Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / arch / blackfin / kernel / kgdb.c
1 /*
2  * arch/blackfin/kernel/kgdb.c - Blackfin kgdb pieces
3  *
4  * Copyright 2005-2008 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later.
7  */
8
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/smp.h>
13 #include <linux/spinlock.h>
14 #include <linux/delay.h>
15 #include <linux/ptrace.h>               /* for linux pt_regs struct */
16 #include <linux/kgdb.h>
17 #include <linux/console.h>
18 #include <linux/init.h>
19 #include <linux/errno.h>
20 #include <linux/irq.h>
21 #include <linux/uaccess.h>
22 #include <asm/system.h>
23 #include <asm/traps.h>
24 #include <asm/blackfin.h>
25 #include <asm/dma.h>
26
27 /* Put the error code here just in case the user cares.  */
28 int gdb_bfin_errcode;
29 /* Likewise, the vector number here (since GDB only gets the signal
30    number through the usual means, and that's not very specific).  */
31 int gdb_bfin_vector = -1;
32
33 #if KGDB_MAX_NO_CPUS != 8
34 #error change the definition of slavecpulocks
35 #endif
36
37 #ifdef CONFIG_BFIN_WDT
38 # error "Please unselect blackfin watchdog driver before build KGDB."
39 #endif
40
41 void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
42 {
43         gdb_regs[BFIN_R0] = regs->r0;
44         gdb_regs[BFIN_R1] = regs->r1;
45         gdb_regs[BFIN_R2] = regs->r2;
46         gdb_regs[BFIN_R3] = regs->r3;
47         gdb_regs[BFIN_R4] = regs->r4;
48         gdb_regs[BFIN_R5] = regs->r5;
49         gdb_regs[BFIN_R6] = regs->r6;
50         gdb_regs[BFIN_R7] = regs->r7;
51         gdb_regs[BFIN_P0] = regs->p0;
52         gdb_regs[BFIN_P1] = regs->p1;
53         gdb_regs[BFIN_P2] = regs->p2;
54         gdb_regs[BFIN_P3] = regs->p3;
55         gdb_regs[BFIN_P4] = regs->p4;
56         gdb_regs[BFIN_P5] = regs->p5;
57         gdb_regs[BFIN_SP] = regs->reserved;
58         gdb_regs[BFIN_FP] = regs->fp;
59         gdb_regs[BFIN_I0] = regs->i0;
60         gdb_regs[BFIN_I1] = regs->i1;
61         gdb_regs[BFIN_I2] = regs->i2;
62         gdb_regs[BFIN_I3] = regs->i3;
63         gdb_regs[BFIN_M0] = regs->m0;
64         gdb_regs[BFIN_M1] = regs->m1;
65         gdb_regs[BFIN_M2] = regs->m2;
66         gdb_regs[BFIN_M3] = regs->m3;
67         gdb_regs[BFIN_B0] = regs->b0;
68         gdb_regs[BFIN_B1] = regs->b1;
69         gdb_regs[BFIN_B2] = regs->b2;
70         gdb_regs[BFIN_B3] = regs->b3;
71         gdb_regs[BFIN_L0] = regs->l0;
72         gdb_regs[BFIN_L1] = regs->l1;
73         gdb_regs[BFIN_L2] = regs->l2;
74         gdb_regs[BFIN_L3] = regs->l3;
75         gdb_regs[BFIN_A0_DOT_X] = regs->a0x;
76         gdb_regs[BFIN_A0_DOT_W] = regs->a0w;
77         gdb_regs[BFIN_A1_DOT_X] = regs->a1x;
78         gdb_regs[BFIN_A1_DOT_W] = regs->a1w;
79         gdb_regs[BFIN_ASTAT] = regs->astat;
80         gdb_regs[BFIN_RETS] = regs->rets;
81         gdb_regs[BFIN_LC0] = regs->lc0;
82         gdb_regs[BFIN_LT0] = regs->lt0;
83         gdb_regs[BFIN_LB0] = regs->lb0;
84         gdb_regs[BFIN_LC1] = regs->lc1;
85         gdb_regs[BFIN_LT1] = regs->lt1;
86         gdb_regs[BFIN_LB1] = regs->lb1;
87         gdb_regs[BFIN_CYCLES] = 0;
88         gdb_regs[BFIN_CYCLES2] = 0;
89         gdb_regs[BFIN_USP] = regs->usp;
90         gdb_regs[BFIN_SEQSTAT] = regs->seqstat;
91         gdb_regs[BFIN_SYSCFG] = regs->syscfg;
92         gdb_regs[BFIN_RETI] = regs->pc;
93         gdb_regs[BFIN_RETX] = regs->retx;
94         gdb_regs[BFIN_RETN] = regs->retn;
95         gdb_regs[BFIN_RETE] = regs->rete;
96         gdb_regs[BFIN_PC] = regs->pc;
97         gdb_regs[BFIN_CC] = 0;
98         gdb_regs[BFIN_EXTRA1] = 0;
99         gdb_regs[BFIN_EXTRA2] = 0;
100         gdb_regs[BFIN_EXTRA3] = 0;
101         gdb_regs[BFIN_IPEND] = regs->ipend;
102 }
103
104 /*
105  * Extracts ebp, esp and eip values understandable by gdb from the values
106  * saved by switch_to.
107  * thread.esp points to ebp. flags and ebp are pushed in switch_to hence esp
108  * prior to entering switch_to is 8 greater then the value that is saved.
109  * If switch_to changes, change following code appropriately.
110  */
111 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
112 {
113         gdb_regs[BFIN_SP] = p->thread.ksp;
114         gdb_regs[BFIN_PC] = p->thread.pc;
115         gdb_regs[BFIN_SEQSTAT] = p->thread.seqstat;
116 }
117
118 void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
119 {
120         regs->r0 = gdb_regs[BFIN_R0];
121         regs->r1 = gdb_regs[BFIN_R1];
122         regs->r2 = gdb_regs[BFIN_R2];
123         regs->r3 = gdb_regs[BFIN_R3];
124         regs->r4 = gdb_regs[BFIN_R4];
125         regs->r5 = gdb_regs[BFIN_R5];
126         regs->r6 = gdb_regs[BFIN_R6];
127         regs->r7 = gdb_regs[BFIN_R7];
128         regs->p0 = gdb_regs[BFIN_P0];
129         regs->p1 = gdb_regs[BFIN_P1];
130         regs->p2 = gdb_regs[BFIN_P2];
131         regs->p3 = gdb_regs[BFIN_P3];
132         regs->p4 = gdb_regs[BFIN_P4];
133         regs->p5 = gdb_regs[BFIN_P5];
134         regs->fp = gdb_regs[BFIN_FP];
135         regs->i0 = gdb_regs[BFIN_I0];
136         regs->i1 = gdb_regs[BFIN_I1];
137         regs->i2 = gdb_regs[BFIN_I2];
138         regs->i3 = gdb_regs[BFIN_I3];
139         regs->m0 = gdb_regs[BFIN_M0];
140         regs->m1 = gdb_regs[BFIN_M1];
141         regs->m2 = gdb_regs[BFIN_M2];
142         regs->m3 = gdb_regs[BFIN_M3];
143         regs->b0 = gdb_regs[BFIN_B0];
144         regs->b1 = gdb_regs[BFIN_B1];
145         regs->b2 = gdb_regs[BFIN_B2];
146         regs->b3 = gdb_regs[BFIN_B3];
147         regs->l0 = gdb_regs[BFIN_L0];
148         regs->l1 = gdb_regs[BFIN_L1];
149         regs->l2 = gdb_regs[BFIN_L2];
150         regs->l3 = gdb_regs[BFIN_L3];
151         regs->a0x = gdb_regs[BFIN_A0_DOT_X];
152         regs->a0w = gdb_regs[BFIN_A0_DOT_W];
153         regs->a1x = gdb_regs[BFIN_A1_DOT_X];
154         regs->a1w = gdb_regs[BFIN_A1_DOT_W];
155         regs->rets = gdb_regs[BFIN_RETS];
156         regs->lc0 = gdb_regs[BFIN_LC0];
157         regs->lt0 = gdb_regs[BFIN_LT0];
158         regs->lb0 = gdb_regs[BFIN_LB0];
159         regs->lc1 = gdb_regs[BFIN_LC1];
160         regs->lt1 = gdb_regs[BFIN_LT1];
161         regs->lb1 = gdb_regs[BFIN_LB1];
162         regs->usp = gdb_regs[BFIN_USP];
163         regs->syscfg = gdb_regs[BFIN_SYSCFG];
164         regs->retx = gdb_regs[BFIN_PC];
165         regs->retn = gdb_regs[BFIN_RETN];
166         regs->rete = gdb_regs[BFIN_RETE];
167         regs->pc = gdb_regs[BFIN_PC];
168
169 #if 0                           /* can't change these */
170         regs->astat = gdb_regs[BFIN_ASTAT];
171         regs->seqstat = gdb_regs[BFIN_SEQSTAT];
172         regs->ipend = gdb_regs[BFIN_IPEND];
173 #endif
174 }
175
176 struct hw_breakpoint {
177         unsigned int occupied:1;
178         unsigned int skip:1;
179         unsigned int enabled:1;
180         unsigned int type:1;
181         unsigned int dataacc:2;
182         unsigned short count;
183         unsigned int addr;
184 } breakinfo[HW_WATCHPOINT_NUM];
185
186 int bfin_set_hw_break(unsigned long addr, int len, enum kgdb_bptype type)
187 {
188         int breakno;
189         int bfin_type;
190         int dataacc = 0;
191
192         switch (type) {
193         case BP_HARDWARE_BREAKPOINT:
194                 bfin_type = TYPE_INST_WATCHPOINT;
195                 break;
196         case BP_WRITE_WATCHPOINT:
197                 dataacc = 1;
198                 bfin_type = TYPE_DATA_WATCHPOINT;
199                 break;
200         case BP_READ_WATCHPOINT:
201                 dataacc = 2;
202                 bfin_type = TYPE_DATA_WATCHPOINT;
203                 break;
204         case BP_ACCESS_WATCHPOINT:
205                 dataacc = 3;
206                 bfin_type = TYPE_DATA_WATCHPOINT;
207                 break;
208         default:
209                 return -ENOSPC;
210         }
211
212         /* Becasue hardware data watchpoint impelemented in current
213          * Blackfin can not trigger an exception event as the hardware
214          * instrction watchpoint does, we ignaore all data watch point here.
215          * They can be turned on easily after future blackfin design
216          * supports this feature.
217          */
218         for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++)
219                 if (bfin_type == breakinfo[breakno].type
220                         && !breakinfo[breakno].occupied) {
221                         breakinfo[breakno].occupied = 1;
222                         breakinfo[breakno].enabled = 1;
223                         breakinfo[breakno].addr = addr;
224                         breakinfo[breakno].dataacc = dataacc;
225                         breakinfo[breakno].count = 0;
226                         return 0;
227                 }
228
229         return -ENOSPC;
230 }
231
232 int bfin_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype type)
233 {
234         int breakno;
235         int bfin_type;
236
237         switch (type) {
238         case BP_HARDWARE_BREAKPOINT:
239                 bfin_type = TYPE_INST_WATCHPOINT;
240                 break;
241         case BP_WRITE_WATCHPOINT:
242         case BP_READ_WATCHPOINT:
243         case BP_ACCESS_WATCHPOINT:
244                 bfin_type = TYPE_DATA_WATCHPOINT;
245                 break;
246         default:
247                 return 0;
248         }
249         for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++)
250                 if (bfin_type == breakinfo[breakno].type
251                         && breakinfo[breakno].occupied
252                         && breakinfo[breakno].addr == addr) {
253                         breakinfo[breakno].occupied = 0;
254                         breakinfo[breakno].enabled = 0;
255                 }
256
257         return 0;
258 }
259
260 void bfin_remove_all_hw_break(void)
261 {
262         int breakno;
263
264         memset(breakinfo, 0, sizeof(struct hw_breakpoint)*HW_WATCHPOINT_NUM);
265
266         for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++)
267                 breakinfo[breakno].type = TYPE_INST_WATCHPOINT;
268         for (; breakno < HW_WATCHPOINT_NUM; breakno++)
269                 breakinfo[breakno].type = TYPE_DATA_WATCHPOINT;
270 }
271
272 void bfin_correct_hw_break(void)
273 {
274         int breakno;
275         unsigned int wpiactl = 0;
276         unsigned int wpdactl = 0;
277         int enable_wp = 0;
278
279         for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++)
280                 if (breakinfo[breakno].enabled) {
281                         enable_wp = 1;
282
283                         switch (breakno) {
284                         case 0:
285                                 wpiactl |= WPIAEN0|WPICNTEN0;
286                                 bfin_write_WPIA0(breakinfo[breakno].addr);
287                                 bfin_write_WPIACNT0(breakinfo[breakno].count
288                                         + breakinfo->skip);
289                                 break;
290                         case 1:
291                                 wpiactl |= WPIAEN1|WPICNTEN1;
292                                 bfin_write_WPIA1(breakinfo[breakno].addr);
293                                 bfin_write_WPIACNT1(breakinfo[breakno].count
294                                         + breakinfo->skip);
295                                 break;
296                         case 2:
297                                 wpiactl |= WPIAEN2|WPICNTEN2;
298                                 bfin_write_WPIA2(breakinfo[breakno].addr);
299                                 bfin_write_WPIACNT2(breakinfo[breakno].count
300                                         + breakinfo->skip);
301                                 break;
302                         case 3:
303                                 wpiactl |= WPIAEN3|WPICNTEN3;
304                                 bfin_write_WPIA3(breakinfo[breakno].addr);
305                                 bfin_write_WPIACNT3(breakinfo[breakno].count
306                                         + breakinfo->skip);
307                                 break;
308                         case 4:
309                                 wpiactl |= WPIAEN4|WPICNTEN4;
310                                 bfin_write_WPIA4(breakinfo[breakno].addr);
311                                 bfin_write_WPIACNT4(breakinfo[breakno].count
312                                         + breakinfo->skip);
313                                 break;
314                         case 5:
315                                 wpiactl |= WPIAEN5|WPICNTEN5;
316                                 bfin_write_WPIA5(breakinfo[breakno].addr);
317                                 bfin_write_WPIACNT5(breakinfo[breakno].count
318                                         + breakinfo->skip);
319                                 break;
320                         case 6:
321                                 wpdactl |= WPDAEN0|WPDCNTEN0|WPDSRC0;
322                                 wpdactl |= breakinfo[breakno].dataacc
323                                         << WPDACC0_OFFSET;
324                                 bfin_write_WPDA0(breakinfo[breakno].addr);
325                                 bfin_write_WPDACNT0(breakinfo[breakno].count
326                                         + breakinfo->skip);
327                                 break;
328                         case 7:
329                                 wpdactl |= WPDAEN1|WPDCNTEN1|WPDSRC1;
330                                 wpdactl |= breakinfo[breakno].dataacc
331                                         << WPDACC1_OFFSET;
332                                 bfin_write_WPDA1(breakinfo[breakno].addr);
333                                 bfin_write_WPDACNT1(breakinfo[breakno].count
334                                         + breakinfo->skip);
335                                 break;
336                         }
337                 }
338
339         /* Should enable WPPWR bit first before set any other
340          * WPIACTL and WPDACTL bits */
341         if (enable_wp) {
342                 bfin_write_WPIACTL(WPPWR);
343                 CSYNC();
344                 bfin_write_WPIACTL(wpiactl|WPPWR);
345                 bfin_write_WPDACTL(wpdactl);
346                 CSYNC();
347         }
348 }
349
350 void kgdb_disable_hw_debug(struct pt_regs *regs)
351 {
352         /* Disable hardware debugging while we are in kgdb */
353         bfin_write_WPIACTL(0);
354         bfin_write_WPDACTL(0);
355         CSYNC();
356 }
357
358 #ifdef CONFIG_SMP
359 void kgdb_passive_cpu_callback(void *info)
360 {
361         kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
362 }
363
364 void kgdb_roundup_cpus(unsigned long flags)
365 {
366         smp_call_function(kgdb_passive_cpu_callback, NULL, 0, 0);
367 }
368
369 void kgdb_roundup_cpu(int cpu, unsigned long flags)
370 {
371         smp_call_function_single(cpu, kgdb_passive_cpu_callback, NULL, 0, 0);
372 }
373 #endif
374
375 void kgdb_post_primary_code(struct pt_regs *regs, int eVector, int err_code)
376 {
377         /* Master processor is completely in the debugger */
378         gdb_bfin_vector = eVector;
379         gdb_bfin_errcode = err_code;
380 }
381
382 int kgdb_arch_handle_exception(int vector, int signo,
383                                int err_code, char *remcom_in_buffer,
384                                char *remcom_out_buffer,
385                                struct pt_regs *regs)
386 {
387         long addr;
388         long breakno;
389         char *ptr;
390         int newPC;
391         int wp_status;
392         int i;
393
394         switch (remcom_in_buffer[0]) {
395         case 'c':
396         case 's':
397                 if (kgdb_contthread && kgdb_contthread != current) {
398                         strcpy(remcom_out_buffer, "E00");
399                         break;
400                 }
401
402                 kgdb_contthread = NULL;
403
404                 /* try to read optional parameter, pc unchanged if no parm */
405                 ptr = &remcom_in_buffer[1];
406                 if (kgdb_hex2long(&ptr, &addr)) {
407                         regs->retx = addr;
408                 }
409                 newPC = regs->retx;
410
411                 /* clear the trace bit */
412                 regs->syscfg &= 0xfffffffe;
413
414                 /* set the trace bit if we're stepping */
415                 if (remcom_in_buffer[0] == 's') {
416                         regs->syscfg |= 0x1;
417                         kgdb_single_step = regs->ipend;
418                         kgdb_single_step >>= 6;
419                         for (i = 10; i > 0; i--, kgdb_single_step >>= 1)
420                                 if (kgdb_single_step & 1)
421                                         break;
422                         /* i indicate event priority of current stopped instruction
423                          * user space instruction is 0, IVG15 is 1, IVTMR is 10.
424                          * kgdb_single_step > 0 means in single step mode
425                          */
426                         kgdb_single_step = i + 1;
427                 }
428
429                 if (vector == VEC_WATCH) {
430                         wp_status = bfin_read_WPSTAT();
431                         for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++) {
432                                 if (wp_status & (1 << breakno)) {
433                                         breakinfo->skip = 1;
434                                         break;
435                                 }
436                         }
437                         bfin_write_WPSTAT(0);
438                 }
439
440                 bfin_correct_hw_break();
441
442                 return 0;
443         }                       /* switch */
444         return -1;              /* this means that we do not want to exit from the handler */
445 }
446
447 struct kgdb_arch arch_kgdb_ops = {
448         .gdb_bpt_instr = {0xa1},
449 #ifdef CONFIG_SMP
450         .flags = KGDB_HW_BREAKPOINT|KGDB_THR_PROC_SWAP,
451 #else
452         .flags = KGDB_HW_BREAKPOINT,
453 #endif
454         .set_hw_breakpoint = bfin_set_hw_break,
455         .remove_hw_breakpoint = bfin_remove_hw_break,
456         .remove_all_hw_break = bfin_remove_all_hw_break,
457         .correct_hw_break = bfin_correct_hw_break,
458 };
459
460 static int hex(char ch)
461 {
462         if ((ch >= 'a') && (ch <= 'f'))
463                 return ch - 'a' + 10;
464         if ((ch >= '0') && (ch <= '9'))
465                 return ch - '0';
466         if ((ch >= 'A') && (ch <= 'F'))
467                 return ch - 'A' + 10;
468         return -1;
469 }
470
471 static int validate_memory_access_address(unsigned long addr, int size)
472 {
473         int cpu = raw_smp_processor_id();
474
475         if (size < 0)
476                 return EFAULT;
477         if (addr >= 0x1000 && (addr + size) <= physical_mem_end)
478                 return 0;
479         if (addr >= SYSMMR_BASE)
480                 return 0;
481         if (addr >= ASYNC_BANK0_BASE
482            && addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
483                 return 0;
484         if (cpu == 0) {
485                 if (addr >= L1_SCRATCH_START
486                    && (addr + size <= L1_SCRATCH_START + L1_SCRATCH_LENGTH))
487                         return 0;
488 #if L1_CODE_LENGTH != 0
489                 if (addr >= L1_CODE_START
490                    && (addr + size <= L1_CODE_START + L1_CODE_LENGTH))
491                         return 0;
492 #endif
493 #if L1_DATA_A_LENGTH != 0
494                 if (addr >= L1_DATA_A_START
495                    && (addr + size <= L1_DATA_A_START + L1_DATA_A_LENGTH))
496                         return 0;
497 #endif
498 #if L1_DATA_B_LENGTH != 0
499                 if (addr >= L1_DATA_B_START
500                    && (addr + size <= L1_DATA_B_START + L1_DATA_B_LENGTH))
501                         return 0;
502 #endif
503 #ifdef CONFIG_SMP
504         } else if (cpu == 1) {
505                 if (addr >= COREB_L1_SCRATCH_START
506                    && (addr + size <= COREB_L1_SCRATCH_START
507                    + L1_SCRATCH_LENGTH))
508                         return 0;
509 # if L1_CODE_LENGTH != 0
510                 if (addr >= COREB_L1_CODE_START
511                    && (addr + size <= COREB_L1_CODE_START + L1_CODE_LENGTH))
512                         return 0;
513 # endif
514 # if L1_DATA_A_LENGTH != 0
515                 if (addr >= COREB_L1_DATA_A_START
516                    && (addr + size <= COREB_L1_DATA_A_START + L1_DATA_A_LENGTH))
517                         return 0;
518 # endif
519 # if L1_DATA_B_LENGTH != 0
520                 if (addr >= COREB_L1_DATA_B_START
521                    && (addr + size <= COREB_L1_DATA_B_START + L1_DATA_B_LENGTH))
522                         return 0;
523 # endif
524 #endif
525         }
526
527 #if L2_LENGTH != 0
528         if (addr >= L2_START
529            && addr + size <= L2_START + L2_LENGTH)
530                 return 0;
531 #endif
532
533         return EFAULT;
534 }
535
536 /*
537  * Convert the memory pointed to by mem into hex, placing result in buf.
538  * Return a pointer to the last char put in buf (null). May return an error.
539  */
540 int kgdb_mem2hex(char *mem, char *buf, int count)
541 {
542         char *tmp;
543         int err = 0;
544         unsigned char *pch;
545         unsigned short mmr16;
546         unsigned long mmr32;
547         int cpu = raw_smp_processor_id();
548
549         if (validate_memory_access_address((unsigned long)mem, count))
550                 return EFAULT;
551
552         /*
553          * We use the upper half of buf as an intermediate buffer for the
554          * raw memory copy.  Hex conversion will work against this one.
555          */
556         tmp = buf + count;
557
558         if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
559                 switch (count) {
560                 case 2:
561                         if ((unsigned int)mem % 2 == 0) {
562                                 mmr16 = *(unsigned short *)mem;
563                                 pch = (unsigned char *)&mmr16;
564                                 *tmp++ = *pch++;
565                                 *tmp++ = *pch++;
566                                 tmp -= 2;
567                         } else
568                                 err = EFAULT;
569                         break;
570                 case 4:
571                         if ((unsigned int)mem % 4 == 0) {
572                                 mmr32 = *(unsigned long *)mem;
573                                 pch = (unsigned char *)&mmr32;
574                                 *tmp++ = *pch++;
575                                 *tmp++ = *pch++;
576                                 *tmp++ = *pch++;
577                                 *tmp++ = *pch++;
578                                 tmp -= 4;
579                         } else
580                                 err = EFAULT;
581                         break;
582                 default:
583                         err = EFAULT;
584                 }
585         } else if (cpu == 0 && (unsigned int)mem >= L1_CODE_START &&
586                 (unsigned int)(mem + count) <= L1_CODE_START + L1_CODE_LENGTH
587 #ifdef CONFIG_SMP
588                 || cpu == 1 && (unsigned int)mem >= COREB_L1_CODE_START &&
589                 (unsigned int)(mem + count) <=
590                 COREB_L1_CODE_START + L1_CODE_LENGTH
591 #endif
592                 ) {
593                 /* access L1 instruction SRAM*/
594                 if (dma_memcpy(tmp, mem, count) == NULL)
595                         err = EFAULT;
596         } else
597                 err = probe_kernel_read(tmp, mem, count);
598
599         if (!err) {
600                 while (count > 0) {
601                         buf = pack_hex_byte(buf, *tmp);
602                         tmp++;
603                         count--;
604                 }
605
606                 *buf = 0;
607         }
608
609         return err;
610 }
611
612 /*
613  * Copy the binary array pointed to by buf into mem.  Fix $, #, and
614  * 0x7d escaped with 0x7d.  Return a pointer to the character after
615  * the last byte written.
616  */
617 int kgdb_ebin2mem(char *buf, char *mem, int count)
618 {
619         char *tmp_old;
620         char *tmp_new;
621         unsigned short *mmr16;
622         unsigned long *mmr32;
623         int err = 0;
624         int size = 0;
625         int cpu = raw_smp_processor_id();
626
627         tmp_old = tmp_new = buf;
628
629         while (count-- > 0) {
630                 if (*tmp_old == 0x7d)
631                         *tmp_new = *(++tmp_old) ^ 0x20;
632                 else
633                         *tmp_new = *tmp_old;
634                 tmp_new++;
635                 tmp_old++;
636                 size++;
637         }
638
639         if (validate_memory_access_address((unsigned long)mem, size))
640                 return EFAULT;
641
642         if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
643                 switch (size) {
644                 case 2:
645                         if ((unsigned int)mem % 2 == 0) {
646                                 mmr16 = (unsigned short *)buf;
647                                 *(unsigned short *)mem = *mmr16;
648                         } else
649                                 return EFAULT;
650                         break;
651                 case 4:
652                         if ((unsigned int)mem % 4 == 0) {
653                                 mmr32 = (unsigned long *)buf;
654                                 *(unsigned long *)mem = *mmr32;
655                         } else
656                                 return EFAULT;
657                         break;
658                 default:
659                         return EFAULT;
660                 }
661         } else if (cpu == 0 && (unsigned int)mem >= L1_CODE_START &&
662                 (unsigned int)(mem + count) < L1_CODE_START + L1_CODE_LENGTH
663 #ifdef CONFIG_SMP
664                 || cpu == 1 && (unsigned int)mem >= COREB_L1_CODE_START &&
665                 (unsigned int)(mem + count) <=
666                 COREB_L1_CODE_START + L1_CODE_LENGTH
667 #endif
668                 ) {
669                 /* access L1 instruction SRAM */
670                 if (dma_memcpy(mem, buf, size) == NULL)
671                         err = EFAULT;
672         } else
673                 err = probe_kernel_write(mem, buf, size);
674
675         return err;
676 }
677
678 /*
679  * Convert the hex array pointed to by buf into binary to be placed in mem.
680  * Return a pointer to the character AFTER the last byte written.
681  * May return an error.
682  */
683 int kgdb_hex2mem(char *buf, char *mem, int count)
684 {
685         char *tmp_raw;
686         char *tmp_hex;
687         unsigned short *mmr16;
688         unsigned long *mmr32;
689         int cpu = raw_smp_processor_id();
690
691         if (validate_memory_access_address((unsigned long)mem, count))
692                 return EFAULT;
693
694         /*
695          * We use the upper half of buf as an intermediate buffer for the
696          * raw memory that is converted from hex.
697          */
698         tmp_raw = buf + count * 2;
699
700         tmp_hex = tmp_raw - 1;
701         while (tmp_hex >= buf) {
702                 tmp_raw--;
703                 *tmp_raw = hex(*tmp_hex--);
704                 *tmp_raw |= hex(*tmp_hex--) << 4;
705         }
706
707         if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
708                 switch (count) {
709                 case 2:
710                         if ((unsigned int)mem % 2 == 0) {
711                                 mmr16 = (unsigned short *)tmp_raw;
712                                 *(unsigned short *)mem = *mmr16;
713                         } else
714                                 return EFAULT;
715                         break;
716                 case 4:
717                         if ((unsigned int)mem % 4 == 0) {
718                                 mmr32 = (unsigned long *)tmp_raw;
719                                 *(unsigned long *)mem = *mmr32;
720                         } else
721                                 return EFAULT;
722                         break;
723                 default:
724                         return EFAULT;
725                 }
726         } else if (cpu == 0 && (unsigned int)mem >= L1_CODE_START &&
727                 (unsigned int)(mem + count) <= L1_CODE_START + L1_CODE_LENGTH
728 #ifdef CONFIG_SMP
729                 || cpu == 1 && (unsigned int)mem >= COREB_L1_CODE_START &&
730                 (unsigned int)(mem + count) <=
731                 COREB_L1_CODE_START + L1_CODE_LENGTH
732 #endif
733                 ) {
734                 /* access L1 instruction SRAM */
735                 if (dma_memcpy(mem, tmp_raw, count) == NULL)
736                         return EFAULT;
737         } else
738                 return probe_kernel_write(mem, tmp_raw, count);
739         return 0;
740 }
741
742 int kgdb_validate_break_address(unsigned long addr)
743 {
744         int cpu = raw_smp_processor_id();
745
746         if (addr >= 0x1000 && (addr + BREAK_INSTR_SIZE) <= physical_mem_end)
747                 return 0;
748         if (addr >= ASYNC_BANK0_BASE
749            && addr + BREAK_INSTR_SIZE <= ASYNC_BANK3_BASE + ASYNC_BANK3_BASE)
750                 return 0;
751 #if L1_CODE_LENGTH != 0
752         if (cpu == 0 && addr >= L1_CODE_START
753            && addr + BREAK_INSTR_SIZE <= L1_CODE_START + L1_CODE_LENGTH)
754                 return 0;
755 # ifdef CONFIG_SMP
756         else if (cpu == 1 && addr >= COREB_L1_CODE_START
757            && addr + BREAK_INSTR_SIZE <= COREB_L1_CODE_START + L1_CODE_LENGTH)
758                 return 0;
759 # endif
760 #endif
761 #if L2_LENGTH != 0
762         if (addr >= L2_START
763            && addr + BREAK_INSTR_SIZE <= L2_START + L2_LENGTH)
764                 return 0;
765 #endif
766
767         return EFAULT;
768 }
769
770 int kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr)
771 {
772         int err;
773         int cpu = raw_smp_processor_id();
774
775         if ((cpu == 0 && (unsigned int)addr >= L1_CODE_START
776                 && (unsigned int)(addr + BREAK_INSTR_SIZE)
777                 < L1_CODE_START + L1_CODE_LENGTH)
778 #ifdef CONFIG_SMP
779                 || (cpu == 1 && (unsigned int)addr >= COREB_L1_CODE_START
780                 && (unsigned int)(addr + BREAK_INSTR_SIZE)
781                 < COREB_L1_CODE_START + L1_CODE_LENGTH)
782 #endif
783                 ) {
784                 /* access L1 instruction SRAM */
785                 if (dma_memcpy(saved_instr, (void *)addr, BREAK_INSTR_SIZE)
786                         == NULL)
787                         return -EFAULT;
788
789                 if (dma_memcpy((void *)addr, arch_kgdb_ops.gdb_bpt_instr,
790                         BREAK_INSTR_SIZE) == NULL)
791                         return -EFAULT;
792
793                 return 0;
794         } else {
795                 err = probe_kernel_read(saved_instr, (char *)addr,
796                         BREAK_INSTR_SIZE);
797                 if (err)
798                         return err;
799
800                 return probe_kernel_write((char *)addr,
801                         arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
802         }
803 }
804
805 int kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle)
806 {
807         if ((unsigned int)addr >= L1_CODE_START &&
808                 (unsigned int)(addr + BREAK_INSTR_SIZE) <
809                         L1_CODE_START + L1_CODE_LENGTH) {
810                 /* access L1 instruction SRAM */
811                 if (dma_memcpy((void *)addr, bundle, BREAK_INSTR_SIZE) == NULL)
812                         return -EFAULT;
813
814                 return 0;
815         } else
816                 return probe_kernel_write((char *)addr,
817                                 (char *)bundle, BREAK_INSTR_SIZE);
818 }
819
820 int kgdb_arch_init(void)
821 {
822         kgdb_single_step = 0;
823
824         bfin_remove_all_hw_break();
825         return 0;
826 }
827
828 void kgdb_arch_exit(void)
829 {
830 }