4 Copyright (C) 1996 Digi International.
6 For technical support please email digiLinux@dgii.com or
7 call Digi tech support at (612) 912-3456
9 ** This driver is no longer supported by Digi **
11 Much of this design and code came from epca.c which was
12 copyright (C) 1994, 1995 Troy De Jongh, and subsquently
13 modified by David Nugent, Christoph Lameter, Mike McLagan.
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or
18 (at your option) any later version.
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 --------------------------------------------------------------------------- */
30 /* See README.epca for change history --DAT*/
33 #include <linux/config.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/init.h>
38 #include <linux/serial.h>
39 #include <linux/delay.h>
40 #include <linux/ctype.h>
41 #include <linux/tty.h>
42 #include <linux/tty_flip.h>
43 #include <linux/slab.h>
44 #include <linux/ioport.h>
45 #include <linux/interrupt.h>
46 #include <asm/uaccess.h>
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
56 #include "epcaconfig.h"
58 /* ---------------------- Begin defines ------------------------ */
60 #define VERSION "1.3.0.1-LK2.6"
62 /* This major needs to be submitted to Linux to join the majors list */
64 #define DIGIINFOMAJOR 35 /* For Digi specific ioctl */
68 #define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg)
72 /* ----------------- Begin global definitions ------------------- */
74 static int nbdevs, num_cards, liloconfig;
75 static int digi_poller_inhibited = 1 ;
77 static int setup_error_code;
78 static int invalid_lilo_config;
80 /* The ISA boards do window flipping into the same spaces so its only sane
81 with a single lock. It's still pretty efficient */
83 static DEFINE_SPINLOCK(epca_lock);
85 /* -----------------------------------------------------------------------
86 MAXBOARDS is typically 12, but ISA and EISA cards are restricted to
88 --------------------------------------------------------------------------*/
89 static struct board_info boards[MAXBOARDS];
92 /* ------------- Begin structures used for driver registeration ---------- */
94 static struct tty_driver *pc_driver;
95 static struct tty_driver *pc_info;
97 /* ------------------ Begin Digi specific structures -------------------- */
99 /* ------------------------------------------------------------------------
100 digi_channels represents an array of structures that keep track of
101 each channel of the Digi product. Information such as transmit and
102 receive pointers, termio data, and signal definitions (DTR, CTS, etc ...)
103 are stored here. This structure is NOT used to overlay the cards
104 physical channel structure.
105 -------------------------------------------------------------------------- */
107 static struct channel digi_channels[MAX_ALLOC];
109 /* ------------------------------------------------------------------------
110 card_ptr is an array used to hold the address of the
111 first channel structure of each card. This array will hold
112 the addresses of various channels located in digi_channels.
113 -------------------------------------------------------------------------- */
114 static struct channel *card_ptr[MAXCARDS];
116 static struct timer_list epca_timer;
118 /* ---------------------- Begin function prototypes --------------------- */
120 /* ----------------------------------------------------------------------
121 Begin generic memory functions. These functions will be alias
122 (point at) more specific functions dependent on the board being
124 ----------------------------------------------------------------------- */
126 static void memwinon(struct board_info *b, unsigned int win);
127 static void memwinoff(struct board_info *b, unsigned int win);
128 static void globalwinon(struct channel *ch);
129 static void rxwinon(struct channel *ch);
130 static void txwinon(struct channel *ch);
131 static void memoff(struct channel *ch);
132 static void assertgwinon(struct channel *ch);
133 static void assertmemoff(struct channel *ch);
135 /* ---- Begin more 'specific' memory functions for cx_like products --- */
137 static void pcxem_memwinon(struct board_info *b, unsigned int win);
138 static void pcxem_memwinoff(struct board_info *b, unsigned int win);
139 static void pcxem_globalwinon(struct channel *ch);
140 static void pcxem_rxwinon(struct channel *ch);
141 static void pcxem_txwinon(struct channel *ch);
142 static void pcxem_memoff(struct channel *ch);
144 /* ------ Begin more 'specific' memory functions for the pcxe ------- */
146 static void pcxe_memwinon(struct board_info *b, unsigned int win);
147 static void pcxe_memwinoff(struct board_info *b, unsigned int win);
148 static void pcxe_globalwinon(struct channel *ch);
149 static void pcxe_rxwinon(struct channel *ch);
150 static void pcxe_txwinon(struct channel *ch);
151 static void pcxe_memoff(struct channel *ch);
153 /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */
154 /* Note : pc64xe and pcxi share the same windowing routines */
156 static void pcxi_memwinon(struct board_info *b, unsigned int win);
157 static void pcxi_memwinoff(struct board_info *b, unsigned int win);
158 static void pcxi_globalwinon(struct channel *ch);
159 static void pcxi_rxwinon(struct channel *ch);
160 static void pcxi_txwinon(struct channel *ch);
161 static void pcxi_memoff(struct channel *ch);
163 /* - Begin 'specific' do nothing memory functions needed for some cards - */
165 static void dummy_memwinon(struct board_info *b, unsigned int win);
166 static void dummy_memwinoff(struct board_info *b, unsigned int win);
167 static void dummy_globalwinon(struct channel *ch);
168 static void dummy_rxwinon(struct channel *ch);
169 static void dummy_txwinon(struct channel *ch);
170 static void dummy_memoff(struct channel *ch);
171 static void dummy_assertgwinon(struct channel *ch);
172 static void dummy_assertmemoff(struct channel *ch);
174 /* ------------------- Begin declare functions ----------------------- */
176 static struct channel *verifyChannel(struct tty_struct *);
177 static void pc_sched_event(struct channel *, int);
178 static void epca_error(int, char *);
179 static void pc_close(struct tty_struct *, struct file *);
180 static void shutdown(struct channel *);
181 static void pc_hangup(struct tty_struct *);
182 static void pc_put_char(struct tty_struct *, unsigned char);
183 static int pc_write_room(struct tty_struct *);
184 static int pc_chars_in_buffer(struct tty_struct *);
185 static void pc_flush_buffer(struct tty_struct *);
186 static void pc_flush_chars(struct tty_struct *);
187 static int block_til_ready(struct tty_struct *, struct file *,
189 static int pc_open(struct tty_struct *, struct file *);
190 static void post_fep_init(unsigned int crd);
191 static void epcapoll(unsigned long);
192 static void doevent(int);
193 static void fepcmd(struct channel *, int, int, int, int, int);
194 static unsigned termios2digi_h(struct channel *ch, unsigned);
195 static unsigned termios2digi_i(struct channel *ch, unsigned);
196 static unsigned termios2digi_c(struct channel *ch, unsigned);
197 static void epcaparam(struct tty_struct *, struct channel *);
198 static void receive_data(struct channel *);
199 static int pc_ioctl(struct tty_struct *, struct file *,
200 unsigned int, unsigned long);
201 static int info_ioctl(struct tty_struct *, struct file *,
202 unsigned int, unsigned long);
203 static void pc_set_termios(struct tty_struct *, struct termios *);
204 static void do_softint(void *);
205 static void pc_stop(struct tty_struct *);
206 static void pc_start(struct tty_struct *);
207 static void pc_throttle(struct tty_struct * tty);
208 static void pc_unthrottle(struct tty_struct *tty);
209 static void digi_send_break(struct channel *ch, int msec);
210 static void setup_empty_event(struct tty_struct *tty, struct channel *ch);
211 void epca_setup(char *, int *);
213 static int get_termio(struct tty_struct *, struct termio __user *);
214 static int pc_write(struct tty_struct *, const unsigned char *, int);
215 static int pc_init(void);
216 static int init_PCI(void);
219 /* ------------------------------------------------------------------
220 Table of functions for each board to handle memory. Mantaining
221 parallelism is a *very* good idea here. The idea is for the
222 runtime code to blindly call these functions, not knowing/caring
223 about the underlying hardware. This stuff should contain no
224 conditionals; if more functionality is needed a different entry
225 should be established. These calls are the interface calls and
226 are the only functions that should be accessed. Anyone caught
227 making direct calls deserves what they get.
228 -------------------------------------------------------------------- */
230 static void memwinon(struct board_info *b, unsigned int win)
232 (b->memwinon)(b, win);
235 static void memwinoff(struct board_info *b, unsigned int win)
237 (b->memwinoff)(b, win);
240 static void globalwinon(struct channel *ch)
242 (ch->board->globalwinon)(ch);
245 static void rxwinon(struct channel *ch)
247 (ch->board->rxwinon)(ch);
250 static void txwinon(struct channel *ch)
252 (ch->board->txwinon)(ch);
255 static void memoff(struct channel *ch)
257 (ch->board->memoff)(ch);
259 static void assertgwinon(struct channel *ch)
261 (ch->board->assertgwinon)(ch);
264 static void assertmemoff(struct channel *ch)
266 (ch->board->assertmemoff)(ch);
269 /* ---------------------------------------------------------
270 PCXEM windowing is the same as that used in the PCXR
272 ------------------------------------------------------------ */
274 static void pcxem_memwinon(struct board_info *b, unsigned int win)
276 outb_p(FEPWIN|win, b->port + 1);
279 static void pcxem_memwinoff(struct board_info *b, unsigned int win)
281 outb_p(0, b->port + 1);
284 static void pcxem_globalwinon(struct channel *ch)
286 outb_p( FEPWIN, (int)ch->board->port + 1);
289 static void pcxem_rxwinon(struct channel *ch)
291 outb_p(ch->rxwin, (int)ch->board->port + 1);
294 static void pcxem_txwinon(struct channel *ch)
296 outb_p(ch->txwin, (int)ch->board->port + 1);
299 static void pcxem_memoff(struct channel *ch)
301 outb_p(0, (int)ch->board->port + 1);
304 /* ----------------- Begin pcxe memory window stuff ------------------ */
306 static void pcxe_memwinon(struct board_info *b, unsigned int win)
308 outb_p(FEPWIN | win, b->port + 1);
311 static void pcxe_memwinoff(struct board_info *b, unsigned int win)
313 outb_p(inb(b->port) & ~FEPMEM,
315 outb_p(0, b->port + 1);
318 static void pcxe_globalwinon(struct channel *ch)
320 outb_p( FEPWIN, (int)ch->board->port + 1);
323 static void pcxe_rxwinon(struct channel *ch)
325 outb_p(ch->rxwin, (int)ch->board->port + 1);
328 static void pcxe_txwinon(struct channel *ch)
330 outb_p(ch->txwin, (int)ch->board->port + 1);
333 static void pcxe_memoff(struct channel *ch)
335 outb_p(0, (int)ch->board->port);
336 outb_p(0, (int)ch->board->port + 1);
339 /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */
341 static void pcxi_memwinon(struct board_info *b, unsigned int win)
343 outb_p(inb(b->port) | FEPMEM, b->port);
346 static void pcxi_memwinoff(struct board_info *b, unsigned int win)
348 outb_p(inb(b->port) & ~FEPMEM, b->port);
351 static void pcxi_globalwinon(struct channel *ch)
353 outb_p(FEPMEM, ch->board->port);
356 static void pcxi_rxwinon(struct channel *ch)
358 outb_p(FEPMEM, ch->board->port);
361 static void pcxi_txwinon(struct channel *ch)
363 outb_p(FEPMEM, ch->board->port);
366 static void pcxi_memoff(struct channel *ch)
368 outb_p(0, ch->board->port);
371 static void pcxi_assertgwinon(struct channel *ch)
373 epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off");
376 static void pcxi_assertmemoff(struct channel *ch)
378 epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on");
382 /* ----------------------------------------------------------------------
383 Not all of the cards need specific memory windowing routines. Some
384 cards (Such as PCI) needs no windowing routines at all. We provide
385 these do nothing routines so that the same code base can be used.
386 The driver will ALWAYS call a windowing routine if it thinks it needs
387 to; regardless of the card. However, dependent on the card the routine
388 may or may not do anything.
389 ---------------------------------------------------------------------------*/
391 static void dummy_memwinon(struct board_info *b, unsigned int win)
395 static void dummy_memwinoff(struct board_info *b, unsigned int win)
399 static void dummy_globalwinon(struct channel *ch)
403 static void dummy_rxwinon(struct channel *ch)
407 static void dummy_txwinon(struct channel *ch)
411 static void dummy_memoff(struct channel *ch)
415 static void dummy_assertgwinon(struct channel *ch)
419 static void dummy_assertmemoff(struct channel *ch)
423 /* ----------------- Begin verifyChannel function ----------------------- */
424 static struct channel *verifyChannel(struct tty_struct *tty)
425 { /* Begin verifyChannel */
426 /* --------------------------------------------------------------------
427 This routine basically provides a sanity check. It insures that
428 the channel returned is within the proper range of addresses as
429 well as properly initialized. If some bogus info gets passed in
430 through tty->driver_data this should catch it.
431 --------------------------------------------------------------------- */
433 struct channel *ch = (struct channel *)tty->driver_data;
434 if ((ch >= &digi_channels[0]) && (ch < &digi_channels[nbdevs])) {
435 if (ch->magic == EPCA_MAGIC)
441 } /* End verifyChannel */
443 /* ------------------ Begin pc_sched_event ------------------------- */
445 static void pc_sched_event(struct channel *ch, int event)
447 /* ----------------------------------------------------------------------
448 We call this to schedule interrupt processing on some event. The
449 kernel sees our request and calls the related routine in OUR driver.
450 -------------------------------------------------------------------------*/
451 ch->event |= 1 << event;
452 schedule_work(&ch->tqueue);
453 } /* End pc_sched_event */
455 /* ------------------ Begin epca_error ------------------------- */
457 static void epca_error(int line, char *msg)
459 printk(KERN_ERR "epca_error (Digi): line = %d %s\n",line,msg);
462 /* ------------------ Begin pc_close ------------------------- */
463 static void pc_close(struct tty_struct * tty, struct file * filp)
467 /* ---------------------------------------------------------
468 verifyChannel returns the channel from the tty struct
469 if it is valid. This serves as a sanity check.
470 ------------------------------------------------------------- */
471 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
472 spin_lock_irqsave(&epca_lock, flags);
473 if (tty_hung_up_p(filp)) {
474 spin_unlock_irqrestore(&epca_lock, flags);
477 /* Check to see if the channel is open more than once */
478 if (ch->count-- > 1) {
479 /* Begin channel is open more than once */
480 /* -------------------------------------------------------------
481 Return without doing anything. Someone might still be using
483 ---------------------------------------------------------------- */
484 spin_unlock_irqrestore(&epca_lock, flags);
486 } /* End channel is open more than once */
488 /* Port open only once go ahead with shutdown & reset */
489 BUG_ON(ch->count < 0);
491 /* ---------------------------------------------------------------
492 Let the rest of the driver know the channel is being closed.
493 This becomes important if an open is attempted before close
495 ------------------------------------------------------------------ */
496 ch->asyncflags |= ASYNC_CLOSING;
499 spin_unlock_irqrestore(&epca_lock, flags);
501 if (ch->asyncflags & ASYNC_INITIALIZED) {
502 /* Setup an event to indicate when the transmit buffer empties */
503 setup_empty_event(tty, ch);
504 tty_wait_until_sent(tty, 3000); /* 30 seconds timeout */
506 if (tty->driver->flush_buffer)
507 tty->driver->flush_buffer(tty);
509 tty_ldisc_flush(tty);
512 spin_lock_irqsave(&epca_lock, flags);
516 spin_unlock_irqrestore(&epca_lock, flags);
518 if (ch->blocked_open) { /* Begin if blocked_open */
520 msleep_interruptible(jiffies_to_msecs(ch->close_delay));
521 wake_up_interruptible(&ch->open_wait);
522 } /* End if blocked_open */
523 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED |
525 wake_up_interruptible(&ch->close_wait);
526 } /* End if ch != NULL */
529 /* ------------------ Begin shutdown ------------------------- */
531 static void shutdown(struct channel *ch)
532 { /* Begin shutdown */
535 struct tty_struct *tty;
536 struct board_chan __iomem *bc;
538 if (!(ch->asyncflags & ASYNC_INITIALIZED))
541 spin_lock_irqsave(&epca_lock, flags);
546 /* ------------------------------------------------------------------
547 In order for an event to be generated on the receipt of data the
548 idata flag must be set. Since we are shutting down, this is not
549 necessary clear this flag.
550 --------------------------------------------------------------------- */
553 writeb(0, &bc->idata);
556 /* ----------------------------------------------------------------
557 If we're a modem control device and HUPCL is on, drop RTS & DTR.
558 ------------------------------------------------------------------ */
560 if (tty->termios->c_cflag & HUPCL) {
561 ch->omodem &= ~(ch->m_rts | ch->m_dtr);
562 fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1);
566 /* ------------------------------------------------------------------
567 The channel has officialy been closed. The next time it is opened
568 it will have to reinitialized. Set a flag to indicate this.
569 ---------------------------------------------------------------------- */
571 /* Prevent future Digi programmed interrupts from coming active */
573 ch->asyncflags &= ~ASYNC_INITIALIZED;
574 spin_unlock_irqrestore(&epca_lock, flags);
578 /* ------------------ Begin pc_hangup ------------------------- */
580 static void pc_hangup(struct tty_struct *tty)
581 { /* Begin pc_hangup */
584 /* ---------------------------------------------------------
585 verifyChannel returns the channel from the tty struct
586 if it is valid. This serves as a sanity check.
587 ------------------------------------------------------------- */
589 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
592 if (tty->driver->flush_buffer)
593 tty->driver->flush_buffer(tty);
594 tty_ldisc_flush(tty);
597 spin_lock_irqsave(&epca_lock, flags);
601 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED);
602 spin_unlock_irqrestore(&epca_lock, flags);
603 wake_up_interruptible(&ch->open_wait);
604 } /* End if ch != NULL */
606 } /* End pc_hangup */
608 /* ------------------ Begin pc_write ------------------------- */
610 static int pc_write(struct tty_struct * tty,
611 const unsigned char *buf, int bytesAvailable)
612 { /* Begin pc_write */
613 unsigned int head, tail;
620 struct board_chan __iomem *bc;
622 /* ----------------------------------------------------------------
623 pc_write is primarily called directly by the kernel routine
624 tty_write (Though it can also be called by put_char) found in
625 tty_io.c. pc_write is passed a line discipline buffer where
626 the data to be written out is stored. The line discipline
627 implementation itself is done at the kernel level and is not
628 brought into the driver.
629 ------------------------------------------------------------------- */
631 /* ---------------------------------------------------------
632 verifyChannel returns the channel from the tty struct
633 if it is valid. This serves as a sanity check.
634 ------------------------------------------------------------- */
636 if ((ch = verifyChannel(tty)) == NULL)
639 /* Make a pointer to the channel data structure found on the board. */
642 size = ch->txbufsize;
645 spin_lock_irqsave(&epca_lock, flags);
648 head = readw(&bc->tin) & (size - 1);
649 tail = readw(&bc->tout);
651 if (tail != readw(&bc->tout))
652 tail = readw(&bc->tout);
655 /* If head >= tail, head has not wrapped around. */
656 if (head >= tail) { /* Begin head has not wrapped */
657 /* ---------------------------------------------------------------
658 remain (much like dataLen above) represents the total amount of
659 space available on the card for data. Here dataLen represents
660 the space existing between the head pointer and the end of
661 buffer. This is important because a memcpy cannot be told to
662 automatically wrap around when it hits the buffer end.
663 ------------------------------------------------------------------ */
664 dataLen = size - head;
665 remain = size - (head - tail) - 1;
666 } else { /* Begin head has wrapped around */
668 remain = tail - head - 1;
671 } /* End head has wrapped around */
672 /* -------------------------------------------------------------------
673 Check the space on the card. If we have more data than
674 space; reduce the amount of data to fit the space.
675 ---------------------------------------------------------------------- */
676 bytesAvailable = min(remain, bytesAvailable);
678 while (bytesAvailable > 0)
679 { /* Begin while there is data to copy onto card */
681 /* -----------------------------------------------------------------
682 If head is not wrapped, the below will make sure the first
683 data copy fills to the end of card buffer.
684 ------------------------------------------------------------------- */
686 dataLen = min(bytesAvailable, dataLen);
687 memcpy_toio(ch->txptr + head, buf, dataLen);
690 amountCopied += dataLen;
691 bytesAvailable -= dataLen;
697 } /* End while there is data to copy onto card */
698 ch->statusflags |= TXBUSY;
700 writew(head, &bc->tin);
702 if ((ch->statusflags & LOWWAIT) == 0) {
703 ch->statusflags |= LOWWAIT;
704 writeb(1, &bc->ilow);
707 spin_unlock_irqrestore(&epca_lock, flags);
708 return(amountCopied);
712 /* ------------------ Begin pc_put_char ------------------------- */
714 static void pc_put_char(struct tty_struct *tty, unsigned char c)
715 { /* Begin pc_put_char */
716 pc_write(tty, &c, 1);
717 } /* End pc_put_char */
719 /* ------------------ Begin pc_write_room ------------------------- */
721 static int pc_write_room(struct tty_struct *tty)
722 { /* Begin pc_write_room */
727 unsigned int head, tail;
728 struct board_chan __iomem *bc;
732 /* ---------------------------------------------------------
733 verifyChannel returns the channel from the tty struct
734 if it is valid. This serves as a sanity check.
735 ------------------------------------------------------------- */
737 if ((ch = verifyChannel(tty)) != NULL) {
738 spin_lock_irqsave(&epca_lock, flags);
742 head = readw(&bc->tin) & (ch->txbufsize - 1);
743 tail = readw(&bc->tout);
745 if (tail != readw(&bc->tout))
746 tail = readw(&bc->tout);
747 /* Wrap tail if necessary */
748 tail &= (ch->txbufsize - 1);
750 if ((remain = tail - head - 1) < 0 )
751 remain += ch->txbufsize;
753 if (remain && (ch->statusflags & LOWWAIT) == 0) {
754 ch->statusflags |= LOWWAIT;
755 writeb(1, &bc->ilow);
758 spin_unlock_irqrestore(&epca_lock, flags);
760 /* Return how much room is left on card */
763 } /* End pc_write_room */
765 /* ------------------ Begin pc_chars_in_buffer ---------------------- */
767 static int pc_chars_in_buffer(struct tty_struct *tty)
768 { /* Begin pc_chars_in_buffer */
771 unsigned int ctail, head, tail;
775 struct board_chan __iomem *bc;
777 /* ---------------------------------------------------------
778 verifyChannel returns the channel from the tty struct
779 if it is valid. This serves as a sanity check.
780 ------------------------------------------------------------- */
782 if ((ch = verifyChannel(tty)) == NULL)
785 spin_lock_irqsave(&epca_lock, flags);
789 tail = readw(&bc->tout);
790 head = readw(&bc->tin);
791 ctail = readw(&ch->mailbox->cout);
793 if (tail == head && readw(&ch->mailbox->cin) == ctail && readb(&bc->tbusy) == 0)
795 else { /* Begin if some space on the card has been used */
796 head = readw(&bc->tin) & (ch->txbufsize - 1);
797 tail &= (ch->txbufsize - 1);
798 /* --------------------------------------------------------------
799 The logic here is basically opposite of the above pc_write_room
800 here we are finding the amount of bytes in the buffer filled.
801 Not the amount of bytes empty.
802 ------------------------------------------------------------------- */
803 if ((remain = tail - head - 1) < 0 )
804 remain += ch->txbufsize;
805 chars = (int)(ch->txbufsize - remain);
806 /* -------------------------------------------------------------
807 Make it possible to wakeup anything waiting for output
810 If not already set. Setup an event to indicate when the
811 transmit buffer empties
812 ----------------------------------------------------------------- */
813 if (!(ch->statusflags & EMPTYWAIT))
814 setup_empty_event(tty,ch);
816 } /* End if some space on the card has been used */
818 spin_unlock_irqrestore(&epca_lock, flags);
819 /* Return number of characters residing on card. */
822 } /* End pc_chars_in_buffer */
824 /* ------------------ Begin pc_flush_buffer ---------------------- */
826 static void pc_flush_buffer(struct tty_struct *tty)
827 { /* Begin pc_flush_buffer */
832 struct board_chan __iomem *bc;
833 /* ---------------------------------------------------------
834 verifyChannel returns the channel from the tty struct
835 if it is valid. This serves as a sanity check.
836 ------------------------------------------------------------- */
837 if ((ch = verifyChannel(tty)) == NULL)
840 spin_lock_irqsave(&epca_lock, flags);
843 tail = readw(&bc->tout);
844 /* Have FEP move tout pointer; effectively flushing transmit buffer */
845 fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0);
847 spin_unlock_irqrestore(&epca_lock, flags);
848 wake_up_interruptible(&tty->write_wait);
850 } /* End pc_flush_buffer */
852 /* ------------------ Begin pc_flush_chars ---------------------- */
854 static void pc_flush_chars(struct tty_struct *tty)
855 { /* Begin pc_flush_chars */
857 /* ---------------------------------------------------------
858 verifyChannel returns the channel from the tty struct
859 if it is valid. This serves as a sanity check.
860 ------------------------------------------------------------- */
861 if ((ch = verifyChannel(tty)) != NULL) {
863 spin_lock_irqsave(&epca_lock, flags);
864 /* ----------------------------------------------------------------
865 If not already set and the transmitter is busy setup an event
866 to indicate when the transmit empties.
867 ------------------------------------------------------------------- */
868 if ((ch->statusflags & TXBUSY) && !(ch->statusflags & EMPTYWAIT))
869 setup_empty_event(tty,ch);
870 spin_unlock_irqrestore(&epca_lock, flags);
872 } /* End pc_flush_chars */
874 /* ------------------ Begin block_til_ready ---------------------- */
876 static int block_til_ready(struct tty_struct *tty,
877 struct file *filp, struct channel *ch)
878 { /* Begin block_til_ready */
879 DECLARE_WAITQUEUE(wait,current);
880 int retval, do_clocal = 0;
883 if (tty_hung_up_p(filp)) {
884 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
887 retval = -ERESTARTSYS;
891 /* -----------------------------------------------------------------
892 If the device is in the middle of being closed, then block
893 until it's done, and then try again.
894 -------------------------------------------------------------------- */
895 if (ch->asyncflags & ASYNC_CLOSING) {
896 interruptible_sleep_on(&ch->close_wait);
898 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
904 if (filp->f_flags & O_NONBLOCK) {
905 /* -----------------------------------------------------------------
906 If non-blocking mode is set, then make the check up front
908 -------------------------------------------------------------------- */
909 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
912 if (tty->termios->c_cflag & CLOCAL)
914 /* Block waiting for the carrier detect and the line to become free */
917 add_wait_queue(&ch->open_wait, &wait);
919 spin_lock_irqsave(&epca_lock, flags);
920 /* We dec count so that pc_close will know when to free things */
921 if (!tty_hung_up_p(filp))
925 { /* Begin forever while */
926 set_current_state(TASK_INTERRUPTIBLE);
927 if (tty_hung_up_p(filp) ||
928 !(ch->asyncflags & ASYNC_INITIALIZED))
930 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
933 retval = -ERESTARTSYS;
936 if (!(ch->asyncflags & ASYNC_CLOSING) &&
937 (do_clocal || (ch->imodem & ch->dcd)))
939 if (signal_pending(current)) {
940 retval = -ERESTARTSYS;
943 spin_unlock_irqrestore(&epca_lock, flags);
944 /* ---------------------------------------------------------------
945 Allow someone else to be scheduled. We will occasionally go
946 through this loop until one of the above conditions change.
947 The below schedule call will allow other processes to enter and
948 prevent this loop from hogging the cpu.
949 ------------------------------------------------------------------ */
951 spin_lock_irqsave(&epca_lock, flags);
953 } /* End forever while */
955 current->state = TASK_RUNNING;
956 remove_wait_queue(&ch->open_wait, &wait);
957 if (!tty_hung_up_p(filp))
961 spin_unlock_irqrestore(&epca_lock, flags);
966 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
968 } /* End block_til_ready */
970 /* ------------------ Begin pc_open ---------------------- */
972 static int pc_open(struct tty_struct *tty, struct file * filp)
973 { /* Begin pc_open */
977 int line, retval, boardnum;
978 struct board_chan __iomem *bc;
982 if (line < 0 || line >= nbdevs)
985 ch = &digi_channels[line];
986 boardnum = ch->boardnum;
988 /* Check status of board configured in system. */
990 /* -----------------------------------------------------------------
991 I check to see if the epca_setup routine detected an user error.
992 It might be better to put this in pc_init, but for the moment it
994 ---------------------------------------------------------------------- */
996 if (invalid_lilo_config) {
997 if (setup_error_code & INVALID_BOARD_TYPE)
998 printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n");
999 if (setup_error_code & INVALID_NUM_PORTS)
1000 printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n");
1001 if (setup_error_code & INVALID_MEM_BASE)
1002 printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n");
1003 if (setup_error_code & INVALID_PORT_BASE)
1004 printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n");
1005 if (setup_error_code & INVALID_BOARD_STATUS)
1006 printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n");
1007 if (setup_error_code & INVALID_ALTPIN)
1008 printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n");
1009 tty->driver_data = NULL; /* Mark this device as 'down' */
1012 if (boardnum >= num_cards || boards[boardnum].status == DISABLED) {
1013 tty->driver_data = NULL; /* Mark this device as 'down' */
1017 if ((bc = ch->brdchan) == 0) {
1018 tty->driver_data = NULL;
1022 spin_lock_irqsave(&epca_lock, flags);
1023 /* ------------------------------------------------------------------
1024 Every time a channel is opened, increment a counter. This is
1025 necessary because we do not wish to flush and shutdown the channel
1026 until the last app holding the channel open, closes it.
1027 --------------------------------------------------------------------- */
1029 /* ----------------------------------------------------------------
1030 Set a kernel structures pointer to our local channel
1031 structure. This way we can get to it when passed only
1033 ------------------------------------------------------------------ */
1034 tty->driver_data = ch;
1035 /* ----------------------------------------------------------------
1036 If this is the first time the channel has been opened, initialize
1037 the tty->termios struct otherwise let pc_close handle it.
1038 -------------------------------------------------------------------- */
1040 ch->statusflags = 0;
1042 /* Save boards current modem status */
1043 ch->imodem = readb(&bc->mstat);
1045 /* ----------------------------------------------------------------
1046 Set receive head and tail ptrs to each other. This indicates
1047 no data available to read.
1048 ----------------------------------------------------------------- */
1049 head = readw(&bc->rin);
1050 writew(head, &bc->rout);
1052 /* Set the channels associated tty structure */
1055 /* -----------------------------------------------------------------
1056 The below routine generally sets up parity, baud, flow control
1057 issues, etc.... It effect both control flags and input flags.
1058 -------------------------------------------------------------------- */
1060 ch->asyncflags |= ASYNC_INITIALIZED;
1062 spin_unlock_irqrestore(&epca_lock, flags);
1064 retval = block_til_ready(tty, filp, ch);
1067 /* -------------------------------------------------------------
1068 Set this again in case a hangup set it to zero while this
1069 open() was waiting for the line...
1070 --------------------------------------------------------------- */
1071 spin_lock_irqsave(&epca_lock, flags);
1074 /* Enable Digi Data events */
1075 writeb(1, &bc->idata);
1077 spin_unlock_irqrestore(&epca_lock, flags);
1081 static int __init epca_module_init(void)
1082 { /* Begin init_module */
1086 module_init(epca_module_init);
1088 static struct pci_driver epca_driver;
1090 static void __exit epca_module_exit(void)
1093 struct board_info *bd;
1096 del_timer_sync(&epca_timer);
1098 if ((tty_unregister_driver(pc_driver)) ||
1099 (tty_unregister_driver(pc_info)))
1101 printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n");
1104 put_tty_driver(pc_driver);
1105 put_tty_driver(pc_info);
1107 for (crd = 0; crd < num_cards; crd++) { /* Begin for each card */
1110 { /* Begin sanity check */
1111 printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n");
1113 } /* End sanity check */
1115 for (count = 0; count < bd->numports; count++, ch++)
1116 { /* Begin for each port */
1119 tty_hangup(ch->tty);
1122 } /* End for each port */
1123 } /* End for each card */
1124 pci_unregister_driver (&epca_driver);
1127 module_exit(epca_module_exit);
1129 static struct tty_operations pc_ops = {
1133 .write_room = pc_write_room,
1134 .flush_buffer = pc_flush_buffer,
1135 .chars_in_buffer = pc_chars_in_buffer,
1136 .flush_chars = pc_flush_chars,
1137 .put_char = pc_put_char,
1139 .set_termios = pc_set_termios,
1142 .throttle = pc_throttle,
1143 .unthrottle = pc_unthrottle,
1144 .hangup = pc_hangup,
1147 static int info_open(struct tty_struct *tty, struct file * filp)
1152 static struct tty_operations info_ops = {
1154 .ioctl = info_ioctl,
1157 /* ------------------ Begin pc_init ---------------------- */
1159 static int __init pc_init(void)
1160 { /* Begin pc_init */
1162 struct board_info *bd;
1163 unsigned char board_id = 0;
1165 int pci_boards_found, pci_count;
1169 pc_driver = alloc_tty_driver(MAX_ALLOC);
1173 pc_info = alloc_tty_driver(MAX_ALLOC);
1175 put_tty_driver(pc_driver);
1179 /* -----------------------------------------------------------------------
1180 If epca_setup has not been ran by LILO set num_cards to defaults; copy
1181 board structure defined by digiConfig into drivers board structure.
1182 Note : If LILO has ran epca_setup then epca_setup will handle defining
1183 num_cards as well as copying the data into the board structure.
1184 -------------------------------------------------------------------------- */
1185 if (!liloconfig) { /* Begin driver has been configured via. epcaconfig */
1188 num_cards = NUMCARDS;
1189 memcpy((void *)&boards, (void *)&static_boards,
1190 (sizeof(struct board_info) * NUMCARDS));
1191 } /* End driver has been configured via. epcaconfig */
1193 /* -----------------------------------------------------------------
1194 Note : If lilo was used to configure the driver and the
1195 ignore epcaconfig option was choosen (digiepca=2) then
1196 nbdevs and num_cards will equal 0 at this point. This is
1197 okay; PCI cards will still be picked up if detected.
1198 --------------------------------------------------------------------- */
1200 /* -----------------------------------------------------------
1201 Set up interrupt, we will worry about memory allocation in
1203 --------------------------------------------------------------- */
1206 printk(KERN_INFO "DIGI epca driver version %s loaded.\n",VERSION);
1208 /* ------------------------------------------------------------------
1209 NOTE : This code assumes that the number of ports found in
1210 the boards array is correct. This could be wrong if
1211 the card in question is PCI (And therefore has no ports
1212 entry in the boards structure.) The rest of the
1213 information will be valid for PCI because the beginning
1214 of pc_init scans for PCI and determines i/o and base
1215 memory addresses. I am not sure if it is possible to
1216 read the number of ports supported by the card prior to
1217 it being booted (Since that is the state it is in when
1218 pc_init is run). Because it is not possible to query the
1219 number of supported ports until after the card has booted;
1220 we are required to calculate the card_ptrs as the card is
1221 is initialized (Inside post_fep_init). The negative thing
1222 about this approach is that digiDload's call to GET_INFO
1223 will have a bad port value. (Since this is called prior
1226 --------------------------------------------------------------------- */
1228 pci_boards_found = 0;
1229 if(num_cards < MAXBOARDS)
1230 pci_boards_found += init_PCI();
1231 num_cards += pci_boards_found;
1233 pc_driver->owner = THIS_MODULE;
1234 pc_driver->name = "ttyD";
1235 pc_driver->major = DIGI_MAJOR;
1236 pc_driver->minor_start = 0;
1237 pc_driver->type = TTY_DRIVER_TYPE_SERIAL;
1238 pc_driver->subtype = SERIAL_TYPE_NORMAL;
1239 pc_driver->init_termios = tty_std_termios;
1240 pc_driver->init_termios.c_iflag = 0;
1241 pc_driver->init_termios.c_oflag = 0;
1242 pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL;
1243 pc_driver->init_termios.c_lflag = 0;
1244 pc_driver->flags = TTY_DRIVER_REAL_RAW;
1245 tty_set_operations(pc_driver, &pc_ops);
1247 pc_info->owner = THIS_MODULE;
1248 pc_info->name = "digi_ctl";
1249 pc_info->major = DIGIINFOMAJOR;
1250 pc_info->minor_start = 0;
1251 pc_info->type = TTY_DRIVER_TYPE_SERIAL;
1252 pc_info->subtype = SERIAL_TYPE_INFO;
1253 pc_info->init_termios = tty_std_termios;
1254 pc_info->init_termios.c_iflag = 0;
1255 pc_info->init_termios.c_oflag = 0;
1256 pc_info->init_termios.c_lflag = 0;
1257 pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL;
1258 pc_info->flags = TTY_DRIVER_REAL_RAW;
1259 tty_set_operations(pc_info, &info_ops);
1262 for (crd = 0; crd < num_cards; crd++)
1263 { /* Begin for each card */
1265 /* ------------------------------------------------------------------
1266 This is where the appropriate memory handlers for the hardware is
1267 set. Everything at runtime blindly jumps through these vectors.
1268 ---------------------------------------------------------------------- */
1270 /* defined in epcaconfig.h */
1274 { /* Begin switch on bd->type {board type} */
1277 bd->memwinon = pcxem_memwinon ;
1278 bd->memwinoff = pcxem_memwinoff ;
1279 bd->globalwinon = pcxem_globalwinon ;
1280 bd->txwinon = pcxem_txwinon ;
1281 bd->rxwinon = pcxem_rxwinon ;
1282 bd->memoff = pcxem_memoff ;
1283 bd->assertgwinon = dummy_assertgwinon;
1284 bd->assertmemoff = dummy_assertmemoff;
1290 bd->memwinon = dummy_memwinon;
1291 bd->memwinoff = dummy_memwinoff;
1292 bd->globalwinon = dummy_globalwinon;
1293 bd->txwinon = dummy_txwinon;
1294 bd->rxwinon = dummy_rxwinon;
1295 bd->memoff = dummy_memoff;
1296 bd->assertgwinon = dummy_assertgwinon;
1297 bd->assertmemoff = dummy_assertmemoff;
1303 bd->memwinon = pcxe_memwinon;
1304 bd->memwinoff = pcxe_memwinoff;
1305 bd->globalwinon = pcxe_globalwinon;
1306 bd->txwinon = pcxe_txwinon;
1307 bd->rxwinon = pcxe_rxwinon;
1308 bd->memoff = pcxe_memoff;
1309 bd->assertgwinon = dummy_assertgwinon;
1310 bd->assertmemoff = dummy_assertmemoff;
1316 bd->memwinon = pcxi_memwinon;
1317 bd->memwinoff = pcxi_memwinoff;
1318 bd->globalwinon = pcxi_globalwinon;
1319 bd->txwinon = pcxi_txwinon;
1320 bd->rxwinon = pcxi_rxwinon;
1321 bd->memoff = pcxi_memoff;
1322 bd->assertgwinon = pcxi_assertgwinon;
1323 bd->assertmemoff = pcxi_assertmemoff;
1329 } /* End switch on bd->type */
1331 /* ---------------------------------------------------------------
1332 Some cards need a memory segment to be defined for use in
1333 transmit and receive windowing operations. These boards
1334 are listed in the below switch. In the case of the XI the
1335 amount of memory on the board is variable so the memory_seg
1336 is also variable. This code determines what they segment
1338 ----------------------------------------------------------------- */
1341 { /* Begin switch on bd->type {board type} */
1346 bd->memory_seg = 0xf000;
1350 board_id = inb((int)bd->port);
1351 if ((board_id & 0x1) == 0x1)
1352 { /* Begin it's an XI card */
1354 /* Is it a 64K board */
1355 if ((board_id & 0x30) == 0)
1356 bd->memory_seg = 0xf000;
1358 /* Is it a 128K board */
1359 if ((board_id & 0x30) == 0x10)
1360 bd->memory_seg = 0xe000;
1362 /* Is is a 256K board */
1363 if ((board_id & 0x30) == 0x20)
1364 bd->memory_seg = 0xc000;
1366 /* Is it a 512K board */
1367 if ((board_id & 0x30) == 0x30)
1368 bd->memory_seg = 0x8000;
1370 } else printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n",(int)bd->port);
1373 } /* End switch on bd->type */
1375 } /* End for each card */
1377 if (tty_register_driver(pc_driver))
1378 panic("Couldn't register Digi PC/ driver");
1380 if (tty_register_driver(pc_info))
1381 panic("Couldn't register Digi PC/ info ");
1383 /* -------------------------------------------------------------------
1384 Start up the poller to check for events on all enabled boards
1385 ---------------------------------------------------------------------- */
1387 init_timer(&epca_timer);
1388 epca_timer.function = epcapoll;
1389 mod_timer(&epca_timer, jiffies + HZ/25);
1394 /* ------------------ Begin post_fep_init ---------------------- */
1396 static void post_fep_init(unsigned int crd)
1397 { /* Begin post_fep_init */
1400 void __iomem *memaddr;
1401 struct global_data __iomem *gd;
1402 struct board_info *bd;
1403 struct board_chan __iomem *bc;
1405 int shrinkmem = 0, lowwater ;
1407 /* -------------------------------------------------------------
1408 This call is made by the user via. the ioctl call DIGI_INIT.
1409 It is responsible for setting up all the card specific stuff.
1410 ---------------------------------------------------------------- */
1413 /* -----------------------------------------------------------------
1414 If this is a PCI board, get the port info. Remember PCI cards
1415 do not have entries into the epcaconfig.h file, so we can't get
1416 the number of ports from it. Unfortunetly, this means that anyone
1417 doing a DIGI_GETINFO before the board has booted will get an invalid
1418 number of ports returned (It should return 0). Calls to DIGI_GETINFO
1419 after DIGI_INIT has been called will return the proper values.
1420 ------------------------------------------------------------------- */
1422 if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */
1423 /* --------------------------------------------------------------------
1424 Below we use XEMPORTS as a memory offset regardless of which PCI
1425 card it is. This is because all of the supported PCI cards have
1426 the same memory offset for the channel data. This will have to be
1427 changed if we ever develop a PCI/XE card. NOTE : The FEP manual
1428 states that the port offset is 0xC22 as opposed to 0xC02. This is
1429 only true for PC/XE, and PC/XI cards; not for the XEM, or CX series.
1430 On the PCI cards the number of ports is determined by reading a
1431 ID PROM located in the box attached to the card. The card can then
1432 determine the index the id to determine the number of ports available.
1433 (FYI - The id should be located at 0x1ac (And may use up to 4 bytes
1434 if the box in question is a XEM or CX)).
1435 ------------------------------------------------------------------------ */
1436 /* PCI cards are already remapped at this point ISA are not */
1437 bd->numports = readw(bd->re_map_membase + XEMPORTS);
1438 epcaassert(bd->numports <= 64,"PCI returned a invalid number of ports");
1439 nbdevs += (bd->numports);
1441 /* Fix up the mappings for ISA/EISA etc */
1442 /* FIXME: 64K - can we be smarter ? */
1443 bd->re_map_membase = ioremap(bd->membase, 0x10000);
1447 card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports;
1449 card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */
1452 epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range");
1454 memaddr = bd->re_map_membase;
1456 /* -----------------------------------------------------------------
1457 The below assignment will set bc to point at the BEGINING of
1458 the cards channel structures. For 1 card there will be between
1459 8 and 64 of these structures.
1460 -------------------------------------------------------------------- */
1462 bc = memaddr + CHANSTRUCT;
1464 /* -------------------------------------------------------------------
1465 The below assignment will set gd to point at the BEGINING of
1466 global memory address 0xc00. The first data in that global
1467 memory actually starts at address 0xc1a. The command in
1468 pointer begins at 0xd10.
1469 ---------------------------------------------------------------------- */
1471 gd = memaddr + GLOBAL;
1473 /* --------------------------------------------------------------------
1474 XEPORTS (address 0xc22) points at the number of channels the
1475 card supports. (For 64XE, XI, XEM, and XR use 0xc02)
1476 ----------------------------------------------------------------------- */
1478 if ((bd->type == PCXEVE || bd->type == PCXE) && (readw(memaddr + XEPORTS) < 3))
1480 if (bd->type < PCIXEM)
1481 if (!request_region((int)bd->port, 4, board_desc[bd->type]))
1485 /* --------------------------------------------------------------------
1486 Remember ch is the main drivers channels structure, while bc is
1487 the cards channel structure.
1488 ------------------------------------------------------------------------ */
1490 /* For every port on the card do ..... */
1492 for (i = 0; i < bd->numports; i++, ch++, bc++) { /* Begin for each port */
1493 unsigned long flags;
1498 INIT_WORK(&ch->tqueue, do_softint, ch);
1499 ch->board = &boards[crd];
1501 spin_lock_irqsave(&epca_lock, flags);
1503 /* ----------------------------------------------------------------
1504 Since some of the boards use different bitmaps for their
1505 control signals we cannot hard code these values and retain
1506 portability. We virtualize this data here.
1507 ------------------------------------------------------------------- */
1533 } /* End switch bd->type */
1535 if (boards[crd].altpin) {
1536 ch->dsr = ch->m_dcd;
1537 ch->dcd = ch->m_dsr;
1538 ch->digiext.digi_flags |= DIGI_ALTPIN;
1541 ch->dcd = ch->m_dcd;
1542 ch->dsr = ch->m_dsr;
1547 ch->magic = EPCA_MAGIC;
1551 fepcmd(ch, SETBUFFER, 32, 0, 0, 0);
1555 tseg = readw(&bc->tseg);
1556 rseg = readw(&bc->rseg);
1563 /* Cover all the 2MEG cards */
1564 ch->txptr = memaddr + ((tseg << 4) & 0x1fffff);
1565 ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff);
1566 ch->txwin = FEPWIN | (tseg >> 11);
1567 ch->rxwin = FEPWIN | (rseg >> 11);
1572 /* Cover all the 32K windowed cards */
1573 /* Mask equal to window size - 1 */
1574 ch->txptr = memaddr + ((tseg << 4) & 0x7fff);
1575 ch->rxptr = memaddr + ((rseg << 4) & 0x7fff);
1576 ch->txwin = FEPWIN | (tseg >> 11);
1577 ch->rxwin = FEPWIN | (rseg >> 11);
1582 ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4) & 0x1fff);
1583 ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9);
1584 ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4) & 0x1fff);
1585 ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >>9 );
1590 ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4);
1591 ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4);
1592 ch->txwin = ch->rxwin = 0;
1595 } /* End switch bd->type */
1598 ch->txbufsize = readw(&bc->tmax) + 1;
1601 ch->rxbufsize = readw(&bc->rmax) + 1;
1603 lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2);
1605 /* Set transmitter low water mark */
1606 fepcmd(ch, STXLWATER, lowwater, 0, 10, 0);
1608 /* Set receiver low water mark */
1610 fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0);
1612 /* Set receiver high water mark */
1614 fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0);
1616 writew(100, &bc->edelay);
1617 writeb(1, &bc->idata);
1619 ch->startc = readb(&bc->startc);
1620 ch->stopc = readb(&bc->stopc);
1621 ch->startca = readb(&bc->startca);
1622 ch->stopca = readb(&bc->stopca);
1632 ch->close_delay = 50;
1634 ch->blocked_open = 0;
1635 init_waitqueue_head(&ch->open_wait);
1636 init_waitqueue_head(&ch->close_wait);
1638 spin_unlock_irqrestore(&epca_lock, flags);
1640 ch->tmp_buf = kmalloc(ch->txbufsize,GFP_KERNEL);
1642 printk(KERN_ERR "POST FEP INIT : kmalloc failed for port 0x%x\n",i);
1643 release_region((int)bd->port, 4);
1645 kfree((ch--)->tmp_buf);
1648 memset((void *)ch->tmp_buf,0,ch->txbufsize);
1649 } /* End for each port */
1652 "Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n",
1653 VERSION, board_desc[bd->type], (long)bd->port, (long)bd->membase, bd->numports);
1656 } /* End post_fep_init */
1658 /* --------------------- Begin epcapoll ------------------------ */
1660 static void epcapoll(unsigned long ignored)
1661 { /* Begin epcapoll */
1663 unsigned long flags;
1665 volatile unsigned int head, tail;
1667 struct board_info *bd;
1669 /* -------------------------------------------------------------------
1670 This routine is called upon every timer interrupt. Even though
1671 the Digi series cards are capable of generating interrupts this
1672 method of non-looping polling is more efficient. This routine
1673 checks for card generated events (Such as receive data, are transmit
1674 buffer empty) and acts on those events.
1675 ----------------------------------------------------------------------- */
1677 for (crd = 0; crd < num_cards; crd++)
1678 { /* Begin for each card */
1683 if ((bd->status == DISABLED) || digi_poller_inhibited)
1684 continue; /* Begin loop next interation */
1686 /* -----------------------------------------------------------
1687 assertmemoff is not needed here; indeed it is an empty subroutine.
1688 It is being kept because future boards may need this as well as
1690 ---------------------------------------------------------------- */
1692 spin_lock_irqsave(&epca_lock, flags);
1698 /* ---------------------------------------------------------------
1699 In this case head and tail actually refer to the event queue not
1700 the transmit or receive queue.
1701 ------------------------------------------------------------------- */
1703 head = readw(&ch->mailbox->ein);
1704 tail = readw(&ch->mailbox->eout);
1706 /* If head isn't equal to tail we have an event */
1712 spin_unlock_irqrestore(&epca_lock, flags);
1714 } /* End for each card */
1715 mod_timer(&epca_timer, jiffies + (HZ / 25));
1716 } /* End epcapoll */
1718 /* --------------------- Begin doevent ------------------------ */
1720 static void doevent(int crd)
1721 { /* Begin doevent */
1723 void __iomem *eventbuf;
1724 struct channel *ch, *chan0;
1725 static struct tty_struct *tty;
1726 struct board_info *bd;
1727 struct board_chan __iomem *bc;
1728 unsigned int tail, head;
1732 /* -------------------------------------------------------------------
1733 This subroutine is called by epcapoll when an event is detected
1734 in the event queue. This routine responds to those events.
1735 --------------------------------------------------------------------- */
1738 chan0 = card_ptr[crd];
1739 epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range");
1740 assertgwinon(chan0);
1741 while ((tail = readw(&chan0->mailbox->eout)) != (head = readw(&chan0->mailbox->ein)))
1742 { /* Begin while something in event queue */
1743 assertgwinon(chan0);
1744 eventbuf = bd->re_map_membase + tail + ISTART;
1745 /* Get the channel the event occurred on */
1746 channel = readb(eventbuf);
1747 /* Get the actual event code that occurred */
1748 event = readb(eventbuf + 1);
1749 /* ----------------------------------------------------------------
1750 The two assignments below get the current modem status (mstat)
1751 and the previous modem status (lstat). These are useful becuase
1752 an event could signal a change in modem signals itself.
1753 ------------------------------------------------------------------- */
1754 mstat = readb(eventbuf + 2);
1755 lstat = readb(eventbuf + 3);
1757 ch = chan0 + channel;
1758 if ((unsigned)channel >= bd->numports || !ch) {
1759 if (channel >= bd->numports)
1765 if ((bc = ch->brdchan) == NULL)
1768 if (event & DATA_IND) { /* Begin DATA_IND */
1771 } /* End DATA_IND */
1772 /* else *//* Fix for DCD transition missed bug */
1773 if (event & MODEMCHG_IND) { /* Begin MODEMCHG_IND */
1774 /* A modem signal change has been indicated */
1776 if (ch->asyncflags & ASYNC_CHECK_CD) {
1777 if (mstat & ch->dcd) /* We are now receiving dcd */
1778 wake_up_interruptible(&ch->open_wait);
1780 pc_sched_event(ch, EPCA_EVENT_HANGUP); /* No dcd; hangup */
1782 } /* End MODEMCHG_IND */
1784 if (tty) { /* Begin if valid tty */
1785 if (event & BREAK_IND) { /* Begin if BREAK_IND */
1786 /* A break has been indicated */
1787 tty_insert_flip_char(tty, 0, TTY_BREAK);
1788 tty_schedule_flip(tty);
1789 } else if (event & LOWTX_IND) { /* Begin LOWTX_IND */
1790 if (ch->statusflags & LOWWAIT)
1791 { /* Begin if LOWWAIT */
1792 ch->statusflags &= ~LOWWAIT;
1794 wake_up_interruptible(&tty->write_wait);
1795 } /* End if LOWWAIT */
1796 } else if (event & EMPTYTX_IND) { /* Begin EMPTYTX_IND */
1797 /* This event is generated by setup_empty_event */
1798 ch->statusflags &= ~TXBUSY;
1799 if (ch->statusflags & EMPTYWAIT) { /* Begin if EMPTYWAIT */
1800 ch->statusflags &= ~EMPTYWAIT;
1802 wake_up_interruptible(&tty->write_wait);
1803 } /* End if EMPTYWAIT */
1804 } /* End EMPTYTX_IND */
1805 } /* End if valid tty */
1809 writew(1, &bc->idata);
1810 writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout);
1812 } /* End while something in event queue */
1815 /* --------------------- Begin fepcmd ------------------------ */
1817 static void fepcmd(struct channel *ch, int cmd, int word_or_byte,
1818 int byte2, int ncmds, int bytecmd)
1819 { /* Begin fepcmd */
1820 unchar __iomem *memaddr;
1821 unsigned int head, cmdTail, cmdStart, cmdMax;
1825 /* This is the routine in which commands may be passed to the card. */
1827 if (ch->board->status == DISABLED)
1830 /* Remember head (As well as max) is just an offset not a base addr */
1831 head = readw(&ch->mailbox->cin);
1832 /* cmdStart is a base address */
1833 cmdStart = readw(&ch->mailbox->cstart);
1834 /* ------------------------------------------------------------------
1835 We do the addition below because we do not want a max pointer
1836 relative to cmdStart. We want a max pointer that points at the
1837 physical end of the command queue.
1838 -------------------------------------------------------------------- */
1839 cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax));
1840 memaddr = ch->board->re_map_membase;
1842 if (head >= (cmdMax - cmdStart) || (head & 03)) {
1843 printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n", __LINE__, cmd, head);
1844 printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n", __LINE__, cmdMax, cmdStart);
1848 writeb(cmd, memaddr + head + cmdStart + 0);
1849 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1850 /* Below word_or_byte is bits to set */
1851 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1852 /* Below byte2 is bits to reset */
1853 writeb(byte2, memaddr + head + cmdStart + 3);
1855 writeb(cmd, memaddr + head + cmdStart + 0);
1856 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1857 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1859 head = (head + 4) & (cmdMax - cmdStart - 4);
1860 writew(head, &ch->mailbox->cin);
1863 for (;;) { /* Begin forever loop */
1866 printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n");
1869 head = readw(&ch->mailbox->cin);
1870 cmdTail = readw(&ch->mailbox->cout);
1871 n = (head - cmdTail) & (cmdMax - cmdStart - 4);
1872 /* ----------------------------------------------------------
1873 Basically this will break when the FEP acknowledges the
1874 command by incrementing cmdTail (Making it equal to head).
1875 ------------------------------------------------------------- */
1876 if (n <= ncmds * (sizeof(short) * 4))
1877 break; /* Well nearly forever :-) */
1878 } /* End forever loop */
1881 /* ---------------------------------------------------------------------
1882 Digi products use fields in their channels structures that are very
1883 similar to the c_cflag and c_iflag fields typically found in UNIX
1884 termios structures. The below three routines allow mappings
1885 between these hardware "flags" and their respective Linux flags.
1886 ------------------------------------------------------------------------- */
1888 /* --------------------- Begin termios2digi_h -------------------- */
1890 static unsigned termios2digi_h(struct channel *ch, unsigned cflag)
1891 { /* Begin termios2digi_h */
1894 if (cflag & CRTSCTS) {
1895 ch->digiext.digi_flags |= (RTSPACE | CTSPACE);
1896 res |= ((ch->m_cts) | (ch->m_rts));
1899 if (ch->digiext.digi_flags & RTSPACE)
1902 if (ch->digiext.digi_flags & DTRPACE)
1905 if (ch->digiext.digi_flags & CTSPACE)
1908 if (ch->digiext.digi_flags & DSRPACE)
1911 if (ch->digiext.digi_flags & DCDPACE)
1914 if (res & (ch->m_rts))
1915 ch->digiext.digi_flags |= RTSPACE;
1917 if (res & (ch->m_cts))
1918 ch->digiext.digi_flags |= CTSPACE;
1922 } /* End termios2digi_h */
1924 /* --------------------- Begin termios2digi_i -------------------- */
1925 static unsigned termios2digi_i(struct channel *ch, unsigned iflag)
1926 { /* Begin termios2digi_i */
1928 unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK |
1929 INPCK | ISTRIP|IXON|IXANY|IXOFF);
1930 if (ch->digiext.digi_flags & DIGI_AIXON)
1934 } /* End termios2digi_i */
1936 /* --------------------- Begin termios2digi_c -------------------- */
1938 static unsigned termios2digi_c(struct channel *ch, unsigned cflag)
1939 { /* Begin termios2digi_c */
1942 if (cflag & CBAUDEX) { /* Begin detected CBAUDEX */
1943 ch->digiext.digi_flags |= DIGI_FAST;
1944 /* -------------------------------------------------------------
1945 HUPCL bit is used by FEP to indicate fast baud
1946 table is to be used.
1947 ----------------------------------------------------------------- */
1949 } /* End detected CBAUDEX */
1950 else ch->digiext.digi_flags &= ~DIGI_FAST;
1951 /* -------------------------------------------------------------------
1952 CBAUD has bit position 0x1000 set these days to indicate Linux
1953 baud rate remap. Digi hardware can't handle the bit assignment.
1954 (We use a different bit assignment for high speed.). Clear this
1956 ---------------------------------------------------------------------- */
1957 res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE);
1958 /* -------------------------------------------------------------
1959 This gets a little confusing. The Digi cards have their own
1960 representation of c_cflags controling baud rate. For the most
1961 part this is identical to the Linux implementation. However;
1962 Digi supports one rate (76800) that Linux doesn't. This means
1963 that the c_cflag entry that would normally mean 76800 for Digi
1964 actually means 115200 under Linux. Without the below mapping,
1965 a stty 115200 would only drive the board at 76800. Since
1966 the rate 230400 is also found after 76800, the same problem afflicts
1967 us when we choose a rate of 230400. Without the below modificiation
1968 stty 230400 would actually give us 115200.
1970 There are two additional differences. The Linux value for CLOCAL
1971 (0x800; 0004000) has no meaning to the Digi hardware. Also in
1972 later releases of Linux; the CBAUD define has CBAUDEX (0x1000;
1973 0010000) ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX
1974 should be checked for a screened out prior to termios2digi_c
1975 returning. Since CLOCAL isn't used by the board this can be
1976 ignored as long as the returned value is used only by Digi hardware.
1977 ----------------------------------------------------------------- */
1978 if (cflag & CBAUDEX) {
1979 /* -------------------------------------------------------------
1980 The below code is trying to guarantee that only baud rates
1981 115200 and 230400 are remapped. We use exclusive or because
1982 the various baud rates share common bit positions and therefore
1983 can't be tested for easily.
1984 ----------------------------------------------------------------- */
1987 if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) ||
1988 (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX))))
1993 } /* End termios2digi_c */
1995 /* --------------------- Begin epcaparam ----------------------- */
1997 /* Caller must hold the locks */
1998 static void epcaparam(struct tty_struct *tty, struct channel *ch)
1999 { /* Begin epcaparam */
2001 unsigned int cmdHead;
2003 struct board_chan __iomem *bc;
2004 unsigned mval, hflow, cflag, iflag;
2007 epcaassert(bc !=0, "bc out of range");
2011 if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */
2012 cmdHead = readw(&bc->rin);
2013 writew(cmdHead, &bc->rout);
2014 cmdHead = readw(&bc->tin);
2015 /* Changing baud in mid-stream transmission can be wonderful */
2016 /* ---------------------------------------------------------------
2017 Flush current transmit buffer by setting cmdTail pointer (tout)
2018 to cmdHead pointer (tin). Hopefully the transmit buffer is empty.
2019 ----------------------------------------------------------------- */
2020 fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0);
2022 } else { /* Begin CBAUD not detected */
2023 /* -------------------------------------------------------------------
2024 c_cflags have changed but that change had nothing to do with BAUD.
2025 Propagate the change to the card.
2026 ---------------------------------------------------------------------- */
2027 cflag = termios2digi_c(ch, ts->c_cflag);
2028 if (cflag != ch->fepcflag) {
2029 ch->fepcflag = cflag;
2030 /* Set baud rate, char size, stop bits, parity */
2031 fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0);
2033 /* ----------------------------------------------------------------
2034 If the user has not forced CLOCAL and if the device is not a
2035 CALLOUT device (Which is always CLOCAL) we set flags such that
2036 the driver will wait on carrier detect.
2037 ------------------------------------------------------------------- */
2038 if (ts->c_cflag & CLOCAL)
2039 ch->asyncflags &= ~ASYNC_CHECK_CD;
2041 ch->asyncflags |= ASYNC_CHECK_CD;
2042 mval = ch->m_dtr | ch->m_rts;
2043 } /* End CBAUD not detected */
2044 iflag = termios2digi_i(ch, ts->c_iflag);
2045 /* Check input mode flags */
2046 if (iflag != ch->fepiflag) {
2047 ch->fepiflag = iflag;
2048 /* ---------------------------------------------------------------
2049 Command sets channels iflag structure on the board. Such things
2050 as input soft flow control, handling of parity errors, and
2051 break handling are all set here.
2052 ------------------------------------------------------------------- */
2053 /* break handling, parity handling, input stripping, flow control chars */
2054 fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0);
2056 /* ---------------------------------------------------------------
2057 Set the board mint value for this channel. This will cause hardware
2058 events to be generated each time the DCD signal (Described in mint)
2060 ------------------------------------------------------------------- */
2061 writeb(ch->dcd, &bc->mint);
2062 if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD))
2063 if (ch->digiext.digi_flags & DIGI_FORCEDCD)
2064 writeb(0, &bc->mint);
2065 ch->imodem = readb(&bc->mstat);
2066 hflow = termios2digi_h(ch, ts->c_cflag);
2067 if (hflow != ch->hflow) {
2069 /* --------------------------------------------------------------
2070 Hard flow control has been selected but the board is not
2071 using it. Activate hard flow control now.
2072 ----------------------------------------------------------------- */
2073 fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1);
2075 mval ^= ch->modemfake & (mval ^ ch->modem);
2077 if (ch->omodem ^ mval) {
2079 /* --------------------------------------------------------------
2080 The below command sets the DTR and RTS mstat structure. If
2081 hard flow control is NOT active these changes will drive the
2082 output of the actual DTR and RTS lines. If hard flow control
2083 is active, the changes will be saved in the mstat structure and
2084 only asserted when hard flow control is turned off.
2085 ----------------------------------------------------------------- */
2087 /* First reset DTR & RTS; then set them */
2088 fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1);
2089 fepcmd(ch, SETMODEM, mval, 0, 0, 1);
2091 if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) {
2092 ch->fepstartc = ch->startc;
2093 ch->fepstopc = ch->stopc;
2094 /* ------------------------------------------------------------
2095 The XON / XOFF characters have changed; propagate these
2096 changes to the card.
2097 --------------------------------------------------------------- */
2098 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2100 if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) {
2101 ch->fepstartca = ch->startca;
2102 ch->fepstopca = ch->stopca;
2103 /* ---------------------------------------------------------------
2104 Similar to the above, this time the auxilarly XON / XOFF
2105 characters have changed; propagate these changes to the card.
2106 ------------------------------------------------------------------ */
2107 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2109 } /* End epcaparam */
2111 /* --------------------- Begin receive_data ----------------------- */
2112 /* Caller holds lock */
2113 static void receive_data(struct channel *ch)
2114 { /* Begin receive_data */
2117 struct termios *ts = NULL;
2118 struct tty_struct *tty;
2119 struct board_chan __iomem *bc;
2120 int dataToRead, wrapgap, bytesAvailable;
2121 unsigned int tail, head;
2122 unsigned int wrapmask;
2124 /* ---------------------------------------------------------------
2125 This routine is called by doint when a receive data event
2127 ------------------------------------------------------------------- */
2130 if (ch->statusflags & RXSTOPPED)
2137 wrapmask = ch->rxbufsize - 1;
2139 /* ---------------------------------------------------------------------
2140 Get the head and tail pointers to the receiver queue. Wrap the
2141 head pointer if it has reached the end of the buffer.
2142 ------------------------------------------------------------------------ */
2143 head = readw(&bc->rin);
2145 tail = readw(&bc->rout) & wrapmask;
2147 bytesAvailable = (head - tail) & wrapmask;
2148 if (bytesAvailable == 0)
2151 /* ------------------------------------------------------------------
2152 If CREAD bit is off or device not open, set TX tail to head
2153 --------------------------------------------------------------------- */
2155 if (!tty || !ts || !(ts->c_cflag & CREAD)) {
2156 writew(head, &bc->rout);
2160 if (tty_buffer_request_room(tty, bytesAvailable + 1) == 0)
2163 if (readb(&bc->orun)) {
2164 writeb(0, &bc->orun);
2165 printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",tty->name);
2166 tty_insert_flip_char(tty, 0, TTY_OVERRUN);
2169 while (bytesAvailable > 0) { /* Begin while there is data on the card */
2170 wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail;
2171 /* ---------------------------------------------------------------
2172 Even if head has wrapped around only report the amount of
2173 data to be equal to the size - tail. Remember memcpy can't
2174 automaticly wrap around the receive buffer.
2175 ----------------------------------------------------------------- */
2176 dataToRead = (wrapgap < bytesAvailable) ? wrapgap : bytesAvailable;
2177 /* --------------------------------------------------------------
2178 Make sure we don't overflow the buffer
2179 ----------------------------------------------------------------- */
2180 dataToRead = tty_prepare_flip_string(tty, &rptr, dataToRead);
2181 if (dataToRead == 0)
2183 /* ---------------------------------------------------------------
2184 Move data read from our card into the line disciplines buffer
2185 for translation if necessary.
2186 ------------------------------------------------------------------ */
2187 memcpy_fromio(rptr, ch->rxptr + tail, dataToRead);
2188 tail = (tail + dataToRead) & wrapmask;
2189 bytesAvailable -= dataToRead;
2190 } /* End while there is data on the card */
2192 writew(tail, &bc->rout);
2193 /* Must be called with global data */
2194 tty_schedule_flip(ch->tty);
2196 } /* End receive_data */
2198 static int info_ioctl(struct tty_struct *tty, struct file * file,
2199 unsigned int cmd, unsigned long arg)
2202 { /* Begin switch cmd */
2204 { /* Begin case DIGI_GETINFO */
2205 struct digi_info di ;
2208 if(get_user(brd, (unsigned int __user *)arg))
2210 if (brd < 0 || brd >= num_cards || num_cards == 0)
2213 memset(&di, 0, sizeof(di));
2216 di.status = boards[brd].status;
2217 di.type = boards[brd].type ;
2218 di.numports = boards[brd].numports ;
2219 /* Legacy fixups - just move along nothing to see */
2220 di.port = (unsigned char *)boards[brd].port ;
2221 di.membase = (unsigned char *)boards[brd].membase ;
2223 if (copy_to_user((void __user *)arg, &di, sizeof (di)))
2227 } /* End case DIGI_GETINFO */
2230 { /* Begin case DIGI_POLLER */
2232 int brd = arg & 0xff000000 >> 16 ;
2233 unsigned char state = arg & 0xff ;
2235 if (brd < 0 || brd >= num_cards) {
2236 printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n");
2239 digi_poller_inhibited = state ;
2241 } /* End case DIGI_POLLER */
2244 { /* Begin case DIGI_INIT */
2245 /* ------------------------------------------------------------
2246 This call is made by the apps to complete the initilization
2247 of the board(s). This routine is responsible for setting
2248 the card to its initial state and setting the drivers control
2249 fields to the sutianle settings for the card in question.
2250 ---------------------------------------------------------------- */
2252 for (crd = 0; crd < num_cards; crd++)
2253 post_fep_init (crd);
2255 } /* End case DIGI_INIT */
2258 } /* End switch cmd */
2261 /* --------------------- Begin pc_ioctl ----------------------- */
2263 static int pc_tiocmget(struct tty_struct *tty, struct file *file)
2265 struct channel *ch = (struct channel *) tty->driver_data;
2266 struct board_chan __iomem *bc;
2267 unsigned int mstat, mflag = 0;
2268 unsigned long flags;
2275 spin_lock_irqsave(&epca_lock, flags);
2277 mstat = readb(&bc->mstat);
2279 spin_unlock_irqrestore(&epca_lock, flags);
2281 if (mstat & ch->m_dtr)
2283 if (mstat & ch->m_rts)
2285 if (mstat & ch->m_cts)
2287 if (mstat & ch->dsr)
2289 if (mstat & ch->m_ri)
2291 if (mstat & ch->dcd)
2296 static int pc_tiocmset(struct tty_struct *tty, struct file *file,
2297 unsigned int set, unsigned int clear)
2299 struct channel *ch = (struct channel *) tty->driver_data;
2300 unsigned long flags;
2305 spin_lock_irqsave(&epca_lock, flags);
2307 * I think this modemfake stuff is broken. It doesn't
2308 * correctly reflect the behaviour desired by the TIOCM*
2309 * ioctls. Therefore this is probably broken.
2311 if (set & TIOCM_RTS) {
2312 ch->modemfake |= ch->m_rts;
2313 ch->modem |= ch->m_rts;
2315 if (set & TIOCM_DTR) {
2316 ch->modemfake |= ch->m_dtr;
2317 ch->modem |= ch->m_dtr;
2319 if (clear & TIOCM_RTS) {
2320 ch->modemfake |= ch->m_rts;
2321 ch->modem &= ~ch->m_rts;
2323 if (clear & TIOCM_DTR) {
2324 ch->modemfake |= ch->m_dtr;
2325 ch->modem &= ~ch->m_dtr;
2328 /* --------------------------------------------------------------
2329 The below routine generally sets up parity, baud, flow control
2330 issues, etc.... It effect both control flags and input flags.
2331 ------------------------------------------------------------------ */
2334 spin_unlock_irqrestore(&epca_lock, flags);
2338 static int pc_ioctl(struct tty_struct *tty, struct file * file,
2339 unsigned int cmd, unsigned long arg)
2340 { /* Begin pc_ioctl */
2344 unsigned long flags;
2345 unsigned int mflag, mstat;
2346 unsigned char startc, stopc;
2347 struct board_chan __iomem *bc;
2348 struct channel *ch = (struct channel *) tty->driver_data;
2349 void __user *argp = (void __user *)arg;
2356 /* -------------------------------------------------------------------
2357 For POSIX compliance we need to add more ioctls. See tty_ioctl.c
2358 in /usr/src/linux/drivers/char for a good example. In particular
2359 think about adding TCSETAF, TCSETAW, TCSETA, TCSETSF, TCSETSW, TCSETS.
2360 ---------------------------------------------------------------------- */
2363 { /* Begin switch cmd */
2366 if (copy_to_user(argp, tty->termios, sizeof(struct termios)))
2370 return get_termio(tty, argp);
2371 case TCSBRK: /* SVID version: non-zero arg --> no break */
2372 retval = tty_check_change(tty);
2375 /* Setup an event to indicate when the transmit buffer empties */
2376 spin_lock_irqsave(&epca_lock, flags);
2377 setup_empty_event(tty,ch);
2378 spin_unlock_irqrestore(&epca_lock, flags);
2379 tty_wait_until_sent(tty, 0);
2381 digi_send_break(ch, HZ/4); /* 1/4 second */
2383 case TCSBRKP: /* support for POSIX tcsendbreak() */
2384 retval = tty_check_change(tty);
2388 /* Setup an event to indicate when the transmit buffer empties */
2389 spin_lock_irqsave(&epca_lock, flags);
2390 setup_empty_event(tty,ch);
2391 spin_unlock_irqrestore(&epca_lock, flags);
2392 tty_wait_until_sent(tty, 0);
2393 digi_send_break(ch, arg ? arg*(HZ/10) : HZ/4);
2396 if (put_user(C_CLOCAL(tty)?1:0, (unsigned long __user *)arg))
2403 if (get_user(value, (unsigned __user *)argp))
2405 tty->termios->c_cflag =
2406 ((tty->termios->c_cflag & ~CLOCAL) |
2407 (value ? CLOCAL : 0));
2411 mflag = pc_tiocmget(tty, file);
2412 if (put_user(mflag, (unsigned long __user *)argp))
2416 if (get_user(mstat, (unsigned __user *)argp))
2418 return pc_tiocmset(tty, file, mstat, ~mstat);
2420 spin_lock_irqsave(&epca_lock, flags);
2421 ch->omodem |= ch->m_dtr;
2423 fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1);
2425 spin_unlock_irqrestore(&epca_lock, flags);
2429 spin_lock_irqsave(&epca_lock, flags);
2430 ch->omodem &= ~ch->m_dtr;
2432 fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1);
2434 spin_unlock_irqrestore(&epca_lock, flags);
2437 if (copy_to_user(argp, &ch->digiext, sizeof(digi_t)))
2442 if (cmd == DIGI_SETAW) {
2443 /* Setup an event to indicate when the transmit buffer empties */
2444 spin_lock_irqsave(&epca_lock, flags);
2445 setup_empty_event(tty,ch);
2446 spin_unlock_irqrestore(&epca_lock, flags);
2447 tty_wait_until_sent(tty, 0);
2449 /* ldisc lock already held in ioctl */
2450 if (tty->ldisc.flush_buffer)
2451 tty->ldisc.flush_buffer(tty);
2455 if (copy_from_user(&ch->digiext, argp, sizeof(digi_t)))
2458 if (ch->digiext.digi_flags & DIGI_ALTPIN) {
2459 ch->dcd = ch->m_dsr;
2460 ch->dsr = ch->m_dcd;
2462 ch->dcd = ch->m_dcd;
2463 ch->dsr = ch->m_dsr;
2466 spin_lock_irqsave(&epca_lock, flags);
2469 /* -----------------------------------------------------------------
2470 The below routine generally sets up parity, baud, flow control
2471 issues, etc.... It effect both control flags and input flags.
2472 ------------------------------------------------------------------- */
2476 spin_unlock_irqrestore(&epca_lock, flags);
2481 spin_lock_irqsave(&epca_lock, flags);
2483 if (cmd == DIGI_GETFLOW) {
2484 dflow.startc = readb(&bc->startc);
2485 dflow.stopc = readb(&bc->stopc);
2487 dflow.startc = readb(&bc->startca);
2488 dflow.stopc = readb(&bc->stopca);
2491 spin_unlock_irqrestore(&epca_lock, flags);
2493 if (copy_to_user(argp, &dflow, sizeof(dflow)))
2499 if (cmd == DIGI_SETFLOW) {
2500 startc = ch->startc;
2503 startc = ch->startca;
2507 if (copy_from_user(&dflow, argp, sizeof(dflow)))
2510 if (dflow.startc != startc || dflow.stopc != stopc) { /* Begin if setflow toggled */
2511 spin_lock_irqsave(&epca_lock, flags);
2514 if (cmd == DIGI_SETFLOW) {
2515 ch->fepstartc = ch->startc = dflow.startc;
2516 ch->fepstopc = ch->stopc = dflow.stopc;
2517 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2519 ch->fepstartca = ch->startca = dflow.startc;
2520 ch->fepstopca = ch->stopca = dflow.stopc;
2521 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2524 if (ch->statusflags & TXSTOPPED)
2528 spin_unlock_irqrestore(&epca_lock, flags);
2529 } /* End if setflow toggled */
2532 return -ENOIOCTLCMD;
2533 } /* End switch cmd */
2535 } /* End pc_ioctl */
2537 /* --------------------- Begin pc_set_termios ----------------------- */
2539 static void pc_set_termios(struct tty_struct *tty, struct termios *old_termios)
2540 { /* Begin pc_set_termios */
2543 unsigned long flags;
2544 /* ---------------------------------------------------------
2545 verifyChannel returns the channel from the tty struct
2546 if it is valid. This serves as a sanity check.
2547 ------------------------------------------------------------- */
2548 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2549 spin_lock_irqsave(&epca_lock, flags);
2553 spin_unlock_irqrestore(&epca_lock, flags);
2555 if ((old_termios->c_cflag & CRTSCTS) &&
2556 ((tty->termios->c_cflag & CRTSCTS) == 0))
2557 tty->hw_stopped = 0;
2559 if (!(old_termios->c_cflag & CLOCAL) &&
2560 (tty->termios->c_cflag & CLOCAL))
2561 wake_up_interruptible(&ch->open_wait);
2563 } /* End if channel valid */
2565 } /* End pc_set_termios */
2567 /* --------------------- Begin do_softint ----------------------- */
2569 static void do_softint(void *private_)
2570 { /* Begin do_softint */
2571 struct channel *ch = (struct channel *) private_;
2572 /* Called in response to a modem change event */
2573 if (ch && ch->magic == EPCA_MAGIC) { /* Begin EPCA_MAGIC */
2574 struct tty_struct *tty = ch->tty;
2576 if (tty && tty->driver_data) {
2577 if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) { /* Begin if clear_bit */
2578 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2579 wake_up_interruptible(&ch->open_wait);
2580 ch->asyncflags &= ~ASYNC_NORMAL_ACTIVE;
2581 } /* End if clear_bit */
2583 } /* End EPCA_MAGIC */
2584 } /* End do_softint */
2586 /* ------------------------------------------------------------
2587 pc_stop and pc_start provide software flow control to the
2588 routine and the pc_ioctl routine.
2589 ---------------------------------------------------------------- */
2591 /* --------------------- Begin pc_stop ----------------------- */
2593 static void pc_stop(struct tty_struct *tty)
2594 { /* Begin pc_stop */
2597 unsigned long flags;
2598 /* ---------------------------------------------------------
2599 verifyChannel returns the channel from the tty struct
2600 if it is valid. This serves as a sanity check.
2601 ------------------------------------------------------------- */
2602 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if valid channel */
2603 spin_lock_irqsave(&epca_lock, flags);
2604 if ((ch->statusflags & TXSTOPPED) == 0) { /* Begin if transmit stop requested */
2606 /* STOP transmitting now !! */
2607 fepcmd(ch, PAUSETX, 0, 0, 0, 0);
2608 ch->statusflags |= TXSTOPPED;
2610 } /* End if transmit stop requested */
2611 spin_unlock_irqrestore(&epca_lock, flags);
2612 } /* End if valid channel */
2615 /* --------------------- Begin pc_start ----------------------- */
2617 static void pc_start(struct tty_struct *tty)
2618 { /* Begin pc_start */
2620 /* ---------------------------------------------------------
2621 verifyChannel returns the channel from the tty struct
2622 if it is valid. This serves as a sanity check.
2623 ------------------------------------------------------------- */
2624 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2625 unsigned long flags;
2626 spin_lock_irqsave(&epca_lock, flags);
2627 /* Just in case output was resumed because of a change in Digi-flow */
2628 if (ch->statusflags & TXSTOPPED) { /* Begin transmit resume requested */
2629 struct board_chan __iomem *bc;
2632 if (ch->statusflags & LOWWAIT)
2633 writeb(1, &bc->ilow);
2634 /* Okay, you can start transmitting again... */
2635 fepcmd(ch, RESUMETX, 0, 0, 0, 0);
2636 ch->statusflags &= ~TXSTOPPED;
2638 } /* End transmit resume requested */
2639 spin_unlock_irqrestore(&epca_lock, flags);
2640 } /* End if channel valid */
2641 } /* End pc_start */
2643 /* ------------------------------------------------------------------
2644 The below routines pc_throttle and pc_unthrottle are used
2645 to slow (And resume) the receipt of data into the kernels
2646 receive buffers. The exact occurrence of this depends on the
2647 size of the kernels receive buffer and what the 'watermarks'
2648 are set to for that buffer. See the n_ttys.c file for more
2650 ______________________________________________________________________ */
2651 /* --------------------- Begin throttle ----------------------- */
2653 static void pc_throttle(struct tty_struct * tty)
2654 { /* Begin pc_throttle */
2656 unsigned long flags;
2657 /* ---------------------------------------------------------
2658 verifyChannel returns the channel from the tty struct
2659 if it is valid. This serves as a sanity check.
2660 ------------------------------------------------------------- */
2661 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2662 spin_lock_irqsave(&epca_lock, flags);
2663 if ((ch->statusflags & RXSTOPPED) == 0) {
2665 fepcmd(ch, PAUSERX, 0, 0, 0, 0);
2666 ch->statusflags |= RXSTOPPED;
2669 spin_unlock_irqrestore(&epca_lock, flags);
2670 } /* End if channel valid */
2671 } /* End pc_throttle */
2673 /* --------------------- Begin unthrottle ----------------------- */
2675 static void pc_unthrottle(struct tty_struct *tty)
2676 { /* Begin pc_unthrottle */
2678 unsigned long flags;
2679 /* ---------------------------------------------------------
2680 verifyChannel returns the channel from the tty struct
2681 if it is valid. This serves as a sanity check.
2682 ------------------------------------------------------------- */
2683 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2684 /* Just in case output was resumed because of a change in Digi-flow */
2685 spin_lock_irqsave(&epca_lock, flags);
2686 if (ch->statusflags & RXSTOPPED) {
2688 fepcmd(ch, RESUMERX, 0, 0, 0, 0);
2689 ch->statusflags &= ~RXSTOPPED;
2692 spin_unlock_irqrestore(&epca_lock, flags);
2693 } /* End if channel valid */
2694 } /* End pc_unthrottle */
2696 /* --------------------- Begin digi_send_break ----------------------- */
2698 void digi_send_break(struct channel *ch, int msec)
2699 { /* Begin digi_send_break */
2700 unsigned long flags;
2702 spin_lock_irqsave(&epca_lock, flags);
2704 /* --------------------------------------------------------------------
2705 Maybe I should send an infinite break here, schedule() for
2706 msec amount of time, and then stop the break. This way,
2707 the user can't screw up the FEP by causing digi_send_break()
2708 to be called (i.e. via an ioctl()) more than once in msec amount
2709 of time. Try this for now...
2710 ------------------------------------------------------------------------ */
2711 fepcmd(ch, SENDBREAK, msec, 0, 10, 0);
2713 spin_unlock_irqrestore(&epca_lock, flags);
2714 } /* End digi_send_break */
2716 /* --------------------- Begin setup_empty_event ----------------------- */
2718 /* Caller MUST hold the lock */
2720 static void setup_empty_event(struct tty_struct *tty, struct channel *ch)
2721 { /* Begin setup_empty_event */
2723 struct board_chan __iomem *bc = ch->brdchan;
2726 ch->statusflags |= EMPTYWAIT;
2727 /* ------------------------------------------------------------------
2728 When set the iempty flag request a event to be generated when the
2729 transmit buffer is empty (If there is no BREAK in progress).
2730 --------------------------------------------------------------------- */
2731 writeb(1, &bc->iempty);
2733 } /* End setup_empty_event */
2735 /* --------------------- Begin get_termio ----------------------- */
2737 static int get_termio(struct tty_struct * tty, struct termio __user * termio)
2738 { /* Begin get_termio */
2739 return kernel_termios_to_user_termio(termio, tty->termios);
2740 } /* End get_termio */
2742 /* ---------------------- Begin epca_setup -------------------------- */
2743 void epca_setup(char *str, int *ints)
2744 { /* Begin epca_setup */
2745 struct board_info board;
2746 int index, loop, last;
2750 /* ----------------------------------------------------------------------
2751 If this routine looks a little strange it is because it is only called
2752 if a LILO append command is given to boot the kernel with parameters.
2753 In this way, we can provide the user a method of changing his board
2754 configuration without rebuilding the kernel.
2755 ----------------------------------------------------------------------- */
2759 memset(&board, 0, sizeof(board));
2761 /* Assume the data is int first, later we can change it */
2762 /* I think that array position 0 of ints holds the number of args */
2763 for (last = 0, index = 1; index <= ints[0]; index++)
2765 { /* Begin parse switch */
2767 board.status = ints[index];
2768 /* ---------------------------------------------------------
2769 We check for 2 (As opposed to 1; because 2 is a flag
2770 instructing the driver to ignore epcaconfig.) For this
2771 reason we check for 2.
2772 ------------------------------------------------------------ */
2773 if (board.status == 2) { /* Begin ignore epcaconfig as well as lilo cmd line */
2777 } /* End ignore epcaconfig as well as lilo cmd line */
2779 if (board.status > 2) {
2780 printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n", board.status);
2781 invalid_lilo_config = 1;
2782 setup_error_code |= INVALID_BOARD_STATUS;
2788 board.type = ints[index];
2789 if (board.type >= PCIXEM) {
2790 printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type);
2791 invalid_lilo_config = 1;
2792 setup_error_code |= INVALID_BOARD_TYPE;
2798 board.altpin = ints[index];
2799 if (board.altpin > 1) {
2800 printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin);
2801 invalid_lilo_config = 1;
2802 setup_error_code |= INVALID_ALTPIN;
2809 board.numports = ints[index];
2810 if (board.numports < 2 || board.numports > 256) {
2811 printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports);
2812 invalid_lilo_config = 1;
2813 setup_error_code |= INVALID_NUM_PORTS;
2816 nbdevs += board.numports;
2821 board.port = ints[index];
2822 if (ints[index] <= 0) {
2823 printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port);
2824 invalid_lilo_config = 1;
2825 setup_error_code |= INVALID_PORT_BASE;
2832 board.membase = ints[index];
2833 if (ints[index] <= 0) {
2834 printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",(unsigned int)board.membase);
2835 invalid_lilo_config = 1;
2836 setup_error_code |= INVALID_MEM_BASE;
2843 printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n");
2846 } /* End parse switch */
2848 while (str && *str) { /* Begin while there is a string arg */
2849 /* find the next comma or terminator */
2851 /* While string is not null, and a comma hasn't been found */
2852 while (*temp && (*temp != ','))
2858 /* Set index to the number of args + 1 */
2865 if (strncmp("Disable", str, len) == 0)
2867 else if (strncmp("Enable", str, len) == 0)
2870 printk(KERN_ERR "epca_setup: Invalid status %s\n", str);
2871 invalid_lilo_config = 1;
2872 setup_error_code |= INVALID_BOARD_STATUS;
2879 for(loop = 0; loop < EPCA_NUM_TYPES; loop++)
2880 if (strcmp(board_desc[loop], str) == 0)
2882 /* ---------------------------------------------------------------
2883 If the index incremented above refers to a legitamate board
2885 ------------------------------------------------------------------*/
2886 if (index < EPCA_NUM_TYPES)
2889 printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str);
2890 invalid_lilo_config = 1;
2891 setup_error_code |= INVALID_BOARD_TYPE;
2899 if (strncmp("Disable", str, len) == 0)
2901 else if (strncmp("Enable", str, len) == 0)
2904 printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str);
2905 invalid_lilo_config = 1;
2906 setup_error_code |= INVALID_ALTPIN;
2914 while (isdigit(*t2))
2918 printk(KERN_ERR "epca_setup: Invalid port count %s\n", str);
2919 invalid_lilo_config = 1;
2920 setup_error_code |= INVALID_NUM_PORTS;
2924 /* ------------------------------------------------------------
2925 There is not a man page for simple_strtoul but the code can be
2926 found in vsprintf.c. The first argument is the string to
2927 translate (To an unsigned long obviously), the second argument
2928 can be the address of any character variable or a NULL. If a
2929 variable is given, the end pointer of the string will be stored
2930 in that variable; if a NULL is given the end pointer will
2931 not be returned. The last argument is the base to use. If
2932 a 0 is indicated, the routine will attempt to determine the
2933 proper base by looking at the values prefix (A '0' for octal,
2934 a 'x' for hex, etc ... If a value is given it will use that
2936 ---------------------------------------------------------------- */
2937 board.numports = simple_strtoul(str, NULL, 0);
2938 nbdevs += board.numports;
2944 while (isxdigit(*t2))
2948 printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str);
2949 invalid_lilo_config = 1;
2950 setup_error_code |= INVALID_PORT_BASE;
2954 board.port = simple_strtoul(str, NULL, 16);
2960 while (isxdigit(*t2))
2964 printk(KERN_ERR "epca_setup: Invalid memory base %s\n",str);
2965 invalid_lilo_config = 1;
2966 setup_error_code |= INVALID_MEM_BASE;
2969 board.membase = simple_strtoul(str, NULL, 16);
2973 printk(KERN_ERR "epca: Too many string parms\n");
2977 } /* End while there is a string arg */
2980 printk(KERN_ERR "epca: Insufficient parms specified\n");
2984 /* I should REALLY validate the stuff here */
2985 /* Copies our local copy of board into boards */
2986 memcpy((void *)&boards[num_cards],(void *)&board, sizeof(board));
2987 /* Does this get called once per lilo arg are what ? */
2988 printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n",
2989 num_cards, board_desc[board.type],
2990 board.numports, (int)board.port, (unsigned int) board.membase);
2992 } /* End epca_setup */
2995 /* ------------------------ Begin init_PCI --------------------------- */
2997 enum epic_board_types {
3005 /* indexed directly by epic_board_types enum */
3007 unsigned char board_type;
3008 unsigned bar_idx; /* PCI base address region */
3009 } epca_info_tbl[] = {
3016 static int __devinit epca_init_one (struct pci_dev *pdev,
3017 const struct pci_device_id *ent)
3019 static int board_num = -1;
3020 int board_idx, info_idx = ent->driver_data;
3023 if (pci_enable_device(pdev))
3027 board_idx = board_num + num_cards;
3028 if (board_idx >= MAXBOARDS)
3031 addr = pci_resource_start (pdev, epca_info_tbl[info_idx].bar_idx);
3033 printk (KERN_ERR PFX "PCI region #%d not available (size 0)\n",
3034 epca_info_tbl[info_idx].bar_idx);
3038 boards[board_idx].status = ENABLED;
3039 boards[board_idx].type = epca_info_tbl[info_idx].board_type;
3040 boards[board_idx].numports = 0x0;
3041 boards[board_idx].port = addr + PCI_IO_OFFSET;
3042 boards[board_idx].membase = addr;
3044 if (!request_mem_region (addr + PCI_IO_OFFSET, 0x200000, "epca")) {
3045 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3046 0x200000, addr + PCI_IO_OFFSET);
3050 boards[board_idx].re_map_port = ioremap(addr + PCI_IO_OFFSET, 0x200000);
3051 if (!boards[board_idx].re_map_port) {
3052 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3053 0x200000, addr + PCI_IO_OFFSET);
3054 goto err_out_free_pciio;
3057 if (!request_mem_region (addr, 0x200000, "epca")) {
3058 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3060 goto err_out_free_iounmap;
3063 boards[board_idx].re_map_membase = ioremap(addr, 0x200000);
3064 if (!boards[board_idx].re_map_membase) {
3065 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3066 0x200000, addr + PCI_IO_OFFSET);
3067 goto err_out_free_memregion;
3070 /* --------------------------------------------------------------
3071 I don't know what the below does, but the hardware guys say
3072 its required on everything except PLX (In this case XRJ).
3073 ---------------------------------------------------------------- */
3074 if (info_idx != brd_xrj) {
3075 pci_write_config_byte(pdev, 0x40, 0);
3076 pci_write_config_byte(pdev, 0x46, 0);
3081 err_out_free_memregion:
3082 release_mem_region (addr, 0x200000);
3083 err_out_free_iounmap:
3084 iounmap (boards[board_idx].re_map_port);
3086 release_mem_region (addr + PCI_IO_OFFSET, 0x200000);
3092 static struct pci_device_id epca_pci_tbl[] = {
3093 { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr },
3094 { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem },
3095 { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx },
3096 { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj },
3100 MODULE_DEVICE_TABLE(pci, epca_pci_tbl);
3102 int __init init_PCI (void)
3103 { /* Begin init_PCI */
3104 memset (&epca_driver, 0, sizeof (epca_driver));
3105 epca_driver.name = "epca";
3106 epca_driver.id_table = epca_pci_tbl;
3107 epca_driver.probe = epca_init_one;
3109 return pci_register_driver(&epca_driver);
3112 MODULE_LICENSE("GPL");