1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 ************************************************************************/
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/sched.h>
63 #include <linux/ethtool.h>
64 #include <linux/workqueue.h>
65 #include <linux/if_vlan.h>
67 #include <linux/tcp.h>
70 #include <asm/system.h>
71 #include <asm/uaccess.h>
73 #include <asm/div64.h>
78 #include "s2io-regs.h"
80 #define DRV_VERSION "2.0.15.2"
82 /* S2io Driver name & version. */
83 static char s2io_driver_name[] = "Neterion";
84 static char s2io_driver_version[] = DRV_VERSION;
86 static int rxd_size[4] = {32,48,48,64};
87 static int rxd_count[4] = {127,85,85,63};
89 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
93 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
94 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
100 * Cards with following subsystem_id have a link state indication
101 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
102 * macro below identifies these cards given the subsystem_id.
104 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
105 (dev_type == XFRAME_I_DEVICE) ? \
106 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
107 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
109 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
110 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
111 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
114 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
116 mac_info_t *mac_control;
118 mac_control = &sp->mac_control;
119 if (rxb_size <= rxd_count[sp->rxd_mode])
121 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
137 {"tmac_data_octets"},
141 {"tmac_pause_ctrl_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
214 {"new_rd_req_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
219 {"new_wr_req_rtry_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
230 {"rmac_ttl_1519_4095_frms"},
231 {"rmac_ttl_4096_8191_frms"},
232 {"rmac_ttl_8192_max_frms"},
233 {"rmac_ttl_gt_max_frms"},
234 {"rmac_osized_alt_frms"},
235 {"rmac_jabber_alt_frms"},
236 {"rmac_gt_max_alt_frms"},
238 {"rmac_len_discard"},
239 {"rmac_fcs_discard"},
242 {"rmac_red_discard"},
243 {"rmac_rts_discard"},
244 {"rmac_ingm_full_discard"},
246 {"\n DRIVER STATISTICS"},
247 {"single_bit_ecc_errs"},
248 {"double_bit_ecc_errs"},
254 ("alarm_transceiver_temp_high"),
255 ("alarm_transceiver_temp_low"),
256 ("alarm_laser_bias_current_high"),
257 ("alarm_laser_bias_current_low"),
258 ("alarm_laser_output_power_high"),
259 ("alarm_laser_output_power_low"),
260 ("warn_transceiver_temp_high"),
261 ("warn_transceiver_temp_low"),
262 ("warn_laser_bias_current_high"),
263 ("warn_laser_bias_current_low"),
264 ("warn_laser_output_power_high"),
265 ("warn_laser_output_power_low"),
266 ("lro_aggregated_pkts"),
267 ("lro_flush_both_count"),
268 ("lro_out_of_sequence_pkts"),
269 ("lro_flush_due_to_max_pkts"),
270 ("lro_avg_aggr_pkts"),
273 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
274 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
276 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
277 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
279 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
280 init_timer(&timer); \
281 timer.function = handle; \
282 timer.data = (unsigned long) arg; \
283 mod_timer(&timer, (jiffies + exp)) \
286 static void s2io_vlan_rx_register(struct net_device *dev,
287 struct vlan_group *grp)
289 nic_t *nic = dev->priv;
292 spin_lock_irqsave(&nic->tx_lock, flags);
294 spin_unlock_irqrestore(&nic->tx_lock, flags);
297 /* Unregister the vlan */
298 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
300 nic_t *nic = dev->priv;
303 spin_lock_irqsave(&nic->tx_lock, flags);
305 nic->vlgrp->vlan_devices[vid] = NULL;
306 spin_unlock_irqrestore(&nic->tx_lock, flags);
310 * Constants to be programmed into the Xena's registers, to configure
315 static const u64 herc_act_dtx_cfg[] = {
317 0x8000051536750000ULL, 0x80000515367500E0ULL,
319 0x8000051536750004ULL, 0x80000515367500E4ULL,
321 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
323 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
325 0x801205150D440000ULL, 0x801205150D4400E0ULL,
327 0x801205150D440004ULL, 0x801205150D4400E4ULL,
329 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
331 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
336 static const u64 xena_dtx_cfg[] = {
338 0x8000051500000000ULL, 0x80000515000000E0ULL,
340 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
342 0x8001051500000000ULL, 0x80010515000000E0ULL,
344 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
346 0x8002051500000000ULL, 0x80020515000000E0ULL,
348 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
353 * Constants for Fixing the MacAddress problem seen mostly on
356 static const u64 fix_mac[] = {
357 0x0060000000000000ULL, 0x0060600000000000ULL,
358 0x0040600000000000ULL, 0x0000600000000000ULL,
359 0x0020600000000000ULL, 0x0060600000000000ULL,
360 0x0020600000000000ULL, 0x0060600000000000ULL,
361 0x0020600000000000ULL, 0x0060600000000000ULL,
362 0x0020600000000000ULL, 0x0060600000000000ULL,
363 0x0020600000000000ULL, 0x0060600000000000ULL,
364 0x0020600000000000ULL, 0x0060600000000000ULL,
365 0x0020600000000000ULL, 0x0060600000000000ULL,
366 0x0020600000000000ULL, 0x0060600000000000ULL,
367 0x0020600000000000ULL, 0x0060600000000000ULL,
368 0x0020600000000000ULL, 0x0060600000000000ULL,
369 0x0020600000000000ULL, 0x0000600000000000ULL,
370 0x0040600000000000ULL, 0x0060600000000000ULL,
374 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
375 MODULE_LICENSE("GPL");
376 MODULE_VERSION(DRV_VERSION);
379 /* Module Loadable parameters. */
380 S2IO_PARM_INT(tx_fifo_num, 1);
381 S2IO_PARM_INT(rx_ring_num, 1);
384 S2IO_PARM_INT(rx_ring_mode, 1);
385 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
386 S2IO_PARM_INT(rmac_pause_time, 0x100);
387 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
388 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
389 S2IO_PARM_INT(shared_splits, 0);
390 S2IO_PARM_INT(tmac_util_period, 5);
391 S2IO_PARM_INT(rmac_util_period, 5);
392 S2IO_PARM_INT(bimodal, 0);
393 S2IO_PARM_INT(l3l4hdr_size, 128);
394 /* Frequency of Rx desc syncs expressed as power of 2 */
395 S2IO_PARM_INT(rxsync_frequency, 3);
396 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
397 S2IO_PARM_INT(intr_type, 0);
398 /* Large receive offload feature */
399 S2IO_PARM_INT(lro, 0);
400 /* Max pkts to be aggregated by LRO at one time. If not specified,
401 * aggregation happens until we hit max IP pkt size(64K)
403 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
404 #ifndef CONFIG_S2IO_NAPI
405 S2IO_PARM_INT(indicate_max_pkts, 0);
408 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
409 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
410 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
411 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
412 static unsigned int rts_frm_len[MAX_RX_RINGS] =
413 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
415 module_param_array(tx_fifo_len, uint, NULL, 0);
416 module_param_array(rx_ring_sz, uint, NULL, 0);
417 module_param_array(rts_frm_len, uint, NULL, 0);
421 * This table lists all the devices that this driver supports.
423 static struct pci_device_id s2io_tbl[] __devinitdata = {
424 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
425 PCI_ANY_ID, PCI_ANY_ID},
426 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
427 PCI_ANY_ID, PCI_ANY_ID},
428 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
429 PCI_ANY_ID, PCI_ANY_ID},
430 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
431 PCI_ANY_ID, PCI_ANY_ID},
435 MODULE_DEVICE_TABLE(pci, s2io_tbl);
437 static struct pci_driver s2io_driver = {
439 .id_table = s2io_tbl,
440 .probe = s2io_init_nic,
441 .remove = __devexit_p(s2io_rem_nic),
444 /* A simplifier macro used both by init and free shared_mem Fns(). */
445 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
448 * init_shared_mem - Allocation and Initialization of Memory
449 * @nic: Device private variable.
450 * Description: The function allocates all the memory areas shared
451 * between the NIC and the driver. This includes Tx descriptors,
452 * Rx descriptors and the statistics block.
455 static int init_shared_mem(struct s2io_nic *nic)
458 void *tmp_v_addr, *tmp_v_addr_next;
459 dma_addr_t tmp_p_addr, tmp_p_addr_next;
460 RxD_block_t *pre_rxd_blk = NULL;
461 int i, j, blk_cnt, rx_sz, tx_sz;
462 int lst_size, lst_per_page;
463 struct net_device *dev = nic->dev;
467 mac_info_t *mac_control;
468 struct config_param *config;
470 mac_control = &nic->mac_control;
471 config = &nic->config;
474 /* Allocation and initialization of TXDLs in FIOFs */
476 for (i = 0; i < config->tx_fifo_num; i++) {
477 size += config->tx_cfg[i].fifo_len;
479 if (size > MAX_AVAILABLE_TXDS) {
480 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
481 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
485 lst_size = (sizeof(TxD_t) * config->max_txds);
486 tx_sz = lst_size * size;
487 lst_per_page = PAGE_SIZE / lst_size;
489 for (i = 0; i < config->tx_fifo_num; i++) {
490 int fifo_len = config->tx_cfg[i].fifo_len;
491 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
492 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
494 if (!mac_control->fifos[i].list_info) {
496 "Malloc failed for list_info\n");
499 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
501 for (i = 0; i < config->tx_fifo_num; i++) {
502 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
504 mac_control->fifos[i].tx_curr_put_info.offset = 0;
505 mac_control->fifos[i].tx_curr_put_info.fifo_len =
506 config->tx_cfg[i].fifo_len - 1;
507 mac_control->fifos[i].tx_curr_get_info.offset = 0;
508 mac_control->fifos[i].tx_curr_get_info.fifo_len =
509 config->tx_cfg[i].fifo_len - 1;
510 mac_control->fifos[i].fifo_no = i;
511 mac_control->fifos[i].nic = nic;
512 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
514 for (j = 0; j < page_num; j++) {
518 tmp_v = pci_alloc_consistent(nic->pdev,
522 "pci_alloc_consistent ");
523 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
526 /* If we got a zero DMA address(can happen on
527 * certain platforms like PPC), reallocate.
528 * Store virtual address of page we don't want,
532 mac_control->zerodma_virt_addr = tmp_v;
534 "%s: Zero DMA address for TxDL. ", dev->name);
536 "Virtual address %p\n", tmp_v);
537 tmp_v = pci_alloc_consistent(nic->pdev,
541 "pci_alloc_consistent ");
542 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
546 while (k < lst_per_page) {
547 int l = (j * lst_per_page) + k;
548 if (l == config->tx_cfg[i].fifo_len)
550 mac_control->fifos[i].list_info[l].list_virt_addr =
551 tmp_v + (k * lst_size);
552 mac_control->fifos[i].list_info[l].list_phy_addr =
553 tmp_p + (k * lst_size);
559 nic->ufo_in_band_v = kmalloc((sizeof(u64) * size), GFP_KERNEL);
560 if (!nic->ufo_in_band_v)
562 memset(nic->ufo_in_band_v, 0, size);
564 /* Allocation and initialization of RXDs in Rings */
566 for (i = 0; i < config->rx_ring_num; i++) {
567 if (config->rx_cfg[i].num_rxd %
568 (rxd_count[nic->rxd_mode] + 1)) {
569 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
570 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
572 DBG_PRINT(ERR_DBG, "RxDs per Block");
575 size += config->rx_cfg[i].num_rxd;
576 mac_control->rings[i].block_count =
577 config->rx_cfg[i].num_rxd /
578 (rxd_count[nic->rxd_mode] + 1 );
579 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
580 mac_control->rings[i].block_count;
582 if (nic->rxd_mode == RXD_MODE_1)
583 size = (size * (sizeof(RxD1_t)));
585 size = (size * (sizeof(RxD3_t)));
588 for (i = 0; i < config->rx_ring_num; i++) {
589 mac_control->rings[i].rx_curr_get_info.block_index = 0;
590 mac_control->rings[i].rx_curr_get_info.offset = 0;
591 mac_control->rings[i].rx_curr_get_info.ring_len =
592 config->rx_cfg[i].num_rxd - 1;
593 mac_control->rings[i].rx_curr_put_info.block_index = 0;
594 mac_control->rings[i].rx_curr_put_info.offset = 0;
595 mac_control->rings[i].rx_curr_put_info.ring_len =
596 config->rx_cfg[i].num_rxd - 1;
597 mac_control->rings[i].nic = nic;
598 mac_control->rings[i].ring_no = i;
600 blk_cnt = config->rx_cfg[i].num_rxd /
601 (rxd_count[nic->rxd_mode] + 1);
602 /* Allocating all the Rx blocks */
603 for (j = 0; j < blk_cnt; j++) {
604 rx_block_info_t *rx_blocks;
607 rx_blocks = &mac_control->rings[i].rx_blocks[j];
608 size = SIZE_OF_BLOCK; //size is always page size
609 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
611 if (tmp_v_addr == NULL) {
613 * In case of failure, free_shared_mem()
614 * is called, which should free any
615 * memory that was alloced till the
618 rx_blocks->block_virt_addr = tmp_v_addr;
621 memset(tmp_v_addr, 0, size);
622 rx_blocks->block_virt_addr = tmp_v_addr;
623 rx_blocks->block_dma_addr = tmp_p_addr;
624 rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
625 rxd_count[nic->rxd_mode],
627 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
628 rx_blocks->rxds[l].virt_addr =
629 rx_blocks->block_virt_addr +
630 (rxd_size[nic->rxd_mode] * l);
631 rx_blocks->rxds[l].dma_addr =
632 rx_blocks->block_dma_addr +
633 (rxd_size[nic->rxd_mode] * l);
636 /* Interlinking all Rx Blocks */
637 for (j = 0; j < blk_cnt; j++) {
639 mac_control->rings[i].rx_blocks[j].block_virt_addr;
641 mac_control->rings[i].rx_blocks[(j + 1) %
642 blk_cnt].block_virt_addr;
644 mac_control->rings[i].rx_blocks[j].block_dma_addr;
646 mac_control->rings[i].rx_blocks[(j + 1) %
647 blk_cnt].block_dma_addr;
649 pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
650 pre_rxd_blk->reserved_2_pNext_RxD_block =
651 (unsigned long) tmp_v_addr_next;
652 pre_rxd_blk->pNext_RxD_Blk_physical =
653 (u64) tmp_p_addr_next;
656 if (nic->rxd_mode >= RXD_MODE_3A) {
658 * Allocation of Storages for buffer addresses in 2BUFF mode
659 * and the buffers as well.
661 for (i = 0; i < config->rx_ring_num; i++) {
662 blk_cnt = config->rx_cfg[i].num_rxd /
663 (rxd_count[nic->rxd_mode]+ 1);
664 mac_control->rings[i].ba =
665 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
667 if (!mac_control->rings[i].ba)
669 for (j = 0; j < blk_cnt; j++) {
671 mac_control->rings[i].ba[j] =
672 kmalloc((sizeof(buffAdd_t) *
673 (rxd_count[nic->rxd_mode] + 1)),
675 if (!mac_control->rings[i].ba[j])
677 while (k != rxd_count[nic->rxd_mode]) {
678 ba = &mac_control->rings[i].ba[j][k];
680 ba->ba_0_org = (void *) kmalloc
681 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
684 tmp = (unsigned long)ba->ba_0_org;
686 tmp &= ~((unsigned long) ALIGN_SIZE);
687 ba->ba_0 = (void *) tmp;
689 ba->ba_1_org = (void *) kmalloc
690 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
693 tmp = (unsigned long) ba->ba_1_org;
695 tmp &= ~((unsigned long) ALIGN_SIZE);
696 ba->ba_1 = (void *) tmp;
703 /* Allocation and initialization of Statistics block */
704 size = sizeof(StatInfo_t);
705 mac_control->stats_mem = pci_alloc_consistent
706 (nic->pdev, size, &mac_control->stats_mem_phy);
708 if (!mac_control->stats_mem) {
710 * In case of failure, free_shared_mem() is called, which
711 * should free any memory that was alloced till the
716 mac_control->stats_mem_sz = size;
718 tmp_v_addr = mac_control->stats_mem;
719 mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
720 memset(tmp_v_addr, 0, size);
721 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
722 (unsigned long long) tmp_p_addr);
728 * free_shared_mem - Free the allocated Memory
729 * @nic: Device private variable.
730 * Description: This function is to free all memory locations allocated by
731 * the init_shared_mem() function and return it to the kernel.
734 static void free_shared_mem(struct s2io_nic *nic)
736 int i, j, blk_cnt, size;
738 dma_addr_t tmp_p_addr;
739 mac_info_t *mac_control;
740 struct config_param *config;
741 int lst_size, lst_per_page;
742 struct net_device *dev = nic->dev;
747 mac_control = &nic->mac_control;
748 config = &nic->config;
750 lst_size = (sizeof(TxD_t) * config->max_txds);
751 lst_per_page = PAGE_SIZE / lst_size;
753 for (i = 0; i < config->tx_fifo_num; i++) {
754 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
756 for (j = 0; j < page_num; j++) {
757 int mem_blks = (j * lst_per_page);
758 if (!mac_control->fifos[i].list_info)
760 if (!mac_control->fifos[i].list_info[mem_blks].
763 pci_free_consistent(nic->pdev, PAGE_SIZE,
764 mac_control->fifos[i].
767 mac_control->fifos[i].
771 /* If we got a zero DMA address during allocation,
774 if (mac_control->zerodma_virt_addr) {
775 pci_free_consistent(nic->pdev, PAGE_SIZE,
776 mac_control->zerodma_virt_addr,
779 "%s: Freeing TxDL with zero DMA addr. ",
781 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
782 mac_control->zerodma_virt_addr);
784 kfree(mac_control->fifos[i].list_info);
787 size = SIZE_OF_BLOCK;
788 for (i = 0; i < config->rx_ring_num; i++) {
789 blk_cnt = mac_control->rings[i].block_count;
790 for (j = 0; j < blk_cnt; j++) {
791 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
793 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
795 if (tmp_v_addr == NULL)
797 pci_free_consistent(nic->pdev, size,
798 tmp_v_addr, tmp_p_addr);
799 kfree(mac_control->rings[i].rx_blocks[j].rxds);
803 if (nic->rxd_mode >= RXD_MODE_3A) {
804 /* Freeing buffer storage addresses in 2BUFF mode. */
805 for (i = 0; i < config->rx_ring_num; i++) {
806 blk_cnt = config->rx_cfg[i].num_rxd /
807 (rxd_count[nic->rxd_mode] + 1);
808 for (j = 0; j < blk_cnt; j++) {
810 if (!mac_control->rings[i].ba[j])
812 while (k != rxd_count[nic->rxd_mode]) {
814 &mac_control->rings[i].ba[j][k];
819 kfree(mac_control->rings[i].ba[j]);
821 kfree(mac_control->rings[i].ba);
825 if (mac_control->stats_mem) {
826 pci_free_consistent(nic->pdev,
827 mac_control->stats_mem_sz,
828 mac_control->stats_mem,
829 mac_control->stats_mem_phy);
831 if (nic->ufo_in_band_v)
832 kfree(nic->ufo_in_band_v);
836 * s2io_verify_pci_mode -
839 static int s2io_verify_pci_mode(nic_t *nic)
841 XENA_dev_config_t __iomem *bar0 = nic->bar0;
842 register u64 val64 = 0;
845 val64 = readq(&bar0->pci_mode);
846 mode = (u8)GET_PCI_MODE(val64);
848 if ( val64 & PCI_MODE_UNKNOWN_MODE)
849 return -1; /* Unknown PCI mode */
853 #define NEC_VENID 0x1033
854 #define NEC_DEVID 0x0125
855 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
857 struct pci_dev *tdev = NULL;
858 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
859 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
860 if (tdev->bus == s2io_pdev->bus->parent)
868 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
870 * s2io_print_pci_mode -
872 static int s2io_print_pci_mode(nic_t *nic)
874 XENA_dev_config_t __iomem *bar0 = nic->bar0;
875 register u64 val64 = 0;
877 struct config_param *config = &nic->config;
879 val64 = readq(&bar0->pci_mode);
880 mode = (u8)GET_PCI_MODE(val64);
882 if ( val64 & PCI_MODE_UNKNOWN_MODE)
883 return -1; /* Unknown PCI mode */
885 config->bus_speed = bus_speed[mode];
887 if (s2io_on_nec_bridge(nic->pdev)) {
888 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
893 if (val64 & PCI_MODE_32_BITS) {
894 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
896 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
900 case PCI_MODE_PCI_33:
901 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
903 case PCI_MODE_PCI_66:
904 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
906 case PCI_MODE_PCIX_M1_66:
907 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
909 case PCI_MODE_PCIX_M1_100:
910 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
912 case PCI_MODE_PCIX_M1_133:
913 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
915 case PCI_MODE_PCIX_M2_66:
916 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
918 case PCI_MODE_PCIX_M2_100:
919 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
921 case PCI_MODE_PCIX_M2_133:
922 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
925 return -1; /* Unsupported bus speed */
932 * init_nic - Initialization of hardware
933 * @nic: device peivate variable
934 * Description: The function sequentially configures every block
935 * of the H/W from their reset values.
936 * Return Value: SUCCESS on success and
937 * '-1' on failure (endian settings incorrect).
940 static int init_nic(struct s2io_nic *nic)
942 XENA_dev_config_t __iomem *bar0 = nic->bar0;
943 struct net_device *dev = nic->dev;
944 register u64 val64 = 0;
948 mac_info_t *mac_control;
949 struct config_param *config;
951 unsigned long long mem_share;
954 mac_control = &nic->mac_control;
955 config = &nic->config;
957 /* to set the swapper controle on the card */
958 if(s2io_set_swapper(nic)) {
959 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
964 * Herc requires EOI to be removed from reset before XGXS, so..
966 if (nic->device_type & XFRAME_II_DEVICE) {
967 val64 = 0xA500000000ULL;
968 writeq(val64, &bar0->sw_reset);
970 val64 = readq(&bar0->sw_reset);
973 /* Remove XGXS from reset state */
975 writeq(val64, &bar0->sw_reset);
977 val64 = readq(&bar0->sw_reset);
979 /* Enable Receiving broadcasts */
980 add = &bar0->mac_cfg;
981 val64 = readq(&bar0->mac_cfg);
982 val64 |= MAC_RMAC_BCAST_ENABLE;
983 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
984 writel((u32) val64, add);
985 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
986 writel((u32) (val64 >> 32), (add + 4));
988 /* Read registers in all blocks */
989 val64 = readq(&bar0->mac_int_mask);
990 val64 = readq(&bar0->mc_int_mask);
991 val64 = readq(&bar0->xgxs_int_mask);
995 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
997 if (nic->device_type & XFRAME_II_DEVICE) {
998 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
999 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1000 &bar0->dtx_control, UF);
1002 msleep(1); /* Necessary!! */
1006 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1007 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1008 &bar0->dtx_control, UF);
1009 val64 = readq(&bar0->dtx_control);
1014 /* Tx DMA Initialization */
1016 writeq(val64, &bar0->tx_fifo_partition_0);
1017 writeq(val64, &bar0->tx_fifo_partition_1);
1018 writeq(val64, &bar0->tx_fifo_partition_2);
1019 writeq(val64, &bar0->tx_fifo_partition_3);
1022 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1024 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1025 13) | vBIT(config->tx_cfg[i].fifo_priority,
1028 if (i == (config->tx_fifo_num - 1)) {
1035 writeq(val64, &bar0->tx_fifo_partition_0);
1039 writeq(val64, &bar0->tx_fifo_partition_1);
1043 writeq(val64, &bar0->tx_fifo_partition_2);
1047 writeq(val64, &bar0->tx_fifo_partition_3);
1053 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1054 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1056 if ((nic->device_type == XFRAME_I_DEVICE) &&
1057 (get_xena_rev_id(nic->pdev) < 4))
1058 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1060 val64 = readq(&bar0->tx_fifo_partition_0);
1061 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1062 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1065 * Initialization of Tx_PA_CONFIG register to ignore packet
1066 * integrity checking.
1068 val64 = readq(&bar0->tx_pa_cfg);
1069 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1070 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1071 writeq(val64, &bar0->tx_pa_cfg);
1073 /* Rx DMA intialization. */
1075 for (i = 0; i < config->rx_ring_num; i++) {
1077 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1080 writeq(val64, &bar0->rx_queue_priority);
1083 * Allocating equal share of memory to all the
1087 if (nic->device_type & XFRAME_II_DEVICE)
1092 for (i = 0; i < config->rx_ring_num; i++) {
1095 mem_share = (mem_size / config->rx_ring_num +
1096 mem_size % config->rx_ring_num);
1097 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1100 mem_share = (mem_size / config->rx_ring_num);
1101 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1104 mem_share = (mem_size / config->rx_ring_num);
1105 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1108 mem_share = (mem_size / config->rx_ring_num);
1109 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1112 mem_share = (mem_size / config->rx_ring_num);
1113 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1116 mem_share = (mem_size / config->rx_ring_num);
1117 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1120 mem_share = (mem_size / config->rx_ring_num);
1121 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1124 mem_share = (mem_size / config->rx_ring_num);
1125 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1129 writeq(val64, &bar0->rx_queue_cfg);
1132 * Filling Tx round robin registers
1133 * as per the number of FIFOs
1135 switch (config->tx_fifo_num) {
1137 val64 = 0x0000000000000000ULL;
1138 writeq(val64, &bar0->tx_w_round_robin_0);
1139 writeq(val64, &bar0->tx_w_round_robin_1);
1140 writeq(val64, &bar0->tx_w_round_robin_2);
1141 writeq(val64, &bar0->tx_w_round_robin_3);
1142 writeq(val64, &bar0->tx_w_round_robin_4);
1145 val64 = 0x0000010000010000ULL;
1146 writeq(val64, &bar0->tx_w_round_robin_0);
1147 val64 = 0x0100000100000100ULL;
1148 writeq(val64, &bar0->tx_w_round_robin_1);
1149 val64 = 0x0001000001000001ULL;
1150 writeq(val64, &bar0->tx_w_round_robin_2);
1151 val64 = 0x0000010000010000ULL;
1152 writeq(val64, &bar0->tx_w_round_robin_3);
1153 val64 = 0x0100000000000000ULL;
1154 writeq(val64, &bar0->tx_w_round_robin_4);
1157 val64 = 0x0001000102000001ULL;
1158 writeq(val64, &bar0->tx_w_round_robin_0);
1159 val64 = 0x0001020000010001ULL;
1160 writeq(val64, &bar0->tx_w_round_robin_1);
1161 val64 = 0x0200000100010200ULL;
1162 writeq(val64, &bar0->tx_w_round_robin_2);
1163 val64 = 0x0001000102000001ULL;
1164 writeq(val64, &bar0->tx_w_round_robin_3);
1165 val64 = 0x0001020000000000ULL;
1166 writeq(val64, &bar0->tx_w_round_robin_4);
1169 val64 = 0x0001020300010200ULL;
1170 writeq(val64, &bar0->tx_w_round_robin_0);
1171 val64 = 0x0100000102030001ULL;
1172 writeq(val64, &bar0->tx_w_round_robin_1);
1173 val64 = 0x0200010000010203ULL;
1174 writeq(val64, &bar0->tx_w_round_robin_2);
1175 val64 = 0x0001020001000001ULL;
1176 writeq(val64, &bar0->tx_w_round_robin_3);
1177 val64 = 0x0203000100000000ULL;
1178 writeq(val64, &bar0->tx_w_round_robin_4);
1181 val64 = 0x0001000203000102ULL;
1182 writeq(val64, &bar0->tx_w_round_robin_0);
1183 val64 = 0x0001020001030004ULL;
1184 writeq(val64, &bar0->tx_w_round_robin_1);
1185 val64 = 0x0001000203000102ULL;
1186 writeq(val64, &bar0->tx_w_round_robin_2);
1187 val64 = 0x0001020001030004ULL;
1188 writeq(val64, &bar0->tx_w_round_robin_3);
1189 val64 = 0x0001000000000000ULL;
1190 writeq(val64, &bar0->tx_w_round_robin_4);
1193 val64 = 0x0001020304000102ULL;
1194 writeq(val64, &bar0->tx_w_round_robin_0);
1195 val64 = 0x0304050001020001ULL;
1196 writeq(val64, &bar0->tx_w_round_robin_1);
1197 val64 = 0x0203000100000102ULL;
1198 writeq(val64, &bar0->tx_w_round_robin_2);
1199 val64 = 0x0304000102030405ULL;
1200 writeq(val64, &bar0->tx_w_round_robin_3);
1201 val64 = 0x0001000200000000ULL;
1202 writeq(val64, &bar0->tx_w_round_robin_4);
1205 val64 = 0x0001020001020300ULL;
1206 writeq(val64, &bar0->tx_w_round_robin_0);
1207 val64 = 0x0102030400010203ULL;
1208 writeq(val64, &bar0->tx_w_round_robin_1);
1209 val64 = 0x0405060001020001ULL;
1210 writeq(val64, &bar0->tx_w_round_robin_2);
1211 val64 = 0x0304050000010200ULL;
1212 writeq(val64, &bar0->tx_w_round_robin_3);
1213 val64 = 0x0102030000000000ULL;
1214 writeq(val64, &bar0->tx_w_round_robin_4);
1217 val64 = 0x0001020300040105ULL;
1218 writeq(val64, &bar0->tx_w_round_robin_0);
1219 val64 = 0x0200030106000204ULL;
1220 writeq(val64, &bar0->tx_w_round_robin_1);
1221 val64 = 0x0103000502010007ULL;
1222 writeq(val64, &bar0->tx_w_round_robin_2);
1223 val64 = 0x0304010002060500ULL;
1224 writeq(val64, &bar0->tx_w_round_robin_3);
1225 val64 = 0x0103020400000000ULL;
1226 writeq(val64, &bar0->tx_w_round_robin_4);
1230 /* Enable all configured Tx FIFO partitions */
1231 val64 = readq(&bar0->tx_fifo_partition_0);
1232 val64 |= (TX_FIFO_PARTITION_EN);
1233 writeq(val64, &bar0->tx_fifo_partition_0);
1235 /* Filling the Rx round robin registers as per the
1236 * number of Rings and steering based on QoS.
1238 switch (config->rx_ring_num) {
1240 val64 = 0x8080808080808080ULL;
1241 writeq(val64, &bar0->rts_qos_steering);
1244 val64 = 0x0000010000010000ULL;
1245 writeq(val64, &bar0->rx_w_round_robin_0);
1246 val64 = 0x0100000100000100ULL;
1247 writeq(val64, &bar0->rx_w_round_robin_1);
1248 val64 = 0x0001000001000001ULL;
1249 writeq(val64, &bar0->rx_w_round_robin_2);
1250 val64 = 0x0000010000010000ULL;
1251 writeq(val64, &bar0->rx_w_round_robin_3);
1252 val64 = 0x0100000000000000ULL;
1253 writeq(val64, &bar0->rx_w_round_robin_4);
1255 val64 = 0x8080808040404040ULL;
1256 writeq(val64, &bar0->rts_qos_steering);
1259 val64 = 0x0001000102000001ULL;
1260 writeq(val64, &bar0->rx_w_round_robin_0);
1261 val64 = 0x0001020000010001ULL;
1262 writeq(val64, &bar0->rx_w_round_robin_1);
1263 val64 = 0x0200000100010200ULL;
1264 writeq(val64, &bar0->rx_w_round_robin_2);
1265 val64 = 0x0001000102000001ULL;
1266 writeq(val64, &bar0->rx_w_round_robin_3);
1267 val64 = 0x0001020000000000ULL;
1268 writeq(val64, &bar0->rx_w_round_robin_4);
1270 val64 = 0x8080804040402020ULL;
1271 writeq(val64, &bar0->rts_qos_steering);
1274 val64 = 0x0001020300010200ULL;
1275 writeq(val64, &bar0->rx_w_round_robin_0);
1276 val64 = 0x0100000102030001ULL;
1277 writeq(val64, &bar0->rx_w_round_robin_1);
1278 val64 = 0x0200010000010203ULL;
1279 writeq(val64, &bar0->rx_w_round_robin_2);
1280 val64 = 0x0001020001000001ULL;
1281 writeq(val64, &bar0->rx_w_round_robin_3);
1282 val64 = 0x0203000100000000ULL;
1283 writeq(val64, &bar0->rx_w_round_robin_4);
1285 val64 = 0x8080404020201010ULL;
1286 writeq(val64, &bar0->rts_qos_steering);
1289 val64 = 0x0001000203000102ULL;
1290 writeq(val64, &bar0->rx_w_round_robin_0);
1291 val64 = 0x0001020001030004ULL;
1292 writeq(val64, &bar0->rx_w_round_robin_1);
1293 val64 = 0x0001000203000102ULL;
1294 writeq(val64, &bar0->rx_w_round_robin_2);
1295 val64 = 0x0001020001030004ULL;
1296 writeq(val64, &bar0->rx_w_round_robin_3);
1297 val64 = 0x0001000000000000ULL;
1298 writeq(val64, &bar0->rx_w_round_robin_4);
1300 val64 = 0x8080404020201008ULL;
1301 writeq(val64, &bar0->rts_qos_steering);
1304 val64 = 0x0001020304000102ULL;
1305 writeq(val64, &bar0->rx_w_round_robin_0);
1306 val64 = 0x0304050001020001ULL;
1307 writeq(val64, &bar0->rx_w_round_robin_1);
1308 val64 = 0x0203000100000102ULL;
1309 writeq(val64, &bar0->rx_w_round_robin_2);
1310 val64 = 0x0304000102030405ULL;
1311 writeq(val64, &bar0->rx_w_round_robin_3);
1312 val64 = 0x0001000200000000ULL;
1313 writeq(val64, &bar0->rx_w_round_robin_4);
1315 val64 = 0x8080404020100804ULL;
1316 writeq(val64, &bar0->rts_qos_steering);
1319 val64 = 0x0001020001020300ULL;
1320 writeq(val64, &bar0->rx_w_round_robin_0);
1321 val64 = 0x0102030400010203ULL;
1322 writeq(val64, &bar0->rx_w_round_robin_1);
1323 val64 = 0x0405060001020001ULL;
1324 writeq(val64, &bar0->rx_w_round_robin_2);
1325 val64 = 0x0304050000010200ULL;
1326 writeq(val64, &bar0->rx_w_round_robin_3);
1327 val64 = 0x0102030000000000ULL;
1328 writeq(val64, &bar0->rx_w_round_robin_4);
1330 val64 = 0x8080402010080402ULL;
1331 writeq(val64, &bar0->rts_qos_steering);
1334 val64 = 0x0001020300040105ULL;
1335 writeq(val64, &bar0->rx_w_round_robin_0);
1336 val64 = 0x0200030106000204ULL;
1337 writeq(val64, &bar0->rx_w_round_robin_1);
1338 val64 = 0x0103000502010007ULL;
1339 writeq(val64, &bar0->rx_w_round_robin_2);
1340 val64 = 0x0304010002060500ULL;
1341 writeq(val64, &bar0->rx_w_round_robin_3);
1342 val64 = 0x0103020400000000ULL;
1343 writeq(val64, &bar0->rx_w_round_robin_4);
1345 val64 = 0x8040201008040201ULL;
1346 writeq(val64, &bar0->rts_qos_steering);
1352 for (i = 0; i < 8; i++)
1353 writeq(val64, &bar0->rts_frm_len_n[i]);
1355 /* Set the default rts frame length for the rings configured */
1356 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1357 for (i = 0 ; i < config->rx_ring_num ; i++)
1358 writeq(val64, &bar0->rts_frm_len_n[i]);
1360 /* Set the frame length for the configured rings
1361 * desired by the user
1363 for (i = 0; i < config->rx_ring_num; i++) {
1364 /* If rts_frm_len[i] == 0 then it is assumed that user not
1365 * specified frame length steering.
1366 * If the user provides the frame length then program
1367 * the rts_frm_len register for those values or else
1368 * leave it as it is.
1370 if (rts_frm_len[i] != 0) {
1371 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1372 &bar0->rts_frm_len_n[i]);
1376 /* Program statistics memory */
1377 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1379 if (nic->device_type == XFRAME_II_DEVICE) {
1380 val64 = STAT_BC(0x320);
1381 writeq(val64, &bar0->stat_byte_cnt);
1385 * Initializing the sampling rate for the device to calculate the
1386 * bandwidth utilization.
1388 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1389 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1390 writeq(val64, &bar0->mac_link_util);
1394 * Initializing the Transmit and Receive Traffic Interrupt
1398 * TTI Initialization. Default Tx timer gets us about
1399 * 250 interrupts per sec. Continuous interrupts are enabled
1402 if (nic->device_type == XFRAME_II_DEVICE) {
1403 int count = (nic->config.bus_speed * 125)/2;
1404 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1407 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1409 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1410 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1411 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1412 if (use_continuous_tx_intrs)
1413 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1414 writeq(val64, &bar0->tti_data1_mem);
1416 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1417 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1418 TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1419 writeq(val64, &bar0->tti_data2_mem);
1421 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1422 writeq(val64, &bar0->tti_command_mem);
1425 * Once the operation completes, the Strobe bit of the command
1426 * register will be reset. We poll for this particular condition
1427 * We wait for a maximum of 500ms for the operation to complete,
1428 * if it's not complete by then we return error.
1432 val64 = readq(&bar0->tti_command_mem);
1433 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1437 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1445 if (nic->config.bimodal) {
1447 for (k = 0; k < config->rx_ring_num; k++) {
1448 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1449 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1450 writeq(val64, &bar0->tti_command_mem);
1453 * Once the operation completes, the Strobe bit of the command
1454 * register will be reset. We poll for this particular condition
1455 * We wait for a maximum of 500ms for the operation to complete,
1456 * if it's not complete by then we return error.
1460 val64 = readq(&bar0->tti_command_mem);
1461 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1466 "%s: TTI init Failed\n",
1476 /* RTI Initialization */
1477 if (nic->device_type == XFRAME_II_DEVICE) {
1479 * Programmed to generate Apprx 500 Intrs per
1482 int count = (nic->config.bus_speed * 125)/4;
1483 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1485 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1487 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1488 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1489 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1491 writeq(val64, &bar0->rti_data1_mem);
1493 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1494 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1495 if (nic->intr_type == MSI_X)
1496 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1497 RTI_DATA2_MEM_RX_UFC_D(0x40));
1499 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1500 RTI_DATA2_MEM_RX_UFC_D(0x80));
1501 writeq(val64, &bar0->rti_data2_mem);
1503 for (i = 0; i < config->rx_ring_num; i++) {
1504 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1505 | RTI_CMD_MEM_OFFSET(i);
1506 writeq(val64, &bar0->rti_command_mem);
1509 * Once the operation completes, the Strobe bit of the
1510 * command register will be reset. We poll for this
1511 * particular condition. We wait for a maximum of 500ms
1512 * for the operation to complete, if it's not complete
1513 * by then we return error.
1517 val64 = readq(&bar0->rti_command_mem);
1518 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1522 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1533 * Initializing proper values as Pause threshold into all
1534 * the 8 Queues on Rx side.
1536 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1537 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1539 /* Disable RMAC PAD STRIPPING */
1540 add = &bar0->mac_cfg;
1541 val64 = readq(&bar0->mac_cfg);
1542 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1543 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1544 writel((u32) (val64), add);
1545 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1546 writel((u32) (val64 >> 32), (add + 4));
1547 val64 = readq(&bar0->mac_cfg);
1549 /* Enable FCS stripping by adapter */
1550 add = &bar0->mac_cfg;
1551 val64 = readq(&bar0->mac_cfg);
1552 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1553 if (nic->device_type == XFRAME_II_DEVICE)
1554 writeq(val64, &bar0->mac_cfg);
1556 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1557 writel((u32) (val64), add);
1558 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1559 writel((u32) (val64 >> 32), (add + 4));
1563 * Set the time value to be inserted in the pause frame
1564 * generated by xena.
1566 val64 = readq(&bar0->rmac_pause_cfg);
1567 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1568 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1569 writeq(val64, &bar0->rmac_pause_cfg);
1572 * Set the Threshold Limit for Generating the pause frame
1573 * If the amount of data in any Queue exceeds ratio of
1574 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1575 * pause frame is generated
1578 for (i = 0; i < 4; i++) {
1580 (((u64) 0xFF00 | nic->mac_control.
1581 mc_pause_threshold_q0q3)
1584 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1587 for (i = 0; i < 4; i++) {
1589 (((u64) 0xFF00 | nic->mac_control.
1590 mc_pause_threshold_q4q7)
1593 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1596 * TxDMA will stop Read request if the number of read split has
1597 * exceeded the limit pointed by shared_splits
1599 val64 = readq(&bar0->pic_control);
1600 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1601 writeq(val64, &bar0->pic_control);
1603 if (nic->config.bus_speed == 266) {
1604 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1605 writeq(0x0, &bar0->read_retry_delay);
1606 writeq(0x0, &bar0->write_retry_delay);
1610 * Programming the Herc to split every write transaction
1611 * that does not start on an ADB to reduce disconnects.
1613 if (nic->device_type == XFRAME_II_DEVICE) {
1614 val64 = EXT_REQ_EN | MISC_LINK_STABILITY_PRD(3);
1615 writeq(val64, &bar0->misc_control);
1616 val64 = readq(&bar0->pic_control2);
1617 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1618 writeq(val64, &bar0->pic_control2);
1620 if (strstr(nic->product_name, "CX4")) {
1621 val64 = TMAC_AVG_IPG(0x17);
1622 writeq(val64, &bar0->tmac_avg_ipg);
1627 #define LINK_UP_DOWN_INTERRUPT 1
1628 #define MAC_RMAC_ERR_TIMER 2
1630 static int s2io_link_fault_indication(nic_t *nic)
1632 if (nic->intr_type != INTA)
1633 return MAC_RMAC_ERR_TIMER;
1634 if (nic->device_type == XFRAME_II_DEVICE)
1635 return LINK_UP_DOWN_INTERRUPT;
1637 return MAC_RMAC_ERR_TIMER;
1641 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1642 * @nic: device private variable,
1643 * @mask: A mask indicating which Intr block must be modified and,
1644 * @flag: A flag indicating whether to enable or disable the Intrs.
1645 * Description: This function will either disable or enable the interrupts
1646 * depending on the flag argument. The mask argument can be used to
1647 * enable/disable any Intr block.
1648 * Return Value: NONE.
1651 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1653 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1654 register u64 val64 = 0, temp64 = 0;
1656 /* Top level interrupt classification */
1657 /* PIC Interrupts */
1658 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1659 /* Enable PIC Intrs in the general intr mask register */
1660 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1661 if (flag == ENABLE_INTRS) {
1662 temp64 = readq(&bar0->general_int_mask);
1663 temp64 &= ~((u64) val64);
1664 writeq(temp64, &bar0->general_int_mask);
1666 * If Hercules adapter enable GPIO otherwise
1667 * disable all PCIX, Flash, MDIO, IIC and GPIO
1668 * interrupts for now.
1671 if (s2io_link_fault_indication(nic) ==
1672 LINK_UP_DOWN_INTERRUPT ) {
1673 temp64 = readq(&bar0->pic_int_mask);
1674 temp64 &= ~((u64) PIC_INT_GPIO);
1675 writeq(temp64, &bar0->pic_int_mask);
1676 temp64 = readq(&bar0->gpio_int_mask);
1677 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1678 writeq(temp64, &bar0->gpio_int_mask);
1680 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1683 * No MSI Support is available presently, so TTI and
1684 * RTI interrupts are also disabled.
1686 } else if (flag == DISABLE_INTRS) {
1688 * Disable PIC Intrs in the general
1689 * intr mask register
1691 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1692 temp64 = readq(&bar0->general_int_mask);
1694 writeq(val64, &bar0->general_int_mask);
1698 /* DMA Interrupts */
1699 /* Enabling/Disabling Tx DMA interrupts */
1700 if (mask & TX_DMA_INTR) {
1701 /* Enable TxDMA Intrs in the general intr mask register */
1702 val64 = TXDMA_INT_M;
1703 if (flag == ENABLE_INTRS) {
1704 temp64 = readq(&bar0->general_int_mask);
1705 temp64 &= ~((u64) val64);
1706 writeq(temp64, &bar0->general_int_mask);
1708 * Keep all interrupts other than PFC interrupt
1709 * and PCC interrupt disabled in DMA level.
1711 val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1713 writeq(val64, &bar0->txdma_int_mask);
1715 * Enable only the MISC error 1 interrupt in PFC block
1717 val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1718 writeq(val64, &bar0->pfc_err_mask);
1720 * Enable only the FB_ECC error interrupt in PCC block
1722 val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1723 writeq(val64, &bar0->pcc_err_mask);
1724 } else if (flag == DISABLE_INTRS) {
1726 * Disable TxDMA Intrs in the general intr mask
1729 writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1730 writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1731 temp64 = readq(&bar0->general_int_mask);
1733 writeq(val64, &bar0->general_int_mask);
1737 /* Enabling/Disabling Rx DMA interrupts */
1738 if (mask & RX_DMA_INTR) {
1739 /* Enable RxDMA Intrs in the general intr mask register */
1740 val64 = RXDMA_INT_M;
1741 if (flag == ENABLE_INTRS) {
1742 temp64 = readq(&bar0->general_int_mask);
1743 temp64 &= ~((u64) val64);
1744 writeq(temp64, &bar0->general_int_mask);
1746 * All RxDMA block interrupts are disabled for now
1749 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1750 } else if (flag == DISABLE_INTRS) {
1752 * Disable RxDMA Intrs in the general intr mask
1755 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1756 temp64 = readq(&bar0->general_int_mask);
1758 writeq(val64, &bar0->general_int_mask);
1762 /* MAC Interrupts */
1763 /* Enabling/Disabling MAC interrupts */
1764 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1765 val64 = TXMAC_INT_M | RXMAC_INT_M;
1766 if (flag == ENABLE_INTRS) {
1767 temp64 = readq(&bar0->general_int_mask);
1768 temp64 &= ~((u64) val64);
1769 writeq(temp64, &bar0->general_int_mask);
1771 * All MAC block error interrupts are disabled for now
1774 } else if (flag == DISABLE_INTRS) {
1776 * Disable MAC Intrs in the general intr mask register
1778 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1779 writeq(DISABLE_ALL_INTRS,
1780 &bar0->mac_rmac_err_mask);
1782 temp64 = readq(&bar0->general_int_mask);
1784 writeq(val64, &bar0->general_int_mask);
1788 /* XGXS Interrupts */
1789 if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1790 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1791 if (flag == ENABLE_INTRS) {
1792 temp64 = readq(&bar0->general_int_mask);
1793 temp64 &= ~((u64) val64);
1794 writeq(temp64, &bar0->general_int_mask);
1796 * All XGXS block error interrupts are disabled for now
1799 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1800 } else if (flag == DISABLE_INTRS) {
1802 * Disable MC Intrs in the general intr mask register
1804 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1805 temp64 = readq(&bar0->general_int_mask);
1807 writeq(val64, &bar0->general_int_mask);
1811 /* Memory Controller(MC) interrupts */
1812 if (mask & MC_INTR) {
1814 if (flag == ENABLE_INTRS) {
1815 temp64 = readq(&bar0->general_int_mask);
1816 temp64 &= ~((u64) val64);
1817 writeq(temp64, &bar0->general_int_mask);
1819 * Enable all MC Intrs.
1821 writeq(0x0, &bar0->mc_int_mask);
1822 writeq(0x0, &bar0->mc_err_mask);
1823 } else if (flag == DISABLE_INTRS) {
1825 * Disable MC Intrs in the general intr mask register
1827 writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1828 temp64 = readq(&bar0->general_int_mask);
1830 writeq(val64, &bar0->general_int_mask);
1835 /* Tx traffic interrupts */
1836 if (mask & TX_TRAFFIC_INTR) {
1837 val64 = TXTRAFFIC_INT_M;
1838 if (flag == ENABLE_INTRS) {
1839 temp64 = readq(&bar0->general_int_mask);
1840 temp64 &= ~((u64) val64);
1841 writeq(temp64, &bar0->general_int_mask);
1843 * Enable all the Tx side interrupts
1844 * writing 0 Enables all 64 TX interrupt levels
1846 writeq(0x0, &bar0->tx_traffic_mask);
1847 } else if (flag == DISABLE_INTRS) {
1849 * Disable Tx Traffic Intrs in the general intr mask
1852 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1853 temp64 = readq(&bar0->general_int_mask);
1855 writeq(val64, &bar0->general_int_mask);
1859 /* Rx traffic interrupts */
1860 if (mask & RX_TRAFFIC_INTR) {
1861 val64 = RXTRAFFIC_INT_M;
1862 if (flag == ENABLE_INTRS) {
1863 temp64 = readq(&bar0->general_int_mask);
1864 temp64 &= ~((u64) val64);
1865 writeq(temp64, &bar0->general_int_mask);
1866 /* writing 0 Enables all 8 RX interrupt levels */
1867 writeq(0x0, &bar0->rx_traffic_mask);
1868 } else if (flag == DISABLE_INTRS) {
1870 * Disable Rx Traffic Intrs in the general intr mask
1873 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1874 temp64 = readq(&bar0->general_int_mask);
1876 writeq(val64, &bar0->general_int_mask);
1881 static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1885 if (flag == FALSE) {
1886 if ((!herc && (rev_id >= 4)) || herc) {
1887 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1888 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1889 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1893 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1894 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1895 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1900 if ((!herc && (rev_id >= 4)) || herc) {
1901 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1902 ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1903 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1904 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1905 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1909 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1910 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1911 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1912 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1913 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1922 * verify_xena_quiescence - Checks whether the H/W is ready
1923 * @val64 : Value read from adapter status register.
1924 * @flag : indicates if the adapter enable bit was ever written once
1926 * Description: Returns whether the H/W is ready to go or not. Depending
1927 * on whether adapter enable bit was written or not the comparison
1928 * differs and the calling function passes the input argument flag to
1930 * Return: 1 If xena is quiescence
1931 * 0 If Xena is not quiescence
1934 static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1937 u64 tmp64 = ~((u64) val64);
1938 int rev_id = get_xena_rev_id(sp->pdev);
1940 herc = (sp->device_type == XFRAME_II_DEVICE);
1943 (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1944 ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1945 ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1946 ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1947 ADAPTER_STATUS_P_PLL_LOCK))) {
1948 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1955 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1956 * @sp: Pointer to device specifc structure
1958 * New procedure to clear mac address reading problems on Alpha platforms
1962 static void fix_mac_address(nic_t * sp)
1964 XENA_dev_config_t __iomem *bar0 = sp->bar0;
1968 while (fix_mac[i] != END_SIGN) {
1969 writeq(fix_mac[i++], &bar0->gpio_control);
1971 val64 = readq(&bar0->gpio_control);
1976 * start_nic - Turns the device on
1977 * @nic : device private variable.
1979 * This function actually turns the device on. Before this function is
1980 * called,all Registers are configured from their reset states
1981 * and shared memory is allocated but the NIC is still quiescent. On
1982 * calling this function, the device interrupts are cleared and the NIC is
1983 * literally switched on by writing into the adapter control register.
1985 * SUCCESS on success and -1 on failure.
1988 static int start_nic(struct s2io_nic *nic)
1990 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1991 struct net_device *dev = nic->dev;
1992 register u64 val64 = 0;
1994 mac_info_t *mac_control;
1995 struct config_param *config;
1997 mac_control = &nic->mac_control;
1998 config = &nic->config;
2000 /* PRC Initialization and configuration */
2001 for (i = 0; i < config->rx_ring_num; i++) {
2002 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2003 &bar0->prc_rxd0_n[i]);
2005 val64 = readq(&bar0->prc_ctrl_n[i]);
2006 if (nic->config.bimodal)
2007 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
2008 if (nic->rxd_mode == RXD_MODE_1)
2009 val64 |= PRC_CTRL_RC_ENABLED;
2011 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2012 if (nic->device_type == XFRAME_II_DEVICE)
2013 val64 |= PRC_CTRL_GROUP_READS;
2014 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2015 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2016 writeq(val64, &bar0->prc_ctrl_n[i]);
2019 if (nic->rxd_mode == RXD_MODE_3B) {
2020 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2021 val64 = readq(&bar0->rx_pa_cfg);
2022 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2023 writeq(val64, &bar0->rx_pa_cfg);
2027 * Enabling MC-RLDRAM. After enabling the device, we timeout
2028 * for around 100ms, which is approximately the time required
2029 * for the device to be ready for operation.
2031 val64 = readq(&bar0->mc_rldram_mrs);
2032 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2033 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2034 val64 = readq(&bar0->mc_rldram_mrs);
2036 msleep(100); /* Delay by around 100 ms. */
2038 /* Enabling ECC Protection. */
2039 val64 = readq(&bar0->adapter_control);
2040 val64 &= ~ADAPTER_ECC_EN;
2041 writeq(val64, &bar0->adapter_control);
2044 * Clearing any possible Link state change interrupts that
2045 * could have popped up just before Enabling the card.
2047 val64 = readq(&bar0->mac_rmac_err_reg);
2049 writeq(val64, &bar0->mac_rmac_err_reg);
2052 * Verify if the device is ready to be enabled, if so enable
2055 val64 = readq(&bar0->adapter_status);
2056 if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
2057 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2058 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2059 (unsigned long long) val64);
2064 * With some switches, link might be already up at this point.
2065 * Because of this weird behavior, when we enable laser,
2066 * we may not get link. We need to handle this. We cannot
2067 * figure out which switch is misbehaving. So we are forced to
2068 * make a global change.
2071 /* Enabling Laser. */
2072 val64 = readq(&bar0->adapter_control);
2073 val64 |= ADAPTER_EOI_TX_ON;
2074 writeq(val64, &bar0->adapter_control);
2076 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2078 * Dont see link state interrupts initally on some switches,
2079 * so directly scheduling the link state task here.
2081 schedule_work(&nic->set_link_task);
2083 /* SXE-002: Initialize link and activity LED */
2084 subid = nic->pdev->subsystem_device;
2085 if (((subid & 0xFF) >= 0x07) &&
2086 (nic->device_type == XFRAME_I_DEVICE)) {
2087 val64 = readq(&bar0->gpio_control);
2088 val64 |= 0x0000800000000000ULL;
2089 writeq(val64, &bar0->gpio_control);
2090 val64 = 0x0411040400000000ULL;
2091 writeq(val64, (void __iomem *)bar0 + 0x2700);
2097 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2099 static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
2101 nic_t *nic = fifo_data->nic;
2102 struct sk_buff *skb;
2107 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2108 pci_unmap_single(nic->pdev, (dma_addr_t)
2109 txds->Buffer_Pointer, sizeof(u64),
2114 skb = (struct sk_buff *) ((unsigned long)
2115 txds->Host_Control);
2117 memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
2120 pci_unmap_single(nic->pdev, (dma_addr_t)
2121 txds->Buffer_Pointer,
2122 skb->len - skb->data_len,
2124 frg_cnt = skb_shinfo(skb)->nr_frags;
2127 for (j = 0; j < frg_cnt; j++, txds++) {
2128 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2129 if (!txds->Buffer_Pointer)
2131 pci_unmap_page(nic->pdev, (dma_addr_t)
2132 txds->Buffer_Pointer,
2133 frag->size, PCI_DMA_TODEVICE);
2136 memset(txdlp,0, (sizeof(TxD_t) * fifo_data->max_txds));
2141 * free_tx_buffers - Free all queued Tx buffers
2142 * @nic : device private variable.
2144 * Free all queued Tx buffers.
2145 * Return Value: void
2148 static void free_tx_buffers(struct s2io_nic *nic)
2150 struct net_device *dev = nic->dev;
2151 struct sk_buff *skb;
2154 mac_info_t *mac_control;
2155 struct config_param *config;
2158 mac_control = &nic->mac_control;
2159 config = &nic->config;
2161 for (i = 0; i < config->tx_fifo_num; i++) {
2162 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2163 txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2165 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2172 "%s:forcibly freeing %d skbs on FIFO%d\n",
2174 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2175 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2180 * stop_nic - To stop the nic
2181 * @nic ; device private variable.
2183 * This function does exactly the opposite of what the start_nic()
2184 * function does. This function is called to stop the device.
2189 static void stop_nic(struct s2io_nic *nic)
2191 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2192 register u64 val64 = 0;
2194 mac_info_t *mac_control;
2195 struct config_param *config;
2197 mac_control = &nic->mac_control;
2198 config = &nic->config;
2200 /* Disable all interrupts */
2201 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2202 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2203 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2204 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2206 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2207 val64 = readq(&bar0->adapter_control);
2208 val64 &= ~(ADAPTER_CNTL_EN);
2209 writeq(val64, &bar0->adapter_control);
2212 static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2214 struct net_device *dev = nic->dev;
2215 struct sk_buff *frag_list;
2218 /* Buffer-1 receives L3/L4 headers */
2219 ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2220 (nic->pdev, skb->data, l3l4hdr_size + 4,
2221 PCI_DMA_FROMDEVICE);
2223 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2224 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2225 if (skb_shinfo(skb)->frag_list == NULL) {
2226 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2229 frag_list = skb_shinfo(skb)->frag_list;
2230 frag_list->next = NULL;
2231 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2232 frag_list->data = tmp;
2233 frag_list->tail = tmp;
2235 /* Buffer-2 receives L4 data payload */
2236 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2237 frag_list->data, dev->mtu,
2238 PCI_DMA_FROMDEVICE);
2239 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2240 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2246 * fill_rx_buffers - Allocates the Rx side skbs
2247 * @nic: device private variable
2248 * @ring_no: ring number
2250 * The function allocates Rx side skbs and puts the physical
2251 * address of these buffers into the RxD buffer pointers, so that the NIC
2252 * can DMA the received frame into these locations.
2253 * The NIC supports 3 receive modes, viz
2255 * 2. three buffer and
2256 * 3. Five buffer modes.
2257 * Each mode defines how many fragments the received frame will be split
2258 * up into by the NIC. The frame is split into L3 header, L4 Header,
2259 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2260 * is split into 3 fragments. As of now only single buffer mode is
2263 * SUCCESS on success or an appropriate -ve value on failure.
2266 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2268 struct net_device *dev = nic->dev;
2269 struct sk_buff *skb;
2271 int off, off1, size, block_no, block_no1;
2274 mac_info_t *mac_control;
2275 struct config_param *config;
2278 #ifndef CONFIG_S2IO_NAPI
2279 unsigned long flags;
2281 RxD_t *first_rxdp = NULL;
2283 mac_control = &nic->mac_control;
2284 config = &nic->config;
2285 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2286 atomic_read(&nic->rx_bufs_left[ring_no]);
2288 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2289 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2290 while (alloc_tab < alloc_cnt) {
2291 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2293 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2295 rxdp = mac_control->rings[ring_no].
2296 rx_blocks[block_no].rxds[off].virt_addr;
2298 if ((block_no == block_no1) && (off == off1) &&
2299 (rxdp->Host_Control)) {
2300 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2302 DBG_PRINT(INTR_DBG, " info equated\n");
2305 if (off && (off == rxd_count[nic->rxd_mode])) {
2306 mac_control->rings[ring_no].rx_curr_put_info.
2308 if (mac_control->rings[ring_no].rx_curr_put_info.
2309 block_index == mac_control->rings[ring_no].
2311 mac_control->rings[ring_no].rx_curr_put_info.
2313 block_no = mac_control->rings[ring_no].
2314 rx_curr_put_info.block_index;
2315 if (off == rxd_count[nic->rxd_mode])
2317 mac_control->rings[ring_no].rx_curr_put_info.
2319 rxdp = mac_control->rings[ring_no].
2320 rx_blocks[block_no].block_virt_addr;
2321 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2324 #ifndef CONFIG_S2IO_NAPI
2325 spin_lock_irqsave(&nic->put_lock, flags);
2326 mac_control->rings[ring_no].put_pos =
2327 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2328 spin_unlock_irqrestore(&nic->put_lock, flags);
2330 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2331 ((nic->rxd_mode >= RXD_MODE_3A) &&
2332 (rxdp->Control_2 & BIT(0)))) {
2333 mac_control->rings[ring_no].rx_curr_put_info.
2337 /* calculate size of skb based on ring mode */
2338 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2339 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2340 if (nic->rxd_mode == RXD_MODE_1)
2341 size += NET_IP_ALIGN;
2342 else if (nic->rxd_mode == RXD_MODE_3B)
2343 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2345 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2348 skb = dev_alloc_skb(size);
2350 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2351 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2354 first_rxdp->Control_1 |= RXD_OWN_XENA;
2358 if (nic->rxd_mode == RXD_MODE_1) {
2359 /* 1 buffer mode - normal operation mode */
2360 memset(rxdp, 0, sizeof(RxD1_t));
2361 skb_reserve(skb, NET_IP_ALIGN);
2362 ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2363 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2364 PCI_DMA_FROMDEVICE);
2365 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2367 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2369 * 2 or 3 buffer mode -
2370 * Both 2 buffer mode and 3 buffer mode provides 128
2371 * byte aligned receive buffers.
2373 * 3 buffer mode provides header separation where in
2374 * skb->data will have L3/L4 headers where as
2375 * skb_shinfo(skb)->frag_list will have the L4 data
2379 memset(rxdp, 0, sizeof(RxD3_t));
2380 ba = &mac_control->rings[ring_no].ba[block_no][off];
2381 skb_reserve(skb, BUF0_LEN);
2382 tmp = (u64)(unsigned long) skb->data;
2385 skb->data = (void *) (unsigned long)tmp;
2386 skb->tail = (void *) (unsigned long)tmp;
2388 if (!(((RxD3_t*)rxdp)->Buffer0_ptr))
2389 ((RxD3_t*)rxdp)->Buffer0_ptr =
2390 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2391 PCI_DMA_FROMDEVICE);
2393 pci_dma_sync_single_for_device(nic->pdev,
2394 (dma_addr_t) ((RxD3_t*)rxdp)->Buffer0_ptr,
2395 BUF0_LEN, PCI_DMA_FROMDEVICE);
2396 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2397 if (nic->rxd_mode == RXD_MODE_3B) {
2398 /* Two buffer mode */
2401 * Buffer2 will have L3/L4 header plus
2404 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2405 (nic->pdev, skb->data, dev->mtu + 4,
2406 PCI_DMA_FROMDEVICE);
2408 /* Buffer-1 will be dummy buffer. Not used */
2409 if (!(((RxD3_t*)rxdp)->Buffer1_ptr)) {
2410 ((RxD3_t*)rxdp)->Buffer1_ptr =
2411 pci_map_single(nic->pdev,
2413 PCI_DMA_FROMDEVICE);
2415 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2416 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2420 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2421 dev_kfree_skb_irq(skb);
2424 first_rxdp->Control_1 |=
2430 rxdp->Control_2 |= BIT(0);
2432 rxdp->Host_Control = (unsigned long) (skb);
2433 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2434 rxdp->Control_1 |= RXD_OWN_XENA;
2436 if (off == (rxd_count[nic->rxd_mode] + 1))
2438 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2440 rxdp->Control_2 |= SET_RXD_MARKER;
2441 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2444 first_rxdp->Control_1 |= RXD_OWN_XENA;
2448 atomic_inc(&nic->rx_bufs_left[ring_no]);
2453 /* Transfer ownership of first descriptor to adapter just before
2454 * exiting. Before that, use memory barrier so that ownership
2455 * and other fields are seen by adapter correctly.
2459 first_rxdp->Control_1 |= RXD_OWN_XENA;
2465 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2467 struct net_device *dev = sp->dev;
2469 struct sk_buff *skb;
2471 mac_info_t *mac_control;
2474 mac_control = &sp->mac_control;
2475 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2476 rxdp = mac_control->rings[ring_no].
2477 rx_blocks[blk].rxds[j].virt_addr;
2478 skb = (struct sk_buff *)
2479 ((unsigned long) rxdp->Host_Control);
2483 if (sp->rxd_mode == RXD_MODE_1) {
2484 pci_unmap_single(sp->pdev, (dma_addr_t)
2485 ((RxD1_t*)rxdp)->Buffer0_ptr,
2487 HEADER_ETHERNET_II_802_3_SIZE
2488 + HEADER_802_2_SIZE +
2490 PCI_DMA_FROMDEVICE);
2491 memset(rxdp, 0, sizeof(RxD1_t));
2492 } else if(sp->rxd_mode == RXD_MODE_3B) {
2493 ba = &mac_control->rings[ring_no].
2495 pci_unmap_single(sp->pdev, (dma_addr_t)
2496 ((RxD3_t*)rxdp)->Buffer0_ptr,
2498 PCI_DMA_FROMDEVICE);
2499 pci_unmap_single(sp->pdev, (dma_addr_t)
2500 ((RxD3_t*)rxdp)->Buffer1_ptr,
2502 PCI_DMA_FROMDEVICE);
2503 pci_unmap_single(sp->pdev, (dma_addr_t)
2504 ((RxD3_t*)rxdp)->Buffer2_ptr,
2506 PCI_DMA_FROMDEVICE);
2507 memset(rxdp, 0, sizeof(RxD3_t));
2509 pci_unmap_single(sp->pdev, (dma_addr_t)
2510 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2511 PCI_DMA_FROMDEVICE);
2512 pci_unmap_single(sp->pdev, (dma_addr_t)
2513 ((RxD3_t*)rxdp)->Buffer1_ptr,
2515 PCI_DMA_FROMDEVICE);
2516 pci_unmap_single(sp->pdev, (dma_addr_t)
2517 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2518 PCI_DMA_FROMDEVICE);
2519 memset(rxdp, 0, sizeof(RxD3_t));
2522 atomic_dec(&sp->rx_bufs_left[ring_no]);
2527 * free_rx_buffers - Frees all Rx buffers
2528 * @sp: device private variable.
2530 * This function will free all Rx buffers allocated by host.
2535 static void free_rx_buffers(struct s2io_nic *sp)
2537 struct net_device *dev = sp->dev;
2538 int i, blk = 0, buf_cnt = 0;
2539 mac_info_t *mac_control;
2540 struct config_param *config;
2542 mac_control = &sp->mac_control;
2543 config = &sp->config;
2545 for (i = 0; i < config->rx_ring_num; i++) {
2546 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2547 free_rxd_blk(sp,i,blk);
2549 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2550 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2551 mac_control->rings[i].rx_curr_put_info.offset = 0;
2552 mac_control->rings[i].rx_curr_get_info.offset = 0;
2553 atomic_set(&sp->rx_bufs_left[i], 0);
2554 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2555 dev->name, buf_cnt, i);
2560 * s2io_poll - Rx interrupt handler for NAPI support
2561 * @dev : pointer to the device structure.
2562 * @budget : The number of packets that were budgeted to be processed
2563 * during one pass through the 'Poll" function.
2565 * Comes into picture only if NAPI support has been incorporated. It does
2566 * the same thing that rx_intr_handler does, but not in a interrupt context
2567 * also It will process only a given number of packets.
2569 * 0 on success and 1 if there are No Rx packets to be processed.
2572 #if defined(CONFIG_S2IO_NAPI)
2573 static int s2io_poll(struct net_device *dev, int *budget)
2575 nic_t *nic = dev->priv;
2576 int pkt_cnt = 0, org_pkts_to_process;
2577 mac_info_t *mac_control;
2578 struct config_param *config;
2579 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2580 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2583 atomic_inc(&nic->isr_cnt);
2584 mac_control = &nic->mac_control;
2585 config = &nic->config;
2587 nic->pkts_to_process = *budget;
2588 if (nic->pkts_to_process > dev->quota)
2589 nic->pkts_to_process = dev->quota;
2590 org_pkts_to_process = nic->pkts_to_process;
2592 writeq(val64, &bar0->rx_traffic_int);
2593 val64 = readl(&bar0->rx_traffic_int);
2595 for (i = 0; i < config->rx_ring_num; i++) {
2596 rx_intr_handler(&mac_control->rings[i]);
2597 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2598 if (!nic->pkts_to_process) {
2599 /* Quota for the current iteration has been met */
2606 dev->quota -= pkt_cnt;
2608 netif_rx_complete(dev);
2610 for (i = 0; i < config->rx_ring_num; i++) {
2611 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2612 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2613 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2617 /* Re enable the Rx interrupts. */
2618 writeq(0x0, &bar0->rx_traffic_mask);
2619 val64 = readl(&bar0->rx_traffic_mask);
2620 atomic_dec(&nic->isr_cnt);
2624 dev->quota -= pkt_cnt;
2627 for (i = 0; i < config->rx_ring_num; i++) {
2628 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2629 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2630 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2634 atomic_dec(&nic->isr_cnt);
2639 #ifdef CONFIG_NET_POLL_CONTROLLER
2641 * s2io_netpoll - netpoll event handler entry point
2642 * @dev : pointer to the device structure.
2644 * This function will be called by upper layer to check for events on the
2645 * interface in situations where interrupts are disabled. It is used for
2646 * specific in-kernel networking tasks, such as remote consoles and kernel
2647 * debugging over the network (example netdump in RedHat).
2649 static void s2io_netpoll(struct net_device *dev)
2651 nic_t *nic = dev->priv;
2652 mac_info_t *mac_control;
2653 struct config_param *config;
2654 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2655 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2658 disable_irq(dev->irq);
2660 atomic_inc(&nic->isr_cnt);
2661 mac_control = &nic->mac_control;
2662 config = &nic->config;
2664 writeq(val64, &bar0->rx_traffic_int);
2665 writeq(val64, &bar0->tx_traffic_int);
2667 /* we need to free up the transmitted skbufs or else netpoll will
2668 * run out of skbs and will fail and eventually netpoll application such
2669 * as netdump will fail.
2671 for (i = 0; i < config->tx_fifo_num; i++)
2672 tx_intr_handler(&mac_control->fifos[i]);
2674 /* check for received packet and indicate up to network */
2675 for (i = 0; i < config->rx_ring_num; i++)
2676 rx_intr_handler(&mac_control->rings[i]);
2678 for (i = 0; i < config->rx_ring_num; i++) {
2679 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2680 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2681 DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2685 atomic_dec(&nic->isr_cnt);
2686 enable_irq(dev->irq);
2692 * rx_intr_handler - Rx interrupt handler
2693 * @nic: device private variable.
2695 * If the interrupt is because of a received frame or if the
2696 * receive ring contains fresh as yet un-processed frames,this function is
2697 * called. It picks out the RxD at which place the last Rx processing had
2698 * stopped and sends the skb to the OSM's Rx handler and then increments
2703 static void rx_intr_handler(ring_info_t *ring_data)
2705 nic_t *nic = ring_data->nic;
2706 struct net_device *dev = (struct net_device *) nic->dev;
2707 int get_block, put_block, put_offset;
2708 rx_curr_get_info_t get_info, put_info;
2710 struct sk_buff *skb;
2711 #ifndef CONFIG_S2IO_NAPI
2716 spin_lock(&nic->rx_lock);
2717 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2718 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2719 __FUNCTION__, dev->name);
2720 spin_unlock(&nic->rx_lock);
2724 get_info = ring_data->rx_curr_get_info;
2725 get_block = get_info.block_index;
2726 put_info = ring_data->rx_curr_put_info;
2727 put_block = put_info.block_index;
2728 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2729 #ifndef CONFIG_S2IO_NAPI
2730 spin_lock(&nic->put_lock);
2731 put_offset = ring_data->put_pos;
2732 spin_unlock(&nic->put_lock);
2734 put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
2737 while (RXD_IS_UP2DT(rxdp)) {
2738 /* If your are next to put index then it's FIFO full condition */
2739 if ((get_block == put_block) &&
2740 (get_info.offset + 1) == put_info.offset) {
2741 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2744 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2746 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2748 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2749 spin_unlock(&nic->rx_lock);
2752 if (nic->rxd_mode == RXD_MODE_1) {
2753 pci_unmap_single(nic->pdev, (dma_addr_t)
2754 ((RxD1_t*)rxdp)->Buffer0_ptr,
2756 HEADER_ETHERNET_II_802_3_SIZE +
2759 PCI_DMA_FROMDEVICE);
2760 } else if (nic->rxd_mode == RXD_MODE_3B) {
2761 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2762 ((RxD3_t*)rxdp)->Buffer0_ptr,
2763 BUF0_LEN, PCI_DMA_FROMDEVICE);
2764 pci_unmap_single(nic->pdev, (dma_addr_t)
2765 ((RxD3_t*)rxdp)->Buffer2_ptr,
2767 PCI_DMA_FROMDEVICE);
2769 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2770 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2771 PCI_DMA_FROMDEVICE);
2772 pci_unmap_single(nic->pdev, (dma_addr_t)
2773 ((RxD3_t*)rxdp)->Buffer1_ptr,
2775 PCI_DMA_FROMDEVICE);
2776 pci_unmap_single(nic->pdev, (dma_addr_t)
2777 ((RxD3_t*)rxdp)->Buffer2_ptr,
2778 dev->mtu, PCI_DMA_FROMDEVICE);
2780 prefetch(skb->data);
2781 rx_osm_handler(ring_data, rxdp);
2783 ring_data->rx_curr_get_info.offset = get_info.offset;
2784 rxdp = ring_data->rx_blocks[get_block].
2785 rxds[get_info.offset].virt_addr;
2786 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2787 get_info.offset = 0;
2788 ring_data->rx_curr_get_info.offset = get_info.offset;
2790 if (get_block == ring_data->block_count)
2792 ring_data->rx_curr_get_info.block_index = get_block;
2793 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2796 #ifdef CONFIG_S2IO_NAPI
2797 nic->pkts_to_process -= 1;
2798 if (!nic->pkts_to_process)
2802 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2807 /* Clear all LRO sessions before exiting */
2808 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2809 lro_t *lro = &nic->lro0_n[i];
2811 update_L3L4_header(nic, lro);
2812 queue_rx_frame(lro->parent);
2813 clear_lro_session(lro);
2818 spin_unlock(&nic->rx_lock);
2822 * tx_intr_handler - Transmit interrupt handler
2823 * @nic : device private variable
2825 * If an interrupt was raised to indicate DMA complete of the
2826 * Tx packet, this function is called. It identifies the last TxD
2827 * whose buffer was freed and frees all skbs whose data have already
2828 * DMA'ed into the NICs internal memory.
2833 static void tx_intr_handler(fifo_info_t *fifo_data)
2835 nic_t *nic = fifo_data->nic;
2836 struct net_device *dev = (struct net_device *) nic->dev;
2837 tx_curr_get_info_t get_info, put_info;
2838 struct sk_buff *skb;
2841 get_info = fifo_data->tx_curr_get_info;
2842 put_info = fifo_data->tx_curr_put_info;
2843 txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2845 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2846 (get_info.offset != put_info.offset) &&
2847 (txdlp->Host_Control)) {
2848 /* Check for TxD errors */
2849 if (txdlp->Control_1 & TXD_T_CODE) {
2850 unsigned long long err;
2851 err = txdlp->Control_1 & TXD_T_CODE;
2853 nic->mac_control.stats_info->sw_stat.
2856 if ((err >> 48) == 0xA) {
2857 DBG_PRINT(TX_DBG, "TxD returned due \
2858 to loss of link\n");
2861 DBG_PRINT(ERR_DBG, "***TxD error \
2866 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2868 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2870 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2874 /* Updating the statistics block */
2875 nic->stats.tx_bytes += skb->len;
2876 dev_kfree_skb_irq(skb);
2879 if (get_info.offset == get_info.fifo_len + 1)
2880 get_info.offset = 0;
2881 txdlp = (TxD_t *) fifo_data->list_info
2882 [get_info.offset].list_virt_addr;
2883 fifo_data->tx_curr_get_info.offset =
2887 spin_lock(&nic->tx_lock);
2888 if (netif_queue_stopped(dev))
2889 netif_wake_queue(dev);
2890 spin_unlock(&nic->tx_lock);
2894 * s2io_mdio_write - Function to write in to MDIO registers
2895 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2896 * @addr : address value
2897 * @value : data value
2898 * @dev : pointer to net_device structure
2900 * This function is used to write values to the MDIO registers
2903 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2906 nic_t *sp = dev->priv;
2907 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2909 //address transaction
2910 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2911 | MDIO_MMD_DEV_ADDR(mmd_type)
2912 | MDIO_MMS_PRT_ADDR(0x0);
2913 writeq(val64, &bar0->mdio_control);
2914 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2915 writeq(val64, &bar0->mdio_control);
2920 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2921 | MDIO_MMD_DEV_ADDR(mmd_type)
2922 | MDIO_MMS_PRT_ADDR(0x0)
2923 | MDIO_MDIO_DATA(value)
2924 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2925 writeq(val64, &bar0->mdio_control);
2926 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2927 writeq(val64, &bar0->mdio_control);
2931 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2932 | MDIO_MMD_DEV_ADDR(mmd_type)
2933 | MDIO_MMS_PRT_ADDR(0x0)
2934 | MDIO_OP(MDIO_OP_READ_TRANS);
2935 writeq(val64, &bar0->mdio_control);
2936 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2937 writeq(val64, &bar0->mdio_control);
2943 * s2io_mdio_read - Function to write in to MDIO registers
2944 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2945 * @addr : address value
2946 * @dev : pointer to net_device structure
2948 * This function is used to read values to the MDIO registers
2951 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2955 nic_t *sp = dev->priv;
2956 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2958 /* address transaction */
2959 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2960 | MDIO_MMD_DEV_ADDR(mmd_type)
2961 | MDIO_MMS_PRT_ADDR(0x0);
2962 writeq(val64, &bar0->mdio_control);
2963 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2964 writeq(val64, &bar0->mdio_control);
2967 /* Data transaction */
2969 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2970 | MDIO_MMD_DEV_ADDR(mmd_type)
2971 | MDIO_MMS_PRT_ADDR(0x0)
2972 | MDIO_OP(MDIO_OP_READ_TRANS);
2973 writeq(val64, &bar0->mdio_control);
2974 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2975 writeq(val64, &bar0->mdio_control);
2978 /* Read the value from regs */
2979 rval64 = readq(&bar0->mdio_control);
2980 rval64 = rval64 & 0xFFFF0000;
2981 rval64 = rval64 >> 16;
2985 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2986 * @counter : couter value to be updated
2987 * @flag : flag to indicate the status
2988 * @type : counter type
2990 * This function is to check the status of the xpak counters value
2994 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2999 for(i = 0; i <index; i++)
3004 *counter = *counter + 1;
3005 val64 = *regs_stat & mask;
3006 val64 = val64 >> (index * 0x2);
3013 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3014 "service. Excessive temperatures may "
3015 "result in premature transceiver "
3019 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3020 "service Excessive bias currents may "
3021 "indicate imminent laser diode "
3025 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3026 "service Excessive laser output "
3027 "power may saturate far-end "
3031 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3036 val64 = val64 << (index * 0x2);
3037 *regs_stat = (*regs_stat & (~mask)) | (val64);
3040 *regs_stat = *regs_stat & (~mask);
3045 * s2io_updt_xpak_counter - Function to update the xpak counters
3046 * @dev : pointer to net_device struct
3048 * This function is to upate the status of the xpak counters value
3051 static void s2io_updt_xpak_counter(struct net_device *dev)
3059 nic_t *sp = dev->priv;
3060 StatInfo_t *stat_info = sp->mac_control.stats_info;
3062 /* Check the communication with the MDIO slave */
3065 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3066 if((val64 == 0xFFFF) || (val64 == 0x0000))
3068 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3069 "Returned %llx\n", (unsigned long long)val64);
3073 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3076 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3077 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3078 (unsigned long long)val64);
3082 /* Loading the DOM register to MDIO register */
3084 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3085 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3087 /* Reading the Alarm flags */
3090 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3092 flag = CHECKBIT(val64, 0x7);
3094 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3095 &stat_info->xpak_stat.xpak_regs_stat,
3098 if(CHECKBIT(val64, 0x6))
3099 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3101 flag = CHECKBIT(val64, 0x3);
3103 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3104 &stat_info->xpak_stat.xpak_regs_stat,
3107 if(CHECKBIT(val64, 0x2))
3108 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3110 flag = CHECKBIT(val64, 0x1);
3112 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3113 &stat_info->xpak_stat.xpak_regs_stat,
3116 if(CHECKBIT(val64, 0x0))
3117 stat_info->xpak_stat.alarm_laser_output_power_low++;
3119 /* Reading the Warning flags */
3122 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3124 if(CHECKBIT(val64, 0x7))
3125 stat_info->xpak_stat.warn_transceiver_temp_high++;
3127 if(CHECKBIT(val64, 0x6))
3128 stat_info->xpak_stat.warn_transceiver_temp_low++;
3130 if(CHECKBIT(val64, 0x3))
3131 stat_info->xpak_stat.warn_laser_bias_current_high++;
3133 if(CHECKBIT(val64, 0x2))
3134 stat_info->xpak_stat.warn_laser_bias_current_low++;
3136 if(CHECKBIT(val64, 0x1))
3137 stat_info->xpak_stat.warn_laser_output_power_high++;
3139 if(CHECKBIT(val64, 0x0))
3140 stat_info->xpak_stat.warn_laser_output_power_low++;
3144 * alarm_intr_handler - Alarm Interrrupt handler
3145 * @nic: device private variable
3146 * Description: If the interrupt was neither because of Rx packet or Tx
3147 * complete, this function is called. If the interrupt was to indicate
3148 * a loss of link, the OSM link status handler is invoked for any other
3149 * alarm interrupt the block that raised the interrupt is displayed
3150 * and a H/W reset is issued.
3155 static void alarm_intr_handler(struct s2io_nic *nic)
3157 struct net_device *dev = (struct net_device *) nic->dev;
3158 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3159 register u64 val64 = 0, err_reg = 0;
3162 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3163 /* Handling the XPAK counters update */
3164 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3165 /* waiting for an hour */
3166 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3168 s2io_updt_xpak_counter(dev);
3169 /* reset the count to zero */
3170 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3173 /* Handling link status change error Intr */
3174 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3175 err_reg = readq(&bar0->mac_rmac_err_reg);
3176 writeq(err_reg, &bar0->mac_rmac_err_reg);
3177 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3178 schedule_work(&nic->set_link_task);
3182 /* Handling Ecc errors */
3183 val64 = readq(&bar0->mc_err_reg);
3184 writeq(val64, &bar0->mc_err_reg);
3185 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3186 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3187 nic->mac_control.stats_info->sw_stat.
3189 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3191 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3192 if (nic->device_type != XFRAME_II_DEVICE) {
3193 /* Reset XframeI only if critical error */
3194 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3195 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3196 netif_stop_queue(dev);
3197 schedule_work(&nic->rst_timer_task);
3198 nic->mac_control.stats_info->sw_stat.
3203 nic->mac_control.stats_info->sw_stat.
3208 /* In case of a serious error, the device will be Reset. */
3209 val64 = readq(&bar0->serr_source);
3210 if (val64 & SERR_SOURCE_ANY) {
3211 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3212 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3213 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3214 (unsigned long long)val64);
3215 netif_stop_queue(dev);
3216 schedule_work(&nic->rst_timer_task);
3217 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3221 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3222 * Error occurs, the adapter will be recycled by disabling the
3223 * adapter enable bit and enabling it again after the device
3224 * becomes Quiescent.
3226 val64 = readq(&bar0->pcc_err_reg);
3227 writeq(val64, &bar0->pcc_err_reg);
3228 if (val64 & PCC_FB_ECC_DB_ERR) {
3229 u64 ac = readq(&bar0->adapter_control);
3230 ac &= ~(ADAPTER_CNTL_EN);
3231 writeq(ac, &bar0->adapter_control);
3232 ac = readq(&bar0->adapter_control);
3233 schedule_work(&nic->set_link_task);
3235 /* Check for data parity error */
3236 val64 = readq(&bar0->pic_int_status);
3237 if (val64 & PIC_INT_GPIO) {
3238 val64 = readq(&bar0->gpio_int_reg);
3239 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3240 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3241 schedule_work(&nic->rst_timer_task);
3242 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3246 /* Check for ring full counter */
3247 if (nic->device_type & XFRAME_II_DEVICE) {
3248 val64 = readq(&bar0->ring_bump_counter1);
3249 for (i=0; i<4; i++) {
3250 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3251 cnt >>= 64 - ((i+1)*16);
3252 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3256 val64 = readq(&bar0->ring_bump_counter2);
3257 for (i=0; i<4; i++) {
3258 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3259 cnt >>= 64 - ((i+1)*16);
3260 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3265 /* Other type of interrupts are not being handled now, TODO */
3269 * wait_for_cmd_complete - waits for a command to complete.
3270 * @sp : private member of the device structure, which is a pointer to the
3271 * s2io_nic structure.
3272 * Description: Function that waits for a command to Write into RMAC
3273 * ADDR DATA registers to be completed and returns either success or
3274 * error depending on whether the command was complete or not.
3276 * SUCCESS on success and FAILURE on failure.
3279 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit)
3281 int ret = FAILURE, cnt = 0;
3285 val64 = readq(addr);
3286 if (!(val64 & busy_bit)) {
3303 * s2io_reset - Resets the card.
3304 * @sp : private member of the device structure.
3305 * Description: Function to Reset the card. This function then also
3306 * restores the previously saved PCI configuration space registers as
3307 * the card reset also resets the configuration space.
3312 static void s2io_reset(nic_t * sp)
3314 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3318 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3319 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3321 val64 = SW_RESET_ALL;
3322 writeq(val64, &bar0->sw_reset);
3325 * At this stage, if the PCI write is indeed completed, the
3326 * card is reset and so is the PCI Config space of the device.
3327 * So a read cannot be issued at this stage on any of the
3328 * registers to ensure the write into "sw_reset" register
3330 * Question: Is there any system call that will explicitly force
3331 * all the write commands still pending on the bus to be pushed
3333 * As of now I'am just giving a 250ms delay and hoping that the
3334 * PCI write to sw_reset register is done by this time.
3337 if (strstr(sp->product_name, "CX4")) {
3341 /* Restore the PCI state saved during initialization. */
3342 pci_restore_state(sp->pdev);
3343 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
3349 /* Set swapper to enable I/O register access */
3350 s2io_set_swapper(sp);
3352 /* Restore the MSIX table entries from local variables */
3353 restore_xmsi_data(sp);
3355 /* Clear certain PCI/PCI-X fields after reset */
3356 if (sp->device_type == XFRAME_II_DEVICE) {
3357 /* Clear "detected parity error" bit */
3358 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3360 /* Clearing PCIX Ecc status register */
3361 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3363 /* Clearing PCI_STATUS error reflected here */
3364 writeq(BIT(62), &bar0->txpic_int_reg);
3367 /* Reset device statistics maintained by OS */
3368 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3370 /* SXE-002: Configure link and activity LED to turn it off */
3371 subid = sp->pdev->subsystem_device;
3372 if (((subid & 0xFF) >= 0x07) &&
3373 (sp->device_type == XFRAME_I_DEVICE)) {
3374 val64 = readq(&bar0->gpio_control);
3375 val64 |= 0x0000800000000000ULL;
3376 writeq(val64, &bar0->gpio_control);
3377 val64 = 0x0411040400000000ULL;
3378 writeq(val64, (void __iomem *)bar0 + 0x2700);
3382 * Clear spurious ECC interrupts that would have occured on
3383 * XFRAME II cards after reset.
3385 if (sp->device_type == XFRAME_II_DEVICE) {
3386 val64 = readq(&bar0->pcc_err_reg);
3387 writeq(val64, &bar0->pcc_err_reg);
3390 sp->device_enabled_once = FALSE;
3394 * s2io_set_swapper - to set the swapper controle on the card
3395 * @sp : private member of the device structure,
3396 * pointer to the s2io_nic structure.
3397 * Description: Function to set the swapper control on the card
3398 * correctly depending on the 'endianness' of the system.
3400 * SUCCESS on success and FAILURE on failure.
3403 static int s2io_set_swapper(nic_t * sp)
3405 struct net_device *dev = sp->dev;
3406 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3407 u64 val64, valt, valr;
3410 * Set proper endian settings and verify the same by reading
3411 * the PIF Feed-back register.
3414 val64 = readq(&bar0->pif_rd_swapper_fb);
3415 if (val64 != 0x0123456789ABCDEFULL) {
3417 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3418 0x8100008181000081ULL, /* FE=1, SE=0 */
3419 0x4200004242000042ULL, /* FE=0, SE=1 */
3420 0}; /* FE=0, SE=0 */
3423 writeq(value[i], &bar0->swapper_ctrl);
3424 val64 = readq(&bar0->pif_rd_swapper_fb);
3425 if (val64 == 0x0123456789ABCDEFULL)
3430 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3432 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3433 (unsigned long long) val64);
3438 valr = readq(&bar0->swapper_ctrl);
3441 valt = 0x0123456789ABCDEFULL;
3442 writeq(valt, &bar0->xmsi_address);
3443 val64 = readq(&bar0->xmsi_address);
3447 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3448 0x0081810000818100ULL, /* FE=1, SE=0 */
3449 0x0042420000424200ULL, /* FE=0, SE=1 */
3450 0}; /* FE=0, SE=0 */
3453 writeq((value[i] | valr), &bar0->swapper_ctrl);
3454 writeq(valt, &bar0->xmsi_address);
3455 val64 = readq(&bar0->xmsi_address);
3461 unsigned long long x = val64;
3462 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3463 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3467 val64 = readq(&bar0->swapper_ctrl);
3468 val64 &= 0xFFFF000000000000ULL;
3472 * The device by default set to a big endian format, so a
3473 * big endian driver need not set anything.
3475 val64 |= (SWAPPER_CTRL_TXP_FE |
3476 SWAPPER_CTRL_TXP_SE |
3477 SWAPPER_CTRL_TXD_R_FE |
3478 SWAPPER_CTRL_TXD_W_FE |
3479 SWAPPER_CTRL_TXF_R_FE |
3480 SWAPPER_CTRL_RXD_R_FE |
3481 SWAPPER_CTRL_RXD_W_FE |
3482 SWAPPER_CTRL_RXF_W_FE |
3483 SWAPPER_CTRL_XMSI_FE |
3484 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3485 if (sp->intr_type == INTA)
3486 val64 |= SWAPPER_CTRL_XMSI_SE;
3487 writeq(val64, &bar0->swapper_ctrl);
3490 * Initially we enable all bits to make it accessible by the
3491 * driver, then we selectively enable only those bits that
3494 val64 |= (SWAPPER_CTRL_TXP_FE |
3495 SWAPPER_CTRL_TXP_SE |
3496 SWAPPER_CTRL_TXD_R_FE |
3497 SWAPPER_CTRL_TXD_R_SE |
3498 SWAPPER_CTRL_TXD_W_FE |
3499 SWAPPER_CTRL_TXD_W_SE |
3500 SWAPPER_CTRL_TXF_R_FE |
3501 SWAPPER_CTRL_RXD_R_FE |
3502 SWAPPER_CTRL_RXD_R_SE |
3503 SWAPPER_CTRL_RXD_W_FE |
3504 SWAPPER_CTRL_RXD_W_SE |
3505 SWAPPER_CTRL_RXF_W_FE |
3506 SWAPPER_CTRL_XMSI_FE |
3507 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3508 if (sp->intr_type == INTA)
3509 val64 |= SWAPPER_CTRL_XMSI_SE;
3510 writeq(val64, &bar0->swapper_ctrl);
3512 val64 = readq(&bar0->swapper_ctrl);
3515 * Verifying if endian settings are accurate by reading a
3516 * feedback register.
3518 val64 = readq(&bar0->pif_rd_swapper_fb);
3519 if (val64 != 0x0123456789ABCDEFULL) {
3520 /* Endian settings are incorrect, calls for another dekko. */
3521 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3523 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3524 (unsigned long long) val64);
3531 static int wait_for_msix_trans(nic_t *nic, int i)
3533 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3535 int ret = 0, cnt = 0;
3538 val64 = readq(&bar0->xmsi_access);
3539 if (!(val64 & BIT(15)))
3545 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3552 static void restore_xmsi_data(nic_t *nic)
3554 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3558 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3559 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3560 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3561 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3562 writeq(val64, &bar0->xmsi_access);
3563 if (wait_for_msix_trans(nic, i)) {
3564 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3570 static void store_xmsi_data(nic_t *nic)
3572 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3573 u64 val64, addr, data;
3576 /* Store and display */
3577 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3578 val64 = (BIT(15) | vBIT(i, 26, 6));
3579 writeq(val64, &bar0->xmsi_access);
3580 if (wait_for_msix_trans(nic, i)) {
3581 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3584 addr = readq(&bar0->xmsi_address);
3585 data = readq(&bar0->xmsi_data);
3587 nic->msix_info[i].addr = addr;
3588 nic->msix_info[i].data = data;
3593 int s2io_enable_msi(nic_t *nic)
3595 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3596 u16 msi_ctrl, msg_val;
3597 struct config_param *config = &nic->config;
3598 struct net_device *dev = nic->dev;
3599 u64 val64, tx_mat, rx_mat;
3602 val64 = readq(&bar0->pic_control);
3604 writeq(val64, &bar0->pic_control);
3606 err = pci_enable_msi(nic->pdev);
3608 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3614 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3615 * for interrupt handling.
3617 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3619 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3620 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3622 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3624 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3626 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3627 tx_mat = readq(&bar0->tx_mat0_n[0]);
3628 for (i=0; i<config->tx_fifo_num; i++) {
3629 tx_mat |= TX_MAT_SET(i, 1);
3631 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3633 rx_mat = readq(&bar0->rx_mat);
3634 for (i=0; i<config->rx_ring_num; i++) {
3635 rx_mat |= RX_MAT_SET(i, 1);
3637 writeq(rx_mat, &bar0->rx_mat);
3639 dev->irq = nic->pdev->irq;
3643 static int s2io_enable_msi_x(nic_t *nic)
3645 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3647 u16 msi_control; /* Temp variable */
3648 int ret, i, j, msix_indx = 1;
3650 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3652 if (nic->entries == NULL) {
3653 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3656 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3659 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3661 if (nic->s2io_entries == NULL) {
3662 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3663 kfree(nic->entries);
3666 memset(nic->s2io_entries, 0,
3667 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3669 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3670 nic->entries[i].entry = i;
3671 nic->s2io_entries[i].entry = i;
3672 nic->s2io_entries[i].arg = NULL;
3673 nic->s2io_entries[i].in_use = 0;
3676 tx_mat = readq(&bar0->tx_mat0_n[0]);
3677 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3678 tx_mat |= TX_MAT_SET(i, msix_indx);
3679 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3680 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3681 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3683 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3685 if (!nic->config.bimodal) {
3686 rx_mat = readq(&bar0->rx_mat);
3687 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3688 rx_mat |= RX_MAT_SET(j, msix_indx);
3689 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3690 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3691 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3693 writeq(rx_mat, &bar0->rx_mat);
3695 tx_mat = readq(&bar0->tx_mat0_n[7]);
3696 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3697 tx_mat |= TX_MAT_SET(i, msix_indx);
3698 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3699 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3700 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3702 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3705 nic->avail_msix_vectors = 0;
3706 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3707 /* We fail init if error or we get less vectors than min required */
3708 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3709 nic->avail_msix_vectors = ret;
3710 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3713 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3714 kfree(nic->entries);
3715 kfree(nic->s2io_entries);
3716 nic->entries = NULL;
3717 nic->s2io_entries = NULL;
3718 nic->avail_msix_vectors = 0;
3721 if (!nic->avail_msix_vectors)
3722 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3725 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3726 * in the herc NIC. (Temp change, needs to be removed later)
3728 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3729 msi_control |= 0x1; /* Enable MSI */
3730 pci_write_config_word(nic->pdev, 0x42, msi_control);
3735 /* ********************************************************* *
3736 * Functions defined below concern the OS part of the driver *
3737 * ********************************************************* */
3740 * s2io_open - open entry point of the driver
3741 * @dev : pointer to the device structure.
3743 * This function is the open entry point of the driver. It mainly calls a
3744 * function to allocate Rx buffers and inserts them into the buffer
3745 * descriptors and then enables the Rx part of the NIC.
3747 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3751 static int s2io_open(struct net_device *dev)
3753 nic_t *sp = dev->priv;
3757 * Make sure you have link off by default every time
3758 * Nic is initialized
3760 netif_carrier_off(dev);
3761 sp->last_link_state = 0;
3763 /* Initialize H/W and enable interrupts */
3764 err = s2io_card_up(sp);
3766 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3768 goto hw_init_failed;
3771 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3772 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3775 goto hw_init_failed;
3778 netif_start_queue(dev);
3782 if (sp->intr_type == MSI_X) {
3785 if (sp->s2io_entries)
3786 kfree(sp->s2io_entries);
3792 * s2io_close -close entry point of the driver
3793 * @dev : device pointer.
3795 * This is the stop entry point of the driver. It needs to undo exactly
3796 * whatever was done by the open entry point,thus it's usually referred to
3797 * as the close function.Among other things this function mainly stops the
3798 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3800 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3804 static int s2io_close(struct net_device *dev)
3806 nic_t *sp = dev->priv;
3808 flush_scheduled_work();
3809 netif_stop_queue(dev);
3810 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3813 sp->device_close_flag = TRUE; /* Device is shut down. */
3818 * s2io_xmit - Tx entry point of te driver
3819 * @skb : the socket buffer containing the Tx data.
3820 * @dev : device pointer.
3822 * This function is the Tx entry point of the driver. S2IO NIC supports
3823 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3824 * NOTE: when device cant queue the pkt,just the trans_start variable will
3827 * 0 on success & 1 on failure.
3830 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3832 nic_t *sp = dev->priv;
3833 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3836 TxFIFO_element_t __iomem *tx_fifo;
3837 unsigned long flags;
3839 int vlan_priority = 0;
3840 mac_info_t *mac_control;
3841 struct config_param *config;
3844 mac_control = &sp->mac_control;
3845 config = &sp->config;
3847 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3848 spin_lock_irqsave(&sp->tx_lock, flags);
3849 if (atomic_read(&sp->card_state) == CARD_DOWN) {
3850 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3852 spin_unlock_irqrestore(&sp->tx_lock, flags);
3859 /* Get Fifo number to Transmit based on vlan priority */
3860 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3861 vlan_tag = vlan_tx_tag_get(skb);
3862 vlan_priority = vlan_tag >> 13;
3863 queue = config->fifo_mapping[vlan_priority];
3866 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3867 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3868 txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3871 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3872 /* Avoid "put" pointer going beyond "get" pointer */
3873 if (txdp->Host_Control ||
3874 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3875 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3876 netif_stop_queue(dev);
3878 spin_unlock_irqrestore(&sp->tx_lock, flags);
3882 /* A buffer with no data will be dropped */
3884 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3886 spin_unlock_irqrestore(&sp->tx_lock, flags);
3890 offload_type = s2io_offload_type(skb);
3892 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3893 txdp->Control_1 |= TXD_TCP_LSO_EN;
3894 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3897 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3899 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3902 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3903 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3904 txdp->Control_2 |= config->tx_intr_type;
3906 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3907 txdp->Control_2 |= TXD_VLAN_ENABLE;
3908 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3911 frg_len = skb->len - skb->data_len;
3912 if (offload_type == SKB_GSO_UDP) {
3915 ufo_size = s2io_udp_mss(skb);
3917 txdp->Control_1 |= TXD_UFO_EN;
3918 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3919 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3921 sp->ufo_in_band_v[put_off] =
3922 (u64)skb_shinfo(skb)->ip6_frag_id;
3924 sp->ufo_in_band_v[put_off] =
3925 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3927 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3928 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3930 sizeof(u64), PCI_DMA_TODEVICE);
3934 txdp->Buffer_Pointer = pci_map_single
3935 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3936 txdp->Host_Control = (unsigned long) skb;
3937 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3938 if (offload_type == SKB_GSO_UDP)
3939 txdp->Control_1 |= TXD_UFO_EN;
3941 frg_cnt = skb_shinfo(skb)->nr_frags;
3942 /* For fragmented SKB. */
3943 for (i = 0; i < frg_cnt; i++) {
3944 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3945 /* A '0' length fragment will be ignored */
3949 txdp->Buffer_Pointer = (u64) pci_map_page
3950 (sp->pdev, frag->page, frag->page_offset,
3951 frag->size, PCI_DMA_TODEVICE);
3952 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3953 if (offload_type == SKB_GSO_UDP)
3954 txdp->Control_1 |= TXD_UFO_EN;
3956 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3958 if (offload_type == SKB_GSO_UDP)
3959 frg_cnt++; /* as Txd0 was used for inband header */
3961 tx_fifo = mac_control->tx_FIFO_start[queue];
3962 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3963 writeq(val64, &tx_fifo->TxDL_Pointer);
3965 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3968 val64 |= TX_FIFO_SPECIAL_FUNC;
3970 writeq(val64, &tx_fifo->List_Control);
3975 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
3977 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3979 /* Avoid "put" pointer going beyond "get" pointer */
3980 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3981 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
3983 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3985 netif_stop_queue(dev);
3988 dev->trans_start = jiffies;
3989 spin_unlock_irqrestore(&sp->tx_lock, flags);
3995 s2io_alarm_handle(unsigned long data)
3997 nic_t *sp = (nic_t *)data;
3999 alarm_intr_handler(sp);
4000 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4003 static int s2io_chk_rx_buffers(nic_t *sp, int rng_n)
4005 int rxb_size, level;
4008 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4009 level = rx_buffer_level(sp, rxb_size, rng_n);
4011 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4013 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4014 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4015 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4016 DBG_PRINT(ERR_DBG, "Out of memory in %s",
4018 clear_bit(0, (&sp->tasklet_status));
4021 clear_bit(0, (&sp->tasklet_status));
4022 } else if (level == LOW)
4023 tasklet_schedule(&sp->task);
4025 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4026 DBG_PRINT(ERR_DBG, "%s:Out of memory", sp->dev->name);
4027 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4032 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
4034 struct net_device *dev = (struct net_device *) dev_id;
4035 nic_t *sp = dev->priv;
4037 mac_info_t *mac_control;
4038 struct config_param *config;
4040 atomic_inc(&sp->isr_cnt);
4041 mac_control = &sp->mac_control;
4042 config = &sp->config;
4043 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4045 /* If Intr is because of Rx Traffic */
4046 for (i = 0; i < config->rx_ring_num; i++)
4047 rx_intr_handler(&mac_control->rings[i]);
4049 /* If Intr is because of Tx Traffic */
4050 for (i = 0; i < config->tx_fifo_num; i++)
4051 tx_intr_handler(&mac_control->fifos[i]);
4054 * If the Rx buffer count is below the panic threshold then
4055 * reallocate the buffers from the interrupt handler itself,
4056 * else schedule a tasklet to reallocate the buffers.
4058 for (i = 0; i < config->rx_ring_num; i++)
4059 s2io_chk_rx_buffers(sp, i);
4061 atomic_dec(&sp->isr_cnt);
4065 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4067 ring_info_t *ring = (ring_info_t *)dev_id;
4068 nic_t *sp = ring->nic;
4070 atomic_inc(&sp->isr_cnt);
4072 rx_intr_handler(ring);
4073 s2io_chk_rx_buffers(sp, ring->ring_no);
4075 atomic_dec(&sp->isr_cnt);
4079 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4081 fifo_info_t *fifo = (fifo_info_t *)dev_id;
4082 nic_t *sp = fifo->nic;
4084 atomic_inc(&sp->isr_cnt);
4085 tx_intr_handler(fifo);
4086 atomic_dec(&sp->isr_cnt);
4089 static void s2io_txpic_intr_handle(nic_t *sp)
4091 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4094 val64 = readq(&bar0->pic_int_status);
4095 if (val64 & PIC_INT_GPIO) {
4096 val64 = readq(&bar0->gpio_int_reg);
4097 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4098 (val64 & GPIO_INT_REG_LINK_UP)) {
4100 * This is unstable state so clear both up/down
4101 * interrupt and adapter to re-evaluate the link state.
4103 val64 |= GPIO_INT_REG_LINK_DOWN;
4104 val64 |= GPIO_INT_REG_LINK_UP;
4105 writeq(val64, &bar0->gpio_int_reg);
4106 val64 = readq(&bar0->gpio_int_mask);
4107 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4108 GPIO_INT_MASK_LINK_DOWN);
4109 writeq(val64, &bar0->gpio_int_mask);
4111 else if (val64 & GPIO_INT_REG_LINK_UP) {
4112 val64 = readq(&bar0->adapter_status);
4113 if (verify_xena_quiescence(sp, val64,
4114 sp->device_enabled_once)) {
4115 /* Enable Adapter */
4116 val64 = readq(&bar0->adapter_control);
4117 val64 |= ADAPTER_CNTL_EN;
4118 writeq(val64, &bar0->adapter_control);
4119 val64 |= ADAPTER_LED_ON;
4120 writeq(val64, &bar0->adapter_control);
4121 if (!sp->device_enabled_once)
4122 sp->device_enabled_once = 1;
4124 s2io_link(sp, LINK_UP);
4126 * unmask link down interrupt and mask link-up
4129 val64 = readq(&bar0->gpio_int_mask);
4130 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4131 val64 |= GPIO_INT_MASK_LINK_UP;
4132 writeq(val64, &bar0->gpio_int_mask);
4135 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4136 val64 = readq(&bar0->adapter_status);
4137 if (verify_xena_quiescence(sp, val64,
4138 sp->device_enabled_once)) {
4139 s2io_link(sp, LINK_DOWN);
4140 /* Link is down so unmaks link up interrupt */
4141 val64 = readq(&bar0->gpio_int_mask);
4142 val64 &= ~GPIO_INT_MASK_LINK_UP;
4143 val64 |= GPIO_INT_MASK_LINK_DOWN;
4144 writeq(val64, &bar0->gpio_int_mask);
4148 val64 = readq(&bar0->gpio_int_mask);
4152 * s2io_isr - ISR handler of the device .
4153 * @irq: the irq of the device.
4154 * @dev_id: a void pointer to the dev structure of the NIC.
4155 * Description: This function is the ISR handler of the device. It
4156 * identifies the reason for the interrupt and calls the relevant
4157 * service routines. As a contongency measure, this ISR allocates the
4158 * recv buffers, if their numbers are below the panic value which is
4159 * presently set to 25% of the original number of rcv buffers allocated.
4161 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4162 * IRQ_NONE: will be returned if interrupt is not from our device
4164 static irqreturn_t s2io_isr(int irq, void *dev_id)
4166 struct net_device *dev = (struct net_device *) dev_id;
4167 nic_t *sp = dev->priv;
4168 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4170 u64 reason = 0, val64, org_mask;
4171 mac_info_t *mac_control;
4172 struct config_param *config;
4174 atomic_inc(&sp->isr_cnt);
4175 mac_control = &sp->mac_control;
4176 config = &sp->config;
4179 * Identify the cause for interrupt and call the appropriate
4180 * interrupt handler. Causes for the interrupt could be;
4184 * 4. Error in any functional blocks of the NIC.
4186 reason = readq(&bar0->general_int_status);
4189 /* The interrupt was not raised by Xena. */
4190 atomic_dec(&sp->isr_cnt);
4194 val64 = 0xFFFFFFFFFFFFFFFFULL;
4195 /* Store current mask before masking all interrupts */
4196 org_mask = readq(&bar0->general_int_mask);
4197 writeq(val64, &bar0->general_int_mask);
4199 #ifdef CONFIG_S2IO_NAPI
4200 if (reason & GEN_INTR_RXTRAFFIC) {
4201 if (netif_rx_schedule_prep(dev)) {
4202 writeq(val64, &bar0->rx_traffic_mask);
4203 __netif_rx_schedule(dev);
4208 * Rx handler is called by default, without checking for the
4209 * cause of interrupt.
4210 * rx_traffic_int reg is an R1 register, writing all 1's
4211 * will ensure that the actual interrupt causing bit get's
4212 * cleared and hence a read can be avoided.
4214 writeq(val64, &bar0->rx_traffic_int);
4215 for (i = 0; i < config->rx_ring_num; i++) {
4216 rx_intr_handler(&mac_control->rings[i]);
4221 * tx_traffic_int reg is an R1 register, writing all 1's
4222 * will ensure that the actual interrupt causing bit get's
4223 * cleared and hence a read can be avoided.
4225 writeq(val64, &bar0->tx_traffic_int);
4227 for (i = 0; i < config->tx_fifo_num; i++)
4228 tx_intr_handler(&mac_control->fifos[i]);
4230 if (reason & GEN_INTR_TXPIC)
4231 s2io_txpic_intr_handle(sp);
4233 * If the Rx buffer count is below the panic threshold then
4234 * reallocate the buffers from the interrupt handler itself,
4235 * else schedule a tasklet to reallocate the buffers.
4237 #ifndef CONFIG_S2IO_NAPI
4238 for (i = 0; i < config->rx_ring_num; i++)
4239 s2io_chk_rx_buffers(sp, i);
4241 writeq(org_mask, &bar0->general_int_mask);
4242 atomic_dec(&sp->isr_cnt);
4249 static void s2io_updt_stats(nic_t *sp)
4251 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4255 if (atomic_read(&sp->card_state) == CARD_UP) {
4256 /* Apprx 30us on a 133 MHz bus */
4257 val64 = SET_UPDT_CLICKS(10) |
4258 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4259 writeq(val64, &bar0->stat_cfg);
4262 val64 = readq(&bar0->stat_cfg);
4263 if (!(val64 & BIT(0)))
4267 break; /* Updt failed */
4270 memset(sp->mac_control.stats_info, 0, sizeof(StatInfo_t));
4275 * s2io_get_stats - Updates the device statistics structure.
4276 * @dev : pointer to the device structure.
4278 * This function updates the device statistics structure in the s2io_nic
4279 * structure and returns a pointer to the same.
4281 * pointer to the updated net_device_stats structure.
4284 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4286 nic_t *sp = dev->priv;
4287 mac_info_t *mac_control;
4288 struct config_param *config;
4291 mac_control = &sp->mac_control;
4292 config = &sp->config;
4294 /* Configure Stats for immediate updt */
4295 s2io_updt_stats(sp);
4297 sp->stats.tx_packets =
4298 le32_to_cpu(mac_control->stats_info->tmac_frms);
4299 sp->stats.tx_errors =
4300 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4301 sp->stats.rx_errors =
4302 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4303 sp->stats.multicast =
4304 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4305 sp->stats.rx_length_errors =
4306 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4308 return (&sp->stats);
4312 * s2io_set_multicast - entry point for multicast address enable/disable.
4313 * @dev : pointer to the device structure
4315 * This function is a driver entry point which gets called by the kernel
4316 * whenever multicast addresses must be enabled/disabled. This also gets
4317 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4318 * determine, if multicast address must be enabled or if promiscuous mode
4319 * is to be disabled etc.
4324 static void s2io_set_multicast(struct net_device *dev)
4327 struct dev_mc_list *mclist;
4328 nic_t *sp = dev->priv;
4329 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4330 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4332 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4335 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4336 /* Enable all Multicast addresses */
4337 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4338 &bar0->rmac_addr_data0_mem);
4339 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4340 &bar0->rmac_addr_data1_mem);
4341 val64 = RMAC_ADDR_CMD_MEM_WE |
4342 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4343 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4344 writeq(val64, &bar0->rmac_addr_cmd_mem);
4345 /* Wait till command completes */
4346 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4347 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4350 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4351 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4352 /* Disable all Multicast addresses */
4353 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4354 &bar0->rmac_addr_data0_mem);
4355 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4356 &bar0->rmac_addr_data1_mem);
4357 val64 = RMAC_ADDR_CMD_MEM_WE |
4358 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4359 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4360 writeq(val64, &bar0->rmac_addr_cmd_mem);
4361 /* Wait till command completes */
4362 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4363 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4366 sp->all_multi_pos = 0;
4369 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4370 /* Put the NIC into promiscuous mode */
4371 add = &bar0->mac_cfg;
4372 val64 = readq(&bar0->mac_cfg);
4373 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4375 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4376 writel((u32) val64, add);
4377 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4378 writel((u32) (val64 >> 32), (add + 4));
4380 val64 = readq(&bar0->mac_cfg);
4381 sp->promisc_flg = 1;
4382 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4384 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4385 /* Remove the NIC from promiscuous mode */
4386 add = &bar0->mac_cfg;
4387 val64 = readq(&bar0->mac_cfg);
4388 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4390 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4391 writel((u32) val64, add);
4392 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4393 writel((u32) (val64 >> 32), (add + 4));
4395 val64 = readq(&bar0->mac_cfg);
4396 sp->promisc_flg = 0;
4397 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4401 /* Update individual M_CAST address list */
4402 if ((!sp->m_cast_flg) && dev->mc_count) {
4404 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4405 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4407 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4408 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4412 prev_cnt = sp->mc_addr_count;
4413 sp->mc_addr_count = dev->mc_count;
4415 /* Clear out the previous list of Mc in the H/W. */
4416 for (i = 0; i < prev_cnt; i++) {
4417 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4418 &bar0->rmac_addr_data0_mem);
4419 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4420 &bar0->rmac_addr_data1_mem);
4421 val64 = RMAC_ADDR_CMD_MEM_WE |
4422 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4423 RMAC_ADDR_CMD_MEM_OFFSET
4424 (MAC_MC_ADDR_START_OFFSET + i);
4425 writeq(val64, &bar0->rmac_addr_cmd_mem);
4427 /* Wait for command completes */
4428 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4429 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4430 DBG_PRINT(ERR_DBG, "%s: Adding ",
4432 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4437 /* Create the new Rx filter list and update the same in H/W. */
4438 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4439 i++, mclist = mclist->next) {
4440 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4443 for (j = 0; j < ETH_ALEN; j++) {
4444 mac_addr |= mclist->dmi_addr[j];
4448 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4449 &bar0->rmac_addr_data0_mem);
4450 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4451 &bar0->rmac_addr_data1_mem);
4452 val64 = RMAC_ADDR_CMD_MEM_WE |
4453 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4454 RMAC_ADDR_CMD_MEM_OFFSET
4455 (i + MAC_MC_ADDR_START_OFFSET);
4456 writeq(val64, &bar0->rmac_addr_cmd_mem);
4458 /* Wait for command completes */
4459 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4460 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4461 DBG_PRINT(ERR_DBG, "%s: Adding ",
4463 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4471 * s2io_set_mac_addr - Programs the Xframe mac address
4472 * @dev : pointer to the device structure.
4473 * @addr: a uchar pointer to the new mac address which is to be set.
4474 * Description : This procedure will program the Xframe to receive
4475 * frames with new Mac Address
4476 * Return value: SUCCESS on success and an appropriate (-)ve integer
4477 * as defined in errno.h file on failure.
4480 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4482 nic_t *sp = dev->priv;
4483 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4484 register u64 val64, mac_addr = 0;
4488 * Set the new MAC address as the new unicast filter and reflect this
4489 * change on the device address registered with the OS. It will be
4492 for (i = 0; i < ETH_ALEN; i++) {
4494 mac_addr |= addr[i];
4497 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4498 &bar0->rmac_addr_data0_mem);
4501 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4502 RMAC_ADDR_CMD_MEM_OFFSET(0);
4503 writeq(val64, &bar0->rmac_addr_cmd_mem);
4504 /* Wait till command completes */
4505 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4506 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4507 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4515 * s2io_ethtool_sset - Sets different link parameters.
4516 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4517 * @info: pointer to the structure with parameters given by ethtool to set
4520 * The function sets different link parameters provided by the user onto
4526 static int s2io_ethtool_sset(struct net_device *dev,
4527 struct ethtool_cmd *info)
4529 nic_t *sp = dev->priv;
4530 if ((info->autoneg == AUTONEG_ENABLE) ||
4531 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4534 s2io_close(sp->dev);
4542 * s2io_ethtol_gset - Return link specific information.
4543 * @sp : private member of the device structure, pointer to the
4544 * s2io_nic structure.
4545 * @info : pointer to the structure with parameters given by ethtool
4546 * to return link information.
4548 * Returns link specific information like speed, duplex etc.. to ethtool.
4550 * return 0 on success.
4553 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4555 nic_t *sp = dev->priv;
4556 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4557 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4558 info->port = PORT_FIBRE;
4559 /* info->transceiver?? TODO */
4561 if (netif_carrier_ok(sp->dev)) {
4562 info->speed = 10000;
4563 info->duplex = DUPLEX_FULL;
4569 info->autoneg = AUTONEG_DISABLE;
4574 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4575 * @sp : private member of the device structure, which is a pointer to the
4576 * s2io_nic structure.
4577 * @info : pointer to the structure with parameters given by ethtool to
4578 * return driver information.
4580 * Returns driver specefic information like name, version etc.. to ethtool.
4585 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4586 struct ethtool_drvinfo *info)
4588 nic_t *sp = dev->priv;
4590 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4591 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4592 strncpy(info->fw_version, "", sizeof(info->fw_version));
4593 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4594 info->regdump_len = XENA_REG_SPACE;
4595 info->eedump_len = XENA_EEPROM_SPACE;
4596 info->testinfo_len = S2IO_TEST_LEN;
4597 info->n_stats = S2IO_STAT_LEN;
4601 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4602 * @sp: private member of the device structure, which is a pointer to the
4603 * s2io_nic structure.
4604 * @regs : pointer to the structure with parameters given by ethtool for
4605 * dumping the registers.
4606 * @reg_space: The input argumnet into which all the registers are dumped.
4608 * Dumps the entire register space of xFrame NIC into the user given
4614 static void s2io_ethtool_gregs(struct net_device *dev,
4615 struct ethtool_regs *regs, void *space)
4619 u8 *reg_space = (u8 *) space;
4620 nic_t *sp = dev->priv;
4622 regs->len = XENA_REG_SPACE;
4623 regs->version = sp->pdev->subsystem_device;
4625 for (i = 0; i < regs->len; i += 8) {
4626 reg = readq(sp->bar0 + i);
4627 memcpy((reg_space + i), ®, 8);
4632 * s2io_phy_id - timer function that alternates adapter LED.
4633 * @data : address of the private member of the device structure, which
4634 * is a pointer to the s2io_nic structure, provided as an u32.
4635 * Description: This is actually the timer function that alternates the
4636 * adapter LED bit of the adapter control bit to set/reset every time on
4637 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4638 * once every second.
4640 static void s2io_phy_id(unsigned long data)
4642 nic_t *sp = (nic_t *) data;
4643 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4647 subid = sp->pdev->subsystem_device;
4648 if ((sp->device_type == XFRAME_II_DEVICE) ||
4649 ((subid & 0xFF) >= 0x07)) {
4650 val64 = readq(&bar0->gpio_control);
4651 val64 ^= GPIO_CTRL_GPIO_0;
4652 writeq(val64, &bar0->gpio_control);
4654 val64 = readq(&bar0->adapter_control);
4655 val64 ^= ADAPTER_LED_ON;
4656 writeq(val64, &bar0->adapter_control);
4659 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4663 * s2io_ethtool_idnic - To physically identify the nic on the system.
4664 * @sp : private member of the device structure, which is a pointer to the
4665 * s2io_nic structure.
4666 * @id : pointer to the structure with identification parameters given by
4668 * Description: Used to physically identify the NIC on the system.
4669 * The Link LED will blink for a time specified by the user for
4671 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4672 * identification is possible only if it's link is up.
4674 * int , returns 0 on success
4677 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4679 u64 val64 = 0, last_gpio_ctrl_val;
4680 nic_t *sp = dev->priv;
4681 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4684 subid = sp->pdev->subsystem_device;
4685 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4686 if ((sp->device_type == XFRAME_I_DEVICE) &&
4687 ((subid & 0xFF) < 0x07)) {
4688 val64 = readq(&bar0->adapter_control);
4689 if (!(val64 & ADAPTER_CNTL_EN)) {
4691 "Adapter Link down, cannot blink LED\n");
4695 if (sp->id_timer.function == NULL) {
4696 init_timer(&sp->id_timer);
4697 sp->id_timer.function = s2io_phy_id;
4698 sp->id_timer.data = (unsigned long) sp;
4700 mod_timer(&sp->id_timer, jiffies);
4702 msleep_interruptible(data * HZ);
4704 msleep_interruptible(MAX_FLICKER_TIME);
4705 del_timer_sync(&sp->id_timer);
4707 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4708 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4709 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4716 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4717 * @sp : private member of the device structure, which is a pointer to the
4718 * s2io_nic structure.
4719 * @ep : pointer to the structure with pause parameters given by ethtool.
4721 * Returns the Pause frame generation and reception capability of the NIC.
4725 static void s2io_ethtool_getpause_data(struct net_device *dev,
4726 struct ethtool_pauseparam *ep)
4729 nic_t *sp = dev->priv;
4730 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4732 val64 = readq(&bar0->rmac_pause_cfg);
4733 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4734 ep->tx_pause = TRUE;
4735 if (val64 & RMAC_PAUSE_RX_ENABLE)
4736 ep->rx_pause = TRUE;
4737 ep->autoneg = FALSE;
4741 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4742 * @sp : private member of the device structure, which is a pointer to the
4743 * s2io_nic structure.
4744 * @ep : pointer to the structure with pause parameters given by ethtool.
4746 * It can be used to set or reset Pause frame generation or reception
4747 * support of the NIC.
4749 * int, returns 0 on Success
4752 static int s2io_ethtool_setpause_data(struct net_device *dev,
4753 struct ethtool_pauseparam *ep)
4756 nic_t *sp = dev->priv;
4757 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4759 val64 = readq(&bar0->rmac_pause_cfg);
4761 val64 |= RMAC_PAUSE_GEN_ENABLE;
4763 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4765 val64 |= RMAC_PAUSE_RX_ENABLE;
4767 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4768 writeq(val64, &bar0->rmac_pause_cfg);
4773 * read_eeprom - reads 4 bytes of data from user given offset.
4774 * @sp : private member of the device structure, which is a pointer to the
4775 * s2io_nic structure.
4776 * @off : offset at which the data must be written
4777 * @data : Its an output parameter where the data read at the given
4780 * Will read 4 bytes of data from the user given offset and return the
4782 * NOTE: Will allow to read only part of the EEPROM visible through the
4785 * -1 on failure and 0 on success.
4788 #define S2IO_DEV_ID 5
4789 static int read_eeprom(nic_t * sp, int off, u64 * data)
4794 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4796 if (sp->device_type == XFRAME_I_DEVICE) {
4797 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4798 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4799 I2C_CONTROL_CNTL_START;
4800 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4802 while (exit_cnt < 5) {
4803 val64 = readq(&bar0->i2c_control);
4804 if (I2C_CONTROL_CNTL_END(val64)) {
4805 *data = I2C_CONTROL_GET_DATA(val64);
4814 if (sp->device_type == XFRAME_II_DEVICE) {
4815 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4816 SPI_CONTROL_BYTECNT(0x3) |
4817 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4818 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4819 val64 |= SPI_CONTROL_REQ;
4820 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4821 while (exit_cnt < 5) {
4822 val64 = readq(&bar0->spi_control);
4823 if (val64 & SPI_CONTROL_NACK) {
4826 } else if (val64 & SPI_CONTROL_DONE) {
4827 *data = readq(&bar0->spi_data);
4840 * write_eeprom - actually writes the relevant part of the data value.
4841 * @sp : private member of the device structure, which is a pointer to the
4842 * s2io_nic structure.
4843 * @off : offset at which the data must be written
4844 * @data : The data that is to be written
4845 * @cnt : Number of bytes of the data that are actually to be written into
4846 * the Eeprom. (max of 3)
4848 * Actually writes the relevant part of the data value into the Eeprom
4849 * through the I2C bus.
4851 * 0 on success, -1 on failure.
4854 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4856 int exit_cnt = 0, ret = -1;
4858 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4860 if (sp->device_type == XFRAME_I_DEVICE) {
4861 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4862 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4863 I2C_CONTROL_CNTL_START;
4864 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4866 while (exit_cnt < 5) {
4867 val64 = readq(&bar0->i2c_control);
4868 if (I2C_CONTROL_CNTL_END(val64)) {
4869 if (!(val64 & I2C_CONTROL_NACK))
4878 if (sp->device_type == XFRAME_II_DEVICE) {
4879 int write_cnt = (cnt == 8) ? 0 : cnt;
4880 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4882 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4883 SPI_CONTROL_BYTECNT(write_cnt) |
4884 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4885 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4886 val64 |= SPI_CONTROL_REQ;
4887 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4888 while (exit_cnt < 5) {
4889 val64 = readq(&bar0->spi_control);
4890 if (val64 & SPI_CONTROL_NACK) {
4893 } else if (val64 & SPI_CONTROL_DONE) {
4903 static void s2io_vpd_read(nic_t *nic)
4907 int i=0, cnt, fail = 0;
4908 int vpd_addr = 0x80;
4910 if (nic->device_type == XFRAME_II_DEVICE) {
4911 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4915 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4919 vpd_data = kmalloc(256, GFP_KERNEL);
4923 for (i = 0; i < 256; i +=4 ) {
4924 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4925 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
4926 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4927 for (cnt = 0; cnt <5; cnt++) {
4929 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4934 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4938 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
4939 (u32 *)&vpd_data[i]);
4941 if ((!fail) && (vpd_data[1] < VPD_PRODUCT_NAME_LEN)) {
4942 memset(nic->product_name, 0, vpd_data[1]);
4943 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
4949 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
4950 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4951 * @eeprom : pointer to the user level structure provided by ethtool,
4952 * containing all relevant information.
4953 * @data_buf : user defined value to be written into Eeprom.
4954 * Description: Reads the values stored in the Eeprom at given offset
4955 * for a given length. Stores these values int the input argument data
4956 * buffer 'data_buf' and returns these to the caller (ethtool.)
4961 static int s2io_ethtool_geeprom(struct net_device *dev,
4962 struct ethtool_eeprom *eeprom, u8 * data_buf)
4966 nic_t *sp = dev->priv;
4968 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4970 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4971 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4973 for (i = 0; i < eeprom->len; i += 4) {
4974 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4975 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4979 memcpy((data_buf + i), &valid, 4);
4985 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4986 * @sp : private member of the device structure, which is a pointer to the
4987 * s2io_nic structure.
4988 * @eeprom : pointer to the user level structure provided by ethtool,
4989 * containing all relevant information.
4990 * @data_buf ; user defined value to be written into Eeprom.
4992 * Tries to write the user provided value in the Eeprom, at the offset
4993 * given by the user.
4995 * 0 on success, -EFAULT on failure.
4998 static int s2io_ethtool_seeprom(struct net_device *dev,
4999 struct ethtool_eeprom *eeprom,
5002 int len = eeprom->len, cnt = 0;
5003 u64 valid = 0, data;
5004 nic_t *sp = dev->priv;
5006 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5008 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5009 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5015 data = (u32) data_buf[cnt] & 0x000000FF;
5017 valid = (u32) (data << 24);
5021 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5023 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5025 "write into the specified offset\n");
5036 * s2io_register_test - reads and writes into all clock domains.
5037 * @sp : private member of the device structure, which is a pointer to the
5038 * s2io_nic structure.
5039 * @data : variable that returns the result of each of the test conducted b
5042 * Read and write into all clock domains. The NIC has 3 clock domains,
5043 * see that registers in all the three regions are accessible.
5048 static int s2io_register_test(nic_t * sp, uint64_t * data)
5050 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5051 u64 val64 = 0, exp_val;
5054 val64 = readq(&bar0->pif_rd_swapper_fb);
5055 if (val64 != 0x123456789abcdefULL) {
5057 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5060 val64 = readq(&bar0->rmac_pause_cfg);
5061 if (val64 != 0xc000ffff00000000ULL) {
5063 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5066 val64 = readq(&bar0->rx_queue_cfg);
5067 if (sp->device_type == XFRAME_II_DEVICE)
5068 exp_val = 0x0404040404040404ULL;
5070 exp_val = 0x0808080808080808ULL;
5071 if (val64 != exp_val) {
5073 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5076 val64 = readq(&bar0->xgxs_efifo_cfg);
5077 if (val64 != 0x000000001923141EULL) {
5079 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5082 val64 = 0x5A5A5A5A5A5A5A5AULL;
5083 writeq(val64, &bar0->xmsi_data);
5084 val64 = readq(&bar0->xmsi_data);
5085 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5087 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5090 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5091 writeq(val64, &bar0->xmsi_data);
5092 val64 = readq(&bar0->xmsi_data);
5093 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5095 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5103 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5104 * @sp : private member of the device structure, which is a pointer to the
5105 * s2io_nic structure.
5106 * @data:variable that returns the result of each of the test conducted by
5109 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5115 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
5118 u64 ret_data, org_4F0, org_7F0;
5119 u8 saved_4F0 = 0, saved_7F0 = 0;
5120 struct net_device *dev = sp->dev;
5122 /* Test Write Error at offset 0 */
5123 /* Note that SPI interface allows write access to all areas
5124 * of EEPROM. Hence doing all negative testing only for Xframe I.
5126 if (sp->device_type == XFRAME_I_DEVICE)
5127 if (!write_eeprom(sp, 0, 0, 3))
5130 /* Save current values at offsets 0x4F0 and 0x7F0 */
5131 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5133 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5136 /* Test Write at offset 4f0 */
5137 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5139 if (read_eeprom(sp, 0x4F0, &ret_data))
5142 if (ret_data != 0x012345) {
5143 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5144 "Data written %llx Data read %llx\n",
5145 dev->name, (unsigned long long)0x12345,
5146 (unsigned long long)ret_data);
5150 /* Reset the EEPROM data go FFFF */
5151 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5153 /* Test Write Request Error at offset 0x7c */
5154 if (sp->device_type == XFRAME_I_DEVICE)
5155 if (!write_eeprom(sp, 0x07C, 0, 3))
5158 /* Test Write Request at offset 0x7f0 */
5159 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5161 if (read_eeprom(sp, 0x7F0, &ret_data))
5164 if (ret_data != 0x012345) {
5165 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5166 "Data written %llx Data read %llx\n",
5167 dev->name, (unsigned long long)0x12345,
5168 (unsigned long long)ret_data);
5172 /* Reset the EEPROM data go FFFF */
5173 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5175 if (sp->device_type == XFRAME_I_DEVICE) {
5176 /* Test Write Error at offset 0x80 */
5177 if (!write_eeprom(sp, 0x080, 0, 3))
5180 /* Test Write Error at offset 0xfc */
5181 if (!write_eeprom(sp, 0x0FC, 0, 3))
5184 /* Test Write Error at offset 0x100 */
5185 if (!write_eeprom(sp, 0x100, 0, 3))
5188 /* Test Write Error at offset 4ec */
5189 if (!write_eeprom(sp, 0x4EC, 0, 3))
5193 /* Restore values at offsets 0x4F0 and 0x7F0 */
5195 write_eeprom(sp, 0x4F0, org_4F0, 3);
5197 write_eeprom(sp, 0x7F0, org_7F0, 3);
5204 * s2io_bist_test - invokes the MemBist test of the card .
5205 * @sp : private member of the device structure, which is a pointer to the
5206 * s2io_nic structure.
5207 * @data:variable that returns the result of each of the test conducted by
5210 * This invokes the MemBist test of the card. We give around
5211 * 2 secs time for the Test to complete. If it's still not complete
5212 * within this peiod, we consider that the test failed.
5214 * 0 on success and -1 on failure.
5217 static int s2io_bist_test(nic_t * sp, uint64_t * data)
5220 int cnt = 0, ret = -1;
5222 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5223 bist |= PCI_BIST_START;
5224 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5227 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5228 if (!(bist & PCI_BIST_START)) {
5229 *data = (bist & PCI_BIST_CODE_MASK);
5241 * s2io-link_test - verifies the link state of the nic
5242 * @sp ; private member of the device structure, which is a pointer to the
5243 * s2io_nic structure.
5244 * @data: variable that returns the result of each of the test conducted by
5247 * The function verifies the link state of the NIC and updates the input
5248 * argument 'data' appropriately.
5253 static int s2io_link_test(nic_t * sp, uint64_t * data)
5255 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5258 val64 = readq(&bar0->adapter_status);
5259 if(!(LINK_IS_UP(val64)))
5268 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5269 * @sp - private member of the device structure, which is a pointer to the
5270 * s2io_nic structure.
5271 * @data - variable that returns the result of each of the test
5272 * conducted by the driver.
5274 * This is one of the offline test that tests the read and write
5275 * access to the RldRam chip on the NIC.
5280 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
5282 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5284 int cnt, iteration = 0, test_fail = 0;
5286 val64 = readq(&bar0->adapter_control);
5287 val64 &= ~ADAPTER_ECC_EN;
5288 writeq(val64, &bar0->adapter_control);
5290 val64 = readq(&bar0->mc_rldram_test_ctrl);
5291 val64 |= MC_RLDRAM_TEST_MODE;
5292 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5294 val64 = readq(&bar0->mc_rldram_mrs);
5295 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5296 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5298 val64 |= MC_RLDRAM_MRS_ENABLE;
5299 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5301 while (iteration < 2) {
5302 val64 = 0x55555555aaaa0000ULL;
5303 if (iteration == 1) {
5304 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5306 writeq(val64, &bar0->mc_rldram_test_d0);
5308 val64 = 0xaaaa5a5555550000ULL;
5309 if (iteration == 1) {
5310 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5312 writeq(val64, &bar0->mc_rldram_test_d1);
5314 val64 = 0x55aaaaaaaa5a0000ULL;
5315 if (iteration == 1) {
5316 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5318 writeq(val64, &bar0->mc_rldram_test_d2);
5320 val64 = (u64) (0x0000003ffffe0100ULL);
5321 writeq(val64, &bar0->mc_rldram_test_add);
5323 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5325 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5327 for (cnt = 0; cnt < 5; cnt++) {
5328 val64 = readq(&bar0->mc_rldram_test_ctrl);
5329 if (val64 & MC_RLDRAM_TEST_DONE)
5337 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5338 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5340 for (cnt = 0; cnt < 5; cnt++) {
5341 val64 = readq(&bar0->mc_rldram_test_ctrl);
5342 if (val64 & MC_RLDRAM_TEST_DONE)
5350 val64 = readq(&bar0->mc_rldram_test_ctrl);
5351 if (!(val64 & MC_RLDRAM_TEST_PASS))
5359 /* Bring the adapter out of test mode */
5360 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5366 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5367 * @sp : private member of the device structure, which is a pointer to the
5368 * s2io_nic structure.
5369 * @ethtest : pointer to a ethtool command specific structure that will be
5370 * returned to the user.
5371 * @data : variable that returns the result of each of the test
5372 * conducted by the driver.
5374 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5375 * the health of the card.
5380 static void s2io_ethtool_test(struct net_device *dev,
5381 struct ethtool_test *ethtest,
5384 nic_t *sp = dev->priv;
5385 int orig_state = netif_running(sp->dev);
5387 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5388 /* Offline Tests. */
5390 s2io_close(sp->dev);
5392 if (s2io_register_test(sp, &data[0]))
5393 ethtest->flags |= ETH_TEST_FL_FAILED;
5397 if (s2io_rldram_test(sp, &data[3]))
5398 ethtest->flags |= ETH_TEST_FL_FAILED;
5402 if (s2io_eeprom_test(sp, &data[1]))
5403 ethtest->flags |= ETH_TEST_FL_FAILED;
5405 if (s2io_bist_test(sp, &data[4]))
5406 ethtest->flags |= ETH_TEST_FL_FAILED;
5416 "%s: is not up, cannot run test\n",
5425 if (s2io_link_test(sp, &data[2]))
5426 ethtest->flags |= ETH_TEST_FL_FAILED;
5435 static void s2io_get_ethtool_stats(struct net_device *dev,
5436 struct ethtool_stats *estats,
5440 nic_t *sp = dev->priv;
5441 StatInfo_t *stat_info = sp->mac_control.stats_info;
5443 s2io_updt_stats(sp);
5445 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5446 le32_to_cpu(stat_info->tmac_frms);
5448 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5449 le32_to_cpu(stat_info->tmac_data_octets);
5450 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5452 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5453 le32_to_cpu(stat_info->tmac_mcst_frms);
5455 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5456 le32_to_cpu(stat_info->tmac_bcst_frms);
5457 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5459 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5460 le32_to_cpu(stat_info->tmac_ttl_octets);
5462 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5463 le32_to_cpu(stat_info->tmac_ucst_frms);
5465 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5466 le32_to_cpu(stat_info->tmac_nucst_frms);
5468 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5469 le32_to_cpu(stat_info->tmac_any_err_frms);
5470 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5471 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5473 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5474 le32_to_cpu(stat_info->tmac_vld_ip);
5476 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5477 le32_to_cpu(stat_info->tmac_drop_ip);
5479 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5480 le32_to_cpu(stat_info->tmac_icmp);
5482 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5483 le32_to_cpu(stat_info->tmac_rst_tcp);
5484 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5485 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5486 le32_to_cpu(stat_info->tmac_udp);
5488 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5489 le32_to_cpu(stat_info->rmac_vld_frms);
5491 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5492 le32_to_cpu(stat_info->rmac_data_octets);
5493 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5494 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5496 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5497 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5499 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5500 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5501 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5502 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5503 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5504 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5505 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5507 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5508 le32_to_cpu(stat_info->rmac_ttl_octets);
5510 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5511 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5513 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5514 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5516 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5517 le32_to_cpu(stat_info->rmac_discarded_frms);
5519 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5520 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5521 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5522 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5524 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5525 le32_to_cpu(stat_info->rmac_usized_frms);
5527 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5528 le32_to_cpu(stat_info->rmac_osized_frms);
5530 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5531 le32_to_cpu(stat_info->rmac_frag_frms);
5533 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5534 le32_to_cpu(stat_info->rmac_jabber_frms);
5535 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5536 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5537 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5538 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5539 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5540 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5542 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5543 le32_to_cpu(stat_info->rmac_ip);
5544 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5545 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5547 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5548 le32_to_cpu(stat_info->rmac_drop_ip);
5550 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5551 le32_to_cpu(stat_info->rmac_icmp);
5552 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5554 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5555 le32_to_cpu(stat_info->rmac_udp);
5557 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5558 le32_to_cpu(stat_info->rmac_err_drp_udp);
5559 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5560 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5561 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5562 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5563 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5564 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5565 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5566 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5567 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5568 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5569 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5570 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5571 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5572 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5573 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5574 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5575 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5577 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5578 le32_to_cpu(stat_info->rmac_pause_cnt);
5579 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5580 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5582 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5583 le32_to_cpu(stat_info->rmac_accepted_ip);
5584 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5585 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5586 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5587 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5588 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5589 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5590 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5591 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5592 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5593 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5594 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5595 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5596 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5597 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5598 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5599 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5600 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5601 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5602 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5603 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5604 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5605 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5606 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5607 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5608 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5609 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5610 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5611 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5612 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5613 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5614 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5615 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5616 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5617 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5618 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5620 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5621 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5622 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5623 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5624 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5625 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5626 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5627 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5628 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5629 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5630 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5631 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5632 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5633 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5634 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5635 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5636 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5637 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5638 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5639 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5640 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5641 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5642 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5643 if (stat_info->sw_stat.num_aggregations) {
5644 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5647 * Since 64-bit divide does not work on all platforms,
5648 * do repeated subtraction.
5650 while (tmp >= stat_info->sw_stat.num_aggregations) {
5651 tmp -= stat_info->sw_stat.num_aggregations;
5654 tmp_stats[i++] = count;
5660 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5662 return (XENA_REG_SPACE);
5666 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5668 nic_t *sp = dev->priv;
5670 return (sp->rx_csum);
5673 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5675 nic_t *sp = dev->priv;
5685 static int s2io_get_eeprom_len(struct net_device *dev)
5687 return (XENA_EEPROM_SPACE);
5690 static int s2io_ethtool_self_test_count(struct net_device *dev)
5692 return (S2IO_TEST_LEN);
5695 static void s2io_ethtool_get_strings(struct net_device *dev,
5696 u32 stringset, u8 * data)
5698 switch (stringset) {
5700 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5703 memcpy(data, ðtool_stats_keys,
5704 sizeof(ethtool_stats_keys));
5707 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5709 return (S2IO_STAT_LEN);
5712 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5715 dev->features |= NETIF_F_IP_CSUM;
5717 dev->features &= ~NETIF_F_IP_CSUM;
5722 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5724 return (dev->features & NETIF_F_TSO) != 0;
5726 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5729 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5731 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5736 static const struct ethtool_ops netdev_ethtool_ops = {
5737 .get_settings = s2io_ethtool_gset,
5738 .set_settings = s2io_ethtool_sset,
5739 .get_drvinfo = s2io_ethtool_gdrvinfo,
5740 .get_regs_len = s2io_ethtool_get_regs_len,
5741 .get_regs = s2io_ethtool_gregs,
5742 .get_link = ethtool_op_get_link,
5743 .get_eeprom_len = s2io_get_eeprom_len,
5744 .get_eeprom = s2io_ethtool_geeprom,
5745 .set_eeprom = s2io_ethtool_seeprom,
5746 .get_pauseparam = s2io_ethtool_getpause_data,
5747 .set_pauseparam = s2io_ethtool_setpause_data,
5748 .get_rx_csum = s2io_ethtool_get_rx_csum,
5749 .set_rx_csum = s2io_ethtool_set_rx_csum,
5750 .get_tx_csum = ethtool_op_get_tx_csum,
5751 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5752 .get_sg = ethtool_op_get_sg,
5753 .set_sg = ethtool_op_set_sg,
5755 .get_tso = s2io_ethtool_op_get_tso,
5756 .set_tso = s2io_ethtool_op_set_tso,
5758 .get_ufo = ethtool_op_get_ufo,
5759 .set_ufo = ethtool_op_set_ufo,
5760 .self_test_count = s2io_ethtool_self_test_count,
5761 .self_test = s2io_ethtool_test,
5762 .get_strings = s2io_ethtool_get_strings,
5763 .phys_id = s2io_ethtool_idnic,
5764 .get_stats_count = s2io_ethtool_get_stats_count,
5765 .get_ethtool_stats = s2io_get_ethtool_stats
5769 * s2io_ioctl - Entry point for the Ioctl
5770 * @dev : Device pointer.
5771 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5772 * a proprietary structure used to pass information to the driver.
5773 * @cmd : This is used to distinguish between the different commands that
5774 * can be passed to the IOCTL functions.
5776 * Currently there are no special functionality supported in IOCTL, hence
5777 * function always return EOPNOTSUPPORTED
5780 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5786 * s2io_change_mtu - entry point to change MTU size for the device.
5787 * @dev : device pointer.
5788 * @new_mtu : the new MTU size for the device.
5789 * Description: A driver entry point to change MTU size for the device.
5790 * Before changing the MTU the device must be stopped.
5792 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5796 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5798 nic_t *sp = dev->priv;
5800 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5801 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5807 if (netif_running(dev)) {
5809 netif_stop_queue(dev);
5810 if (s2io_card_up(sp)) {
5811 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5814 if (netif_queue_stopped(dev))
5815 netif_wake_queue(dev);
5816 } else { /* Device is down */
5817 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5818 u64 val64 = new_mtu;
5820 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5827 * s2io_tasklet - Bottom half of the ISR.
5828 * @dev_adr : address of the device structure in dma_addr_t format.
5830 * This is the tasklet or the bottom half of the ISR. This is
5831 * an extension of the ISR which is scheduled by the scheduler to be run
5832 * when the load on the CPU is low. All low priority tasks of the ISR can
5833 * be pushed into the tasklet. For now the tasklet is used only to
5834 * replenish the Rx buffers in the Rx buffer descriptors.
5839 static void s2io_tasklet(unsigned long dev_addr)
5841 struct net_device *dev = (struct net_device *) dev_addr;
5842 nic_t *sp = dev->priv;
5844 mac_info_t *mac_control;
5845 struct config_param *config;
5847 mac_control = &sp->mac_control;
5848 config = &sp->config;
5850 if (!TASKLET_IN_USE) {
5851 for (i = 0; i < config->rx_ring_num; i++) {
5852 ret = fill_rx_buffers(sp, i);
5853 if (ret == -ENOMEM) {
5854 DBG_PRINT(ERR_DBG, "%s: Out of ",
5856 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5858 } else if (ret == -EFILL) {
5860 "%s: Rx Ring %d is full\n",
5865 clear_bit(0, (&sp->tasklet_status));
5870 * s2io_set_link - Set the LInk status
5871 * @data: long pointer to device private structue
5872 * Description: Sets the link status for the adapter
5875 static void s2io_set_link(struct work_struct *work)
5877 nic_t *nic = container_of(work, nic_t, set_link_task);
5878 struct net_device *dev = nic->dev;
5879 XENA_dev_config_t __iomem *bar0 = nic->bar0;
5883 if (test_and_set_bit(0, &(nic->link_state))) {
5884 /* The card is being reset, no point doing anything */
5888 subid = nic->pdev->subsystem_device;
5889 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5891 * Allow a small delay for the NICs self initiated
5892 * cleanup to complete.
5897 val64 = readq(&bar0->adapter_status);
5898 if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
5899 if (LINK_IS_UP(val64)) {
5900 val64 = readq(&bar0->adapter_control);
5901 val64 |= ADAPTER_CNTL_EN;
5902 writeq(val64, &bar0->adapter_control);
5903 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5905 val64 = readq(&bar0->gpio_control);
5906 val64 |= GPIO_CTRL_GPIO_0;
5907 writeq(val64, &bar0->gpio_control);
5908 val64 = readq(&bar0->gpio_control);
5910 val64 |= ADAPTER_LED_ON;
5911 writeq(val64, &bar0->adapter_control);
5913 if (s2io_link_fault_indication(nic) ==
5914 MAC_RMAC_ERR_TIMER) {
5915 val64 = readq(&bar0->adapter_status);
5916 if (!LINK_IS_UP(val64)) {
5917 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5918 DBG_PRINT(ERR_DBG, " Link down");
5919 DBG_PRINT(ERR_DBG, "after ");
5920 DBG_PRINT(ERR_DBG, "enabling ");
5921 DBG_PRINT(ERR_DBG, "device \n");
5924 if (nic->device_enabled_once == FALSE) {
5925 nic->device_enabled_once = TRUE;
5927 s2io_link(nic, LINK_UP);
5929 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5931 val64 = readq(&bar0->gpio_control);
5932 val64 &= ~GPIO_CTRL_GPIO_0;
5933 writeq(val64, &bar0->gpio_control);
5934 val64 = readq(&bar0->gpio_control);
5936 s2io_link(nic, LINK_DOWN);
5938 } else { /* NIC is not Quiescent. */
5939 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5940 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5941 netif_stop_queue(dev);
5943 clear_bit(0, &(nic->link_state));
5946 static int set_rxd_buffer_pointer(nic_t *sp, RxD_t *rxdp, buffAdd_t *ba,
5947 struct sk_buff **skb, u64 *temp0, u64 *temp1,
5948 u64 *temp2, int size)
5950 struct net_device *dev = sp->dev;
5951 struct sk_buff *frag_list;
5953 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
5956 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
5958 * As Rx frame are not going to be processed,
5959 * using same mapped address for the Rxd
5962 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0;
5964 *skb = dev_alloc_skb(size);
5966 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
5967 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
5970 /* storing the mapped addr in a temp variable
5971 * such it will be used for next rxd whose
5972 * Host Control is NULL
5974 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0 =
5975 pci_map_single( sp->pdev, (*skb)->data,
5976 size - NET_IP_ALIGN,
5977 PCI_DMA_FROMDEVICE);
5978 rxdp->Host_Control = (unsigned long) (*skb);
5980 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
5981 /* Two buffer Mode */
5983 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
5984 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
5985 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
5987 *skb = dev_alloc_skb(size);
5989 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
5993 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
5994 pci_map_single(sp->pdev, (*skb)->data,
5996 PCI_DMA_FROMDEVICE);
5997 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
5998 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
5999 PCI_DMA_FROMDEVICE);
6000 rxdp->Host_Control = (unsigned long) (*skb);
6002 /* Buffer-1 will be dummy buffer not used */
6003 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6004 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6005 PCI_DMA_FROMDEVICE);
6007 } else if ((rxdp->Host_Control == 0)) {
6008 /* Three buffer mode */
6010 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6011 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6012 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6014 *skb = dev_alloc_skb(size);
6016 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
6020 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6021 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6022 PCI_DMA_FROMDEVICE);
6023 /* Buffer-1 receives L3/L4 headers */
6024 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6025 pci_map_single( sp->pdev, (*skb)->data,
6027 PCI_DMA_FROMDEVICE);
6029 * skb_shinfo(skb)->frag_list will have L4
6032 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6034 if (skb_shinfo(*skb)->frag_list == NULL) {
6035 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6036 failed\n ", dev->name);
6039 frag_list = skb_shinfo(*skb)->frag_list;
6040 frag_list->next = NULL;
6042 * Buffer-2 receives L4 data payload
6044 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6045 pci_map_single( sp->pdev, frag_list->data,
6046 dev->mtu, PCI_DMA_FROMDEVICE);
6051 static void set_rxd_buffer_size(nic_t *sp, RxD_t *rxdp, int size)
6053 struct net_device *dev = sp->dev;
6054 if (sp->rxd_mode == RXD_MODE_1) {
6055 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6056 } else if (sp->rxd_mode == RXD_MODE_3B) {
6057 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6058 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6059 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6061 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6062 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6063 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6067 static int rxd_owner_bit_reset(nic_t *sp)
6069 int i, j, k, blk_cnt = 0, size;
6070 mac_info_t * mac_control = &sp->mac_control;
6071 struct config_param *config = &sp->config;
6072 struct net_device *dev = sp->dev;
6074 struct sk_buff *skb = NULL;
6075 buffAdd_t *ba = NULL;
6076 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6078 /* Calculate the size based on ring mode */
6079 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6080 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6081 if (sp->rxd_mode == RXD_MODE_1)
6082 size += NET_IP_ALIGN;
6083 else if (sp->rxd_mode == RXD_MODE_3B)
6084 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6086 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6088 for (i = 0; i < config->rx_ring_num; i++) {
6089 blk_cnt = config->rx_cfg[i].num_rxd /
6090 (rxd_count[sp->rxd_mode] +1);
6092 for (j = 0; j < blk_cnt; j++) {
6093 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6094 rxdp = mac_control->rings[i].
6095 rx_blocks[j].rxds[k].virt_addr;
6096 if(sp->rxd_mode >= RXD_MODE_3A)
6097 ba = &mac_control->rings[i].ba[j][k];
6098 set_rxd_buffer_pointer(sp, rxdp, ba,
6099 &skb,(u64 *)&temp0_64,
6101 (u64 *)&temp2_64, size);
6103 set_rxd_buffer_size(sp, rxdp, size);
6105 /* flip the Ownership bit to Hardware */
6106 rxdp->Control_1 |= RXD_OWN_XENA;
6114 static int s2io_add_isr(nic_t * sp)
6117 struct net_device *dev = sp->dev;
6120 if (sp->intr_type == MSI)
6121 ret = s2io_enable_msi(sp);
6122 else if (sp->intr_type == MSI_X)
6123 ret = s2io_enable_msi_x(sp);
6125 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6126 sp->intr_type = INTA;
6129 /* Store the values of the MSIX table in the nic_t structure */
6130 store_xmsi_data(sp);
6132 /* After proper initialization of H/W, register ISR */
6133 if (sp->intr_type == MSI) {
6134 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6135 IRQF_SHARED, sp->name, dev);
6137 pci_disable_msi(sp->pdev);
6138 DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6143 if (sp->intr_type == MSI_X) {
6146 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6147 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6148 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6150 err = request_irq(sp->entries[i].vector,
6151 s2io_msix_fifo_handle, 0, sp->desc[i],
6152 sp->s2io_entries[i].arg);
6153 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6154 (unsigned long long)sp->msix_info[i].addr);
6156 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6158 err = request_irq(sp->entries[i].vector,
6159 s2io_msix_ring_handle, 0, sp->desc[i],
6160 sp->s2io_entries[i].arg);
6161 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6162 (unsigned long long)sp->msix_info[i].addr);
6165 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6166 "failed\n", dev->name, i);
6167 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6170 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6173 if (sp->intr_type == INTA) {
6174 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6177 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6184 static void s2io_rem_isr(nic_t * sp)
6187 struct net_device *dev = sp->dev;
6189 if (sp->intr_type == MSI_X) {
6193 for (i=1; (sp->s2io_entries[i].in_use ==
6194 MSIX_REGISTERED_SUCCESS); i++) {
6195 int vector = sp->entries[i].vector;
6196 void *arg = sp->s2io_entries[i].arg;
6198 free_irq(vector, arg);
6200 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6201 msi_control &= 0xFFFE; /* Disable MSI */
6202 pci_write_config_word(sp->pdev, 0x42, msi_control);
6204 pci_disable_msix(sp->pdev);
6206 free_irq(sp->pdev->irq, dev);
6207 if (sp->intr_type == MSI) {
6210 pci_disable_msi(sp->pdev);
6211 pci_read_config_word(sp->pdev, 0x4c, &val);
6213 pci_write_config_word(sp->pdev, 0x4c, val);
6216 /* Waiting till all Interrupt handlers are complete */
6220 if (!atomic_read(&sp->isr_cnt))
6226 static void s2io_card_down(nic_t * sp)
6229 XENA_dev_config_t __iomem *bar0 = sp->bar0;
6230 unsigned long flags;
6231 register u64 val64 = 0;
6233 del_timer_sync(&sp->alarm_timer);
6234 /* If s2io_set_link task is executing, wait till it completes. */
6235 while (test_and_set_bit(0, &(sp->link_state))) {
6238 atomic_set(&sp->card_state, CARD_DOWN);
6240 /* disable Tx and Rx traffic on the NIC */
6246 tasklet_kill(&sp->task);
6248 /* Check if the device is Quiescent and then Reset the NIC */
6250 /* As per the HW requirement we need to replenish the
6251 * receive buffer to avoid the ring bump. Since there is
6252 * no intention of processing the Rx frame at this pointwe are
6253 * just settting the ownership bit of rxd in Each Rx
6254 * ring to HW and set the appropriate buffer size
6255 * based on the ring mode
6257 rxd_owner_bit_reset(sp);
6259 val64 = readq(&bar0->adapter_status);
6260 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
6268 "s2io_close:Device not Quiescent ");
6269 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6270 (unsigned long long) val64);
6276 spin_lock_irqsave(&sp->tx_lock, flags);
6277 /* Free all Tx buffers */
6278 free_tx_buffers(sp);
6279 spin_unlock_irqrestore(&sp->tx_lock, flags);
6281 /* Free all Rx buffers */
6282 spin_lock_irqsave(&sp->rx_lock, flags);
6283 free_rx_buffers(sp);
6284 spin_unlock_irqrestore(&sp->rx_lock, flags);
6286 clear_bit(0, &(sp->link_state));
6289 static int s2io_card_up(nic_t * sp)
6292 mac_info_t *mac_control;
6293 struct config_param *config;
6294 struct net_device *dev = (struct net_device *) sp->dev;
6297 /* Initialize the H/W I/O registers */
6298 if (init_nic(sp) != 0) {
6299 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6306 * Initializing the Rx buffers. For now we are considering only 1
6307 * Rx ring and initializing buffers into 30 Rx blocks
6309 mac_control = &sp->mac_control;
6310 config = &sp->config;
6312 for (i = 0; i < config->rx_ring_num; i++) {
6313 if ((ret = fill_rx_buffers(sp, i))) {
6314 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6317 free_rx_buffers(sp);
6320 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6321 atomic_read(&sp->rx_bufs_left[i]));
6324 /* Setting its receive mode */
6325 s2io_set_multicast(dev);
6328 /* Initialize max aggregatable pkts per session based on MTU */
6329 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6330 /* Check if we can use(if specified) user provided value */
6331 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6332 sp->lro_max_aggr_per_sess = lro_max_pkts;
6335 /* Enable Rx Traffic and interrupts on the NIC */
6336 if (start_nic(sp)) {
6337 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6339 free_rx_buffers(sp);
6343 /* Add interrupt service routine */
6344 if (s2io_add_isr(sp) != 0) {
6345 if (sp->intr_type == MSI_X)
6348 free_rx_buffers(sp);
6352 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6354 /* Enable tasklet for the device */
6355 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6357 /* Enable select interrupts */
6358 if (sp->intr_type != INTA)
6359 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6361 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6362 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6363 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6364 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6368 atomic_set(&sp->card_state, CARD_UP);
6373 * s2io_restart_nic - Resets the NIC.
6374 * @data : long pointer to the device private structure
6376 * This function is scheduled to be run by the s2io_tx_watchdog
6377 * function after 0.5 secs to reset the NIC. The idea is to reduce
6378 * the run time of the watch dog routine which is run holding a
6382 static void s2io_restart_nic(struct work_struct *work)
6384 nic_t *sp = container_of(work, nic_t, rst_timer_task);
6385 struct net_device *dev = sp->dev;
6388 if (s2io_card_up(sp)) {
6389 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6392 netif_wake_queue(dev);
6393 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6399 * s2io_tx_watchdog - Watchdog for transmit side.
6400 * @dev : Pointer to net device structure
6402 * This function is triggered if the Tx Queue is stopped
6403 * for a pre-defined amount of time when the Interface is still up.
6404 * If the Interface is jammed in such a situation, the hardware is
6405 * reset (by s2io_close) and restarted again (by s2io_open) to
6406 * overcome any problem that might have been caused in the hardware.
6411 static void s2io_tx_watchdog(struct net_device *dev)
6413 nic_t *sp = dev->priv;
6415 if (netif_carrier_ok(dev)) {
6416 schedule_work(&sp->rst_timer_task);
6417 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6422 * rx_osm_handler - To perform some OS related operations on SKB.
6423 * @sp: private member of the device structure,pointer to s2io_nic structure.
6424 * @skb : the socket buffer pointer.
6425 * @len : length of the packet
6426 * @cksum : FCS checksum of the frame.
6427 * @ring_no : the ring from which this RxD was extracted.
6429 * This function is called by the Rx interrupt serivce routine to perform
6430 * some OS related operations on the SKB before passing it to the upper
6431 * layers. It mainly checks if the checksum is OK, if so adds it to the
6432 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6433 * to the upper layer. If the checksum is wrong, it increments the Rx
6434 * packet error count, frees the SKB and returns error.
6436 * SUCCESS on success and -1 on failure.
6438 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
6440 nic_t *sp = ring_data->nic;
6441 struct net_device *dev = (struct net_device *) sp->dev;
6442 struct sk_buff *skb = (struct sk_buff *)
6443 ((unsigned long) rxdp->Host_Control);
6444 int ring_no = ring_data->ring_no;
6445 u16 l3_csum, l4_csum;
6446 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6452 /* Check for parity error */
6454 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6458 * Drop the packet if bad transfer code. Exception being
6459 * 0x5, which could be due to unsupported IPv6 extension header.
6460 * In this case, we let stack handle the packet.
6461 * Note that in this case, since checksum will be incorrect,
6462 * stack will validate the same.
6464 if (err && ((err >> 48) != 0x5)) {
6465 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6467 sp->stats.rx_crc_errors++;
6469 atomic_dec(&sp->rx_bufs_left[ring_no]);
6470 rxdp->Host_Control = 0;
6475 /* Updating statistics */
6476 rxdp->Host_Control = 0;
6478 sp->stats.rx_packets++;
6479 if (sp->rxd_mode == RXD_MODE_1) {
6480 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6482 sp->stats.rx_bytes += len;
6485 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6486 int get_block = ring_data->rx_curr_get_info.block_index;
6487 int get_off = ring_data->rx_curr_get_info.offset;
6488 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6489 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6490 unsigned char *buff = skb_push(skb, buf0_len);
6492 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
6493 sp->stats.rx_bytes += buf0_len + buf2_len;
6494 memcpy(buff, ba->ba_0, buf0_len);
6496 if (sp->rxd_mode == RXD_MODE_3A) {
6497 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6499 skb_put(skb, buf1_len);
6500 skb->len += buf2_len;
6501 skb->data_len += buf2_len;
6502 skb->truesize += buf2_len;
6503 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6504 sp->stats.rx_bytes += buf1_len;
6507 skb_put(skb, buf2_len);
6510 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6511 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6513 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6514 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6515 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6517 * NIC verifies if the Checksum of the received
6518 * frame is Ok or not and accordingly returns
6519 * a flag in the RxD.
6521 skb->ip_summed = CHECKSUM_UNNECESSARY;
6527 ret = s2io_club_tcp_session(skb->data, &tcp,
6528 &tcp_len, &lro, rxdp, sp);
6530 case 3: /* Begin anew */
6533 case 1: /* Aggregate */
6535 lro_append_pkt(sp, lro,
6539 case 4: /* Flush session */
6541 lro_append_pkt(sp, lro,
6543 queue_rx_frame(lro->parent);
6544 clear_lro_session(lro);
6545 sp->mac_control.stats_info->
6546 sw_stat.flush_max_pkts++;
6549 case 2: /* Flush both */
6550 lro->parent->data_len =
6552 sp->mac_control.stats_info->
6553 sw_stat.sending_both++;
6554 queue_rx_frame(lro->parent);
6555 clear_lro_session(lro);
6557 case 0: /* sessions exceeded */
6558 case -1: /* non-TCP or not
6562 * First pkt in session not
6563 * L3/L4 aggregatable
6568 "%s: Samadhana!!\n",
6575 * Packet with erroneous checksum, let the
6576 * upper layers deal with it.
6578 skb->ip_summed = CHECKSUM_NONE;
6581 skb->ip_summed = CHECKSUM_NONE;
6585 skb->protocol = eth_type_trans(skb, dev);
6586 #ifdef CONFIG_S2IO_NAPI
6587 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6588 /* Queueing the vlan frame to the upper layer */
6589 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6590 RXD_GET_VLAN_TAG(rxdp->Control_2));
6592 netif_receive_skb(skb);
6595 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6596 /* Queueing the vlan frame to the upper layer */
6597 vlan_hwaccel_rx(skb, sp->vlgrp,
6598 RXD_GET_VLAN_TAG(rxdp->Control_2));
6605 queue_rx_frame(skb);
6607 dev->last_rx = jiffies;
6609 atomic_dec(&sp->rx_bufs_left[ring_no]);
6614 * s2io_link - stops/starts the Tx queue.
6615 * @sp : private member of the device structure, which is a pointer to the
6616 * s2io_nic structure.
6617 * @link : inidicates whether link is UP/DOWN.
6619 * This function stops/starts the Tx queue depending on whether the link
6620 * status of the NIC is is down or up. This is called by the Alarm
6621 * interrupt handler whenever a link change interrupt comes up.
6626 static void s2io_link(nic_t * sp, int link)
6628 struct net_device *dev = (struct net_device *) sp->dev;
6630 if (link != sp->last_link_state) {
6631 if (link == LINK_DOWN) {
6632 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6633 netif_carrier_off(dev);
6635 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6636 netif_carrier_on(dev);
6639 sp->last_link_state = link;
6643 * get_xena_rev_id - to identify revision ID of xena.
6644 * @pdev : PCI Dev structure
6646 * Function to identify the Revision ID of xena.
6648 * returns the revision ID of the device.
6651 static int get_xena_rev_id(struct pci_dev *pdev)
6655 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6660 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6661 * @sp : private member of the device structure, which is a pointer to the
6662 * s2io_nic structure.
6664 * This function initializes a few of the PCI and PCI-X configuration registers
6665 * with recommended values.
6670 static void s2io_init_pci(nic_t * sp)
6672 u16 pci_cmd = 0, pcix_cmd = 0;
6674 /* Enable Data Parity Error Recovery in PCI-X command register. */
6675 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6677 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6679 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6682 /* Set the PErr Response bit in PCI command register. */
6683 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6684 pci_write_config_word(sp->pdev, PCI_COMMAND,
6685 (pci_cmd | PCI_COMMAND_PARITY));
6686 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6689 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6691 if ( tx_fifo_num > 8) {
6692 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6694 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6697 if ( rx_ring_num > 8) {
6698 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6700 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6703 #ifdef CONFIG_S2IO_NAPI
6704 if (*dev_intr_type != INTA) {
6705 DBG_PRINT(ERR_DBG, "s2io: NAPI cannot be enabled when "
6706 "MSI/MSI-X is enabled. Defaulting to INTA\n");
6707 *dev_intr_type = INTA;
6710 #ifndef CONFIG_PCI_MSI
6711 if (*dev_intr_type != INTA) {
6712 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6713 "MSI/MSI-X. Defaulting to INTA\n");
6714 *dev_intr_type = INTA;
6717 if (*dev_intr_type > MSI_X) {
6718 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6719 "Defaulting to INTA\n");
6720 *dev_intr_type = INTA;
6723 if ((*dev_intr_type == MSI_X) &&
6724 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6725 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6726 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6727 "Defaulting to INTA\n");
6728 *dev_intr_type = INTA;
6730 if (rx_ring_mode > 3) {
6731 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6732 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6739 * s2io_init_nic - Initialization of the adapter .
6740 * @pdev : structure containing the PCI related information of the device.
6741 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6743 * The function initializes an adapter identified by the pci_dec structure.
6744 * All OS related initialization including memory and device structure and
6745 * initlaization of the device private variable is done. Also the swapper
6746 * control register is initialized to enable read and write into the I/O
6747 * registers of the device.
6749 * returns 0 on success and negative on failure.
6752 static int __devinit
6753 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6756 struct net_device *dev;
6758 int dma_flag = FALSE;
6759 u32 mac_up, mac_down;
6760 u64 val64 = 0, tmp64 = 0;
6761 XENA_dev_config_t __iomem *bar0 = NULL;
6763 mac_info_t *mac_control;
6764 struct config_param *config;
6766 u8 dev_intr_type = intr_type;
6768 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6771 if ((ret = pci_enable_device(pdev))) {
6773 "s2io_init_nic: pci_enable_device failed\n");
6777 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6778 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6780 if (pci_set_consistent_dma_mask
6781 (pdev, DMA_64BIT_MASK)) {
6783 "Unable to obtain 64bit DMA for \
6784 consistent allocations\n");
6785 pci_disable_device(pdev);
6788 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6789 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6791 pci_disable_device(pdev);
6794 if (dev_intr_type != MSI_X) {
6795 if (pci_request_regions(pdev, s2io_driver_name)) {
6796 DBG_PRINT(ERR_DBG, "Request Regions failed\n");
6797 pci_disable_device(pdev);
6802 if (!(request_mem_region(pci_resource_start(pdev, 0),
6803 pci_resource_len(pdev, 0), s2io_driver_name))) {
6804 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6805 pci_disable_device(pdev);
6808 if (!(request_mem_region(pci_resource_start(pdev, 2),
6809 pci_resource_len(pdev, 2), s2io_driver_name))) {
6810 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6811 release_mem_region(pci_resource_start(pdev, 0),
6812 pci_resource_len(pdev, 0));
6813 pci_disable_device(pdev);
6818 dev = alloc_etherdev(sizeof(nic_t));
6820 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6821 pci_disable_device(pdev);
6822 pci_release_regions(pdev);
6826 pci_set_master(pdev);
6827 pci_set_drvdata(pdev, dev);
6828 SET_MODULE_OWNER(dev);
6829 SET_NETDEV_DEV(dev, &pdev->dev);
6831 /* Private member variable initialized to s2io NIC structure */
6833 memset(sp, 0, sizeof(nic_t));
6836 sp->high_dma_flag = dma_flag;
6837 sp->device_enabled_once = FALSE;
6838 if (rx_ring_mode == 1)
6839 sp->rxd_mode = RXD_MODE_1;
6840 if (rx_ring_mode == 2)
6841 sp->rxd_mode = RXD_MODE_3B;
6842 if (rx_ring_mode == 3)
6843 sp->rxd_mode = RXD_MODE_3A;
6845 sp->intr_type = dev_intr_type;
6847 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6848 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6849 sp->device_type = XFRAME_II_DEVICE;
6851 sp->device_type = XFRAME_I_DEVICE;
6855 /* Initialize some PCI/PCI-X fields of the NIC. */
6859 * Setting the device configuration parameters.
6860 * Most of these parameters can be specified by the user during
6861 * module insertion as they are module loadable parameters. If
6862 * these parameters are not not specified during load time, they
6863 * are initialized with default values.
6865 mac_control = &sp->mac_control;
6866 config = &sp->config;
6868 /* Tx side parameters. */
6869 config->tx_fifo_num = tx_fifo_num;
6870 for (i = 0; i < MAX_TX_FIFOS; i++) {
6871 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6872 config->tx_cfg[i].fifo_priority = i;
6875 /* mapping the QoS priority to the configured fifos */
6876 for (i = 0; i < MAX_TX_FIFOS; i++)
6877 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6879 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6880 for (i = 0; i < config->tx_fifo_num; i++) {
6881 config->tx_cfg[i].f_no_snoop =
6882 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6883 if (config->tx_cfg[i].fifo_len < 65) {
6884 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6888 /* + 2 because one Txd for skb->data and one Txd for UFO */
6889 config->max_txds = MAX_SKB_FRAGS + 2;
6891 /* Rx side parameters. */
6892 config->rx_ring_num = rx_ring_num;
6893 for (i = 0; i < MAX_RX_RINGS; i++) {
6894 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6895 (rxd_count[sp->rxd_mode] + 1);
6896 config->rx_cfg[i].ring_priority = i;
6899 for (i = 0; i < rx_ring_num; i++) {
6900 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6901 config->rx_cfg[i].f_no_snoop =
6902 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6905 /* Setting Mac Control parameters */
6906 mac_control->rmac_pause_time = rmac_pause_time;
6907 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6908 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6911 /* Initialize Ring buffer parameters. */
6912 for (i = 0; i < config->rx_ring_num; i++)
6913 atomic_set(&sp->rx_bufs_left[i], 0);
6915 /* Initialize the number of ISRs currently running */
6916 atomic_set(&sp->isr_cnt, 0);
6918 /* initialize the shared memory used by the NIC and the host */
6919 if (init_shared_mem(sp)) {
6920 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6923 goto mem_alloc_failed;
6926 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6927 pci_resource_len(pdev, 0));
6929 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
6932 goto bar0_remap_failed;
6935 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6936 pci_resource_len(pdev, 2));
6938 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
6941 goto bar1_remap_failed;
6944 dev->irq = pdev->irq;
6945 dev->base_addr = (unsigned long) sp->bar0;
6947 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6948 for (j = 0; j < MAX_TX_FIFOS; j++) {
6949 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6950 (sp->bar1 + (j * 0x00020000));
6953 /* Driver entry points */
6954 dev->open = &s2io_open;
6955 dev->stop = &s2io_close;
6956 dev->hard_start_xmit = &s2io_xmit;
6957 dev->get_stats = &s2io_get_stats;
6958 dev->set_multicast_list = &s2io_set_multicast;
6959 dev->do_ioctl = &s2io_ioctl;
6960 dev->change_mtu = &s2io_change_mtu;
6961 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6962 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6963 dev->vlan_rx_register = s2io_vlan_rx_register;
6964 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6967 * will use eth_mac_addr() for dev->set_mac_address
6968 * mac address will be set every time dev->open() is called
6970 #if defined(CONFIG_S2IO_NAPI)
6971 dev->poll = s2io_poll;
6975 #ifdef CONFIG_NET_POLL_CONTROLLER
6976 dev->poll_controller = s2io_netpoll;
6979 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6980 if (sp->high_dma_flag == TRUE)
6981 dev->features |= NETIF_F_HIGHDMA;
6983 dev->features |= NETIF_F_TSO;
6986 dev->features |= NETIF_F_TSO6;
6988 if (sp->device_type & XFRAME_II_DEVICE) {
6989 dev->features |= NETIF_F_UFO;
6990 dev->features |= NETIF_F_HW_CSUM;
6993 dev->tx_timeout = &s2io_tx_watchdog;
6994 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6995 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
6996 INIT_WORK(&sp->set_link_task, s2io_set_link);
6998 pci_save_state(sp->pdev);
7000 /* Setting swapper control on the NIC, for proper reset operation */
7001 if (s2io_set_swapper(sp)) {
7002 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7005 goto set_swap_failed;
7008 /* Verify if the Herc works on the slot its placed into */
7009 if (sp->device_type & XFRAME_II_DEVICE) {
7010 mode = s2io_verify_pci_mode(sp);
7012 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7013 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7015 goto set_swap_failed;
7019 /* Not needed for Herc */
7020 if (sp->device_type & XFRAME_I_DEVICE) {
7022 * Fix for all "FFs" MAC address problems observed on
7025 fix_mac_address(sp);
7030 * MAC address initialization.
7031 * For now only one mac address will be read and used.
7034 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7035 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7036 writeq(val64, &bar0->rmac_addr_cmd_mem);
7037 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7038 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
7039 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7040 mac_down = (u32) tmp64;
7041 mac_up = (u32) (tmp64 >> 32);
7043 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7045 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7046 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7047 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7048 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7049 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7050 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7052 /* Set the factory defined MAC address initially */
7053 dev->addr_len = ETH_ALEN;
7054 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7056 /* reset Nic and bring it to known state */
7060 * Initialize the tasklet status and link state flags
7061 * and the card state parameter
7063 atomic_set(&(sp->card_state), 0);
7064 sp->tasklet_status = 0;
7067 /* Initialize spinlocks */
7068 spin_lock_init(&sp->tx_lock);
7069 #ifndef CONFIG_S2IO_NAPI
7070 spin_lock_init(&sp->put_lock);
7072 spin_lock_init(&sp->rx_lock);
7075 * SXE-002: Configure link and activity LED to init state
7078 subid = sp->pdev->subsystem_device;
7079 if ((subid & 0xFF) >= 0x07) {
7080 val64 = readq(&bar0->gpio_control);
7081 val64 |= 0x0000800000000000ULL;
7082 writeq(val64, &bar0->gpio_control);
7083 val64 = 0x0411040400000000ULL;
7084 writeq(val64, (void __iomem *) bar0 + 0x2700);
7085 val64 = readq(&bar0->gpio_control);
7088 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7090 if (register_netdev(dev)) {
7091 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7093 goto register_failed;
7096 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7097 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7098 sp->product_name, get_xena_rev_id(sp->pdev));
7099 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7100 s2io_driver_version);
7101 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7102 "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
7103 sp->def_mac_addr[0].mac_addr[0],
7104 sp->def_mac_addr[0].mac_addr[1],
7105 sp->def_mac_addr[0].mac_addr[2],
7106 sp->def_mac_addr[0].mac_addr[3],
7107 sp->def_mac_addr[0].mac_addr[4],
7108 sp->def_mac_addr[0].mac_addr[5]);
7109 if (sp->device_type & XFRAME_II_DEVICE) {
7110 mode = s2io_print_pci_mode(sp);
7112 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7114 unregister_netdev(dev);
7115 goto set_swap_failed;
7118 switch(sp->rxd_mode) {
7120 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7124 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7128 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7132 #ifdef CONFIG_S2IO_NAPI
7133 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7135 switch(sp->intr_type) {
7137 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7140 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7143 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7147 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7150 /* Initialize device name */
7151 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7153 /* Initialize bimodal Interrupts */
7154 sp->config.bimodal = bimodal;
7155 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7156 sp->config.bimodal = 0;
7157 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7162 * Make Link state as off at this point, when the Link change
7163 * interrupt comes the state will be automatically changed to
7166 netif_carrier_off(dev);
7177 free_shared_mem(sp);
7178 pci_disable_device(pdev);
7179 if (dev_intr_type != MSI_X)
7180 pci_release_regions(pdev);
7182 release_mem_region(pci_resource_start(pdev, 0),
7183 pci_resource_len(pdev, 0));
7184 release_mem_region(pci_resource_start(pdev, 2),
7185 pci_resource_len(pdev, 2));
7187 pci_set_drvdata(pdev, NULL);
7194 * s2io_rem_nic - Free the PCI device
7195 * @pdev: structure containing the PCI related information of the device.
7196 * Description: This function is called by the Pci subsystem to release a
7197 * PCI device and free up all resource held up by the device. This could
7198 * be in response to a Hot plug event or when the driver is to be removed
7202 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7204 struct net_device *dev =
7205 (struct net_device *) pci_get_drvdata(pdev);
7209 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7214 unregister_netdev(dev);
7216 free_shared_mem(sp);
7219 pci_disable_device(pdev);
7220 if (sp->intr_type != MSI_X)
7221 pci_release_regions(pdev);
7223 release_mem_region(pci_resource_start(pdev, 0),
7224 pci_resource_len(pdev, 0));
7225 release_mem_region(pci_resource_start(pdev, 2),
7226 pci_resource_len(pdev, 2));
7228 pci_set_drvdata(pdev, NULL);
7233 * s2io_starter - Entry point for the driver
7234 * Description: This function is the entry point for the driver. It verifies
7235 * the module loadable parameters and initializes PCI configuration space.
7238 int __init s2io_starter(void)
7240 return pci_register_driver(&s2io_driver);
7244 * s2io_closer - Cleanup routine for the driver
7245 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7248 static void s2io_closer(void)
7250 pci_unregister_driver(&s2io_driver);
7251 DBG_PRINT(INIT_DBG, "cleanup done\n");
7254 module_init(s2io_starter);
7255 module_exit(s2io_closer);
7257 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7258 struct tcphdr **tcp, RxD_t *rxdp)
7261 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7263 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7264 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7270 * By default the VLAN field in the MAC is stripped by the card, if this
7271 * feature is turned off in rx_pa_cfg register, then the ip_off field
7272 * has to be shifted by a further 2 bytes
7275 case 0: /* DIX type */
7276 case 4: /* DIX type with VLAN */
7277 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7279 /* LLC, SNAP etc are considered non-mergeable */
7284 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7285 ip_len = (u8)((*ip)->ihl);
7287 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7292 static int check_for_socket_match(lro_t *lro, struct iphdr *ip,
7295 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7296 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7297 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7302 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7304 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7307 static void initiate_new_session(lro_t *lro, u8 *l2h,
7308 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7310 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7314 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7315 lro->tcp_ack = ntohl(tcp->ack_seq);
7317 lro->total_len = ntohs(ip->tot_len);
7320 * check if we saw TCP timestamp. Other consistency checks have
7321 * already been done.
7323 if (tcp->doff == 8) {
7325 ptr = (u32 *)(tcp+1);
7327 lro->cur_tsval = *(ptr+1);
7328 lro->cur_tsecr = *(ptr+2);
7333 static void update_L3L4_header(nic_t *sp, lro_t *lro)
7335 struct iphdr *ip = lro->iph;
7336 struct tcphdr *tcp = lro->tcph;
7338 StatInfo_t *statinfo = sp->mac_control.stats_info;
7339 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7341 /* Update L3 header */
7342 ip->tot_len = htons(lro->total_len);
7344 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7347 /* Update L4 header */
7348 tcp->ack_seq = lro->tcp_ack;
7349 tcp->window = lro->window;
7351 /* Update tsecr field if this session has timestamps enabled */
7353 u32 *ptr = (u32 *)(tcp + 1);
7354 *(ptr+2) = lro->cur_tsecr;
7357 /* Update counters required for calculation of
7358 * average no. of packets aggregated.
7360 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7361 statinfo->sw_stat.num_aggregations++;
7364 static void aggregate_new_rx(lro_t *lro, struct iphdr *ip,
7365 struct tcphdr *tcp, u32 l4_pyld)
7367 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7368 lro->total_len += l4_pyld;
7369 lro->frags_len += l4_pyld;
7370 lro->tcp_next_seq += l4_pyld;
7373 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7374 lro->tcp_ack = tcp->ack_seq;
7375 lro->window = tcp->window;
7379 /* Update tsecr and tsval from this packet */
7380 ptr = (u32 *) (tcp + 1);
7381 lro->cur_tsval = *(ptr + 1);
7382 lro->cur_tsecr = *(ptr + 2);
7386 static int verify_l3_l4_lro_capable(lro_t *l_lro, struct iphdr *ip,
7387 struct tcphdr *tcp, u32 tcp_pyld_len)
7391 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7393 if (!tcp_pyld_len) {
7394 /* Runt frame or a pure ack */
7398 if (ip->ihl != 5) /* IP has options */
7401 /* If we see CE codepoint in IP header, packet is not mergeable */
7402 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7405 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7406 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7407 tcp->ece || tcp->cwr || !tcp->ack) {
7409 * Currently recognize only the ack control word and
7410 * any other control field being set would result in
7411 * flushing the LRO session
7417 * Allow only one TCP timestamp option. Don't aggregate if
7418 * any other options are detected.
7420 if (tcp->doff != 5 && tcp->doff != 8)
7423 if (tcp->doff == 8) {
7424 ptr = (u8 *)(tcp + 1);
7425 while (*ptr == TCPOPT_NOP)
7427 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7430 /* Ensure timestamp value increases monotonically */
7432 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7435 /* timestamp echo reply should be non-zero */
7436 if (*((u32 *)(ptr+6)) == 0)
7444 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro,
7445 RxD_t *rxdp, nic_t *sp)
7448 struct tcphdr *tcph;
7451 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7453 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7454 ip->saddr, ip->daddr);
7459 tcph = (struct tcphdr *)*tcp;
7460 *tcp_len = get_l4_pyld_length(ip, tcph);
7461 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7462 lro_t *l_lro = &sp->lro0_n[i];
7463 if (l_lro->in_use) {
7464 if (check_for_socket_match(l_lro, ip, tcph))
7466 /* Sock pair matched */
7469 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7470 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7471 "0x%x, actual 0x%x\n", __FUNCTION__,
7472 (*lro)->tcp_next_seq,
7475 sp->mac_control.stats_info->
7476 sw_stat.outof_sequence_pkts++;
7481 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7482 ret = 1; /* Aggregate */
7484 ret = 2; /* Flush both */
7490 /* Before searching for available LRO objects,
7491 * check if the pkt is L3/L4 aggregatable. If not
7492 * don't create new LRO session. Just send this
7495 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7499 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7500 lro_t *l_lro = &sp->lro0_n[i];
7501 if (!(l_lro->in_use)) {
7503 ret = 3; /* Begin anew */
7509 if (ret == 0) { /* sessions exceeded */
7510 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7518 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7521 update_L3L4_header(sp, *lro);
7524 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7525 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7526 update_L3L4_header(sp, *lro);
7527 ret = 4; /* Flush the LRO */
7531 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7539 static void clear_lro_session(lro_t *lro)
7541 static u16 lro_struct_size = sizeof(lro_t);
7543 memset(lro, 0, lro_struct_size);
7546 static void queue_rx_frame(struct sk_buff *skb)
7548 struct net_device *dev = skb->dev;
7550 skb->protocol = eth_type_trans(skb, dev);
7551 #ifdef CONFIG_S2IO_NAPI
7552 netif_receive_skb(skb);
7558 static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb,
7561 struct sk_buff *first = lro->parent;
7563 first->len += tcp_len;
7564 first->data_len = lro->frags_len;
7565 skb_pull(skb, (skb->len - tcp_len));
7566 if (skb_shinfo(first)->frag_list)
7567 lro->last_frag->next = skb;
7569 skb_shinfo(first)->frag_list = skb;
7570 lro->last_frag = skb;
7571 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;