cfq-iosched: don't pass unused preemption variable around
[linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17  * tunables
18  */
19 static const int cfq_quantum = 4;               /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024;      /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2;          /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 /*
30  * grace period before allowing idle class to get disk access
31  */
32 #define CFQ_IDLE_GRACE          (HZ / 10)
33
34 /*
35  * below this threshold, we consider thinktime immediate
36  */
37 #define CFQ_MIN_TT              (2)
38
39 #define CFQ_SLICE_SCALE         (5)
40
41 #define CFQ_KEY_ASYNC           (0)
42
43 /*
44  * for the hash of cfqq inside the cfqd
45  */
46 #define CFQ_QHASH_SHIFT         6
47 #define CFQ_QHASH_ENTRIES       (1 << CFQ_QHASH_SHIFT)
48
49 #define RQ_CIC(rq)              ((struct cfq_io_context*)(rq)->elevator_private)
50 #define RQ_CFQQ(rq)             ((rq)->elevator_private2)
51
52 static struct kmem_cache *cfq_pool;
53 static struct kmem_cache *cfq_ioc_pool;
54
55 static DEFINE_PER_CPU(unsigned long, ioc_count);
56 static struct completion *ioc_gone;
57
58 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
59 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
60 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
61
62 #define ASYNC                   (0)
63 #define SYNC                    (1)
64
65 #define cfq_cfqq_sync(cfqq)     ((cfqq)->key != CFQ_KEY_ASYNC)
66
67 #define sample_valid(samples)   ((samples) > 80)
68
69 /*
70  * Most of our rbtree usage is for sorting with min extraction, so
71  * if we cache the leftmost node we don't have to walk down the tree
72  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
73  * move this into the elevator for the rq sorting as well.
74  */
75 struct cfq_rb_root {
76         struct rb_root rb;
77         struct rb_node *left;
78 };
79 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
80
81 /*
82  * Per block device queue structure
83  */
84 struct cfq_data {
85         request_queue_t *queue;
86
87         /*
88          * rr list of queues with requests and the count of them
89          */
90         struct cfq_rb_root service_tree;
91         unsigned int busy_queues;
92
93         /*
94          * cfqq lookup hash
95          */
96         struct hlist_head *cfq_hash;
97
98         int rq_in_driver;
99         int hw_tag;
100
101         /*
102          * idle window management
103          */
104         struct timer_list idle_slice_timer;
105         struct work_struct unplug_work;
106
107         struct cfq_queue *active_queue;
108         struct cfq_io_context *active_cic;
109         unsigned int dispatch_slice;
110
111         struct timer_list idle_class_timer;
112
113         sector_t last_position;
114         unsigned long last_end_request;
115
116         /*
117          * tunables, see top of file
118          */
119         unsigned int cfq_quantum;
120         unsigned int cfq_fifo_expire[2];
121         unsigned int cfq_back_penalty;
122         unsigned int cfq_back_max;
123         unsigned int cfq_slice[2];
124         unsigned int cfq_slice_async_rq;
125         unsigned int cfq_slice_idle;
126
127         struct list_head cic_list;
128
129         sector_t new_seek_mean;
130         u64 new_seek_total;
131 };
132
133 /*
134  * Per process-grouping structure
135  */
136 struct cfq_queue {
137         /* reference count */
138         atomic_t ref;
139         /* parent cfq_data */
140         struct cfq_data *cfqd;
141         /* cfqq lookup hash */
142         struct hlist_node cfq_hash;
143         /* hash key */
144         unsigned int key;
145         /* service_tree member */
146         struct rb_node rb_node;
147         /* service_tree key */
148         unsigned long rb_key;
149         /* sorted list of pending requests */
150         struct rb_root sort_list;
151         /* if fifo isn't expired, next request to serve */
152         struct request *next_rq;
153         /* requests queued in sort_list */
154         int queued[2];
155         /* currently allocated requests */
156         int allocated[2];
157         /* pending metadata requests */
158         int meta_pending;
159         /* fifo list of requests in sort_list */
160         struct list_head fifo;
161
162         unsigned long slice_end;
163         long slice_resid;
164
165         /* number of requests that are on the dispatch list or inside driver */
166         int dispatched;
167
168         /* io prio of this group */
169         unsigned short ioprio, org_ioprio;
170         unsigned short ioprio_class, org_ioprio_class;
171
172         /* various state flags, see below */
173         unsigned int flags;
174
175         sector_t last_request_pos;
176 };
177
178 enum cfqq_state_flags {
179         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
180         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
181         CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
182         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
183         CFQ_CFQQ_FLAG_must_dispatch,    /* must dispatch, even if expired */
184         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
185         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
186         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
187         CFQ_CFQQ_FLAG_queue_new,        /* queue never been serviced */
188         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
189 };
190
191 #define CFQ_CFQQ_FNS(name)                                              \
192 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
193 {                                                                       \
194         cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);                     \
195 }                                                                       \
196 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
197 {                                                                       \
198         cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                    \
199 }                                                                       \
200 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
201 {                                                                       \
202         return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;        \
203 }
204
205 CFQ_CFQQ_FNS(on_rr);
206 CFQ_CFQQ_FNS(wait_request);
207 CFQ_CFQQ_FNS(must_alloc);
208 CFQ_CFQQ_FNS(must_alloc_slice);
209 CFQ_CFQQ_FNS(must_dispatch);
210 CFQ_CFQQ_FNS(fifo_expire);
211 CFQ_CFQQ_FNS(idle_window);
212 CFQ_CFQQ_FNS(prio_changed);
213 CFQ_CFQQ_FNS(queue_new);
214 CFQ_CFQQ_FNS(slice_new);
215 #undef CFQ_CFQQ_FNS
216
217 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
218 static void cfq_dispatch_insert(request_queue_t *, struct request *);
219 static struct cfq_queue *cfq_get_queue(struct cfq_data *, unsigned int, struct task_struct *, gfp_t);
220
221 /*
222  * scheduler run of queue, if there are requests pending and no one in the
223  * driver that will restart queueing
224  */
225 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
226 {
227         if (cfqd->busy_queues)
228                 kblockd_schedule_work(&cfqd->unplug_work);
229 }
230
231 static int cfq_queue_empty(request_queue_t *q)
232 {
233         struct cfq_data *cfqd = q->elevator->elevator_data;
234
235         return !cfqd->busy_queues;
236 }
237
238 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
239 {
240         /*
241          * Use the per-process queue, for read requests and syncronous writes
242          */
243         if (!(rw & REQ_RW) || is_sync)
244                 return task->pid;
245
246         return CFQ_KEY_ASYNC;
247 }
248
249 /*
250  * Scale schedule slice based on io priority. Use the sync time slice only
251  * if a queue is marked sync and has sync io queued. A sync queue with async
252  * io only, should not get full sync slice length.
253  */
254 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
255                                  unsigned short prio)
256 {
257         const int base_slice = cfqd->cfq_slice[sync];
258
259         WARN_ON(prio >= IOPRIO_BE_NR);
260
261         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
262 }
263
264 static inline int
265 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
266 {
267         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
268 }
269
270 static inline void
271 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
272 {
273         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
274 }
275
276 /*
277  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
278  * isn't valid until the first request from the dispatch is activated
279  * and the slice time set.
280  */
281 static inline int cfq_slice_used(struct cfq_queue *cfqq)
282 {
283         if (cfq_cfqq_slice_new(cfqq))
284                 return 0;
285         if (time_before(jiffies, cfqq->slice_end))
286                 return 0;
287
288         return 1;
289 }
290
291 /*
292  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
293  * We choose the request that is closest to the head right now. Distance
294  * behind the head is penalized and only allowed to a certain extent.
295  */
296 static struct request *
297 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
298 {
299         sector_t last, s1, s2, d1 = 0, d2 = 0;
300         unsigned long back_max;
301 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
302 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
303         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
304
305         if (rq1 == NULL || rq1 == rq2)
306                 return rq2;
307         if (rq2 == NULL)
308                 return rq1;
309
310         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
311                 return rq1;
312         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
313                 return rq2;
314         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
315                 return rq1;
316         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
317                 return rq2;
318
319         s1 = rq1->sector;
320         s2 = rq2->sector;
321
322         last = cfqd->last_position;
323
324         /*
325          * by definition, 1KiB is 2 sectors
326          */
327         back_max = cfqd->cfq_back_max * 2;
328
329         /*
330          * Strict one way elevator _except_ in the case where we allow
331          * short backward seeks which are biased as twice the cost of a
332          * similar forward seek.
333          */
334         if (s1 >= last)
335                 d1 = s1 - last;
336         else if (s1 + back_max >= last)
337                 d1 = (last - s1) * cfqd->cfq_back_penalty;
338         else
339                 wrap |= CFQ_RQ1_WRAP;
340
341         if (s2 >= last)
342                 d2 = s2 - last;
343         else if (s2 + back_max >= last)
344                 d2 = (last - s2) * cfqd->cfq_back_penalty;
345         else
346                 wrap |= CFQ_RQ2_WRAP;
347
348         /* Found required data */
349
350         /*
351          * By doing switch() on the bit mask "wrap" we avoid having to
352          * check two variables for all permutations: --> faster!
353          */
354         switch (wrap) {
355         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
356                 if (d1 < d2)
357                         return rq1;
358                 else if (d2 < d1)
359                         return rq2;
360                 else {
361                         if (s1 >= s2)
362                                 return rq1;
363                         else
364                                 return rq2;
365                 }
366
367         case CFQ_RQ2_WRAP:
368                 return rq1;
369         case CFQ_RQ1_WRAP:
370                 return rq2;
371         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
372         default:
373                 /*
374                  * Since both rqs are wrapped,
375                  * start with the one that's further behind head
376                  * (--> only *one* back seek required),
377                  * since back seek takes more time than forward.
378                  */
379                 if (s1 <= s2)
380                         return rq1;
381                 else
382                         return rq2;
383         }
384 }
385
386 /*
387  * The below is leftmost cache rbtree addon
388  */
389 static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
390 {
391         if (!root->left)
392                 root->left = rb_first(&root->rb);
393
394         return root->left;
395 }
396
397 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
398 {
399         if (root->left == n)
400                 root->left = NULL;
401
402         rb_erase(n, &root->rb);
403         RB_CLEAR_NODE(n);
404 }
405
406 /*
407  * would be nice to take fifo expire time into account as well
408  */
409 static struct request *
410 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
411                   struct request *last)
412 {
413         struct rb_node *rbnext = rb_next(&last->rb_node);
414         struct rb_node *rbprev = rb_prev(&last->rb_node);
415         struct request *next = NULL, *prev = NULL;
416
417         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
418
419         if (rbprev)
420                 prev = rb_entry_rq(rbprev);
421
422         if (rbnext)
423                 next = rb_entry_rq(rbnext);
424         else {
425                 rbnext = rb_first(&cfqq->sort_list);
426                 if (rbnext && rbnext != &last->rb_node)
427                         next = rb_entry_rq(rbnext);
428         }
429
430         return cfq_choose_req(cfqd, next, prev);
431 }
432
433 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
434                                       struct cfq_queue *cfqq)
435 {
436         /*
437          * just an approximation, should be ok.
438          */
439         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
440                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
441 }
442
443 /*
444  * The cfqd->service_tree holds all pending cfq_queue's that have
445  * requests waiting to be processed. It is sorted in the order that
446  * we will service the queues.
447  */
448 static void cfq_service_tree_add(struct cfq_data *cfqd,
449                                     struct cfq_queue *cfqq, int add_front)
450 {
451         struct rb_node **p = &cfqd->service_tree.rb.rb_node;
452         struct rb_node *parent = NULL;
453         unsigned long rb_key;
454         int left;
455
456         if (!add_front) {
457                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
458                 rb_key += cfqq->slice_resid;
459                 cfqq->slice_resid = 0;
460         } else
461                 rb_key = 0;
462
463         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
464                 /*
465                  * same position, nothing more to do
466                  */
467                 if (rb_key == cfqq->rb_key)
468                         return;
469
470                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
471         }
472
473         left = 1;
474         while (*p) {
475                 struct cfq_queue *__cfqq;
476                 struct rb_node **n;
477
478                 parent = *p;
479                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
480
481                 /*
482                  * sort RT queues first, we always want to give
483                  * preference to them. IDLE queues goes to the back.
484                  * after that, sort on the next service time.
485                  */
486                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
487                         n = &(*p)->rb_left;
488                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
489                         n = &(*p)->rb_right;
490                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
491                         n = &(*p)->rb_left;
492                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
493                         n = &(*p)->rb_right;
494                 else if (rb_key < __cfqq->rb_key)
495                         n = &(*p)->rb_left;
496                 else
497                         n = &(*p)->rb_right;
498
499                 if (n == &(*p)->rb_right)
500                         left = 0;
501
502                 p = n;
503         }
504
505         if (left)
506                 cfqd->service_tree.left = &cfqq->rb_node;
507
508         cfqq->rb_key = rb_key;
509         rb_link_node(&cfqq->rb_node, parent, p);
510         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
511 }
512
513 /*
514  * Update cfqq's position in the service tree.
515  */
516 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
517 {
518         /*
519          * Resorting requires the cfqq to be on the RR list already.
520          */
521         if (cfq_cfqq_on_rr(cfqq))
522                 cfq_service_tree_add(cfqd, cfqq, 0);
523 }
524
525 /*
526  * add to busy list of queues for service, trying to be fair in ordering
527  * the pending list according to last request service
528  */
529 static inline void
530 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
531 {
532         BUG_ON(cfq_cfqq_on_rr(cfqq));
533         cfq_mark_cfqq_on_rr(cfqq);
534         cfqd->busy_queues++;
535
536         cfq_resort_rr_list(cfqd, cfqq);
537 }
538
539 /*
540  * Called when the cfqq no longer has requests pending, remove it from
541  * the service tree.
542  */
543 static inline void
544 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
545 {
546         BUG_ON(!cfq_cfqq_on_rr(cfqq));
547         cfq_clear_cfqq_on_rr(cfqq);
548
549         if (!RB_EMPTY_NODE(&cfqq->rb_node))
550                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
551
552         BUG_ON(!cfqd->busy_queues);
553         cfqd->busy_queues--;
554 }
555
556 /*
557  * rb tree support functions
558  */
559 static inline void cfq_del_rq_rb(struct request *rq)
560 {
561         struct cfq_queue *cfqq = RQ_CFQQ(rq);
562         struct cfq_data *cfqd = cfqq->cfqd;
563         const int sync = rq_is_sync(rq);
564
565         BUG_ON(!cfqq->queued[sync]);
566         cfqq->queued[sync]--;
567
568         elv_rb_del(&cfqq->sort_list, rq);
569
570         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
571                 cfq_del_cfqq_rr(cfqd, cfqq);
572 }
573
574 static void cfq_add_rq_rb(struct request *rq)
575 {
576         struct cfq_queue *cfqq = RQ_CFQQ(rq);
577         struct cfq_data *cfqd = cfqq->cfqd;
578         struct request *__alias;
579
580         cfqq->queued[rq_is_sync(rq)]++;
581
582         /*
583          * looks a little odd, but the first insert might return an alias.
584          * if that happens, put the alias on the dispatch list
585          */
586         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
587                 cfq_dispatch_insert(cfqd->queue, __alias);
588
589         if (!cfq_cfqq_on_rr(cfqq))
590                 cfq_add_cfqq_rr(cfqd, cfqq);
591
592         /*
593          * check if this request is a better next-serve candidate
594          */
595         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
596         BUG_ON(!cfqq->next_rq);
597 }
598
599 static inline void
600 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
601 {
602         elv_rb_del(&cfqq->sort_list, rq);
603         cfqq->queued[rq_is_sync(rq)]--;
604         cfq_add_rq_rb(rq);
605 }
606
607 static struct request *
608 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
609 {
610         struct task_struct *tsk = current;
611         pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
612         struct cfq_queue *cfqq;
613
614         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
615         if (cfqq) {
616                 sector_t sector = bio->bi_sector + bio_sectors(bio);
617
618                 return elv_rb_find(&cfqq->sort_list, sector);
619         }
620
621         return NULL;
622 }
623
624 static void cfq_activate_request(request_queue_t *q, struct request *rq)
625 {
626         struct cfq_data *cfqd = q->elevator->elevator_data;
627
628         cfqd->rq_in_driver++;
629
630         /*
631          * If the depth is larger 1, it really could be queueing. But lets
632          * make the mark a little higher - idling could still be good for
633          * low queueing, and a low queueing number could also just indicate
634          * a SCSI mid layer like behaviour where limit+1 is often seen.
635          */
636         if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
637                 cfqd->hw_tag = 1;
638
639         cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
640 }
641
642 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
643 {
644         struct cfq_data *cfqd = q->elevator->elevator_data;
645
646         WARN_ON(!cfqd->rq_in_driver);
647         cfqd->rq_in_driver--;
648 }
649
650 static void cfq_remove_request(struct request *rq)
651 {
652         struct cfq_queue *cfqq = RQ_CFQQ(rq);
653
654         if (cfqq->next_rq == rq)
655                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
656
657         list_del_init(&rq->queuelist);
658         cfq_del_rq_rb(rq);
659
660         if (rq_is_meta(rq)) {
661                 WARN_ON(!cfqq->meta_pending);
662                 cfqq->meta_pending--;
663         }
664 }
665
666 static int cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
667 {
668         struct cfq_data *cfqd = q->elevator->elevator_data;
669         struct request *__rq;
670
671         __rq = cfq_find_rq_fmerge(cfqd, bio);
672         if (__rq && elv_rq_merge_ok(__rq, bio)) {
673                 *req = __rq;
674                 return ELEVATOR_FRONT_MERGE;
675         }
676
677         return ELEVATOR_NO_MERGE;
678 }
679
680 static void cfq_merged_request(request_queue_t *q, struct request *req,
681                                int type)
682 {
683         if (type == ELEVATOR_FRONT_MERGE) {
684                 struct cfq_queue *cfqq = RQ_CFQQ(req);
685
686                 cfq_reposition_rq_rb(cfqq, req);
687         }
688 }
689
690 static void
691 cfq_merged_requests(request_queue_t *q, struct request *rq,
692                     struct request *next)
693 {
694         /*
695          * reposition in fifo if next is older than rq
696          */
697         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
698             time_before(next->start_time, rq->start_time))
699                 list_move(&rq->queuelist, &next->queuelist);
700
701         cfq_remove_request(next);
702 }
703
704 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
705                            struct bio *bio)
706 {
707         struct cfq_data *cfqd = q->elevator->elevator_data;
708         const int rw = bio_data_dir(bio);
709         struct cfq_queue *cfqq;
710         pid_t key;
711
712         /*
713          * Disallow merge of a sync bio into an async request.
714          */
715         if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
716                 return 0;
717
718         /*
719          * Lookup the cfqq that this bio will be queued with. Allow
720          * merge only if rq is queued there.
721          */
722         key = cfq_queue_pid(current, rw, bio_sync(bio));
723         cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
724
725         if (cfqq == RQ_CFQQ(rq))
726                 return 1;
727
728         return 0;
729 }
730
731 static inline void
732 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
733 {
734         if (cfqq) {
735                 /*
736                  * stop potential idle class queues waiting service
737                  */
738                 del_timer(&cfqd->idle_class_timer);
739
740                 cfqq->slice_end = 0;
741                 cfq_clear_cfqq_must_alloc_slice(cfqq);
742                 cfq_clear_cfqq_fifo_expire(cfqq);
743                 cfq_mark_cfqq_slice_new(cfqq);
744                 cfq_clear_cfqq_queue_new(cfqq);
745         }
746
747         cfqd->active_queue = cfqq;
748 }
749
750 /*
751  * current cfqq expired its slice (or was too idle), select new one
752  */
753 static void
754 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
755                     int timed_out)
756 {
757         if (cfq_cfqq_wait_request(cfqq))
758                 del_timer(&cfqd->idle_slice_timer);
759
760         cfq_clear_cfqq_must_dispatch(cfqq);
761         cfq_clear_cfqq_wait_request(cfqq);
762
763         /*
764          * store what was left of this slice, if the queue idled/timed out
765          */
766         if (timed_out && !cfq_cfqq_slice_new(cfqq))
767                 cfqq->slice_resid = cfqq->slice_end - jiffies;
768
769         cfq_resort_rr_list(cfqd, cfqq);
770
771         if (cfqq == cfqd->active_queue)
772                 cfqd->active_queue = NULL;
773
774         if (cfqd->active_cic) {
775                 put_io_context(cfqd->active_cic->ioc);
776                 cfqd->active_cic = NULL;
777         }
778
779         cfqd->dispatch_slice = 0;
780 }
781
782 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
783 {
784         struct cfq_queue *cfqq = cfqd->active_queue;
785
786         if (cfqq)
787                 __cfq_slice_expired(cfqd, cfqq, timed_out);
788 }
789
790 /*
791  * Get next queue for service. Unless we have a queue preemption,
792  * we'll simply select the first cfqq in the service tree.
793  */
794 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
795 {
796         struct cfq_queue *cfqq;
797         struct rb_node *n;
798
799         if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
800                 return NULL;
801
802         n = cfq_rb_first(&cfqd->service_tree);
803         cfqq = rb_entry(n, struct cfq_queue, rb_node);
804
805         if (cfq_class_idle(cfqq)) {
806                 unsigned long end;
807
808                 /*
809                  * if we have idle queues and no rt or be queues had
810                  * pending requests, either allow immediate service if
811                  * the grace period has passed or arm the idle grace
812                  * timer
813                  */
814                 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
815                 if (time_before(jiffies, end)) {
816                         mod_timer(&cfqd->idle_class_timer, end);
817                         cfqq = NULL;
818                 }
819         }
820
821         return cfqq;
822 }
823
824 /*
825  * Get and set a new active queue for service.
826  */
827 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
828 {
829         struct cfq_queue *cfqq;
830
831         cfqq = cfq_get_next_queue(cfqd);
832         __cfq_set_active_queue(cfqd, cfqq);
833         return cfqq;
834 }
835
836 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
837                                           struct request *rq)
838 {
839         if (rq->sector >= cfqd->last_position)
840                 return rq->sector - cfqd->last_position;
841         else
842                 return cfqd->last_position - rq->sector;
843 }
844
845 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
846 {
847         struct cfq_io_context *cic = cfqd->active_cic;
848
849         if (!sample_valid(cic->seek_samples))
850                 return 0;
851
852         return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
853 }
854
855 static int cfq_close_cooperator(struct cfq_data *cfq_data,
856                                 struct cfq_queue *cfqq)
857 {
858         /*
859          * We should notice if some of the queues are cooperating, eg
860          * working closely on the same area of the disk. In that case,
861          * we can group them together and don't waste time idling.
862          */
863         return 0;
864 }
865
866 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
867
868 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
869 {
870         struct cfq_queue *cfqq = cfqd->active_queue;
871         struct cfq_io_context *cic;
872         unsigned long sl;
873
874         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
875         WARN_ON(cfq_cfqq_slice_new(cfqq));
876
877         /*
878          * idle is disabled, either manually or by past process history
879          */
880         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
881                 return;
882
883         /*
884          * task has exited, don't wait
885          */
886         cic = cfqd->active_cic;
887         if (!cic || !cic->ioc->task)
888                 return;
889
890         /*
891          * See if this prio level has a good candidate
892          */
893         if (cfq_close_cooperator(cfqd, cfqq) &&
894             (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
895                 return;
896
897         cfq_mark_cfqq_must_dispatch(cfqq);
898         cfq_mark_cfqq_wait_request(cfqq);
899
900         /*
901          * we don't want to idle for seeks, but we do want to allow
902          * fair distribution of slice time for a process doing back-to-back
903          * seeks. so allow a little bit of time for him to submit a new rq
904          */
905         sl = cfqd->cfq_slice_idle;
906         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
907                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
908
909         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
910 }
911
912 /*
913  * Move request from internal lists to the request queue dispatch list.
914  */
915 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
916 {
917         struct cfq_queue *cfqq = RQ_CFQQ(rq);
918
919         cfq_remove_request(rq);
920         cfqq->dispatched++;
921         elv_dispatch_sort(q, rq);
922 }
923
924 /*
925  * return expired entry, or NULL to just start from scratch in rbtree
926  */
927 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
928 {
929         struct cfq_data *cfqd = cfqq->cfqd;
930         struct request *rq;
931         int fifo;
932
933         if (cfq_cfqq_fifo_expire(cfqq))
934                 return NULL;
935
936         cfq_mark_cfqq_fifo_expire(cfqq);
937
938         if (list_empty(&cfqq->fifo))
939                 return NULL;
940
941         fifo = cfq_cfqq_sync(cfqq);
942         rq = rq_entry_fifo(cfqq->fifo.next);
943
944         if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
945                 return NULL;
946
947         return rq;
948 }
949
950 static inline int
951 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
952 {
953         const int base_rq = cfqd->cfq_slice_async_rq;
954
955         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
956
957         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
958 }
959
960 /*
961  * Select a queue for service. If we have a current active queue,
962  * check whether to continue servicing it, or retrieve and set a new one.
963  */
964 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
965 {
966         struct cfq_queue *cfqq;
967
968         cfqq = cfqd->active_queue;
969         if (!cfqq)
970                 goto new_queue;
971
972         /*
973          * The active queue has run out of time, expire it and select new.
974          */
975         if (cfq_slice_used(cfqq))
976                 goto expire;
977
978         /*
979          * The active queue has requests and isn't expired, allow it to
980          * dispatch.
981          */
982         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
983                 goto keep_queue;
984
985         /*
986          * No requests pending. If the active queue still has requests in
987          * flight or is idling for a new request, allow either of these
988          * conditions to happen (or time out) before selecting a new queue.
989          */
990         if (cfqq->dispatched || timer_pending(&cfqd->idle_slice_timer)) {
991                 cfqq = NULL;
992                 goto keep_queue;
993         }
994
995 expire:
996         cfq_slice_expired(cfqd, 0);
997 new_queue:
998         cfqq = cfq_set_active_queue(cfqd);
999 keep_queue:
1000         return cfqq;
1001 }
1002
1003 /*
1004  * Dispatch some requests from cfqq, moving them to the request queue
1005  * dispatch list.
1006  */
1007 static int
1008 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1009                         int max_dispatch)
1010 {
1011         int dispatched = 0;
1012
1013         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1014
1015         do {
1016                 struct request *rq;
1017
1018                 /*
1019                  * follow expired path, else get first next available
1020                  */
1021                 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1022                         rq = cfqq->next_rq;
1023
1024                 /*
1025                  * finally, insert request into driver dispatch list
1026                  */
1027                 cfq_dispatch_insert(cfqd->queue, rq);
1028
1029                 cfqd->dispatch_slice++;
1030                 dispatched++;
1031
1032                 if (!cfqd->active_cic) {
1033                         atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1034                         cfqd->active_cic = RQ_CIC(rq);
1035                 }
1036
1037                 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1038                         break;
1039
1040         } while (dispatched < max_dispatch);
1041
1042         /*
1043          * expire an async queue immediately if it has used up its slice. idle
1044          * queue always expire after 1 dispatch round.
1045          */
1046         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1047             cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1048             cfq_class_idle(cfqq))) {
1049                 cfqq->slice_end = jiffies + 1;
1050                 cfq_slice_expired(cfqd, 0);
1051         }
1052
1053         return dispatched;
1054 }
1055
1056 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1057 {
1058         int dispatched = 0;
1059
1060         while (cfqq->next_rq) {
1061                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1062                 dispatched++;
1063         }
1064
1065         BUG_ON(!list_empty(&cfqq->fifo));
1066         return dispatched;
1067 }
1068
1069 /*
1070  * Drain our current requests. Used for barriers and when switching
1071  * io schedulers on-the-fly.
1072  */
1073 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1074 {
1075         int dispatched = 0;
1076         struct rb_node *n;
1077
1078         while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1079                 struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1080
1081                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1082         }
1083
1084         cfq_slice_expired(cfqd, 0);
1085
1086         BUG_ON(cfqd->busy_queues);
1087
1088         return dispatched;
1089 }
1090
1091 static int cfq_dispatch_requests(request_queue_t *q, int force)
1092 {
1093         struct cfq_data *cfqd = q->elevator->elevator_data;
1094         struct cfq_queue *cfqq;
1095         int dispatched;
1096
1097         if (!cfqd->busy_queues)
1098                 return 0;
1099
1100         if (unlikely(force))
1101                 return cfq_forced_dispatch(cfqd);
1102
1103         dispatched = 0;
1104         while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1105                 int max_dispatch;
1106
1107                 if (cfqd->busy_queues > 1) {
1108                         /*
1109                          * So we have dispatched before in this round, if the
1110                          * next queue has idling enabled (must be sync), don't
1111                          * allow it service until the previous have completed.
1112                          */
1113                         if (cfqd->rq_in_driver && cfq_cfqq_idle_window(cfqq) &&
1114                             dispatched)
1115                                 break;
1116                         if (cfqq->dispatched >= cfqd->cfq_quantum)
1117                                 break;
1118                 }
1119
1120                 cfq_clear_cfqq_must_dispatch(cfqq);
1121                 cfq_clear_cfqq_wait_request(cfqq);
1122                 del_timer(&cfqd->idle_slice_timer);
1123
1124                 max_dispatch = cfqd->cfq_quantum;
1125                 if (cfq_class_idle(cfqq))
1126                         max_dispatch = 1;
1127
1128                 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1129         }
1130
1131         return dispatched;
1132 }
1133
1134 /*
1135  * task holds one reference to the queue, dropped when task exits. each rq
1136  * in-flight on this queue also holds a reference, dropped when rq is freed.
1137  *
1138  * queue lock must be held here.
1139  */
1140 static void cfq_put_queue(struct cfq_queue *cfqq)
1141 {
1142         struct cfq_data *cfqd = cfqq->cfqd;
1143
1144         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1145
1146         if (!atomic_dec_and_test(&cfqq->ref))
1147                 return;
1148
1149         BUG_ON(rb_first(&cfqq->sort_list));
1150         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1151         BUG_ON(cfq_cfqq_on_rr(cfqq));
1152
1153         if (unlikely(cfqd->active_queue == cfqq)) {
1154                 __cfq_slice_expired(cfqd, cfqq, 0);
1155                 cfq_schedule_dispatch(cfqd);
1156         }
1157
1158         /*
1159          * it's on the empty list and still hashed
1160          */
1161         hlist_del(&cfqq->cfq_hash);
1162         kmem_cache_free(cfq_pool, cfqq);
1163 }
1164
1165 static struct cfq_queue *
1166 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1167                     const int hashval)
1168 {
1169         struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1170         struct hlist_node *entry;
1171         struct cfq_queue *__cfqq;
1172
1173         hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1174                 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1175
1176                 if (__cfqq->key == key && (__p == prio || !prio))
1177                         return __cfqq;
1178         }
1179
1180         return NULL;
1181 }
1182
1183 static struct cfq_queue *
1184 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1185 {
1186         return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1187 }
1188
1189 static void cfq_free_io_context(struct io_context *ioc)
1190 {
1191         struct cfq_io_context *__cic;
1192         struct rb_node *n;
1193         int freed = 0;
1194
1195         while ((n = rb_first(&ioc->cic_root)) != NULL) {
1196                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1197                 rb_erase(&__cic->rb_node, &ioc->cic_root);
1198                 kmem_cache_free(cfq_ioc_pool, __cic);
1199                 freed++;
1200         }
1201
1202         elv_ioc_count_mod(ioc_count, -freed);
1203
1204         if (ioc_gone && !elv_ioc_count_read(ioc_count))
1205                 complete(ioc_gone);
1206 }
1207
1208 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1209 {
1210         if (unlikely(cfqq == cfqd->active_queue)) {
1211                 __cfq_slice_expired(cfqd, cfqq, 0);
1212                 cfq_schedule_dispatch(cfqd);
1213         }
1214
1215         cfq_put_queue(cfqq);
1216 }
1217
1218 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1219                                          struct cfq_io_context *cic)
1220 {
1221         list_del_init(&cic->queue_list);
1222         smp_wmb();
1223         cic->key = NULL;
1224
1225         if (cic->cfqq[ASYNC]) {
1226                 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1227                 cic->cfqq[ASYNC] = NULL;
1228         }
1229
1230         if (cic->cfqq[SYNC]) {
1231                 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1232                 cic->cfqq[SYNC] = NULL;
1233         }
1234 }
1235
1236 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1237 {
1238         struct cfq_data *cfqd = cic->key;
1239
1240         if (cfqd) {
1241                 request_queue_t *q = cfqd->queue;
1242
1243                 spin_lock_irq(q->queue_lock);
1244                 __cfq_exit_single_io_context(cfqd, cic);
1245                 spin_unlock_irq(q->queue_lock);
1246         }
1247 }
1248
1249 /*
1250  * The process that ioc belongs to has exited, we need to clean up
1251  * and put the internal structures we have that belongs to that process.
1252  */
1253 static void cfq_exit_io_context(struct io_context *ioc)
1254 {
1255         struct cfq_io_context *__cic;
1256         struct rb_node *n;
1257
1258         /*
1259          * put the reference this task is holding to the various queues
1260          */
1261
1262         n = rb_first(&ioc->cic_root);
1263         while (n != NULL) {
1264                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1265
1266                 cfq_exit_single_io_context(__cic);
1267                 n = rb_next(n);
1268         }
1269 }
1270
1271 static struct cfq_io_context *
1272 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1273 {
1274         struct cfq_io_context *cic;
1275
1276         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1277         if (cic) {
1278                 memset(cic, 0, sizeof(*cic));
1279                 cic->last_end_request = jiffies;
1280                 INIT_LIST_HEAD(&cic->queue_list);
1281                 cic->dtor = cfq_free_io_context;
1282                 cic->exit = cfq_exit_io_context;
1283                 elv_ioc_count_inc(ioc_count);
1284         }
1285
1286         return cic;
1287 }
1288
1289 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1290 {
1291         struct task_struct *tsk = current;
1292         int ioprio_class;
1293
1294         if (!cfq_cfqq_prio_changed(cfqq))
1295                 return;
1296
1297         ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1298         switch (ioprio_class) {
1299                 default:
1300                         printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1301                 case IOPRIO_CLASS_NONE:
1302                         /*
1303                          * no prio set, place us in the middle of the BE classes
1304                          */
1305                         cfqq->ioprio = task_nice_ioprio(tsk);
1306                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1307                         break;
1308                 case IOPRIO_CLASS_RT:
1309                         cfqq->ioprio = task_ioprio(tsk);
1310                         cfqq->ioprio_class = IOPRIO_CLASS_RT;
1311                         break;
1312                 case IOPRIO_CLASS_BE:
1313                         cfqq->ioprio = task_ioprio(tsk);
1314                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1315                         break;
1316                 case IOPRIO_CLASS_IDLE:
1317                         cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1318                         cfqq->ioprio = 7;
1319                         cfq_clear_cfqq_idle_window(cfqq);
1320                         break;
1321         }
1322
1323         /*
1324          * keep track of original prio settings in case we have to temporarily
1325          * elevate the priority of this queue
1326          */
1327         cfqq->org_ioprio = cfqq->ioprio;
1328         cfqq->org_ioprio_class = cfqq->ioprio_class;
1329         cfq_clear_cfqq_prio_changed(cfqq);
1330 }
1331
1332 static inline void changed_ioprio(struct cfq_io_context *cic)
1333 {
1334         struct cfq_data *cfqd = cic->key;
1335         struct cfq_queue *cfqq;
1336         unsigned long flags;
1337
1338         if (unlikely(!cfqd))
1339                 return;
1340
1341         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1342
1343         cfqq = cic->cfqq[ASYNC];
1344         if (cfqq) {
1345                 struct cfq_queue *new_cfqq;
1346                 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1347                                          GFP_ATOMIC);
1348                 if (new_cfqq) {
1349                         cic->cfqq[ASYNC] = new_cfqq;
1350                         cfq_put_queue(cfqq);
1351                 }
1352         }
1353
1354         cfqq = cic->cfqq[SYNC];
1355         if (cfqq)
1356                 cfq_mark_cfqq_prio_changed(cfqq);
1357
1358         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1359 }
1360
1361 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1362 {
1363         struct cfq_io_context *cic;
1364         struct rb_node *n;
1365
1366         ioc->ioprio_changed = 0;
1367
1368         n = rb_first(&ioc->cic_root);
1369         while (n != NULL) {
1370                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1371
1372                 changed_ioprio(cic);
1373                 n = rb_next(n);
1374         }
1375 }
1376
1377 static struct cfq_queue *
1378 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1379               gfp_t gfp_mask)
1380 {
1381         const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1382         struct cfq_queue *cfqq, *new_cfqq = NULL;
1383         unsigned short ioprio;
1384
1385 retry:
1386         ioprio = tsk->ioprio;
1387         cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1388
1389         if (!cfqq) {
1390                 if (new_cfqq) {
1391                         cfqq = new_cfqq;
1392                         new_cfqq = NULL;
1393                 } else if (gfp_mask & __GFP_WAIT) {
1394                         /*
1395                          * Inform the allocator of the fact that we will
1396                          * just repeat this allocation if it fails, to allow
1397                          * the allocator to do whatever it needs to attempt to
1398                          * free memory.
1399                          */
1400                         spin_unlock_irq(cfqd->queue->queue_lock);
1401                         new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1402                         spin_lock_irq(cfqd->queue->queue_lock);
1403                         goto retry;
1404                 } else {
1405                         cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1406                         if (!cfqq)
1407                                 goto out;
1408                 }
1409
1410                 memset(cfqq, 0, sizeof(*cfqq));
1411
1412                 INIT_HLIST_NODE(&cfqq->cfq_hash);
1413                 RB_CLEAR_NODE(&cfqq->rb_node);
1414                 INIT_LIST_HEAD(&cfqq->fifo);
1415
1416                 cfqq->key = key;
1417                 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1418                 atomic_set(&cfqq->ref, 0);
1419                 cfqq->cfqd = cfqd;
1420
1421                 if (key != CFQ_KEY_ASYNC)
1422                         cfq_mark_cfqq_idle_window(cfqq);
1423
1424                 cfq_mark_cfqq_prio_changed(cfqq);
1425                 cfq_mark_cfqq_queue_new(cfqq);
1426                 cfq_init_prio_data(cfqq);
1427         }
1428
1429         if (new_cfqq)
1430                 kmem_cache_free(cfq_pool, new_cfqq);
1431
1432         atomic_inc(&cfqq->ref);
1433 out:
1434         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1435         return cfqq;
1436 }
1437
1438 /*
1439  * We drop cfq io contexts lazily, so we may find a dead one.
1440  */
1441 static void
1442 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1443 {
1444         WARN_ON(!list_empty(&cic->queue_list));
1445         rb_erase(&cic->rb_node, &ioc->cic_root);
1446         kmem_cache_free(cfq_ioc_pool, cic);
1447         elv_ioc_count_dec(ioc_count);
1448 }
1449
1450 static struct cfq_io_context *
1451 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1452 {
1453         struct rb_node *n;
1454         struct cfq_io_context *cic;
1455         void *k, *key = cfqd;
1456
1457 restart:
1458         n = ioc->cic_root.rb_node;
1459         while (n) {
1460                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1461                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1462                 k = cic->key;
1463                 if (unlikely(!k)) {
1464                         cfq_drop_dead_cic(ioc, cic);
1465                         goto restart;
1466                 }
1467
1468                 if (key < k)
1469                         n = n->rb_left;
1470                 else if (key > k)
1471                         n = n->rb_right;
1472                 else
1473                         return cic;
1474         }
1475
1476         return NULL;
1477 }
1478
1479 static inline void
1480 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1481              struct cfq_io_context *cic)
1482 {
1483         struct rb_node **p;
1484         struct rb_node *parent;
1485         struct cfq_io_context *__cic;
1486         unsigned long flags;
1487         void *k;
1488
1489         cic->ioc = ioc;
1490         cic->key = cfqd;
1491
1492 restart:
1493         parent = NULL;
1494         p = &ioc->cic_root.rb_node;
1495         while (*p) {
1496                 parent = *p;
1497                 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1498                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1499                 k = __cic->key;
1500                 if (unlikely(!k)) {
1501                         cfq_drop_dead_cic(ioc, __cic);
1502                         goto restart;
1503                 }
1504
1505                 if (cic->key < k)
1506                         p = &(*p)->rb_left;
1507                 else if (cic->key > k)
1508                         p = &(*p)->rb_right;
1509                 else
1510                         BUG();
1511         }
1512
1513         rb_link_node(&cic->rb_node, parent, p);
1514         rb_insert_color(&cic->rb_node, &ioc->cic_root);
1515
1516         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1517         list_add(&cic->queue_list, &cfqd->cic_list);
1518         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1519 }
1520
1521 /*
1522  * Setup general io context and cfq io context. There can be several cfq
1523  * io contexts per general io context, if this process is doing io to more
1524  * than one device managed by cfq.
1525  */
1526 static struct cfq_io_context *
1527 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1528 {
1529         struct io_context *ioc = NULL;
1530         struct cfq_io_context *cic;
1531
1532         might_sleep_if(gfp_mask & __GFP_WAIT);
1533
1534         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1535         if (!ioc)
1536                 return NULL;
1537
1538         cic = cfq_cic_rb_lookup(cfqd, ioc);
1539         if (cic)
1540                 goto out;
1541
1542         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1543         if (cic == NULL)
1544                 goto err;
1545
1546         cfq_cic_link(cfqd, ioc, cic);
1547 out:
1548         smp_read_barrier_depends();
1549         if (unlikely(ioc->ioprio_changed))
1550                 cfq_ioc_set_ioprio(ioc);
1551
1552         return cic;
1553 err:
1554         put_io_context(ioc);
1555         return NULL;
1556 }
1557
1558 static void
1559 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1560 {
1561         unsigned long elapsed = jiffies - cic->last_end_request;
1562         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1563
1564         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1565         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1566         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1567 }
1568
1569 static void
1570 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1571                        struct request *rq)
1572 {
1573         sector_t sdist;
1574         u64 total;
1575
1576         if (cic->last_request_pos < rq->sector)
1577                 sdist = rq->sector - cic->last_request_pos;
1578         else
1579                 sdist = cic->last_request_pos - rq->sector;
1580
1581         if (!cic->seek_samples) {
1582                 cfqd->new_seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1583                 cfqd->new_seek_mean = cfqd->new_seek_total / 256;
1584         }
1585
1586         /*
1587          * Don't allow the seek distance to get too large from the
1588          * odd fragment, pagein, etc
1589          */
1590         if (cic->seek_samples <= 60) /* second&third seek */
1591                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1592         else
1593                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1594
1595         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1596         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1597         total = cic->seek_total + (cic->seek_samples/2);
1598         do_div(total, cic->seek_samples);
1599         cic->seek_mean = (sector_t)total;
1600 }
1601
1602 /*
1603  * Disable idle window if the process thinks too long or seeks so much that
1604  * it doesn't matter
1605  */
1606 static void
1607 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1608                        struct cfq_io_context *cic)
1609 {
1610         int enable_idle = cfq_cfqq_idle_window(cfqq);
1611
1612         if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1613             (cfqd->hw_tag && CIC_SEEKY(cic)))
1614                 enable_idle = 0;
1615         else if (sample_valid(cic->ttime_samples)) {
1616                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1617                         enable_idle = 0;
1618                 else
1619                         enable_idle = 1;
1620         }
1621
1622         if (enable_idle)
1623                 cfq_mark_cfqq_idle_window(cfqq);
1624         else
1625                 cfq_clear_cfqq_idle_window(cfqq);
1626 }
1627
1628 /*
1629  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1630  * no or if we aren't sure, a 1 will cause a preempt.
1631  */
1632 static int
1633 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1634                    struct request *rq)
1635 {
1636         struct cfq_queue *cfqq;
1637
1638         cfqq = cfqd->active_queue;
1639         if (!cfqq)
1640                 return 0;
1641
1642         if (cfq_slice_used(cfqq))
1643                 return 1;
1644
1645         if (cfq_class_idle(new_cfqq))
1646                 return 0;
1647
1648         if (cfq_class_idle(cfqq))
1649                 return 1;
1650
1651         /*
1652          * if the new request is sync, but the currently running queue is
1653          * not, let the sync request have priority.
1654          */
1655         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1656                 return 1;
1657
1658         /*
1659          * So both queues are sync. Let the new request get disk time if
1660          * it's a metadata request and the current queue is doing regular IO.
1661          */
1662         if (rq_is_meta(rq) && !cfqq->meta_pending)
1663                 return 1;
1664
1665         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1666                 return 0;
1667
1668         /*
1669          * if this request is as-good as one we would expect from the
1670          * current cfqq, let it preempt
1671          */
1672         if (cfq_rq_close(cfqd, rq))
1673                 return 1;
1674
1675         return 0;
1676 }
1677
1678 /*
1679  * cfqq preempts the active queue. if we allowed preempt with no slice left,
1680  * let it have half of its nominal slice.
1681  */
1682 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1683 {
1684         cfq_slice_expired(cfqd, 1);
1685
1686         /*
1687          * Put the new queue at the front of the of the current list,
1688          * so we know that it will be selected next.
1689          */
1690         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1691
1692         cfq_service_tree_add(cfqd, cfqq, 1);
1693
1694         cfqq->slice_end = 0;
1695         cfq_mark_cfqq_slice_new(cfqq);
1696 }
1697
1698 /*
1699  * Called when a new fs request (rq) is added (to cfqq). Check if there's
1700  * something we should do about it
1701  */
1702 static void
1703 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1704                 struct request *rq)
1705 {
1706         struct cfq_io_context *cic = RQ_CIC(rq);
1707
1708         if (rq_is_meta(rq))
1709                 cfqq->meta_pending++;
1710
1711         cfq_update_io_thinktime(cfqd, cic);
1712         cfq_update_io_seektime(cfqd, cic, rq);
1713         cfq_update_idle_window(cfqd, cfqq, cic);
1714
1715         cic->last_request_pos = rq->sector + rq->nr_sectors;
1716         cfqq->last_request_pos = cic->last_request_pos;
1717
1718         if (cfqq == cfqd->active_queue) {
1719                 /*
1720                  * if we are waiting for a request for this queue, let it rip
1721                  * immediately and flag that we must not expire this queue
1722                  * just now
1723                  */
1724                 if (cfq_cfqq_wait_request(cfqq)) {
1725                         cfq_mark_cfqq_must_dispatch(cfqq);
1726                         del_timer(&cfqd->idle_slice_timer);
1727                         blk_start_queueing(cfqd->queue);
1728                 }
1729         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1730                 /*
1731                  * not the active queue - expire current slice if it is
1732                  * idle and has expired it's mean thinktime or this new queue
1733                  * has some old slice time left and is of higher priority
1734                  */
1735                 cfq_preempt_queue(cfqd, cfqq);
1736                 cfq_mark_cfqq_must_dispatch(cfqq);
1737                 blk_start_queueing(cfqd->queue);
1738         }
1739 }
1740
1741 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1742 {
1743         struct cfq_data *cfqd = q->elevator->elevator_data;
1744         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1745
1746         cfq_init_prio_data(cfqq);
1747
1748         cfq_add_rq_rb(rq);
1749
1750         list_add_tail(&rq->queuelist, &cfqq->fifo);
1751
1752         cfq_rq_enqueued(cfqd, cfqq, rq);
1753 }
1754
1755 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1756 {
1757         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1758         struct cfq_data *cfqd = cfqq->cfqd;
1759         const int sync = rq_is_sync(rq);
1760         unsigned long now;
1761
1762         now = jiffies;
1763
1764         WARN_ON(!cfqd->rq_in_driver);
1765         WARN_ON(!cfqq->dispatched);
1766         cfqd->rq_in_driver--;
1767         cfqq->dispatched--;
1768
1769         if (!cfq_class_idle(cfqq))
1770                 cfqd->last_end_request = now;
1771
1772         if (sync)
1773                 RQ_CIC(rq)->last_end_request = now;
1774
1775         /*
1776          * If this is the active queue, check if it needs to be expired,
1777          * or if we want to idle in case it has no pending requests.
1778          */
1779         if (cfqd->active_queue == cfqq) {
1780                 if (cfq_cfqq_slice_new(cfqq)) {
1781                         cfq_set_prio_slice(cfqd, cfqq);
1782                         cfq_clear_cfqq_slice_new(cfqq);
1783                 }
1784                 if (cfq_slice_used(cfqq))
1785                         cfq_slice_expired(cfqd, 1);
1786                 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1787                         cfq_arm_slice_timer(cfqd);
1788         }
1789
1790         if (!cfqd->rq_in_driver)
1791                 cfq_schedule_dispatch(cfqd);
1792 }
1793
1794 /*
1795  * we temporarily boost lower priority queues if they are holding fs exclusive
1796  * resources. they are boosted to normal prio (CLASS_BE/4)
1797  */
1798 static void cfq_prio_boost(struct cfq_queue *cfqq)
1799 {
1800         if (has_fs_excl()) {
1801                 /*
1802                  * boost idle prio on transactions that would lock out other
1803                  * users of the filesystem
1804                  */
1805                 if (cfq_class_idle(cfqq))
1806                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1807                 if (cfqq->ioprio > IOPRIO_NORM)
1808                         cfqq->ioprio = IOPRIO_NORM;
1809         } else {
1810                 /*
1811                  * check if we need to unboost the queue
1812                  */
1813                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1814                         cfqq->ioprio_class = cfqq->org_ioprio_class;
1815                 if (cfqq->ioprio != cfqq->org_ioprio)
1816                         cfqq->ioprio = cfqq->org_ioprio;
1817         }
1818 }
1819
1820 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1821 {
1822         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1823             !cfq_cfqq_must_alloc_slice(cfqq)) {
1824                 cfq_mark_cfqq_must_alloc_slice(cfqq);
1825                 return ELV_MQUEUE_MUST;
1826         }
1827
1828         return ELV_MQUEUE_MAY;
1829 }
1830
1831 static int cfq_may_queue(request_queue_t *q, int rw)
1832 {
1833         struct cfq_data *cfqd = q->elevator->elevator_data;
1834         struct task_struct *tsk = current;
1835         struct cfq_queue *cfqq;
1836         unsigned int key;
1837
1838         key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1839
1840         /*
1841          * don't force setup of a queue from here, as a call to may_queue
1842          * does not necessarily imply that a request actually will be queued.
1843          * so just lookup a possibly existing queue, or return 'may queue'
1844          * if that fails
1845          */
1846         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1847         if (cfqq) {
1848                 cfq_init_prio_data(cfqq);
1849                 cfq_prio_boost(cfqq);
1850
1851                 return __cfq_may_queue(cfqq);
1852         }
1853
1854         return ELV_MQUEUE_MAY;
1855 }
1856
1857 /*
1858  * queue lock held here
1859  */
1860 static void cfq_put_request(struct request *rq)
1861 {
1862         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1863
1864         if (cfqq) {
1865                 const int rw = rq_data_dir(rq);
1866
1867                 BUG_ON(!cfqq->allocated[rw]);
1868                 cfqq->allocated[rw]--;
1869
1870                 put_io_context(RQ_CIC(rq)->ioc);
1871
1872                 rq->elevator_private = NULL;
1873                 rq->elevator_private2 = NULL;
1874
1875                 cfq_put_queue(cfqq);
1876         }
1877 }
1878
1879 /*
1880  * Allocate cfq data structures associated with this request.
1881  */
1882 static int
1883 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1884 {
1885         struct cfq_data *cfqd = q->elevator->elevator_data;
1886         struct task_struct *tsk = current;
1887         struct cfq_io_context *cic;
1888         const int rw = rq_data_dir(rq);
1889         const int is_sync = rq_is_sync(rq);
1890         pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1891         struct cfq_queue *cfqq;
1892         unsigned long flags;
1893
1894         might_sleep_if(gfp_mask & __GFP_WAIT);
1895
1896         cic = cfq_get_io_context(cfqd, gfp_mask);
1897
1898         spin_lock_irqsave(q->queue_lock, flags);
1899
1900         if (!cic)
1901                 goto queue_fail;
1902
1903         if (!cic->cfqq[is_sync]) {
1904                 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1905                 if (!cfqq)
1906                         goto queue_fail;
1907
1908                 cic->cfqq[is_sync] = cfqq;
1909         } else
1910                 cfqq = cic->cfqq[is_sync];
1911
1912         cfqq->allocated[rw]++;
1913         cfq_clear_cfqq_must_alloc(cfqq);
1914         atomic_inc(&cfqq->ref);
1915
1916         spin_unlock_irqrestore(q->queue_lock, flags);
1917
1918         rq->elevator_private = cic;
1919         rq->elevator_private2 = cfqq;
1920         return 0;
1921
1922 queue_fail:
1923         if (cic)
1924                 put_io_context(cic->ioc);
1925
1926         cfq_schedule_dispatch(cfqd);
1927         spin_unlock_irqrestore(q->queue_lock, flags);
1928         return 1;
1929 }
1930
1931 static void cfq_kick_queue(struct work_struct *work)
1932 {
1933         struct cfq_data *cfqd =
1934                 container_of(work, struct cfq_data, unplug_work);
1935         request_queue_t *q = cfqd->queue;
1936         unsigned long flags;
1937
1938         spin_lock_irqsave(q->queue_lock, flags);
1939         blk_start_queueing(q);
1940         spin_unlock_irqrestore(q->queue_lock, flags);
1941 }
1942
1943 /*
1944  * Timer running if the active_queue is currently idling inside its time slice
1945  */
1946 static void cfq_idle_slice_timer(unsigned long data)
1947 {
1948         struct cfq_data *cfqd = (struct cfq_data *) data;
1949         struct cfq_queue *cfqq;
1950         unsigned long flags;
1951         int timed_out = 1;
1952
1953         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1954
1955         if ((cfqq = cfqd->active_queue) != NULL) {
1956                 timed_out = 0;
1957
1958                 /*
1959                  * expired
1960                  */
1961                 if (cfq_slice_used(cfqq))
1962                         goto expire;
1963
1964                 /*
1965                  * only expire and reinvoke request handler, if there are
1966                  * other queues with pending requests
1967                  */
1968                 if (!cfqd->busy_queues)
1969                         goto out_cont;
1970
1971                 /*
1972                  * not expired and it has a request pending, let it dispatch
1973                  */
1974                 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1975                         cfq_mark_cfqq_must_dispatch(cfqq);
1976                         goto out_kick;
1977                 }
1978         }
1979 expire:
1980         cfq_slice_expired(cfqd, timed_out);
1981 out_kick:
1982         cfq_schedule_dispatch(cfqd);
1983 out_cont:
1984         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1985 }
1986
1987 /*
1988  * Timer running if an idle class queue is waiting for service
1989  */
1990 static void cfq_idle_class_timer(unsigned long data)
1991 {
1992         struct cfq_data *cfqd = (struct cfq_data *) data;
1993         unsigned long flags, end;
1994
1995         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1996
1997         /*
1998          * race with a non-idle queue, reset timer
1999          */
2000         end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2001         if (!time_after_eq(jiffies, end))
2002                 mod_timer(&cfqd->idle_class_timer, end);
2003         else
2004                 cfq_schedule_dispatch(cfqd);
2005
2006         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2007 }
2008
2009 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2010 {
2011         del_timer_sync(&cfqd->idle_slice_timer);
2012         del_timer_sync(&cfqd->idle_class_timer);
2013         blk_sync_queue(cfqd->queue);
2014 }
2015
2016 static void cfq_exit_queue(elevator_t *e)
2017 {
2018         struct cfq_data *cfqd = e->elevator_data;
2019         request_queue_t *q = cfqd->queue;
2020
2021         cfq_shutdown_timer_wq(cfqd);
2022
2023         spin_lock_irq(q->queue_lock);
2024
2025         if (cfqd->active_queue)
2026                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2027
2028         while (!list_empty(&cfqd->cic_list)) {
2029                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2030                                                         struct cfq_io_context,
2031                                                         queue_list);
2032
2033                 __cfq_exit_single_io_context(cfqd, cic);
2034         }
2035
2036         spin_unlock_irq(q->queue_lock);
2037
2038         cfq_shutdown_timer_wq(cfqd);
2039
2040         kfree(cfqd->cfq_hash);
2041         kfree(cfqd);
2042 }
2043
2044 static void *cfq_init_queue(request_queue_t *q)
2045 {
2046         struct cfq_data *cfqd;
2047         int i;
2048
2049         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
2050         if (!cfqd)
2051                 return NULL;
2052
2053         memset(cfqd, 0, sizeof(*cfqd));
2054
2055         cfqd->service_tree = CFQ_RB_ROOT;
2056         INIT_LIST_HEAD(&cfqd->cic_list);
2057
2058         cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
2059         if (!cfqd->cfq_hash)
2060                 goto out_free;
2061
2062         for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2063                 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2064
2065         cfqd->queue = q;
2066
2067         init_timer(&cfqd->idle_slice_timer);
2068         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2069         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2070
2071         init_timer(&cfqd->idle_class_timer);
2072         cfqd->idle_class_timer.function = cfq_idle_class_timer;
2073         cfqd->idle_class_timer.data = (unsigned long) cfqd;
2074
2075         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2076
2077         cfqd->cfq_quantum = cfq_quantum;
2078         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2079         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2080         cfqd->cfq_back_max = cfq_back_max;
2081         cfqd->cfq_back_penalty = cfq_back_penalty;
2082         cfqd->cfq_slice[0] = cfq_slice_async;
2083         cfqd->cfq_slice[1] = cfq_slice_sync;
2084         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2085         cfqd->cfq_slice_idle = cfq_slice_idle;
2086
2087         return cfqd;
2088 out_free:
2089         kfree(cfqd);
2090         return NULL;
2091 }
2092
2093 static void cfq_slab_kill(void)
2094 {
2095         if (cfq_pool)
2096                 kmem_cache_destroy(cfq_pool);
2097         if (cfq_ioc_pool)
2098                 kmem_cache_destroy(cfq_ioc_pool);
2099 }
2100
2101 static int __init cfq_slab_setup(void)
2102 {
2103         cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2104                                         NULL, NULL);
2105         if (!cfq_pool)
2106                 goto fail;
2107
2108         cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2109                         sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2110         if (!cfq_ioc_pool)
2111                 goto fail;
2112
2113         return 0;
2114 fail:
2115         cfq_slab_kill();
2116         return -ENOMEM;
2117 }
2118
2119 /*
2120  * sysfs parts below -->
2121  */
2122 static ssize_t
2123 cfq_var_show(unsigned int var, char *page)
2124 {
2125         return sprintf(page, "%d\n", var);
2126 }
2127
2128 static ssize_t
2129 cfq_var_store(unsigned int *var, const char *page, size_t count)
2130 {
2131         char *p = (char *) page;
2132
2133         *var = simple_strtoul(p, &p, 10);
2134         return count;
2135 }
2136
2137 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2138 static ssize_t __FUNC(elevator_t *e, char *page)                        \
2139 {                                                                       \
2140         struct cfq_data *cfqd = e->elevator_data;                       \
2141         unsigned int __data = __VAR;                                    \
2142         if (__CONV)                                                     \
2143                 __data = jiffies_to_msecs(__data);                      \
2144         return cfq_var_show(__data, (page));                            \
2145 }
2146 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2147 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2148 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2149 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2150 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2151 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2152 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2153 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2154 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2155 #undef SHOW_FUNCTION
2156
2157 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2158 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
2159 {                                                                       \
2160         struct cfq_data *cfqd = e->elevator_data;                       \
2161         unsigned int __data;                                            \
2162         int ret = cfq_var_store(&__data, (page), count);                \
2163         if (__data < (MIN))                                             \
2164                 __data = (MIN);                                         \
2165         else if (__data > (MAX))                                        \
2166                 __data = (MAX);                                         \
2167         if (__CONV)                                                     \
2168                 *(__PTR) = msecs_to_jiffies(__data);                    \
2169         else                                                            \
2170                 *(__PTR) = __data;                                      \
2171         return ret;                                                     \
2172 }
2173 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2174 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2175 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2176 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2177 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2178 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2179 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2180 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2181 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2182 #undef STORE_FUNCTION
2183
2184 #define CFQ_ATTR(name) \
2185         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2186
2187 static struct elv_fs_entry cfq_attrs[] = {
2188         CFQ_ATTR(quantum),
2189         CFQ_ATTR(fifo_expire_sync),
2190         CFQ_ATTR(fifo_expire_async),
2191         CFQ_ATTR(back_seek_max),
2192         CFQ_ATTR(back_seek_penalty),
2193         CFQ_ATTR(slice_sync),
2194         CFQ_ATTR(slice_async),
2195         CFQ_ATTR(slice_async_rq),
2196         CFQ_ATTR(slice_idle),
2197         __ATTR_NULL
2198 };
2199
2200 static struct elevator_type iosched_cfq = {
2201         .ops = {
2202                 .elevator_merge_fn =            cfq_merge,
2203                 .elevator_merged_fn =           cfq_merged_request,
2204                 .elevator_merge_req_fn =        cfq_merged_requests,
2205                 .elevator_allow_merge_fn =      cfq_allow_merge,
2206                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2207                 .elevator_add_req_fn =          cfq_insert_request,
2208                 .elevator_activate_req_fn =     cfq_activate_request,
2209                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2210                 .elevator_queue_empty_fn =      cfq_queue_empty,
2211                 .elevator_completed_req_fn =    cfq_completed_request,
2212                 .elevator_former_req_fn =       elv_rb_former_request,
2213                 .elevator_latter_req_fn =       elv_rb_latter_request,
2214                 .elevator_set_req_fn =          cfq_set_request,
2215                 .elevator_put_req_fn =          cfq_put_request,
2216                 .elevator_may_queue_fn =        cfq_may_queue,
2217                 .elevator_init_fn =             cfq_init_queue,
2218                 .elevator_exit_fn =             cfq_exit_queue,
2219                 .trim =                         cfq_free_io_context,
2220         },
2221         .elevator_attrs =       cfq_attrs,
2222         .elevator_name =        "cfq",
2223         .elevator_owner =       THIS_MODULE,
2224 };
2225
2226 static int __init cfq_init(void)
2227 {
2228         int ret;
2229
2230         /*
2231          * could be 0 on HZ < 1000 setups
2232          */
2233         if (!cfq_slice_async)
2234                 cfq_slice_async = 1;
2235         if (!cfq_slice_idle)
2236                 cfq_slice_idle = 1;
2237
2238         if (cfq_slab_setup())
2239                 return -ENOMEM;
2240
2241         ret = elv_register(&iosched_cfq);
2242         if (ret)
2243                 cfq_slab_kill();
2244
2245         return ret;
2246 }
2247
2248 static void __exit cfq_exit(void)
2249 {
2250         DECLARE_COMPLETION_ONSTACK(all_gone);
2251         elv_unregister(&iosched_cfq);
2252         ioc_gone = &all_gone;
2253         /* ioc_gone's update must be visible before reading ioc_count */
2254         smp_wmb();
2255         if (elv_ioc_count_read(ioc_count))
2256                 wait_for_completion(ioc_gone);
2257         synchronize_rcu();
2258         cfq_slab_kill();
2259 }
2260
2261 module_init(cfq_init);
2262 module_exit(cfq_exit);
2263
2264 MODULE_AUTHOR("Jens Axboe");
2265 MODULE_LICENSE("GPL");
2266 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");