1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/swap.h>
34 #include <linux/spinlock.h>
36 #include <linux/seq_file.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mm_inline.h>
39 #include <linux/page_cgroup.h>
42 #include <asm/uaccess.h>
44 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
45 #define MEM_CGROUP_RECLAIM_RETRIES 5
47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
49 int do_swap_account __read_mostly;
50 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
52 #define do_swap_account (0)
55 static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
58 * Statistics for memory cgroup.
60 enum mem_cgroup_stat_index {
62 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
64 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
65 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
66 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
67 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
69 MEM_CGROUP_STAT_NSTATS,
72 struct mem_cgroup_stat_cpu {
73 s64 count[MEM_CGROUP_STAT_NSTATS];
74 } ____cacheline_aligned_in_smp;
76 struct mem_cgroup_stat {
77 struct mem_cgroup_stat_cpu cpustat[0];
81 * For accounting under irq disable, no need for increment preempt count.
83 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
84 enum mem_cgroup_stat_index idx, int val)
86 stat->count[idx] += val;
89 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
90 enum mem_cgroup_stat_index idx)
94 for_each_possible_cpu(cpu)
95 ret += stat->cpustat[cpu].count[idx];
99 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
103 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
104 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
109 * per-zone information in memory controller.
111 struct mem_cgroup_per_zone {
113 * spin_lock to protect the per cgroup LRU
115 struct list_head lists[NR_LRU_LISTS];
116 unsigned long count[NR_LRU_LISTS];
118 struct zone_reclaim_stat reclaim_stat;
120 /* Macro for accessing counter */
121 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
123 struct mem_cgroup_per_node {
124 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
127 struct mem_cgroup_lru_info {
128 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
132 * The memory controller data structure. The memory controller controls both
133 * page cache and RSS per cgroup. We would eventually like to provide
134 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
135 * to help the administrator determine what knobs to tune.
137 * TODO: Add a water mark for the memory controller. Reclaim will begin when
138 * we hit the water mark. May be even add a low water mark, such that
139 * no reclaim occurs from a cgroup at it's low water mark, this is
140 * a feature that will be implemented much later in the future.
143 struct cgroup_subsys_state css;
145 * the counter to account for memory usage
147 struct res_counter res;
149 * the counter to account for mem+swap usage.
151 struct res_counter memsw;
153 * Per cgroup active and inactive list, similar to the
154 * per zone LRU lists.
156 struct mem_cgroup_lru_info info;
159 protect against reclaim related member.
161 spinlock_t reclaim_param_lock;
163 int prev_priority; /* for recording reclaim priority */
166 * While reclaiming in a hiearchy, we cache the last child we
169 int last_scanned_child;
171 * Should the accounting and control be hierarchical, per subtree?
174 unsigned long last_oom_jiffies;
177 unsigned int swappiness;
180 * statistics. This must be placed at the end of memcg.
182 struct mem_cgroup_stat stat;
186 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
187 MEM_CGROUP_CHARGE_TYPE_MAPPED,
188 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
189 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
190 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
194 /* only for here (for easy reading.) */
195 #define PCGF_CACHE (1UL << PCG_CACHE)
196 #define PCGF_USED (1UL << PCG_USED)
197 #define PCGF_LOCK (1UL << PCG_LOCK)
198 static const unsigned long
199 pcg_default_flags[NR_CHARGE_TYPE] = {
200 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
201 PCGF_USED | PCGF_LOCK, /* Anon */
202 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
206 /* for encoding cft->private value on file */
209 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
210 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
211 #define MEMFILE_ATTR(val) ((val) & 0xffff)
213 static void mem_cgroup_get(struct mem_cgroup *mem);
214 static void mem_cgroup_put(struct mem_cgroup *mem);
215 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
217 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
218 struct page_cgroup *pc,
221 int val = (charge)? 1 : -1;
222 struct mem_cgroup_stat *stat = &mem->stat;
223 struct mem_cgroup_stat_cpu *cpustat;
226 cpustat = &stat->cpustat[cpu];
227 if (PageCgroupCache(pc))
228 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
230 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
233 __mem_cgroup_stat_add_safe(cpustat,
234 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
236 __mem_cgroup_stat_add_safe(cpustat,
237 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
241 static struct mem_cgroup_per_zone *
242 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
244 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
247 static struct mem_cgroup_per_zone *
248 page_cgroup_zoneinfo(struct page_cgroup *pc)
250 struct mem_cgroup *mem = pc->mem_cgroup;
251 int nid = page_cgroup_nid(pc);
252 int zid = page_cgroup_zid(pc);
257 return mem_cgroup_zoneinfo(mem, nid, zid);
260 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
264 struct mem_cgroup_per_zone *mz;
267 for_each_online_node(nid)
268 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
269 mz = mem_cgroup_zoneinfo(mem, nid, zid);
270 total += MEM_CGROUP_ZSTAT(mz, idx);
275 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
277 return container_of(cgroup_subsys_state(cont,
278 mem_cgroup_subsys_id), struct mem_cgroup,
282 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
285 * mm_update_next_owner() may clear mm->owner to NULL
286 * if it races with swapoff, page migration, etc.
287 * So this can be called with p == NULL.
292 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
293 struct mem_cgroup, css);
296 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
298 struct mem_cgroup *mem = NULL;
303 * Because we have no locks, mm->owner's may be being moved to other
304 * cgroup. We use css_tryget() here even if this looks
305 * pessimistic (rather than adding locks here).
309 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
312 } while (!css_tryget(&mem->css));
317 static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
321 return css_is_removed(&mem->css);
326 * Call callback function against all cgroup under hierarchy tree.
328 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
329 int (*func)(struct mem_cgroup *, void *))
331 int found, ret, nextid;
332 struct cgroup_subsys_state *css;
333 struct mem_cgroup *mem;
335 if (!root->use_hierarchy)
336 return (*func)(root, data);
344 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
346 if (css && css_tryget(css))
347 mem = container_of(css, struct mem_cgroup, css);
351 ret = (*func)(mem, data);
355 } while (!ret && css);
361 * Following LRU functions are allowed to be used without PCG_LOCK.
362 * Operations are called by routine of global LRU independently from memcg.
363 * What we have to take care of here is validness of pc->mem_cgroup.
365 * Changes to pc->mem_cgroup happens when
368 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
369 * It is added to LRU before charge.
370 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
371 * When moving account, the page is not on LRU. It's isolated.
374 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
376 struct page_cgroup *pc;
377 struct mem_cgroup *mem;
378 struct mem_cgroup_per_zone *mz;
380 if (mem_cgroup_disabled())
382 pc = lookup_page_cgroup(page);
383 /* can happen while we handle swapcache. */
384 if (list_empty(&pc->lru) || !pc->mem_cgroup)
387 * We don't check PCG_USED bit. It's cleared when the "page" is finally
388 * removed from global LRU.
390 mz = page_cgroup_zoneinfo(pc);
391 mem = pc->mem_cgroup;
392 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
393 list_del_init(&pc->lru);
397 void mem_cgroup_del_lru(struct page *page)
399 mem_cgroup_del_lru_list(page, page_lru(page));
402 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
404 struct mem_cgroup_per_zone *mz;
405 struct page_cgroup *pc;
407 if (mem_cgroup_disabled())
410 pc = lookup_page_cgroup(page);
412 * Used bit is set without atomic ops but after smp_wmb().
413 * For making pc->mem_cgroup visible, insert smp_rmb() here.
416 /* unused page is not rotated. */
417 if (!PageCgroupUsed(pc))
419 mz = page_cgroup_zoneinfo(pc);
420 list_move(&pc->lru, &mz->lists[lru]);
423 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
425 struct page_cgroup *pc;
426 struct mem_cgroup_per_zone *mz;
428 if (mem_cgroup_disabled())
430 pc = lookup_page_cgroup(page);
432 * Used bit is set without atomic ops but after smp_wmb().
433 * For making pc->mem_cgroup visible, insert smp_rmb() here.
436 if (!PageCgroupUsed(pc))
439 mz = page_cgroup_zoneinfo(pc);
440 MEM_CGROUP_ZSTAT(mz, lru) += 1;
441 list_add(&pc->lru, &mz->lists[lru]);
445 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
446 * lru because the page may.be reused after it's fully uncharged (because of
447 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
448 * it again. This function is only used to charge SwapCache. It's done under
449 * lock_page and expected that zone->lru_lock is never held.
451 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
454 struct zone *zone = page_zone(page);
455 struct page_cgroup *pc = lookup_page_cgroup(page);
457 spin_lock_irqsave(&zone->lru_lock, flags);
459 * Forget old LRU when this page_cgroup is *not* used. This Used bit
460 * is guarded by lock_page() because the page is SwapCache.
462 if (!PageCgroupUsed(pc))
463 mem_cgroup_del_lru_list(page, page_lru(page));
464 spin_unlock_irqrestore(&zone->lru_lock, flags);
467 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
470 struct zone *zone = page_zone(page);
471 struct page_cgroup *pc = lookup_page_cgroup(page);
473 spin_lock_irqsave(&zone->lru_lock, flags);
474 /* link when the page is linked to LRU but page_cgroup isn't */
475 if (PageLRU(page) && list_empty(&pc->lru))
476 mem_cgroup_add_lru_list(page, page_lru(page));
477 spin_unlock_irqrestore(&zone->lru_lock, flags);
481 void mem_cgroup_move_lists(struct page *page,
482 enum lru_list from, enum lru_list to)
484 if (mem_cgroup_disabled())
486 mem_cgroup_del_lru_list(page, from);
487 mem_cgroup_add_lru_list(page, to);
490 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
493 struct mem_cgroup *curr = NULL;
497 curr = try_get_mem_cgroup_from_mm(task->mm);
502 if (curr->use_hierarchy)
503 ret = css_is_ancestor(&curr->css, &mem->css);
511 * prev_priority control...this will be used in memory reclaim path.
513 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
517 spin_lock(&mem->reclaim_param_lock);
518 prev_priority = mem->prev_priority;
519 spin_unlock(&mem->reclaim_param_lock);
521 return prev_priority;
524 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
526 spin_lock(&mem->reclaim_param_lock);
527 if (priority < mem->prev_priority)
528 mem->prev_priority = priority;
529 spin_unlock(&mem->reclaim_param_lock);
532 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
534 spin_lock(&mem->reclaim_param_lock);
535 mem->prev_priority = priority;
536 spin_unlock(&mem->reclaim_param_lock);
539 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
541 unsigned long active;
542 unsigned long inactive;
544 unsigned long inactive_ratio;
546 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
547 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
549 gb = (inactive + active) >> (30 - PAGE_SHIFT);
551 inactive_ratio = int_sqrt(10 * gb);
556 present_pages[0] = inactive;
557 present_pages[1] = active;
560 return inactive_ratio;
563 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
565 unsigned long active;
566 unsigned long inactive;
567 unsigned long present_pages[2];
568 unsigned long inactive_ratio;
570 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
572 inactive = present_pages[0];
573 active = present_pages[1];
575 if (inactive * inactive_ratio < active)
581 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
585 int nid = zone->zone_pgdat->node_id;
586 int zid = zone_idx(zone);
587 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
589 return MEM_CGROUP_ZSTAT(mz, lru);
592 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
595 int nid = zone->zone_pgdat->node_id;
596 int zid = zone_idx(zone);
597 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
599 return &mz->reclaim_stat;
602 struct zone_reclaim_stat *
603 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
605 struct page_cgroup *pc;
606 struct mem_cgroup_per_zone *mz;
608 if (mem_cgroup_disabled())
611 pc = lookup_page_cgroup(page);
613 * Used bit is set without atomic ops but after smp_wmb().
614 * For making pc->mem_cgroup visible, insert smp_rmb() here.
617 if (!PageCgroupUsed(pc))
620 mz = page_cgroup_zoneinfo(pc);
624 return &mz->reclaim_stat;
627 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
628 struct list_head *dst,
629 unsigned long *scanned, int order,
630 int mode, struct zone *z,
631 struct mem_cgroup *mem_cont,
632 int active, int file)
634 unsigned long nr_taken = 0;
638 struct list_head *src;
639 struct page_cgroup *pc, *tmp;
640 int nid = z->zone_pgdat->node_id;
641 int zid = zone_idx(z);
642 struct mem_cgroup_per_zone *mz;
643 int lru = LRU_FILE * !!file + !!active;
646 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
647 src = &mz->lists[lru];
650 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
651 if (scan >= nr_to_scan)
655 if (unlikely(!PageCgroupUsed(pc)))
657 if (unlikely(!PageLRU(page)))
661 if (__isolate_lru_page(page, mode, file) == 0) {
662 list_move(&page->lru, dst);
671 #define mem_cgroup_from_res_counter(counter, member) \
672 container_of(counter, struct mem_cgroup, member)
674 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
676 if (do_swap_account) {
677 if (res_counter_check_under_limit(&mem->res) &&
678 res_counter_check_under_limit(&mem->memsw))
681 if (res_counter_check_under_limit(&mem->res))
686 static unsigned int get_swappiness(struct mem_cgroup *memcg)
688 struct cgroup *cgrp = memcg->css.cgroup;
689 unsigned int swappiness;
692 if (cgrp->parent == NULL)
693 return vm_swappiness;
695 spin_lock(&memcg->reclaim_param_lock);
696 swappiness = memcg->swappiness;
697 spin_unlock(&memcg->reclaim_param_lock);
702 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
710 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
711 * @memcg: The memory cgroup that went over limit
712 * @p: Task that is going to be killed
714 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
717 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
719 struct cgroup *task_cgrp;
720 struct cgroup *mem_cgrp;
722 * Need a buffer in BSS, can't rely on allocations. The code relies
723 * on the assumption that OOM is serialized for memory controller.
724 * If this assumption is broken, revisit this code.
726 static char memcg_name[PATH_MAX];
735 mem_cgrp = memcg->css.cgroup;
736 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
738 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
741 * Unfortunately, we are unable to convert to a useful name
742 * But we'll still print out the usage information
749 printk(KERN_INFO "Task in %s killed", memcg_name);
752 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
760 * Continues from above, so we don't need an KERN_ level
762 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
765 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
766 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
767 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
768 res_counter_read_u64(&memcg->res, RES_FAILCNT));
769 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
771 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
772 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
773 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
777 * This function returns the number of memcg under hierarchy tree. Returns
778 * 1(self count) if no children.
780 static int mem_cgroup_count_children(struct mem_cgroup *mem)
783 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
788 * Visit the first child (need not be the first child as per the ordering
789 * of the cgroup list, since we track last_scanned_child) of @mem and use
790 * that to reclaim free pages from.
792 static struct mem_cgroup *
793 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
795 struct mem_cgroup *ret = NULL;
796 struct cgroup_subsys_state *css;
799 if (!root_mem->use_hierarchy) {
800 css_get(&root_mem->css);
806 nextid = root_mem->last_scanned_child + 1;
807 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
809 if (css && css_tryget(css))
810 ret = container_of(css, struct mem_cgroup, css);
813 /* Updates scanning parameter */
814 spin_lock(&root_mem->reclaim_param_lock);
816 /* this means start scan from ID:1 */
817 root_mem->last_scanned_child = 0;
819 root_mem->last_scanned_child = found;
820 spin_unlock(&root_mem->reclaim_param_lock);
827 * Scan the hierarchy if needed to reclaim memory. We remember the last child
828 * we reclaimed from, so that we don't end up penalizing one child extensively
829 * based on its position in the children list.
831 * root_mem is the original ancestor that we've been reclaim from.
833 * We give up and return to the caller when we visit root_mem twice.
834 * (other groups can be removed while we're walking....)
836 * If shrink==true, for avoiding to free too much, this returns immedieately.
838 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
839 gfp_t gfp_mask, bool noswap, bool shrink)
841 struct mem_cgroup *victim;
846 victim = mem_cgroup_select_victim(root_mem);
847 if (victim == root_mem)
849 if (!mem_cgroup_local_usage(&victim->stat)) {
850 /* this cgroup's local usage == 0 */
851 css_put(&victim->css);
854 /* we use swappiness of local cgroup */
855 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
856 get_swappiness(victim));
857 css_put(&victim->css);
859 * At shrinking usage, we can't check we should stop here or
860 * reclaim more. It's depends on callers. last_scanned_child
861 * will work enough for keeping fairness under tree.
866 if (mem_cgroup_check_under_limit(root_mem))
872 bool mem_cgroup_oom_called(struct task_struct *task)
875 struct mem_cgroup *mem;
876 struct mm_struct *mm;
882 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
883 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
889 static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
891 mem->last_oom_jiffies = jiffies;
895 static void record_last_oom(struct mem_cgroup *mem)
897 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
902 * Unlike exported interface, "oom" parameter is added. if oom==true,
903 * oom-killer can be invoked.
905 static int __mem_cgroup_try_charge(struct mm_struct *mm,
906 gfp_t gfp_mask, struct mem_cgroup **memcg,
909 struct mem_cgroup *mem, *mem_over_limit;
910 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
911 struct res_counter *fail_res;
913 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
914 /* Don't account this! */
920 * We always charge the cgroup the mm_struct belongs to.
921 * The mm_struct's mem_cgroup changes on task migration if the
922 * thread group leader migrates. It's possible that mm is not
923 * set, if so charge the init_mm (happens for pagecache usage).
927 mem = try_get_mem_cgroup_from_mm(mm);
935 VM_BUG_ON(!mem || mem_cgroup_is_obsolete(mem));
941 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
943 if (!do_swap_account)
945 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
949 /* mem+swap counter fails */
950 res_counter_uncharge(&mem->res, PAGE_SIZE);
952 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
955 /* mem counter fails */
956 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
959 if (!(gfp_mask & __GFP_WAIT))
962 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
968 * try_to_free_mem_cgroup_pages() might not give us a full
969 * picture of reclaim. Some pages are reclaimed and might be
970 * moved to swap cache or just unmapped from the cgroup.
971 * Check the limit again to see if the reclaim reduced the
972 * current usage of the cgroup before giving up
975 if (mem_cgroup_check_under_limit(mem_over_limit))
980 mutex_lock(&memcg_tasklist);
981 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
982 mutex_unlock(&memcg_tasklist);
983 record_last_oom(mem_over_limit);
996 * A helper function to get mem_cgroup from ID. must be called under
997 * rcu_read_lock(). The caller must check css_is_removed() or some if
998 * it's concern. (dropping refcnt from swap can be called against removed
1001 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1003 struct cgroup_subsys_state *css;
1005 /* ID 0 is unused ID */
1008 css = css_lookup(&mem_cgroup_subsys, id);
1011 return container_of(css, struct mem_cgroup, css);
1014 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1016 struct mem_cgroup *mem;
1017 struct page_cgroup *pc;
1021 VM_BUG_ON(!PageLocked(page));
1023 if (!PageSwapCache(page))
1026 pc = lookup_page_cgroup(page);
1027 lock_page_cgroup(pc);
1028 if (PageCgroupUsed(pc)) {
1029 mem = pc->mem_cgroup;
1030 if (mem && !css_tryget(&mem->css))
1033 ent.val = page_private(page);
1034 id = lookup_swap_cgroup(ent);
1036 mem = mem_cgroup_lookup(id);
1037 if (mem && !css_tryget(&mem->css))
1041 unlock_page_cgroup(pc);
1046 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1047 * USED state. If already USED, uncharge and return.
1050 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1051 struct page_cgroup *pc,
1052 enum charge_type ctype)
1054 /* try_charge() can return NULL to *memcg, taking care of it. */
1058 lock_page_cgroup(pc);
1059 if (unlikely(PageCgroupUsed(pc))) {
1060 unlock_page_cgroup(pc);
1061 res_counter_uncharge(&mem->res, PAGE_SIZE);
1062 if (do_swap_account)
1063 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1067 pc->mem_cgroup = mem;
1069 pc->flags = pcg_default_flags[ctype];
1071 mem_cgroup_charge_statistics(mem, pc, true);
1073 unlock_page_cgroup(pc);
1077 * mem_cgroup_move_account - move account of the page
1078 * @pc: page_cgroup of the page.
1079 * @from: mem_cgroup which the page is moved from.
1080 * @to: mem_cgroup which the page is moved to. @from != @to.
1082 * The caller must confirm following.
1083 * - page is not on LRU (isolate_page() is useful.)
1085 * returns 0 at success,
1086 * returns -EBUSY when lock is busy or "pc" is unstable.
1088 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1089 * new cgroup. It should be done by a caller.
1092 static int mem_cgroup_move_account(struct page_cgroup *pc,
1093 struct mem_cgroup *from, struct mem_cgroup *to)
1095 struct mem_cgroup_per_zone *from_mz, *to_mz;
1099 VM_BUG_ON(from == to);
1100 VM_BUG_ON(PageLRU(pc->page));
1102 nid = page_cgroup_nid(pc);
1103 zid = page_cgroup_zid(pc);
1104 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
1105 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
1107 if (!trylock_page_cgroup(pc))
1110 if (!PageCgroupUsed(pc))
1113 if (pc->mem_cgroup != from)
1116 res_counter_uncharge(&from->res, PAGE_SIZE);
1117 mem_cgroup_charge_statistics(from, pc, false);
1118 if (do_swap_account)
1119 res_counter_uncharge(&from->memsw, PAGE_SIZE);
1120 css_put(&from->css);
1123 pc->mem_cgroup = to;
1124 mem_cgroup_charge_statistics(to, pc, true);
1127 unlock_page_cgroup(pc);
1132 * move charges to its parent.
1135 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1136 struct mem_cgroup *child,
1139 struct page *page = pc->page;
1140 struct cgroup *cg = child->css.cgroup;
1141 struct cgroup *pcg = cg->parent;
1142 struct mem_cgroup *parent;
1150 parent = mem_cgroup_from_cont(pcg);
1153 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1157 if (!get_page_unless_zero(page)) {
1162 ret = isolate_lru_page(page);
1167 ret = mem_cgroup_move_account(pc, child, parent);
1169 putback_lru_page(page);
1172 /* drop extra refcnt by try_charge() */
1173 css_put(&parent->css);
1180 /* drop extra refcnt by try_charge() */
1181 css_put(&parent->css);
1182 /* uncharge if move fails */
1183 res_counter_uncharge(&parent->res, PAGE_SIZE);
1184 if (do_swap_account)
1185 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1190 * Charge the memory controller for page usage.
1192 * 0 if the charge was successful
1193 * < 0 if the cgroup is over its limit
1195 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1196 gfp_t gfp_mask, enum charge_type ctype,
1197 struct mem_cgroup *memcg)
1199 struct mem_cgroup *mem;
1200 struct page_cgroup *pc;
1203 pc = lookup_page_cgroup(page);
1204 /* can happen at boot */
1210 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1214 __mem_cgroup_commit_charge(mem, pc, ctype);
1218 int mem_cgroup_newpage_charge(struct page *page,
1219 struct mm_struct *mm, gfp_t gfp_mask)
1221 if (mem_cgroup_disabled())
1223 if (PageCompound(page))
1226 * If already mapped, we don't have to account.
1227 * If page cache, page->mapping has address_space.
1228 * But page->mapping may have out-of-use anon_vma pointer,
1229 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1232 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1236 return mem_cgroup_charge_common(page, mm, gfp_mask,
1237 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1241 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1242 enum charge_type ctype);
1244 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1247 struct mem_cgroup *mem = NULL;
1250 if (mem_cgroup_disabled())
1252 if (PageCompound(page))
1255 * Corner case handling. This is called from add_to_page_cache()
1256 * in usual. But some FS (shmem) precharges this page before calling it
1257 * and call add_to_page_cache() with GFP_NOWAIT.
1259 * For GFP_NOWAIT case, the page may be pre-charged before calling
1260 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1261 * charge twice. (It works but has to pay a bit larger cost.)
1262 * And when the page is SwapCache, it should take swap information
1263 * into account. This is under lock_page() now.
1265 if (!(gfp_mask & __GFP_WAIT)) {
1266 struct page_cgroup *pc;
1269 pc = lookup_page_cgroup(page);
1272 lock_page_cgroup(pc);
1273 if (PageCgroupUsed(pc)) {
1274 unlock_page_cgroup(pc);
1277 unlock_page_cgroup(pc);
1280 if (unlikely(!mm && !mem))
1283 if (page_is_file_cache(page))
1284 return mem_cgroup_charge_common(page, mm, gfp_mask,
1285 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1288 if (PageSwapCache(page)) {
1289 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1291 __mem_cgroup_commit_charge_swapin(page, mem,
1292 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1294 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1295 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1301 * While swap-in, try_charge -> commit or cancel, the page is locked.
1302 * And when try_charge() successfully returns, one refcnt to memcg without
1303 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1304 * "commit()" or removed by "cancel()"
1306 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1308 gfp_t mask, struct mem_cgroup **ptr)
1310 struct mem_cgroup *mem;
1313 if (mem_cgroup_disabled())
1316 if (!do_swap_account)
1319 * A racing thread's fault, or swapoff, may have already updated
1320 * the pte, and even removed page from swap cache: return success
1321 * to go on to do_swap_page()'s pte_same() test, which should fail.
1323 if (!PageSwapCache(page))
1325 mem = try_get_mem_cgroup_from_swapcache(page);
1329 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1330 /* drop extra refcnt from tryget */
1336 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1340 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1341 enum charge_type ctype)
1343 struct page_cgroup *pc;
1345 if (mem_cgroup_disabled())
1349 pc = lookup_page_cgroup(page);
1350 mem_cgroup_lru_del_before_commit_swapcache(page);
1351 __mem_cgroup_commit_charge(ptr, pc, ctype);
1352 mem_cgroup_lru_add_after_commit_swapcache(page);
1354 * Now swap is on-memory. This means this page may be
1355 * counted both as mem and swap....double count.
1356 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1357 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1358 * may call delete_from_swap_cache() before reach here.
1360 if (do_swap_account && PageSwapCache(page)) {
1361 swp_entry_t ent = {.val = page_private(page)};
1363 struct mem_cgroup *memcg;
1365 id = swap_cgroup_record(ent, 0);
1367 memcg = mem_cgroup_lookup(id);
1370 * This recorded memcg can be obsolete one. So, avoid
1371 * calling css_tryget
1373 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1374 mem_cgroup_put(memcg);
1378 /* add this page(page_cgroup) to the LRU we want. */
1382 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1384 __mem_cgroup_commit_charge_swapin(page, ptr,
1385 MEM_CGROUP_CHARGE_TYPE_MAPPED);
1388 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1390 if (mem_cgroup_disabled())
1394 res_counter_uncharge(&mem->res, PAGE_SIZE);
1395 if (do_swap_account)
1396 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1402 * uncharge if !page_mapped(page)
1404 static struct mem_cgroup *
1405 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1407 struct page_cgroup *pc;
1408 struct mem_cgroup *mem = NULL;
1409 struct mem_cgroup_per_zone *mz;
1411 if (mem_cgroup_disabled())
1414 if (PageSwapCache(page))
1418 * Check if our page_cgroup is valid
1420 pc = lookup_page_cgroup(page);
1421 if (unlikely(!pc || !PageCgroupUsed(pc)))
1424 lock_page_cgroup(pc);
1426 mem = pc->mem_cgroup;
1428 if (!PageCgroupUsed(pc))
1432 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1433 if (page_mapped(page))
1436 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1437 if (!PageAnon(page)) { /* Shared memory */
1438 if (page->mapping && !page_is_file_cache(page))
1440 } else if (page_mapped(page)) /* Anon */
1447 res_counter_uncharge(&mem->res, PAGE_SIZE);
1448 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1449 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1450 mem_cgroup_charge_statistics(mem, pc, false);
1452 ClearPageCgroupUsed(pc);
1454 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1455 * freed from LRU. This is safe because uncharged page is expected not
1456 * to be reused (freed soon). Exception is SwapCache, it's handled by
1457 * special functions.
1460 mz = page_cgroup_zoneinfo(pc);
1461 unlock_page_cgroup(pc);
1463 /* at swapout, this memcg will be accessed to record to swap */
1464 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1470 unlock_page_cgroup(pc);
1474 void mem_cgroup_uncharge_page(struct page *page)
1477 if (page_mapped(page))
1479 if (page->mapping && !PageAnon(page))
1481 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1484 void mem_cgroup_uncharge_cache_page(struct page *page)
1486 VM_BUG_ON(page_mapped(page));
1487 VM_BUG_ON(page->mapping);
1488 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1492 * called from __delete_from_swap_cache() and drop "page" account.
1493 * memcg information is recorded to swap_cgroup of "ent"
1495 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1497 struct mem_cgroup *memcg;
1499 memcg = __mem_cgroup_uncharge_common(page,
1500 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1501 /* record memcg information */
1502 if (do_swap_account && memcg) {
1503 swap_cgroup_record(ent, css_id(&memcg->css));
1504 mem_cgroup_get(memcg);
1507 css_put(&memcg->css);
1510 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1512 * called from swap_entry_free(). remove record in swap_cgroup and
1513 * uncharge "memsw" account.
1515 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1517 struct mem_cgroup *memcg;
1520 if (!do_swap_account)
1523 id = swap_cgroup_record(ent, 0);
1525 memcg = mem_cgroup_lookup(id);
1528 * We uncharge this because swap is freed.
1529 * This memcg can be obsolete one. We avoid calling css_tryget
1531 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1532 mem_cgroup_put(memcg);
1539 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1542 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1544 struct page_cgroup *pc;
1545 struct mem_cgroup *mem = NULL;
1548 if (mem_cgroup_disabled())
1551 pc = lookup_page_cgroup(page);
1552 lock_page_cgroup(pc);
1553 if (PageCgroupUsed(pc)) {
1554 mem = pc->mem_cgroup;
1557 unlock_page_cgroup(pc);
1560 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1567 /* remove redundant charge if migration failed*/
1568 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1569 struct page *oldpage, struct page *newpage)
1571 struct page *target, *unused;
1572 struct page_cgroup *pc;
1573 enum charge_type ctype;
1578 /* at migration success, oldpage->mapping is NULL. */
1579 if (oldpage->mapping) {
1587 if (PageAnon(target))
1588 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1589 else if (page_is_file_cache(target))
1590 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1592 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1594 /* unused page is not on radix-tree now. */
1596 __mem_cgroup_uncharge_common(unused, ctype);
1598 pc = lookup_page_cgroup(target);
1600 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1601 * So, double-counting is effectively avoided.
1603 __mem_cgroup_commit_charge(mem, pc, ctype);
1606 * Both of oldpage and newpage are still under lock_page().
1607 * Then, we don't have to care about race in radix-tree.
1608 * But we have to be careful that this page is unmapped or not.
1610 * There is a case for !page_mapped(). At the start of
1611 * migration, oldpage was mapped. But now, it's zapped.
1612 * But we know *target* page is not freed/reused under us.
1613 * mem_cgroup_uncharge_page() does all necessary checks.
1615 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1616 mem_cgroup_uncharge_page(target);
1620 * A call to try to shrink memory usage on charge failure at shmem's swapin.
1621 * Calling hierarchical_reclaim is not enough because we should update
1622 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
1623 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
1624 * not from the memcg which this page would be charged to.
1625 * try_charge_swapin does all of these works properly.
1627 int mem_cgroup_shmem_charge_fallback(struct page *page,
1628 struct mm_struct *mm,
1631 struct mem_cgroup *mem = NULL;
1634 if (mem_cgroup_disabled())
1637 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1639 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
1644 static DEFINE_MUTEX(set_limit_mutex);
1646 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1647 unsigned long long val)
1653 int children = mem_cgroup_count_children(memcg);
1654 u64 curusage, oldusage;
1657 * For keeping hierarchical_reclaim simple, how long we should retry
1658 * is depends on callers. We set our retry-count to be function
1659 * of # of children which we should visit in this loop.
1661 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1663 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1665 while (retry_count) {
1666 if (signal_pending(current)) {
1671 * Rather than hide all in some function, I do this in
1672 * open coded manner. You see what this really does.
1673 * We have to guarantee mem->res.limit < mem->memsw.limit.
1675 mutex_lock(&set_limit_mutex);
1676 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1677 if (memswlimit < val) {
1679 mutex_unlock(&set_limit_mutex);
1682 ret = res_counter_set_limit(&memcg->res, val);
1683 mutex_unlock(&set_limit_mutex);
1688 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1690 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1691 /* Usage is reduced ? */
1692 if (curusage >= oldusage)
1695 oldusage = curusage;
1701 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1702 unsigned long long val)
1705 u64 memlimit, oldusage, curusage;
1706 int children = mem_cgroup_count_children(memcg);
1709 if (!do_swap_account)
1711 /* see mem_cgroup_resize_res_limit */
1712 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
1713 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1714 while (retry_count) {
1715 if (signal_pending(current)) {
1720 * Rather than hide all in some function, I do this in
1721 * open coded manner. You see what this really does.
1722 * We have to guarantee mem->res.limit < mem->memsw.limit.
1724 mutex_lock(&set_limit_mutex);
1725 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1726 if (memlimit > val) {
1728 mutex_unlock(&set_limit_mutex);
1731 ret = res_counter_set_limit(&memcg->memsw, val);
1732 mutex_unlock(&set_limit_mutex);
1737 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
1738 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1739 /* Usage is reduced ? */
1740 if (curusage >= oldusage)
1743 oldusage = curusage;
1749 * This routine traverse page_cgroup in given list and drop them all.
1750 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1752 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1753 int node, int zid, enum lru_list lru)
1756 struct mem_cgroup_per_zone *mz;
1757 struct page_cgroup *pc, *busy;
1758 unsigned long flags, loop;
1759 struct list_head *list;
1762 zone = &NODE_DATA(node)->node_zones[zid];
1763 mz = mem_cgroup_zoneinfo(mem, node, zid);
1764 list = &mz->lists[lru];
1766 loop = MEM_CGROUP_ZSTAT(mz, lru);
1767 /* give some margin against EBUSY etc...*/
1772 spin_lock_irqsave(&zone->lru_lock, flags);
1773 if (list_empty(list)) {
1774 spin_unlock_irqrestore(&zone->lru_lock, flags);
1777 pc = list_entry(list->prev, struct page_cgroup, lru);
1779 list_move(&pc->lru, list);
1781 spin_unlock_irqrestore(&zone->lru_lock, flags);
1784 spin_unlock_irqrestore(&zone->lru_lock, flags);
1786 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1790 if (ret == -EBUSY || ret == -EINVAL) {
1791 /* found lock contention or "pc" is obsolete. */
1798 if (!ret && !list_empty(list))
1804 * make mem_cgroup's charge to be 0 if there is no task.
1805 * This enables deleting this mem_cgroup.
1807 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1810 int node, zid, shrink;
1811 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1812 struct cgroup *cgrp = mem->css.cgroup;
1817 /* should free all ? */
1821 while (mem->res.usage > 0) {
1823 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1826 if (signal_pending(current))
1828 /* This is for making all *used* pages to be on LRU. */
1829 lru_add_drain_all();
1831 for_each_node_state(node, N_HIGH_MEMORY) {
1832 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1835 ret = mem_cgroup_force_empty_list(mem,
1844 /* it seems parent cgroup doesn't have enough mem */
1855 /* returns EBUSY if there is a task or if we come here twice. */
1856 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1860 /* we call try-to-free pages for make this cgroup empty */
1861 lru_add_drain_all();
1862 /* try to free all pages in this cgroup */
1864 while (nr_retries && mem->res.usage > 0) {
1867 if (signal_pending(current)) {
1871 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1872 false, get_swappiness(mem));
1875 /* maybe some writeback is necessary */
1876 congestion_wait(WRITE, HZ/10);
1881 /* try move_account...there may be some *locked* pages. */
1888 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1890 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1894 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1896 return mem_cgroup_from_cont(cont)->use_hierarchy;
1899 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1903 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1904 struct cgroup *parent = cont->parent;
1905 struct mem_cgroup *parent_mem = NULL;
1908 parent_mem = mem_cgroup_from_cont(parent);
1912 * If parent's use_hiearchy is set, we can't make any modifications
1913 * in the child subtrees. If it is unset, then the change can
1914 * occur, provided the current cgroup has no children.
1916 * For the root cgroup, parent_mem is NULL, we allow value to be
1917 * set if there are no children.
1919 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1920 (val == 1 || val == 0)) {
1921 if (list_empty(&cont->children))
1922 mem->use_hierarchy = val;
1932 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1934 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1938 type = MEMFILE_TYPE(cft->private);
1939 name = MEMFILE_ATTR(cft->private);
1942 val = res_counter_read_u64(&mem->res, name);
1945 if (do_swap_account)
1946 val = res_counter_read_u64(&mem->memsw, name);
1955 * The user of this function is...
1958 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1961 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1963 unsigned long long val;
1966 type = MEMFILE_TYPE(cft->private);
1967 name = MEMFILE_ATTR(cft->private);
1970 /* This function does all necessary parse...reuse it */
1971 ret = res_counter_memparse_write_strategy(buffer, &val);
1975 ret = mem_cgroup_resize_limit(memcg, val);
1977 ret = mem_cgroup_resize_memsw_limit(memcg, val);
1980 ret = -EINVAL; /* should be BUG() ? */
1986 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1987 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1989 struct cgroup *cgroup;
1990 unsigned long long min_limit, min_memsw_limit, tmp;
1992 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1993 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1994 cgroup = memcg->css.cgroup;
1995 if (!memcg->use_hierarchy)
1998 while (cgroup->parent) {
1999 cgroup = cgroup->parent;
2000 memcg = mem_cgroup_from_cont(cgroup);
2001 if (!memcg->use_hierarchy)
2003 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2004 min_limit = min(min_limit, tmp);
2005 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2006 min_memsw_limit = min(min_memsw_limit, tmp);
2009 *mem_limit = min_limit;
2010 *memsw_limit = min_memsw_limit;
2014 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2016 struct mem_cgroup *mem;
2019 mem = mem_cgroup_from_cont(cont);
2020 type = MEMFILE_TYPE(event);
2021 name = MEMFILE_ATTR(event);
2025 res_counter_reset_max(&mem->res);
2027 res_counter_reset_max(&mem->memsw);
2031 res_counter_reset_failcnt(&mem->res);
2033 res_counter_reset_failcnt(&mem->memsw);
2040 /* For read statistics */
2054 struct mcs_total_stat {
2055 s64 stat[NR_MCS_STAT];
2061 } memcg_stat_strings[NR_MCS_STAT] = {
2062 {"cache", "total_cache"},
2063 {"rss", "total_rss"},
2064 {"pgpgin", "total_pgpgin"},
2065 {"pgpgout", "total_pgpgout"},
2066 {"inactive_anon", "total_inactive_anon"},
2067 {"active_anon", "total_active_anon"},
2068 {"inactive_file", "total_inactive_file"},
2069 {"active_file", "total_active_file"},
2070 {"unevictable", "total_unevictable"}
2074 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2076 struct mcs_total_stat *s = data;
2080 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2081 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2082 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2083 s->stat[MCS_RSS] += val * PAGE_SIZE;
2084 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2085 s->stat[MCS_PGPGIN] += val;
2086 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2087 s->stat[MCS_PGPGOUT] += val;
2090 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2091 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2092 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2093 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2094 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2095 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2096 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2097 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2098 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2099 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2104 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2106 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2109 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2110 struct cgroup_map_cb *cb)
2112 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2113 struct mcs_total_stat mystat;
2116 memset(&mystat, 0, sizeof(mystat));
2117 mem_cgroup_get_local_stat(mem_cont, &mystat);
2119 for (i = 0; i < NR_MCS_STAT; i++)
2120 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2122 /* Hierarchical information */
2124 unsigned long long limit, memsw_limit;
2125 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2126 cb->fill(cb, "hierarchical_memory_limit", limit);
2127 if (do_swap_account)
2128 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2131 memset(&mystat, 0, sizeof(mystat));
2132 mem_cgroup_get_total_stat(mem_cont, &mystat);
2133 for (i = 0; i < NR_MCS_STAT; i++)
2134 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2137 #ifdef CONFIG_DEBUG_VM
2138 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2142 struct mem_cgroup_per_zone *mz;
2143 unsigned long recent_rotated[2] = {0, 0};
2144 unsigned long recent_scanned[2] = {0, 0};
2146 for_each_online_node(nid)
2147 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2148 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2150 recent_rotated[0] +=
2151 mz->reclaim_stat.recent_rotated[0];
2152 recent_rotated[1] +=
2153 mz->reclaim_stat.recent_rotated[1];
2154 recent_scanned[0] +=
2155 mz->reclaim_stat.recent_scanned[0];
2156 recent_scanned[1] +=
2157 mz->reclaim_stat.recent_scanned[1];
2159 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2160 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2161 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2162 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2169 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2171 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2173 return get_swappiness(memcg);
2176 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2179 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2180 struct mem_cgroup *parent;
2185 if (cgrp->parent == NULL)
2188 parent = mem_cgroup_from_cont(cgrp->parent);
2192 /* If under hierarchy, only empty-root can set this value */
2193 if ((parent->use_hierarchy) ||
2194 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2199 spin_lock(&memcg->reclaim_param_lock);
2200 memcg->swappiness = val;
2201 spin_unlock(&memcg->reclaim_param_lock);
2209 static struct cftype mem_cgroup_files[] = {
2211 .name = "usage_in_bytes",
2212 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2213 .read_u64 = mem_cgroup_read,
2216 .name = "max_usage_in_bytes",
2217 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2218 .trigger = mem_cgroup_reset,
2219 .read_u64 = mem_cgroup_read,
2222 .name = "limit_in_bytes",
2223 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2224 .write_string = mem_cgroup_write,
2225 .read_u64 = mem_cgroup_read,
2229 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2230 .trigger = mem_cgroup_reset,
2231 .read_u64 = mem_cgroup_read,
2235 .read_map = mem_control_stat_show,
2238 .name = "force_empty",
2239 .trigger = mem_cgroup_force_empty_write,
2242 .name = "use_hierarchy",
2243 .write_u64 = mem_cgroup_hierarchy_write,
2244 .read_u64 = mem_cgroup_hierarchy_read,
2247 .name = "swappiness",
2248 .read_u64 = mem_cgroup_swappiness_read,
2249 .write_u64 = mem_cgroup_swappiness_write,
2253 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2254 static struct cftype memsw_cgroup_files[] = {
2256 .name = "memsw.usage_in_bytes",
2257 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2258 .read_u64 = mem_cgroup_read,
2261 .name = "memsw.max_usage_in_bytes",
2262 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2263 .trigger = mem_cgroup_reset,
2264 .read_u64 = mem_cgroup_read,
2267 .name = "memsw.limit_in_bytes",
2268 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2269 .write_string = mem_cgroup_write,
2270 .read_u64 = mem_cgroup_read,
2273 .name = "memsw.failcnt",
2274 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2275 .trigger = mem_cgroup_reset,
2276 .read_u64 = mem_cgroup_read,
2280 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2282 if (!do_swap_account)
2284 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2285 ARRAY_SIZE(memsw_cgroup_files));
2288 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2294 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2296 struct mem_cgroup_per_node *pn;
2297 struct mem_cgroup_per_zone *mz;
2299 int zone, tmp = node;
2301 * This routine is called against possible nodes.
2302 * But it's BUG to call kmalloc() against offline node.
2304 * TODO: this routine can waste much memory for nodes which will
2305 * never be onlined. It's better to use memory hotplug callback
2308 if (!node_state(node, N_NORMAL_MEMORY))
2310 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2314 mem->info.nodeinfo[node] = pn;
2315 memset(pn, 0, sizeof(*pn));
2317 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2318 mz = &pn->zoneinfo[zone];
2320 INIT_LIST_HEAD(&mz->lists[l]);
2325 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2327 kfree(mem->info.nodeinfo[node]);
2330 static int mem_cgroup_size(void)
2332 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2333 return sizeof(struct mem_cgroup) + cpustat_size;
2336 static struct mem_cgroup *mem_cgroup_alloc(void)
2338 struct mem_cgroup *mem;
2339 int size = mem_cgroup_size();
2341 if (size < PAGE_SIZE)
2342 mem = kmalloc(size, GFP_KERNEL);
2344 mem = vmalloc(size);
2347 memset(mem, 0, size);
2352 * At destroying mem_cgroup, references from swap_cgroup can remain.
2353 * (scanning all at force_empty is too costly...)
2355 * Instead of clearing all references at force_empty, we remember
2356 * the number of reference from swap_cgroup and free mem_cgroup when
2357 * it goes down to 0.
2359 * Removal of cgroup itself succeeds regardless of refs from swap.
2362 static void __mem_cgroup_free(struct mem_cgroup *mem)
2366 free_css_id(&mem_cgroup_subsys, &mem->css);
2368 for_each_node_state(node, N_POSSIBLE)
2369 free_mem_cgroup_per_zone_info(mem, node);
2371 if (mem_cgroup_size() < PAGE_SIZE)
2377 static void mem_cgroup_get(struct mem_cgroup *mem)
2379 atomic_inc(&mem->refcnt);
2382 static void mem_cgroup_put(struct mem_cgroup *mem)
2384 if (atomic_dec_and_test(&mem->refcnt)) {
2385 struct mem_cgroup *parent = parent_mem_cgroup(mem);
2386 __mem_cgroup_free(mem);
2388 mem_cgroup_put(parent);
2393 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2395 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2397 if (!mem->res.parent)
2399 return mem_cgroup_from_res_counter(mem->res.parent, res);
2402 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2403 static void __init enable_swap_cgroup(void)
2405 if (!mem_cgroup_disabled() && really_do_swap_account)
2406 do_swap_account = 1;
2409 static void __init enable_swap_cgroup(void)
2414 static struct cgroup_subsys_state * __ref
2415 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2417 struct mem_cgroup *mem, *parent;
2418 long error = -ENOMEM;
2421 mem = mem_cgroup_alloc();
2423 return ERR_PTR(error);
2425 for_each_node_state(node, N_POSSIBLE)
2426 if (alloc_mem_cgroup_per_zone_info(mem, node))
2429 if (cont->parent == NULL) {
2430 enable_swap_cgroup();
2433 parent = mem_cgroup_from_cont(cont->parent);
2434 mem->use_hierarchy = parent->use_hierarchy;
2437 if (parent && parent->use_hierarchy) {
2438 res_counter_init(&mem->res, &parent->res);
2439 res_counter_init(&mem->memsw, &parent->memsw);
2441 * We increment refcnt of the parent to ensure that we can
2442 * safely access it on res_counter_charge/uncharge.
2443 * This refcnt will be decremented when freeing this
2444 * mem_cgroup(see mem_cgroup_put).
2446 mem_cgroup_get(parent);
2448 res_counter_init(&mem->res, NULL);
2449 res_counter_init(&mem->memsw, NULL);
2451 mem->last_scanned_child = 0;
2452 spin_lock_init(&mem->reclaim_param_lock);
2455 mem->swappiness = get_swappiness(parent);
2456 atomic_set(&mem->refcnt, 1);
2459 __mem_cgroup_free(mem);
2460 return ERR_PTR(error);
2463 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2464 struct cgroup *cont)
2466 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2468 return mem_cgroup_force_empty(mem, false);
2471 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2472 struct cgroup *cont)
2474 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2476 mem_cgroup_put(mem);
2479 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2480 struct cgroup *cont)
2484 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2485 ARRAY_SIZE(mem_cgroup_files));
2488 ret = register_memsw_files(cont, ss);
2492 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2493 struct cgroup *cont,
2494 struct cgroup *old_cont,
2495 struct task_struct *p)
2497 mutex_lock(&memcg_tasklist);
2499 * FIXME: It's better to move charges of this process from old
2500 * memcg to new memcg. But it's just on TODO-List now.
2502 mutex_unlock(&memcg_tasklist);
2505 struct cgroup_subsys mem_cgroup_subsys = {
2507 .subsys_id = mem_cgroup_subsys_id,
2508 .create = mem_cgroup_create,
2509 .pre_destroy = mem_cgroup_pre_destroy,
2510 .destroy = mem_cgroup_destroy,
2511 .populate = mem_cgroup_populate,
2512 .attach = mem_cgroup_move_task,
2517 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2519 static int __init disable_swap_account(char *s)
2521 really_do_swap_account = 0;
2524 __setup("noswapaccount", disable_swap_account);