->if_broot_bytes == 0) {
2252 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2253 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
2254 ifp->if_broot_bytes = (int)new_size;
2259 * If there is already an existing if_broot, then we need
2260 * to realloc() it and shift the pointers to their new
2261 * location. The records don't change location because
2262 * they are kept butted up against the btree block header.
2264 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2265 new_max = cur_max + rec_diff;
2266 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2267 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2268 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2270 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2271 ifp->if_broot_bytes);
2272 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2274 ifp->if_broot_bytes = (int)new_size;
2275 ASSERT(ifp->if_broot_bytes <=
2276 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2277 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2282 * rec_diff is less than 0. In this case, we are shrinking the
2283 * if_broot buffer. It must already exist. If we go to zero
2284 * records, just get rid of the root and clear the status bit.
2286 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2287 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2288 new_max = cur_max + rec_diff;
2289 ASSERT(new_max >= 0);
2291 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2295 new_broot = kmem_alloc(new_size, KM_SLEEP);
2297 * First copy over the btree block header.
2299 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2302 ifp->if_flags &= ~XFS_IFBROOT;
2306 * Only copy the records and pointers if there are any.
2310 * First copy the records.
2312 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2313 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2314 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2317 * Then copy the pointers.
2319 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2320 ifp->if_broot_bytes);
2321 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2323 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2325 kmem_free(ifp->if_broot);
2326 ifp->if_broot = new_broot;
2327 ifp->if_broot_bytes = (int)new_size;
2328 ASSERT(ifp->if_broot_bytes <=
2329 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2335 * This is called when the amount of space needed for if_data
2336 * is increased or decreased. The change in size is indicated by
2337 * the number of bytes that need to be added or deleted in the
2338 * byte_diff parameter.
2340 * If the amount of space needed has decreased below the size of the
2341 * inline buffer, then switch to using the inline buffer. Otherwise,
2342 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2343 * to what is needed.
2345 * ip -- the inode whose if_data area is changing
2346 * byte_diff -- the change in the number of bytes, positive or negative,
2347 * requested for the if_data array.
2359 if (byte_diff == 0) {
2363 ifp = XFS_IFORK_PTR(ip, whichfork);
2364 new_size = (int)ifp->if_bytes + byte_diff;
2365 ASSERT(new_size >= 0);
2367 if (new_size == 0) {
2368 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2369 kmem_free(ifp->if_u1.if_data);
2371 ifp->if_u1.if_data = NULL;
2373 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2375 * If the valid extents/data can fit in if_inline_ext/data,
2376 * copy them from the malloc'd vector and free it.
2378 if (ifp->if_u1.if_data == NULL) {
2379 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2380 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2381 ASSERT(ifp->if_real_bytes != 0);
2382 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2384 kmem_free(ifp->if_u1.if_data);
2385 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2390 * Stuck with malloc/realloc.
2391 * For inline data, the underlying buffer must be
2392 * a multiple of 4 bytes in size so that it can be
2393 * logged and stay on word boundaries. We enforce
2396 real_size = roundup(new_size, 4);
2397 if (ifp->if_u1.if_data == NULL) {
2398 ASSERT(ifp->if_real_bytes == 0);
2399 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2400 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2402 * Only do the realloc if the underlying size
2403 * is really changing.
2405 if (ifp->if_real_bytes != real_size) {
2406 ifp->if_u1.if_data =
2407 kmem_realloc(ifp->if_u1.if_data,
2413 ASSERT(ifp->if_real_bytes == 0);
2414 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2415 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2419 ifp->if_real_bytes = real_size;
2420 ifp->if_bytes = new_size;
2421 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2431 ifp = XFS_IFORK_PTR(ip, whichfork);
2432 if (ifp->if_broot != NULL) {
2433 kmem_free(ifp->if_broot);
2434 ifp->if_broot = NULL;
2438 * If the format is local, then we can't have an extents
2439 * array so just look for an inline data array. If we're
2440 * not local then we may or may not have an extents list,
2441 * so check and free it up if we do.
2443 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2444 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2445 (ifp->if_u1.if_data != NULL)) {
2446 ASSERT(ifp->if_real_bytes != 0);
2447 kmem_free(ifp->if_u1.if_data);
2448 ifp->if_u1.if_data = NULL;
2449 ifp->if_real_bytes = 0;
2451 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2452 ((ifp->if_flags & XFS_IFEXTIREC) ||
2453 ((ifp->if_u1.if_extents != NULL) &&
2454 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2455 ASSERT(ifp->if_real_bytes != 0);
2456 xfs_iext_destroy(ifp);
2458 ASSERT(ifp->if_u1.if_extents == NULL ||
2459 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2460 ASSERT(ifp->if_real_bytes == 0);
2461 if (whichfork == XFS_ATTR_FORK) {
2462 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2468 * Increment the pin count of the given buffer.
2469 * This value is protected by ipinlock spinlock in the mount structure.
2475 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2477 atomic_inc(&ip->i_pincount);
2481 * Decrement the pin count of the given inode, and wake up
2482 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2483 * inode must have been previously pinned with a call to xfs_ipin().
2489 ASSERT(atomic_read(&ip->i_pincount) > 0);
2491 if (atomic_dec_and_test(&ip->i_pincount))
2492 wake_up(&ip->i_ipin_wait);
2496 * This is called to unpin an inode. It can be directed to wait or to return
2497 * immediately without waiting for the inode to be unpinned. The caller must
2498 * have the inode locked in at least shared mode so that the buffer cannot be
2499 * subsequently pinned once someone is waiting for it to be unpinned.
2506 xfs_inode_log_item_t *iip = ip->i_itemp;
2508 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2509 if (atomic_read(&ip->i_pincount) == 0)
2512 /* Give the log a push to start the unpinning I/O */
2513 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2514 iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2516 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2523 __xfs_iunpin_wait(ip, 1);
2530 __xfs_iunpin_wait(ip, 0);
2535 * xfs_iextents_copy()
2537 * This is called to copy the REAL extents (as opposed to the delayed
2538 * allocation extents) from the inode into the given buffer. It
2539 * returns the number of bytes copied into the buffer.
2541 * If there are no delayed allocation extents, then we can just
2542 * memcpy() the extents into the buffer. Otherwise, we need to
2543 * examine each extent in turn and skip those which are delayed.
2555 xfs_fsblock_t start_block;
2557 ifp = XFS_IFORK_PTR(ip, whichfork);
2558 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2559 ASSERT(ifp->if_bytes > 0);
2561 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2562 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2566 * There are some delayed allocation extents in the
2567 * inode, so copy the extents one at a time and skip
2568 * the delayed ones. There must be at least one
2569 * non-delayed extent.
2572 for (i = 0; i < nrecs; i++) {
2573 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2574 start_block = xfs_bmbt_get_startblock(ep);
2575 if (isnullstartblock(start_block)) {
2577 * It's a delayed allocation extent, so skip it.
2582 /* Translate to on disk format */
2583 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2584 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2588 ASSERT(copied != 0);
2589 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2591 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2595 * Each of the following cases stores data into the same region
2596 * of the on-disk inode, so only one of them can be valid at
2597 * any given time. While it is possible to have conflicting formats
2598 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2599 * in EXTENTS format, this can only happen when the fork has
2600 * changed formats after being modified but before being flushed.
2601 * In these cases, the format always takes precedence, because the
2602 * format indicates the current state of the fork.
2609 xfs_inode_log_item_t *iip,
2616 #ifdef XFS_TRANS_DEBUG
2619 static const short brootflag[2] =
2620 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2621 static const short dataflag[2] =
2622 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2623 static const short extflag[2] =
2624 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2628 ifp = XFS_IFORK_PTR(ip, whichfork);
2630 * This can happen if we gave up in iformat in an error path,
2631 * for the attribute fork.
2634 ASSERT(whichfork == XFS_ATTR_FORK);
2637 cp = XFS_DFORK_PTR(dip, whichfork);
2639 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2640 case XFS_DINODE_FMT_LOCAL:
2641 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2642 (ifp->if_bytes > 0)) {
2643 ASSERT(ifp->if_u1.if_data != NULL);
2644 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2645 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2649 case XFS_DINODE_FMT_EXTENTS:
2650 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2651 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2652 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2653 (ifp->if_bytes == 0));
2654 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2655 (ifp->if_bytes > 0));
2656 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2657 (ifp->if_bytes > 0)) {
2658 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2659 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2664 case XFS_DINODE_FMT_BTREE:
2665 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2666 (ifp->if_broot_bytes > 0)) {
2667 ASSERT(ifp->if_broot != NULL);
2668 ASSERT(ifp->if_broot_bytes <=
2669 (XFS_IFORK_SIZE(ip, whichfork) +
2670 XFS_BROOT_SIZE_ADJ));
2671 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2672 (xfs_bmdr_block_t *)cp,
2673 XFS_DFORK_SIZE(dip, mp, whichfork));
2677 case XFS_DINODE_FMT_DEV:
2678 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2679 ASSERT(whichfork == XFS_DATA_FORK);
2680 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2684 case XFS_DINODE_FMT_UUID:
2685 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2686 ASSERT(whichfork == XFS_DATA_FORK);
2687 memcpy(XFS_DFORK_DPTR(dip),
2688 &ip->i_df.if_u2.if_uuid,
2704 xfs_mount_t *mp = ip->i_mount;
2705 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
2706 unsigned long first_index, mask;
2707 unsigned long inodes_per_cluster;
2709 xfs_inode_t **ilist;
2716 ASSERT(pag->pagi_inodeok);
2717 ASSERT(pag->pag_ici_init);
2719 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2720 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2721 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2725 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2726 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2727 read_lock(&pag->pag_ici_lock);
2728 /* really need a gang lookup range call here */
2729 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2730 first_index, inodes_per_cluster);
2734 for (i = 0; i < nr_found; i++) {
2738 /* if the inode lies outside this cluster, we're done. */
2739 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2742 * Do an un-protected check to see if the inode is dirty and
2743 * is a candidate for flushing. These checks will be repeated
2744 * later after the appropriate locks are acquired.
2746 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2750 * Try to get locks. If any are unavailable or it is pinned,
2751 * then this inode cannot be flushed and is skipped.
2754 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2756 if (!xfs_iflock_nowait(iq)) {
2757 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2760 if (xfs_ipincount(iq)) {
2762 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2767 * arriving here means that this inode can be flushed. First
2768 * re-check that it's dirty before flushing.
2770 if (!xfs_inode_clean(iq)) {
2772 error = xfs_iflush_int(iq, bp);
2774 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2775 goto cluster_corrupt_out;
2781 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2785 XFS_STATS_INC(xs_icluster_flushcnt);
2786 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2790 read_unlock(&pag->pag_ici_lock);
2795 cluster_corrupt_out:
2797 * Corruption detected in the clustering loop. Invalidate the
2798 * inode buffer and shut down the filesystem.
2800 read_unlock(&pag->pag_ici_lock);
2802 * Clean up the buffer. If it was B_DELWRI, just release it --
2803 * brelse can handle it with no problems. If not, shut down the
2804 * filesystem before releasing the buffer.
2806 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2810 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2812 if (!bufwasdelwri) {
2814 * Just like incore_relse: if we have b_iodone functions,
2815 * mark the buffer as an error and call them. Otherwise
2816 * mark it as stale and brelse.
2818 if (XFS_BUF_IODONE_FUNC(bp)) {
2819 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
2822 XFS_BUF_ERROR(bp,EIO);
2831 * Unlocks the flush lock
2833 xfs_iflush_abort(iq);
2835 return XFS_ERROR(EFSCORRUPTED);
2839 * xfs_iflush() will write a modified inode's changes out to the
2840 * inode's on disk home. The caller must have the inode lock held
2841 * in at least shared mode and the inode flush completion must be
2842 * active as well. The inode lock will still be held upon return from
2843 * the call and the caller is free to unlock it.
2844 * The inode flush will be completed when the inode reaches the disk.
2845 * The flags indicate how the inode's buffer should be written out.
2852 xfs_inode_log_item_t *iip;
2857 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
2858 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
2860 XFS_STATS_INC(xs_iflush_count);
2862 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2863 ASSERT(!completion_done(&ip->i_flush));
2864 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2865 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2871 * If the inode isn't dirty, then just release the inode
2872 * flush lock and do nothing.
2874 if (xfs_inode_clean(ip)) {
2880 * We can't flush the inode until it is unpinned, so wait for it if we
2881 * are allowed to block. We know noone new can pin it, because we are
2882 * holding the inode lock shared and you need to hold it exclusively to
2885 * If we are not allowed to block, force the log out asynchronously so
2886 * that when we come back the inode will be unpinned. If other inodes
2887 * in the same cluster are dirty, they will probably write the inode
2888 * out for us if they occur after the log force completes.
2890 if (noblock && xfs_ipincount(ip)) {
2891 xfs_iunpin_nowait(ip);
2895 xfs_iunpin_wait(ip);
2898 * This may have been unpinned because the filesystem is shutting
2899 * down forcibly. If that's the case we must not write this inode
2900 * to disk, because the log record didn't make it to disk!
2902 if (XFS_FORCED_SHUTDOWN(mp)) {
2903 ip->i_update_core = 0;
2905 iip->ili_format.ilf_fields = 0;
2907 return XFS_ERROR(EIO);
2911 * Decide how buffer will be flushed out. This is done before
2912 * the call to xfs_iflush_int because this field is zeroed by it.
2914 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
2916 * Flush out the inode buffer according to the directions
2917 * of the caller. In the cases where the caller has given
2918 * us a choice choose the non-delwri case. This is because
2919 * the inode is in the AIL and we need to get it out soon.
2922 case XFS_IFLUSH_SYNC:
2923 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2926 case XFS_IFLUSH_ASYNC_NOBLOCK:
2927 case XFS_IFLUSH_ASYNC:
2928 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2931 case XFS_IFLUSH_DELWRI:
2941 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2942 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2943 case XFS_IFLUSH_DELWRI:
2946 case XFS_IFLUSH_ASYNC_NOBLOCK:
2947 case XFS_IFLUSH_ASYNC:
2950 case XFS_IFLUSH_SYNC:
2961 * Get the buffer containing the on-disk inode.
2963 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2964 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
2971 * First flush out the inode that xfs_iflush was called with.
2973 error = xfs_iflush_int(ip, bp);
2978 * If the buffer is pinned then push on the log now so we won't
2979 * get stuck waiting in the write for too long.
2981 if (XFS_BUF_ISPINNED(bp))
2982 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
2986 * see if other inodes can be gathered into this write
2988 error = xfs_iflush_cluster(ip, bp);
2990 goto cluster_corrupt_out;
2992 if (flags & INT_DELWRI) {
2993 xfs_bdwrite(mp, bp);
2994 } else if (flags & INT_ASYNC) {
2995 error = xfs_bawrite(mp, bp);
2997 error = xfs_bwrite(mp, bp);
3003 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3004 cluster_corrupt_out:
3006 * Unlocks the flush lock
3008 xfs_iflush_abort(ip);
3009 return XFS_ERROR(EFSCORRUPTED);
3018 xfs_inode_log_item_t *iip;
3021 #ifdef XFS_TRANS_DEBUG
3025 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3026 ASSERT(!completion_done(&ip->i_flush));
3027 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3028 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3035 * If the inode isn't dirty, then just release the inode
3036 * flush lock and do nothing.
3038 if (xfs_inode_clean(ip)) {
3043 /* set *dip = inode's place in the buffer */
3044 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3047 * Clear i_update_core before copying out the data.
3048 * This is for coordination with our timestamp updates
3049 * that don't hold the inode lock. They will always
3050 * update the timestamps BEFORE setting i_update_core,
3051 * so if we clear i_update_core after they set it we
3052 * are guaranteed to see their updates to the timestamps.
3053 * I believe that this depends on strongly ordered memory
3054 * semantics, but we have that. We use the SYNCHRONIZE
3055 * macro to make sure that the compiler does not reorder
3056 * the i_update_core access below the data copy below.
3058 ip->i_update_core = 0;
3062 * Make sure to get the latest atime from the Linux inode.
3064 xfs_synchronize_atime(ip);
3066 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
3067 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3068 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3069 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3070 ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3073 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3074 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3075 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3076 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3077 ip->i_ino, ip, ip->i_d.di_magic);
3080 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3082 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3083 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3084 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3085 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3086 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3090 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3092 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3093 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3094 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3095 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3096 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3097 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3102 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3103 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3104 XFS_RANDOM_IFLUSH_5)) {
3105 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3106 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3108 ip->i_d.di_nextents + ip->i_d.di_anextents,
3113 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3114 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3115 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3116 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3117 ip->i_ino, ip->i_d.di_forkoff, ip);
3121 * bump the flush iteration count, used to detect flushes which
3122 * postdate a log record during recovery.
3125 ip->i_d.di_flushiter++;
3128 * Copy the dirty parts of the inode into the on-disk
3129 * inode. We always copy out the core of the inode,
3130 * because if the inode is dirty at all the core must
3133 xfs_dinode_to_disk(dip, &ip->i_d);
3135 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3136 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3137 ip->i_d.di_flushiter = 0;
3140 * If this is really an old format inode and the superblock version
3141 * has not been updated to support only new format inodes, then
3142 * convert back to the old inode format. If the superblock version
3143 * has been updated, then make the conversion permanent.
3145 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3146 if (ip->i_d.di_version == 1) {
3147 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3151 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3152 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3155 * The superblock version has already been bumped,
3156 * so just make the conversion to the new inode
3159 ip->i_d.di_version = 2;
3160 dip->di_version = 2;
3161 ip->i_d.di_onlink = 0;
3163 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3164 memset(&(dip->di_pad[0]), 0,
3165 sizeof(dip->di_pad));
3166 ASSERT(ip->i_d.di_projid == 0);
3170 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3171 if (XFS_IFORK_Q(ip))
3172 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3173 xfs_inobp_check(mp, bp);
3176 * We've recorded everything logged in the inode, so we'd
3177 * like to clear the ilf_fields bits so we don't log and
3178 * flush things unnecessarily. However, we can't stop
3179 * logging all this information until the data we've copied
3180 * into the disk buffer is written to disk. If we did we might
3181 * overwrite the copy of the inode in the log with all the
3182 * data after re-logging only part of it, and in the face of
3183 * a crash we wouldn't have all the data we need to recover.
3185 * What we do is move the bits to the ili_last_fields field.
3186 * When logging the inode, these bits are moved back to the
3187 * ilf_fields field. In the xfs_iflush_done() routine we
3188 * clear ili_last_fields, since we know that the information
3189 * those bits represent is permanently on disk. As long as
3190 * the flush completes before the inode is logged again, then
3191 * both ilf_fields and ili_last_fields will be cleared.
3193 * We can play with the ilf_fields bits here, because the inode
3194 * lock must be held exclusively in order to set bits there
3195 * and the flush lock protects the ili_last_fields bits.
3196 * Set ili_logged so the flush done
3197 * routine can tell whether or not to look in the AIL.
3198 * Also, store the current LSN of the inode so that we can tell
3199 * whether the item has moved in the AIL from xfs_iflush_done().
3200 * In order to read the lsn we need the AIL lock, because
3201 * it is a 64 bit value that cannot be read atomically.
3203 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3204 iip->ili_last_fields = iip->ili_format.ilf_fields;
3205 iip->ili_format.ilf_fields = 0;
3206 iip->ili_logged = 1;
3208 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3209 &iip->ili_item.li_lsn);
3212 * Attach the function xfs_iflush_done to the inode's
3213 * buffer. This will remove the inode from the AIL
3214 * and unlock the inode's flush lock when the inode is
3215 * completely written to disk.
3217 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3218 xfs_iflush_done, (xfs_log_item_t *)iip);
3220 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3221 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3224 * We're flushing an inode which is not in the AIL and has
3225 * not been logged but has i_update_core set. For this
3226 * case we can use a B_DELWRI flush and immediately drop
3227 * the inode flush lock because we can avoid the whole
3228 * AIL state thing. It's OK to drop the flush lock now,
3229 * because we've already locked the buffer and to do anything
3230 * you really need both.
3233 ASSERT(iip->ili_logged == 0);
3234 ASSERT(iip->ili_last_fields == 0);
3235 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3243 return XFS_ERROR(EFSCORRUPTED);
3248 #ifdef XFS_ILOCK_TRACE
3250 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3252 ktrace_enter(ip->i_lock_trace,
3254 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3255 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3256 (void *)ra, /* caller of ilock */
3257 (void *)(unsigned long)current_cpu(),
3258 (void *)(unsigned long)current_pid(),
3259 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3264 * Return a pointer to the extent record at file index idx.
3266 xfs_bmbt_rec_host_t *
3268 xfs_ifork_t *ifp, /* inode fork pointer */
3269 xfs_extnum_t idx) /* index of target extent */
3272 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3273 return ifp->if_u1.if_ext_irec->er_extbuf;
3274 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3275 xfs_ext_irec_t *erp; /* irec pointer */
3276 int erp_idx = 0; /* irec index */
3277 xfs_extnum_t page_idx = idx; /* ext index in target list */
3279 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3280 return &erp->er_extbuf[page_idx];
3281 } else if (ifp->if_bytes) {
3282 return &ifp->if_u1.if_extents[idx];
3289 * Insert new item(s) into the extent records for incore inode
3290 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3294 xfs_ifork_t *ifp, /* inode fork pointer */
3295 xfs_extnum_t idx, /* starting index of new items */
3296 xfs_extnum_t count, /* number of inserted items */
3297 xfs_bmbt_irec_t *new) /* items to insert */
3299 xfs_extnum_t i; /* extent record index */
3301 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3302 xfs_iext_add(ifp, idx, count);
3303 for (i = idx; i < idx + count; i++, new++)
3304 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3308 * This is called when the amount of space required for incore file
3309 * extents needs to be increased. The ext_diff parameter stores the
3310 * number of new extents being added and the idx parameter contains
3311 * the extent index where the new extents will be added. If the new
3312 * extents are being appended, then we just need to (re)allocate and
3313 * initialize the space. Otherwise, if the new extents are being
3314 * inserted into the middle of the existing entries, a bit more work
3315 * is required to make room for the new extents to be inserted. The
3316 * caller is responsible for filling in the new extent entries upon
3321 xfs_ifork_t *ifp, /* inode fork pointer */
3322 xfs_extnum_t idx, /* index to begin adding exts */
3323 int ext_diff) /* number of extents to add */
3325 int byte_diff; /* new bytes being added */
3326 int new_size; /* size of extents after adding */
3327 xfs_extnum_t nextents; /* number of extents in file */
3329 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3330 ASSERT((idx >= 0) && (idx <= nextents));
3331 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3332 new_size = ifp->if_bytes + byte_diff;
3334 * If the new number of extents (nextents + ext_diff)
3335 * fits inside the inode, then continue to use the inline
3338 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3339 if (idx < nextents) {
3340 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3341 &ifp->if_u2.if_inline_ext[idx],
3342 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3343 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3345 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3346 ifp->if_real_bytes = 0;
3347 ifp->if_lastex = nextents + ext_diff;
3350 * Otherwise use a linear (direct) extent list.
3351 * If the extents are currently inside the inode,
3352 * xfs_iext_realloc_direct will switch us from
3353 * inline to direct extent allocation mode.
3355 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3356 xfs_iext_realloc_direct(ifp, new_size);
3357 if (idx < nextents) {
3358 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3359 &ifp->if_u1.if_extents[idx],
3360 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3361 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3364 /* Indirection array */
3366 xfs_ext_irec_t *erp;
3370 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3371 if (ifp->if_flags & XFS_IFEXTIREC) {
3372 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3374 xfs_iext_irec_init(ifp);
3375 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3376 erp = ifp->if_u1.if_ext_irec;
3378 /* Extents fit in target extent page */
3379 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3380 if (page_idx < erp->er_extcount) {
3381 memmove(&erp->er_extbuf[page_idx + ext_diff],
3382 &erp->er_extbuf[page_idx],
3383 (erp->er_extcount - page_idx) *
3384 sizeof(xfs_bmbt_rec_t));
3385 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3387 erp->er_extcount += ext_diff;
3388 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3390 /* Insert a new extent page */
3392 xfs_iext_add_indirect_multi(ifp,
3393 erp_idx, page_idx, ext_diff);
3396 * If extent(s) are being appended to the last page in
3397 * the indirection array and the new extent(s) don't fit
3398 * in the page, then erp is NULL and erp_idx is set to
3399 * the next index needed in the indirection array.
3402 int count = ext_diff;
3405 erp = xfs_iext_irec_new(ifp, erp_idx);
3406 erp->er_extcount = count;
3407 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3414 ifp->if_bytes = new_size;
3418 * This is called when incore extents are being added to the indirection
3419 * array and the new extents do not fit in the target extent list. The
3420 * erp_idx parameter contains the irec index for the target extent list
3421 * in the indirection array, and the idx parameter contains the extent
3422 * index within the list. The number of extents being added is stored
3423 * in the count parameter.
3425 * |-------| |-------|
3426 * | | | | idx - number of extents before idx
3428 * | | | | count - number of extents being inserted at idx
3429 * |-------| |-------|
3430 * | count | | nex2 | nex2 - number of extents after idx + count
3431 * |-------| |-------|
3434 xfs_iext_add_indirect_multi(
3435 xfs_ifork_t *ifp, /* inode fork pointer */
3436 int erp_idx, /* target extent irec index */
3437 xfs_extnum_t idx, /* index within target list */
3438 int count) /* new extents being added */
3440 int byte_diff; /* new bytes being added */
3441 xfs_ext_irec_t *erp; /* pointer to irec entry */
3442 xfs_extnum_t ext_diff; /* number of extents to add */
3443 xfs_extnum_t ext_cnt; /* new extents still needed */
3444 xfs_extnum_t nex2; /* extents after idx + count */
3445 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3446 int nlists; /* number of irec's (lists) */
3448 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3449 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3450 nex2 = erp->er_extcount - idx;
3451 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3454 * Save second part of target extent list
3455 * (all extents past */
3457 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3458 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3459 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3460 erp->er_extcount -= nex2;
3461 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3462 memset(&erp->er_extbuf[idx], 0, byte_diff);
3466 * Add the new extents to the end of the target
3467 * list, then allocate new irec record(s) and
3468 * extent buffer(s) as needed to store the rest
3469 * of the new extents.
3472 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3474 erp->er_extcount += ext_diff;
3475 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3476 ext_cnt -= ext_diff;
3480 erp = xfs_iext_irec_new(ifp, erp_idx);
3481 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3482 erp->er_extcount = ext_diff;
3483 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3484 ext_cnt -= ext_diff;
3487 /* Add nex2 extents back to indirection array */
3489 xfs_extnum_t ext_avail;
3492 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3493 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3496 * If nex2 extents fit in the current page, append
3497 * nex2_ep after the new extents.
3499 if (nex2 <= ext_avail) {
3500 i = erp->er_extcount;
3503 * Otherwise, check if space is available in the
3506 else if ((erp_idx < nlists - 1) &&
3507 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3508 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3511 /* Create a hole for nex2 extents */
3512 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3513 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3516 * Final choice, create a new extent page for
3521 erp = xfs_iext_irec_new(ifp, erp_idx);
3523 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3525 erp->er_extcount += nex2;
3526 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3531 * This is called when the amount of space required for incore file
3532 * extents needs to be decreased. The ext_diff parameter stores the
3533 * number of extents to be removed and the idx parameter contains
3534 * the extent index where the extents will be removed from.
3536 * If the amount of space needed has decreased below the linear
3537 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3538 * extent array. Otherwise, use kmem_realloc() to adjust the
3539 * size to what is needed.
3543 xfs_ifork_t *ifp, /* inode fork pointer */
3544 xfs_extnum_t idx, /* index to begin removing exts */
3545 int ext_diff) /* number of extents to remove */
3547 xfs_extnum_t nextents; /* number of extents in file */
3548 int new_size; /* size of extents after removal */
3550 ASSERT(ext_diff > 0);
3551 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3552 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3554 if (new_size == 0) {
3555 xfs_iext_destroy(ifp);
3556 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3557 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3558 } else if (ifp->if_real_bytes) {
3559 xfs_iext_remove_direct(ifp, idx, ext_diff);
3561 xfs_iext_remove_inline(ifp, idx, ext_diff);
3563 ifp->if_bytes = new_size;
3567 * This removes ext_diff extents from the inline buffer, beginning
3568 * at extent index idx.
3571 xfs_iext_remove_inline(
3572 xfs_ifork_t *ifp, /* inode fork pointer */
3573 xfs_extnum_t idx, /* index to begin removing exts */
3574 int ext_diff) /* number of extents to remove */
3576 int nextents; /* number of extents in file */
3578 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3579 ASSERT(idx < XFS_INLINE_EXTS);
3580 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3581 ASSERT(((nextents - ext_diff) > 0) &&
3582 (nextents - ext_diff) < XFS_INLINE_EXTS);
3584 if (idx + ext_diff < nextents) {
3585 memmove(&ifp->if_u2.if_inline_ext[idx],
3586 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3587 (nextents - (idx + ext_diff)) *
3588 sizeof(xfs_bmbt_rec_t));
3589 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3590 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3592 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3593 ext_diff * sizeof(xfs_bmbt_rec_t));
3598 * This removes ext_diff extents from a linear (direct) extent list,
3599 * beginning at extent index idx. If the extents are being removed
3600 * from the end of the list (ie. truncate) then we just need to re-
3601 * allocate the list to remove the extra space. Otherwise, if the
3602 * extents are being removed from the middle of the existing extent
3603 * entries, then we first need to move the extent records beginning
3604 * at idx + ext_diff up in the list to overwrite the records being
3605 * removed, then remove the extra space via kmem_realloc.
3608 xfs_iext_remove_direct(
3609 xfs_ifork_t *ifp, /* inode fork pointer */
3610 xfs_extnum_t idx, /* index to begin removing exts */
3611 int ext_diff) /* number of extents to remove */
3613 xfs_extnum_t nextents; /* number of extents in file */
3614 int new_size; /* size of extents after removal */
3616 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3617 new_size = ifp->if_bytes -
3618 (ext_diff * sizeof(xfs_bmbt_rec_t));
3619 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3621 if (new_size == 0) {
3622 xfs_iext_destroy(ifp);
3625 /* Move extents up in the list (if needed) */
3626 if (idx + ext_diff < nextents) {
3627 memmove(&ifp->if_u1.if_extents[idx],
3628 &ifp->if_u1.if_extents[idx + ext_diff],
3629 (nextents - (idx + ext_diff)) *
3630 sizeof(xfs_bmbt_rec_t));
3632 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3633 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3635 * Reallocate the direct extent list. If the extents
3636 * will fit inside the inode then xfs_iext_realloc_direct
3637 * will switch from direct to inline extent allocation
3640 xfs_iext_realloc_direct(ifp, new_size);
3641 ifp->if_bytes = new_size;
3645 * This is called when incore extents are being removed from the
3646 * indirection array and the extents being removed span multiple extent
3647 * buffers. The idx parameter contains the file extent index where we
3648 * want to begin removing extents, and the count parameter contains
3649 * how many extents need to be removed.
3651 * |-------| |-------|
3652 * | nex1 | | | nex1 - number of extents before idx
3653 * |-------| | count |
3654 * | | | | count - number of extents being removed at idx
3655 * | count | |-------|
3656 * | | | nex2 | nex2 - number of extents after idx + count
3657 * |-------| |-------|
3660 xfs_iext_remove_indirect(
3661 xfs_ifork_t *ifp, /* inode fork pointer */
3662 xfs_extnum_t idx, /* index to begin removing extents */
3663 int count) /* number of extents to remove */
3665 xfs_ext_irec_t *erp; /* indirection array pointer */
3666 int erp_idx = 0; /* indirection array index */
3667 xfs_extnum_t ext_cnt; /* extents left to remove */
3668 xfs_extnum_t ext_diff; /* extents to remove in current list */
3669 xfs_extnum_t nex1; /* number of extents before idx */
3670 xfs_extnum_t nex2; /* extents after idx + count */
3671 int nlists; /* entries in indirection array */
3672 int page_idx = idx; /* index in target extent list */
3674 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3675 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3676 ASSERT(erp != NULL);
3677 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3681 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3682 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3684 * Check for deletion of entire list;
3685 * xfs_iext_irec_remove() updates extent offsets.
3687 if (ext_diff == erp->er_extcount) {
3688 xfs_iext_irec_remove(ifp, erp_idx);
3689 ext_cnt -= ext_diff;
3692 ASSERT(erp_idx < ifp->if_real_bytes /
3694 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3701 /* Move extents up (if needed) */
3703 memmove(&erp->er_extbuf[nex1],
3704 &erp->er_extbuf[nex1 + ext_diff],
3705 nex2 * sizeof(xfs_bmbt_rec_t));
3707 /* Zero out rest of page */
3708 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3709 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3710 /* Update remaining counters */
3711 erp->er_extcount -= ext_diff;
3712 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3713 ext_cnt -= ext_diff;
3718 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3719 xfs_iext_irec_compact(ifp);
3723 * Create, destroy, or resize a linear (direct) block of extents.
3726 xfs_iext_realloc_direct(
3727 xfs_ifork_t *ifp, /* inode fork pointer */
3728 int new_size) /* new size of extents */
3730 int rnew_size; /* real new size of extents */
3732 rnew_size = new_size;
3734 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3735 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3736 (new_size != ifp->if_real_bytes)));
3738 /* Free extent records */
3739 if (new_size == 0) {
3740 xfs_iext_destroy(ifp);
3742 /* Resize direct extent list and zero any new bytes */
3743 else if (ifp->if_real_bytes) {
3744 /* Check if extents will fit inside the inode */
3745 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3746 xfs_iext_direct_to_inline(ifp, new_size /
3747 (uint)sizeof(xfs_bmbt_rec_t));
3748 ifp->if_bytes = new_size;
3751 if (!is_power_of_2(new_size)){
3752 rnew_size = roundup_pow_of_two(new_size);
3754 if (rnew_size != ifp->if_real_bytes) {
3755 ifp->if_u1.if_extents =
3756 kmem_realloc(ifp->if_u1.if_extents,
3758 ifp->if_real_bytes, KM_NOFS);
3760 if (rnew_size > ifp->if_real_bytes) {
3761 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3762 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3763 rnew_size - ifp->if_real_bytes);
3767 * Switch from the inline extent buffer to a direct
3768 * extent list. Be sure to include the inline extent
3769 * bytes in new_size.
3772 new_size += ifp->if_bytes;
3773 if (!is_power_of_2(new_size)) {
3774 rnew_size = roundup_pow_of_two(new_size);
3776 xfs_iext_inline_to_direct(ifp, rnew_size);
3778 ifp->if_real_bytes = rnew_size;
3779 ifp->if_bytes = new_size;
3783 * Switch from linear (direct) extent records to inline buffer.
3786 xfs_iext_direct_to_inline(
3787 xfs_ifork_t *ifp, /* inode fork pointer */
3788 xfs_extnum_t nextents) /* number of extents in file */
3790 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3791 ASSERT(nextents <= XFS_INLINE_EXTS);
3793 * The inline buffer was zeroed when we switched
3794 * from inline to direct extent allocation mode,
3795 * so we don't need to clear it here.
3797 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3798 nextents * sizeof(xfs_bmbt_rec_t));
3799 kmem_free(ifp->if_u1.if_extents);
3800 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3801 ifp->if_real_bytes = 0;
3805 * Switch from inline buffer to linear (direct) extent records.
3806 * new_size should already be rounded up to the next power of 2
3807 * by the caller (when appropriate), so use new_size as it is.
3808 * However, since new_size may be rounded up, we can't update
3809 * if_bytes here. It is the caller's responsibility to update
3810 * if_bytes upon return.
3813 xfs_iext_inline_to_direct(
3814 xfs_ifork_t *ifp, /* inode fork pointer */
3815 int new_size) /* number of extents in file */
3817 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3818 memset(ifp->if_u1.if_extents, 0, new_size);
3819 if (ifp->if_bytes) {
3820 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3822 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3823 sizeof(xfs_bmbt_rec_t));
3825 ifp->if_real_bytes = new_size;
3829 * Resize an extent indirection array to new_size bytes.
3832 xfs_iext_realloc_indirect(
3833 xfs_ifork_t *ifp, /* inode fork pointer */
3834 int new_size) /* new indirection array size */
3836 int nlists; /* number of irec's (ex lists) */
3837 int size; /* current indirection array size */
3839 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3840 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3841 size = nlists * sizeof(xfs_ext_irec_t);
3842 ASSERT(ifp->if_real_bytes);
3843 ASSERT((new_size >= 0) && (new_size != size));
3844 if (new_size == 0) {
3845 xfs_iext_destroy(ifp);
3847 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3848 kmem_realloc(ifp->if_u1.if_ext_irec,
3849 new_size, size, KM_NOFS);
3854 * Switch from indirection array to linear (direct) extent allocations.
3857 xfs_iext_indirect_to_direct(
3858 xfs_ifork_t *ifp) /* inode fork pointer */
3860 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
3861 xfs_extnum_t nextents; /* number of extents in file */
3862 int size; /* size of file extents */
3864 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3865 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3866 ASSERT(nextents <= XFS_LINEAR_EXTS);
3867 size = nextents * sizeof(xfs_bmbt_rec_t);
3869 xfs_iext_irec_compact_pages(ifp);
3870 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3872 ep = ifp->if_u1.if_ext_irec->er_extbuf;
3873 kmem_free(ifp->if_u1.if_ext_irec);
3874 ifp->if_flags &= ~XFS_IFEXTIREC;
3875 ifp->if_u1.if_extents = ep;
3876 ifp->if_bytes = size;
3877 if (nextents < XFS_LINEAR_EXTS) {
3878 xfs_iext_realloc_direct(ifp, size);
3883 * Free incore file extents.
3887 xfs_ifork_t *ifp) /* inode fork pointer */
3889 if (ifp->if_flags & XFS_IFEXTIREC) {
3893 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3894 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3895 xfs_iext_irec_remove(ifp, erp_idx);
3897 ifp->if_flags &= ~XFS_IFEXTIREC;
3898 } else if (ifp->if_real_bytes) {
3899 kmem_free(ifp->if_u1.if_extents);
3900 } else if (ifp->if_bytes) {
3901 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3902 sizeof(xfs_bmbt_rec_t));
3904 ifp->if_u1.if_extents = NULL;
3905 ifp->if_real_bytes = 0;
3910 * Return a pointer to the extent record for file system block bno.
3912 xfs_bmbt_rec_host_t * /* pointer to found extent record */
3913 xfs_iext_bno_to_ext(
3914 xfs_ifork_t *ifp, /* inode fork pointer */
3915 xfs_fileoff_t bno, /* block number to search for */
3916 xfs_extnum_t *idxp) /* index of target extent */
3918 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
3919 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
3920 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
3921 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3922 int high; /* upper boundary in search */
3923 xfs_extnum_t idx = 0; /* index of target extent */
3924 int low; /* lower boundary in search */
3925 xfs_extnum_t nextents; /* number of file extents */
3926 xfs_fileoff_t startoff = 0; /* start offset of extent */
3928 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3929 if (nextents == 0) {
3934 if (ifp->if_flags & XFS_IFEXTIREC) {
3935 /* Find target extent list */
3937 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3938 base = erp->er_extbuf;
3939 high = erp->er_extcount - 1;
3941 base = ifp->if_u1.if_extents;
3942 high = nextents - 1;
3944 /* Binary search extent records */
3945 while (low <= high) {
3946 idx = (low + high) >> 1;
3948 startoff = xfs_bmbt_get_startoff(ep);
3949 blockcount = xfs_bmbt_get_blockcount(ep);
3950 if (bno < startoff) {
3952 } else if (bno >= startoff + blockcount) {
3955 /* Convert back to file-based extent index */
3956 if (ifp->if_flags & XFS_IFEXTIREC) {
3957 idx += erp->er_extoff;
3963 /* Convert back to file-based extent index */
3964 if (ifp->if_flags & XFS_IFEXTIREC) {
3965 idx += erp->er_extoff;
3967 if (bno >= startoff + blockcount) {
3968 if (++idx == nextents) {
3971 ep = xfs_iext_get_ext(ifp, idx);
3979 * Return a pointer to the indirection array entry containing the
3980 * extent record for filesystem block bno. Store the index of the
3981 * target irec in *erp_idxp.
3983 xfs_ext_irec_t * /* pointer to found extent record */
3984 xfs_iext_bno_to_irec(
3985 xfs_ifork_t *ifp, /* inode fork pointer */
3986 xfs_fileoff_t bno, /* block number to search for */
3987 int *erp_idxp) /* irec index of target ext list */
3989 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3990 xfs_ext_irec_t *erp_next; /* next indirection array entry */
3991 int erp_idx; /* indirection array index */
3992 int nlists; /* number of extent irec's (lists) */
3993 int high; /* binary search upper limit */
3994 int low; /* binary search lower limit */
3996 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3997 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4001 while (low <= high) {
4002 erp_idx = (low + high) >> 1;
4003 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4004 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4005 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4007 } else if (erp_next && bno >=
4008 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4014 *erp_idxp = erp_idx;
4019 * Return a pointer to the indirection array entry containing the
4020 * extent record at file extent index *idxp. Store the index of the
4021 * target irec in *erp_idxp and store the page index of the target
4022 * extent record in *idxp.
4025 xfs_iext_idx_to_irec(
4026 xfs_ifork_t *ifp, /* inode fork pointer */
4027 xfs_extnum_t *idxp, /* extent index (file -> page) */
4028 int *erp_idxp, /* pointer to target irec */
4029 int realloc) /* new bytes were just added */
4031 xfs_ext_irec_t *prev; /* pointer to previous irec */
4032 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4033 int erp_idx; /* indirection array index */
4034 int nlists; /* number of irec's (ex lists) */
4035 int high; /* binary search upper limit */
4036 int low; /* binary search lower limit */
4037 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4039 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4040 ASSERT(page_idx >= 0 && page_idx <=
4041 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4042 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4047 /* Binary search extent irec's */
4048 while (low <= high) {
4049 erp_idx = (low + high) >> 1;
4050 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4051 prev = erp_idx > 0 ? erp - 1 : NULL;
4052 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4053 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4055 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4056 (page_idx == erp->er_extoff + erp->er_extcount &&
4059 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4060 erp->er_extcount == XFS_LINEAR_EXTS) {
4064 erp = erp_idx < nlists ? erp + 1 : NULL;
4067 page_idx -= erp->er_extoff;
4072 *erp_idxp = erp_idx;
4077 * Allocate and initialize an indirection array once the space needed
4078 * for incore extents increases above XFS_IEXT_BUFSZ.
4082 xfs_ifork_t *ifp) /* inode fork pointer */
4084 xfs_ext_irec_t *erp; /* indirection array pointer */
4085 xfs_extnum_t nextents; /* number of extents in file */
4087 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4088 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4089 ASSERT(nextents <= XFS_LINEAR_EXTS);
4091 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
4093 if (nextents == 0) {
4094 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4095 } else if (!ifp->if_real_bytes) {
4096 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4097 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4098 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4100 erp->er_extbuf = ifp->if_u1.if_extents;
4101 erp->er_extcount = nextents;
4104 ifp->if_flags |= XFS_IFEXTIREC;
4105 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4106 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4107 ifp->if_u1.if_ext_irec = erp;
4113 * Allocate and initialize a new entry in the indirection array.
4117 xfs_ifork_t *ifp, /* inode fork pointer */
4118 int erp_idx) /* index for new irec */
4120 xfs_ext_irec_t *erp; /* indirection array pointer */
4121 int i; /* loop counter */
4122 int nlists; /* number of irec's (ex lists) */
4124 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4125 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4127 /* Resize indirection array */
4128 xfs_iext_realloc_indirect(ifp, ++nlists *
4129 sizeof(xfs_ext_irec_t));
4131 * Move records down in the array so the
4132 * new page can use erp_idx.
4134 erp = ifp->if_u1.if_ext_irec;
4135 for (i = nlists - 1; i > erp_idx; i--) {
4136 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4138 ASSERT(i == erp_idx);
4140 /* Initialize new extent record */
4141 erp = ifp->if_u1.if_ext_irec;
4142 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4143 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4144 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4145 erp[erp_idx].er_extcount = 0;
4146 erp[erp_idx].er_extoff = erp_idx > 0 ?
4147 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4148 return (&erp[erp_idx]);
4152 * Remove a record from the indirection array.
4155 xfs_iext_irec_remove(
4156 xfs_ifork_t *ifp, /* inode fork pointer */
4157 int erp_idx) /* irec index to remove */
4159 xfs_ext_irec_t *erp; /* indirection array pointer */
4160 int i; /* loop counter */
4161 int nlists; /* number of irec's (ex lists) */
4163 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4164 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4165 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4166 if (erp->er_extbuf) {
4167 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4169 kmem_free(erp->er_extbuf);
4171 /* Compact extent records */
4172 erp = ifp->if_u1.if_ext_irec;
4173 for (i = erp_idx; i < nlists - 1; i++) {
4174 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4177 * Manually free the last extent record from the indirection
4178 * array. A call to xfs_iext_realloc_indirect() with a size
4179 * of zero would result in a call to xfs_iext_destroy() which
4180 * would in turn call this function again, creating a nasty
4184 xfs_iext_realloc_indirect(ifp,
4185 nlists * sizeof(xfs_ext_irec_t));
4187 kmem_free(ifp->if_u1.if_ext_irec);
4189 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4193 * This is called to clean up large amounts of unused memory allocated
4194 * by the indirection array. Before compacting anything though, verify
4195 * that the indirection array is still needed and switch back to the
4196 * linear extent list (or even the inline buffer) if possible. The
4197 * compaction policy is as follows:
4199 * Full Compaction: Extents fit into a single page (or inline buffer)
4200 * Partial Compaction: Extents occupy less than 50% of allocated space
4201 * No Compaction: Extents occupy at least 50% of allocated space
4204 xfs_iext_irec_compact(
4205 xfs_ifork_t *ifp) /* inode fork pointer */
4207 xfs_extnum_t nextents; /* number of extents in file */
4208 int nlists; /* number of irec's (ex lists) */
4210 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4211 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4212 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4214 if (nextents == 0) {
4215 xfs_iext_destroy(ifp);
4216 } else if (nextents <= XFS_INLINE_EXTS) {
4217 xfs_iext_indirect_to_direct(ifp);
4218 xfs_iext_direct_to_inline(ifp, nextents);
4219 } else if (nextents <= XFS_LINEAR_EXTS) {
4220 xfs_iext_indirect_to_direct(ifp);
4221 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4222 xfs_iext_irec_compact_pages(ifp);
4227 * Combine extents from neighboring extent pages.
4230 xfs_iext_irec_compact_pages(
4231 xfs_ifork_t *ifp) /* inode fork pointer */
4233 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4234 int erp_idx = 0; /* indirection array index */
4235 int nlists; /* number of irec's (ex lists) */
4237 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4238 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4239 while (erp_idx < nlists - 1) {
4240 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4242 if (erp_next->er_extcount <=
4243 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4244 memcpy(&erp->er_extbuf[erp->er_extcount],
4245 erp_next->er_extbuf, erp_next->er_extcount *
4246 sizeof(xfs_bmbt_rec_t));
4247 erp->er_extcount += erp_next->er_extcount;
4249 * Free page before removing extent record
4250 * so er_extoffs don't get modified in
4251 * xfs_iext_irec_remove.
4253 kmem_free(erp_next->er_extbuf);
4254 erp_next->er_extbuf = NULL;
4255 xfs_iext_irec_remove(ifp, erp_idx + 1);
4256 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4264 * This is called to update the er_extoff field in the indirection
4265 * array when extents have been added or removed from one of the
4266 * extent lists. erp_idx contains the irec index to begin updating
4267 * at and ext_diff contains the number of extents that were added
4271 xfs_iext_irec_update_extoffs(
4272 xfs_ifork_t *ifp, /* inode fork pointer */
4273 int erp_idx, /* irec index to update */
4274 int ext_diff) /* number of new extents */
4276 int i; /* loop counter */
4277 int nlists; /* number of irec's (ex lists */
4279 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4280 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4281 for (i = erp_idx; i < nlists; i++) {
4282 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;