Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 #define WAIT_FOR_BBP(__dev, __reg) \
53         rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55         rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56
57 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58                                 const unsigned int word, const u8 value)
59 {
60         u32 reg;
61
62         mutex_lock(&rt2x00dev->csr_mutex);
63
64         /*
65          * Wait until the BBP becomes available, afterwards we
66          * can safely write the new data into the register.
67          */
68         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
69                 reg = 0;
70                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
71                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
72                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
73                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
74
75                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
76         }
77
78         mutex_unlock(&rt2x00dev->csr_mutex);
79 }
80
81 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82                                const unsigned int word, u8 *value)
83 {
84         u32 reg;
85
86         mutex_lock(&rt2x00dev->csr_mutex);
87
88         /*
89          * Wait until the BBP becomes available, afterwards we
90          * can safely write the read request into the register.
91          * After the data has been written, we wait until hardware
92          * returns the correct value, if at any time the register
93          * doesn't become available in time, reg will be 0xffffffff
94          * which means we return 0xff to the caller.
95          */
96         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97                 reg = 0;
98                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
101
102                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
103
104                 WAIT_FOR_BBP(rt2x00dev, &reg);
105         }
106
107         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
108
109         mutex_unlock(&rt2x00dev->csr_mutex);
110 }
111
112 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
113                                const unsigned int word, const u32 value)
114 {
115         u32 reg;
116
117         mutex_lock(&rt2x00dev->csr_mutex);
118
119         /*
120          * Wait until the RF becomes available, afterwards we
121          * can safely write the new data into the register.
122          */
123         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
124                 reg = 0;
125                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
126                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
127                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
128                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
129
130                 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
131                 rt2x00_rf_write(rt2x00dev, word, value);
132         }
133
134         mutex_unlock(&rt2x00dev->csr_mutex);
135 }
136
137 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
138 {
139         struct rt2x00_dev *rt2x00dev = eeprom->data;
140         u32 reg;
141
142         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
143
144         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
145         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
146         eeprom->reg_data_clock =
147             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
148         eeprom->reg_chip_select =
149             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
150 }
151
152 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
153 {
154         struct rt2x00_dev *rt2x00dev = eeprom->data;
155         u32 reg = 0;
156
157         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
158         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
159         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
160                            !!eeprom->reg_data_clock);
161         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
162                            !!eeprom->reg_chip_select);
163
164         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
165 }
166
167 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
168 static const struct rt2x00debug rt2500pci_rt2x00debug = {
169         .owner  = THIS_MODULE,
170         .csr    = {
171                 .read           = rt2x00pci_register_read,
172                 .write          = rt2x00pci_register_write,
173                 .flags          = RT2X00DEBUGFS_OFFSET,
174                 .word_base      = CSR_REG_BASE,
175                 .word_size      = sizeof(u32),
176                 .word_count     = CSR_REG_SIZE / sizeof(u32),
177         },
178         .eeprom = {
179                 .read           = rt2x00_eeprom_read,
180                 .write          = rt2x00_eeprom_write,
181                 .word_base      = EEPROM_BASE,
182                 .word_size      = sizeof(u16),
183                 .word_count     = EEPROM_SIZE / sizeof(u16),
184         },
185         .bbp    = {
186                 .read           = rt2500pci_bbp_read,
187                 .write          = rt2500pci_bbp_write,
188                 .word_base      = BBP_BASE,
189                 .word_size      = sizeof(u8),
190                 .word_count     = BBP_SIZE / sizeof(u8),
191         },
192         .rf     = {
193                 .read           = rt2x00_rf_read,
194                 .write          = rt2500pci_rf_write,
195                 .word_base      = RF_BASE,
196                 .word_size      = sizeof(u32),
197                 .word_count     = RF_SIZE / sizeof(u32),
198         },
199 };
200 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
201
202 #ifdef CONFIG_RT2X00_LIB_RFKILL
203 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 {
205         u32 reg;
206
207         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
209 }
210 #else
211 #define rt2500pci_rfkill_poll   NULL
212 #endif /* CONFIG_RT2X00_LIB_RFKILL */
213
214 #ifdef CONFIG_RT2X00_LIB_LEDS
215 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
216                                      enum led_brightness brightness)
217 {
218         struct rt2x00_led *led =
219             container_of(led_cdev, struct rt2x00_led, led_dev);
220         unsigned int enabled = brightness != LED_OFF;
221         u32 reg;
222
223         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
224
225         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
226                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
227         else if (led->type == LED_TYPE_ACTIVITY)
228                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
229
230         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
231 }
232
233 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
234                                unsigned long *delay_on,
235                                unsigned long *delay_off)
236 {
237         struct rt2x00_led *led =
238             container_of(led_cdev, struct rt2x00_led, led_dev);
239         u32 reg;
240
241         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
242         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
243         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
244         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
245
246         return 0;
247 }
248
249 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
250                                struct rt2x00_led *led,
251                                enum led_type type)
252 {
253         led->rt2x00dev = rt2x00dev;
254         led->type = type;
255         led->led_dev.brightness_set = rt2500pci_brightness_set;
256         led->led_dev.blink_set = rt2500pci_blink_set;
257         led->flags = LED_INITIALIZED;
258 }
259 #endif /* CONFIG_RT2X00_LIB_LEDS */
260
261 /*
262  * Configuration handlers.
263  */
264 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
265                                     const unsigned int filter_flags)
266 {
267         u32 reg;
268
269         /*
270          * Start configuration steps.
271          * Note that the version error will always be dropped
272          * and broadcast frames will always be accepted since
273          * there is no filter for it at this time.
274          */
275         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
276         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
277                            !(filter_flags & FIF_FCSFAIL));
278         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
279                            !(filter_flags & FIF_PLCPFAIL));
280         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
281                            !(filter_flags & FIF_CONTROL));
282         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
283                            !(filter_flags & FIF_PROMISC_IN_BSS));
284         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
285                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
286                            !rt2x00dev->intf_ap_count);
287         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
288         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
289                            !(filter_flags & FIF_ALLMULTI));
290         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
291         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
292 }
293
294 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
295                                   struct rt2x00_intf *intf,
296                                   struct rt2x00intf_conf *conf,
297                                   const unsigned int flags)
298 {
299         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
300         unsigned int bcn_preload;
301         u32 reg;
302
303         if (flags & CONFIG_UPDATE_TYPE) {
304                 /*
305                  * Enable beacon config
306                  */
307                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
308                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
309                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
310                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
311                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
312
313                 /*
314                  * Enable synchronisation.
315                  */
316                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
317                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
318                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
319                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
320                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
321         }
322
323         if (flags & CONFIG_UPDATE_MAC)
324                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
325                                               conf->mac, sizeof(conf->mac));
326
327         if (flags & CONFIG_UPDATE_BSSID)
328                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
329                                               conf->bssid, sizeof(conf->bssid));
330 }
331
332 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
333                                  struct rt2x00lib_erp *erp)
334 {
335         int preamble_mask;
336         u32 reg;
337
338         /*
339          * When short preamble is enabled, we should set bit 0x08
340          */
341         preamble_mask = erp->short_preamble << 3;
342
343         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
344         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, erp->ack_timeout);
345         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
346                            erp->ack_consume_time);
347         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
348         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
349         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
350
351         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
352         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
353         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
354         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
355         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
356
357         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
358         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
359         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
360         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
361         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
362
363         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
364         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
365         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
366         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
367         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
368
369         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
370         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
371         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
372         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
373         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
374
375         rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
376
377         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
378         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
379         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
380
381         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
382         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
383         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
384         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
385
386         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
387         rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
388         rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
389         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
390
391         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
392         rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
393         rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
394         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
395 }
396
397 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
398                                  struct antenna_setup *ant)
399 {
400         u32 reg;
401         u8 r14;
402         u8 r2;
403
404         /*
405          * We should never come here because rt2x00lib is supposed
406          * to catch this and send us the correct antenna explicitely.
407          */
408         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
409                ant->tx == ANTENNA_SW_DIVERSITY);
410
411         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
412         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
413         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
414
415         /*
416          * Configure the TX antenna.
417          */
418         switch (ant->tx) {
419         case ANTENNA_A:
420                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
421                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
422                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
423                 break;
424         case ANTENNA_B:
425         default:
426                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
427                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
428                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
429                 break;
430         }
431
432         /*
433          * Configure the RX antenna.
434          */
435         switch (ant->rx) {
436         case ANTENNA_A:
437                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
438                 break;
439         case ANTENNA_B:
440         default:
441                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
442                 break;
443         }
444
445         /*
446          * RT2525E and RT5222 need to flip TX I/Q
447          */
448         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
449             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
450                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
451                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
452                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
453
454                 /*
455                  * RT2525E does not need RX I/Q Flip.
456                  */
457                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
458                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
459         } else {
460                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
461                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
462         }
463
464         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
465         rt2500pci_bbp_write(rt2x00dev, 14, r14);
466         rt2500pci_bbp_write(rt2x00dev, 2, r2);
467 }
468
469 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
470                                      struct rf_channel *rf, const int txpower)
471 {
472         u8 r70;
473
474         /*
475          * Set TXpower.
476          */
477         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
478
479         /*
480          * Switch on tuning bits.
481          * For RT2523 devices we do not need to update the R1 register.
482          */
483         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
484                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
485         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
486
487         /*
488          * For RT2525 we should first set the channel to half band higher.
489          */
490         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
491                 static const u32 vals[] = {
492                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
493                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
494                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
495                         0x00080d2e, 0x00080d3a
496                 };
497
498                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
499                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
500                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
501                 if (rf->rf4)
502                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
503         }
504
505         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
506         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
507         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
508         if (rf->rf4)
509                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
510
511         /*
512          * Channel 14 requires the Japan filter bit to be set.
513          */
514         r70 = 0x46;
515         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
516         rt2500pci_bbp_write(rt2x00dev, 70, r70);
517
518         msleep(1);
519
520         /*
521          * Switch off tuning bits.
522          * For RT2523 devices we do not need to update the R1 register.
523          */
524         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
525                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
526                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
527         }
528
529         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
530         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
531
532         /*
533          * Clear false CRC during channel switch.
534          */
535         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
536 }
537
538 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
539                                      const int txpower)
540 {
541         u32 rf3;
542
543         rt2x00_rf_read(rt2x00dev, 3, &rf3);
544         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
545         rt2500pci_rf_write(rt2x00dev, 3, rf3);
546 }
547
548 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
549                                          struct rt2x00lib_conf *libconf)
550 {
551         u32 reg;
552
553         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
554         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
555                            libconf->conf->long_frame_max_tx_count);
556         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
557                            libconf->conf->short_frame_max_tx_count);
558         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
559 }
560
561 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
562                                 struct rt2x00lib_conf *libconf)
563 {
564         enum dev_state state =
565             (libconf->conf->flags & IEEE80211_CONF_PS) ?
566                 STATE_SLEEP : STATE_AWAKE;
567         u32 reg;
568
569         if (state == STATE_SLEEP) {
570                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
571                 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
572                                    (rt2x00dev->beacon_int - 20) * 16);
573                 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
574                                    libconf->conf->listen_interval - 1);
575
576                 /* We must first disable autowake before it can be enabled */
577                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
578                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
579
580                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
581                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
582         }
583
584         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
585 }
586
587 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
588                              struct rt2x00lib_conf *libconf,
589                              const unsigned int flags)
590 {
591         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
592                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
593                                          libconf->conf->power_level);
594         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
595             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
596                 rt2500pci_config_txpower(rt2x00dev,
597                                          libconf->conf->power_level);
598         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
599                 rt2500pci_config_retry_limit(rt2x00dev, libconf);
600         if (flags & IEEE80211_CONF_CHANGE_PS)
601                 rt2500pci_config_ps(rt2x00dev, libconf);
602 }
603
604 /*
605  * Link tuning
606  */
607 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
608                                  struct link_qual *qual)
609 {
610         u32 reg;
611
612         /*
613          * Update FCS error count from register.
614          */
615         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
616         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
617
618         /*
619          * Update False CCA count from register.
620          */
621         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
622         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
623 }
624
625 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
626                                      struct link_qual *qual, u8 vgc_level)
627 {
628         if (qual->vgc_level_reg != vgc_level) {
629                 rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
630                 qual->vgc_level_reg = vgc_level;
631         }
632 }
633
634 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
635                                   struct link_qual *qual)
636 {
637         rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
638 }
639
640 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
641                                  struct link_qual *qual, const u32 count)
642 {
643         /*
644          * To prevent collisions with MAC ASIC on chipsets
645          * up to version C the link tuning should halt after 20
646          * seconds while being associated.
647          */
648         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
649             rt2x00dev->intf_associated && count > 20)
650                 return;
651
652         /*
653          * Chipset versions C and lower should directly continue
654          * to the dynamic CCA tuning. Chipset version D and higher
655          * should go straight to dynamic CCA tuning when they
656          * are not associated.
657          */
658         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
659             !rt2x00dev->intf_associated)
660                 goto dynamic_cca_tune;
661
662         /*
663          * A too low RSSI will cause too much false CCA which will
664          * then corrupt the R17 tuning. To remidy this the tuning should
665          * be stopped (While making sure the R17 value will not exceed limits)
666          */
667         if (qual->rssi < -80 && count > 20) {
668                 if (qual->vgc_level_reg >= 0x41)
669                         rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
670                 return;
671         }
672
673         /*
674          * Special big-R17 for short distance
675          */
676         if (qual->rssi >= -58) {
677                 rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
678                 return;
679         }
680
681         /*
682          * Special mid-R17 for middle distance
683          */
684         if (qual->rssi >= -74) {
685                 rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
686                 return;
687         }
688
689         /*
690          * Leave short or middle distance condition, restore r17
691          * to the dynamic tuning range.
692          */
693         if (qual->vgc_level_reg >= 0x41) {
694                 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
695                 return;
696         }
697
698 dynamic_cca_tune:
699
700         /*
701          * R17 is inside the dynamic tuning range,
702          * start tuning the link based on the false cca counter.
703          */
704         if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40) {
705                 rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
706                 qual->vgc_level = qual->vgc_level_reg;
707         } else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32) {
708                 rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
709                 qual->vgc_level = qual->vgc_level_reg;
710         }
711 }
712
713 /*
714  * Initialization functions.
715  */
716 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
717 {
718         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
719         u32 word;
720
721         if (entry->queue->qid == QID_RX) {
722                 rt2x00_desc_read(entry_priv->desc, 0, &word);
723
724                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
725         } else {
726                 rt2x00_desc_read(entry_priv->desc, 0, &word);
727
728                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
729                         rt2x00_get_field32(word, TXD_W0_VALID));
730         }
731 }
732
733 static void rt2500pci_clear_entry(struct queue_entry *entry)
734 {
735         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
736         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
737         u32 word;
738
739         if (entry->queue->qid == QID_RX) {
740                 rt2x00_desc_read(entry_priv->desc, 1, &word);
741                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
742                 rt2x00_desc_write(entry_priv->desc, 1, word);
743
744                 rt2x00_desc_read(entry_priv->desc, 0, &word);
745                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
746                 rt2x00_desc_write(entry_priv->desc, 0, word);
747         } else {
748                 rt2x00_desc_read(entry_priv->desc, 0, &word);
749                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
750                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
751                 rt2x00_desc_write(entry_priv->desc, 0, word);
752         }
753 }
754
755 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
756 {
757         struct queue_entry_priv_pci *entry_priv;
758         u32 reg;
759
760         /*
761          * Initialize registers.
762          */
763         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
764         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
765         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
766         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
767         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
768         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
769
770         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
771         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
772         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
773                            entry_priv->desc_dma);
774         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
775
776         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
777         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
778         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
779                            entry_priv->desc_dma);
780         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
781
782         entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
783         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
784         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
785                            entry_priv->desc_dma);
786         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
787
788         entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
789         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
790         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
791                            entry_priv->desc_dma);
792         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
793
794         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
795         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
796         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
797         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
798
799         entry_priv = rt2x00dev->rx->entries[0].priv_data;
800         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
801         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
802                            entry_priv->desc_dma);
803         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
804
805         return 0;
806 }
807
808 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
809 {
810         u32 reg;
811
812         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
813         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
814         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
815         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
816
817         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
818         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
819         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
820         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
821         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
822
823         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
824         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
825                            rt2x00dev->rx->data_size / 128);
826         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
827
828         /*
829          * Always use CWmin and CWmax set in descriptor.
830          */
831         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
832         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
833         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
834
835         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
836         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
837         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
838         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
839         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
840         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
841         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
842         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
843         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
844         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
845
846         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
847
848         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
849         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
850         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
851         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
852         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
853         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
854         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
855         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
856         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
857         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
858
859         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
860         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
861         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
862         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
863         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
864         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
865
866         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
867         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
868         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
869         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
870         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
871         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
872
873         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
874         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
875         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
876         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
877         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
878         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
879
880         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
881         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
882         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
883         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
884         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
885         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
886         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
887         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
888         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
889         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
890
891         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
892         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
893         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
894         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
895         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
896         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
897         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
898         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
899         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
900
901         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
902
903         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
904         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
905
906         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
907                 return -EBUSY;
908
909         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
910         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
911
912         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
913         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
914         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
915
916         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
917         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
918         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
919         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
920         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
921         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
922         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
923         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
924
925         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
926
927         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
928
929         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
930         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
931         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
932         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
933         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
934
935         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
936         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
937         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
938         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
939
940         /*
941          * We must clear the FCS and FIFO error count.
942          * These registers are cleared on read,
943          * so we may pass a useless variable to store the value.
944          */
945         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
946         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
947
948         return 0;
949 }
950
951 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
952 {
953         unsigned int i;
954         u8 value;
955
956         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
957                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
958                 if ((value != 0xff) && (value != 0x00))
959                         return 0;
960                 udelay(REGISTER_BUSY_DELAY);
961         }
962
963         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
964         return -EACCES;
965 }
966
967 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
968 {
969         unsigned int i;
970         u16 eeprom;
971         u8 reg_id;
972         u8 value;
973
974         if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
975                 return -EACCES;
976
977         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
978         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
979         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
980         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
981         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
982         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
983         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
984         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
985         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
986         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
987         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
988         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
989         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
990         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
991         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
992         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
993         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
994         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
995         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
996         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
997         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
998         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
999         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1000         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1001         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1002         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1003         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1004         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1005         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1006         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1007
1008         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1009                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1010
1011                 if (eeprom != 0xffff && eeprom != 0x0000) {
1012                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1013                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1014                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1015                 }
1016         }
1017
1018         return 0;
1019 }
1020
1021 /*
1022  * Device state switch handlers.
1023  */
1024 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1025                                 enum dev_state state)
1026 {
1027         u32 reg;
1028
1029         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1030         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1031                            (state == STATE_RADIO_RX_OFF) ||
1032                            (state == STATE_RADIO_RX_OFF_LINK));
1033         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1034 }
1035
1036 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1037                                  enum dev_state state)
1038 {
1039         int mask = (state == STATE_RADIO_IRQ_OFF);
1040         u32 reg;
1041
1042         /*
1043          * When interrupts are being enabled, the interrupt registers
1044          * should clear the register to assure a clean state.
1045          */
1046         if (state == STATE_RADIO_IRQ_ON) {
1047                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1048                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1049         }
1050
1051         /*
1052          * Only toggle the interrupts bits we are going to use.
1053          * Non-checked interrupt bits are disabled by default.
1054          */
1055         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1056         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1057         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1058         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1059         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1060         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1061         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1062 }
1063
1064 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1065 {
1066         /*
1067          * Initialize all registers.
1068          */
1069         if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1070                      rt2500pci_init_registers(rt2x00dev) ||
1071                      rt2500pci_init_bbp(rt2x00dev)))
1072                 return -EIO;
1073
1074         return 0;
1075 }
1076
1077 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1078 {
1079         /*
1080          * Disable power
1081          */
1082         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1083 }
1084
1085 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1086                                enum dev_state state)
1087 {
1088         u32 reg;
1089         unsigned int i;
1090         char put_to_sleep;
1091         char bbp_state;
1092         char rf_state;
1093
1094         put_to_sleep = (state != STATE_AWAKE);
1095
1096         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1097         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1098         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1099         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1100         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1101         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1102
1103         /*
1104          * Device is not guaranteed to be in the requested state yet.
1105          * We must wait until the register indicates that the
1106          * device has entered the correct state.
1107          */
1108         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1109                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1110                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1111                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1112                 if (bbp_state == state && rf_state == state)
1113                         return 0;
1114                 msleep(10);
1115         }
1116
1117         return -EBUSY;
1118 }
1119
1120 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1121                                       enum dev_state state)
1122 {
1123         int retval = 0;
1124
1125         switch (state) {
1126         case STATE_RADIO_ON:
1127                 retval = rt2500pci_enable_radio(rt2x00dev);
1128                 break;
1129         case STATE_RADIO_OFF:
1130                 rt2500pci_disable_radio(rt2x00dev);
1131                 break;
1132         case STATE_RADIO_RX_ON:
1133         case STATE_RADIO_RX_ON_LINK:
1134         case STATE_RADIO_RX_OFF:
1135         case STATE_RADIO_RX_OFF_LINK:
1136                 rt2500pci_toggle_rx(rt2x00dev, state);
1137                 break;
1138         case STATE_RADIO_IRQ_ON:
1139         case STATE_RADIO_IRQ_OFF:
1140                 rt2500pci_toggle_irq(rt2x00dev, state);
1141                 break;
1142         case STATE_DEEP_SLEEP:
1143         case STATE_SLEEP:
1144         case STATE_STANDBY:
1145         case STATE_AWAKE:
1146                 retval = rt2500pci_set_state(rt2x00dev, state);
1147                 break;
1148         default:
1149                 retval = -ENOTSUPP;
1150                 break;
1151         }
1152
1153         if (unlikely(retval))
1154                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1155                       state, retval);
1156
1157         return retval;
1158 }
1159
1160 /*
1161  * TX descriptor initialization
1162  */
1163 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1164                                     struct sk_buff *skb,
1165                                     struct txentry_desc *txdesc)
1166 {
1167         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1168         struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1169         __le32 *txd = skbdesc->desc;
1170         u32 word;
1171
1172         /*
1173          * Start writing the descriptor words.
1174          */
1175         rt2x00_desc_read(entry_priv->desc, 1, &word);
1176         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1177         rt2x00_desc_write(entry_priv->desc, 1, word);
1178
1179         rt2x00_desc_read(txd, 2, &word);
1180         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1181         rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1182         rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1183         rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1184         rt2x00_desc_write(txd, 2, word);
1185
1186         rt2x00_desc_read(txd, 3, &word);
1187         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1188         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1189         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1190         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1191         rt2x00_desc_write(txd, 3, word);
1192
1193         rt2x00_desc_read(txd, 10, &word);
1194         rt2x00_set_field32(&word, TXD_W10_RTS,
1195                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1196         rt2x00_desc_write(txd, 10, word);
1197
1198         rt2x00_desc_read(txd, 0, &word);
1199         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1200         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1201         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1202                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1203         rt2x00_set_field32(&word, TXD_W0_ACK,
1204                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1205         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1206                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1207         rt2x00_set_field32(&word, TXD_W0_OFDM,
1208                            (txdesc->rate_mode == RATE_MODE_OFDM));
1209         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1210         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1211         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1212                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1213         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1214         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1215         rt2x00_desc_write(txd, 0, word);
1216 }
1217
1218 /*
1219  * TX data initialization
1220  */
1221 static void rt2500pci_write_beacon(struct queue_entry *entry)
1222 {
1223         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1224         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1225         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1226         u32 word;
1227         u32 reg;
1228
1229         /*
1230          * Disable beaconing while we are reloading the beacon data,
1231          * otherwise we might be sending out invalid data.
1232          */
1233         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1234         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1235         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1236         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1237         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1238
1239         /*
1240          * Replace rt2x00lib allocated descriptor with the
1241          * pointer to the _real_ hardware descriptor.
1242          * After that, map the beacon to DMA and update the
1243          * descriptor.
1244          */
1245         memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1246         skbdesc->desc = entry_priv->desc;
1247
1248         rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1249
1250         rt2x00_desc_read(entry_priv->desc, 1, &word);
1251         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1252         rt2x00_desc_write(entry_priv->desc, 1, word);
1253 }
1254
1255 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1256                                     const enum data_queue_qid queue)
1257 {
1258         u32 reg;
1259
1260         if (queue == QID_BEACON) {
1261                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1262                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1263                         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1264                         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1265                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1266                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1267                 }
1268                 return;
1269         }
1270
1271         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1272         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1273         rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1274         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1275         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1276 }
1277
1278 static void rt2500pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1279                                     const enum data_queue_qid qid)
1280 {
1281         u32 reg;
1282
1283         if (qid == QID_BEACON) {
1284                 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1285         } else {
1286                 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1287                 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1288                 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1289         }
1290 }
1291
1292 /*
1293  * RX control handlers
1294  */
1295 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1296                                   struct rxdone_entry_desc *rxdesc)
1297 {
1298         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1299         u32 word0;
1300         u32 word2;
1301
1302         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1303         rt2x00_desc_read(entry_priv->desc, 2, &word2);
1304
1305         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1306                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1307         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1308                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1309
1310         /*
1311          * Obtain the status about this packet.
1312          * When frame was received with an OFDM bitrate,
1313          * the signal is the PLCP value. If it was received with
1314          * a CCK bitrate the signal is the rate in 100kbit/s.
1315          */
1316         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1317         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1318             entry->queue->rt2x00dev->rssi_offset;
1319         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1320
1321         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1322                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1323         else
1324                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1325         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1326                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1327 }
1328
1329 /*
1330  * Interrupt functions.
1331  */
1332 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1333                              const enum data_queue_qid queue_idx)
1334 {
1335         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1336         struct queue_entry_priv_pci *entry_priv;
1337         struct queue_entry *entry;
1338         struct txdone_entry_desc txdesc;
1339         u32 word;
1340
1341         while (!rt2x00queue_empty(queue)) {
1342                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1343                 entry_priv = entry->priv_data;
1344                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1345
1346                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1347                     !rt2x00_get_field32(word, TXD_W0_VALID))
1348                         break;
1349
1350                 /*
1351                  * Obtain the status about this packet.
1352                  */
1353                 txdesc.flags = 0;
1354                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1355                 case 0: /* Success */
1356                 case 1: /* Success with retry */
1357                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1358                         break;
1359                 case 2: /* Failure, excessive retries */
1360                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1361                         /* Don't break, this is a failed frame! */
1362                 default: /* Failure */
1363                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1364                 }
1365                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1366
1367                 rt2x00lib_txdone(entry, &txdesc);
1368         }
1369 }
1370
1371 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1372 {
1373         struct rt2x00_dev *rt2x00dev = dev_instance;
1374         u32 reg;
1375
1376         /*
1377          * Get the interrupt sources & saved to local variable.
1378          * Write register value back to clear pending interrupts.
1379          */
1380         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1381         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1382
1383         if (!reg)
1384                 return IRQ_NONE;
1385
1386         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1387                 return IRQ_HANDLED;
1388
1389         /*
1390          * Handle interrupts, walk through all bits
1391          * and run the tasks, the bits are checked in order of
1392          * priority.
1393          */
1394
1395         /*
1396          * 1 - Beacon timer expired interrupt.
1397          */
1398         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1399                 rt2x00lib_beacondone(rt2x00dev);
1400
1401         /*
1402          * 2 - Rx ring done interrupt.
1403          */
1404         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1405                 rt2x00pci_rxdone(rt2x00dev);
1406
1407         /*
1408          * 3 - Atim ring transmit done interrupt.
1409          */
1410         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1411                 rt2500pci_txdone(rt2x00dev, QID_ATIM);
1412
1413         /*
1414          * 4 - Priority ring transmit done interrupt.
1415          */
1416         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1417                 rt2500pci_txdone(rt2x00dev, QID_AC_BE);
1418
1419         /*
1420          * 5 - Tx ring transmit done interrupt.
1421          */
1422         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1423                 rt2500pci_txdone(rt2x00dev, QID_AC_BK);
1424
1425         return IRQ_HANDLED;
1426 }
1427
1428 /*
1429  * Device probe functions.
1430  */
1431 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1432 {
1433         struct eeprom_93cx6 eeprom;
1434         u32 reg;
1435         u16 word;
1436         u8 *mac;
1437
1438         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1439
1440         eeprom.data = rt2x00dev;
1441         eeprom.register_read = rt2500pci_eepromregister_read;
1442         eeprom.register_write = rt2500pci_eepromregister_write;
1443         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1444             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1445         eeprom.reg_data_in = 0;
1446         eeprom.reg_data_out = 0;
1447         eeprom.reg_data_clock = 0;
1448         eeprom.reg_chip_select = 0;
1449
1450         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1451                                EEPROM_SIZE / sizeof(u16));
1452
1453         /*
1454          * Start validation of the data that has been read.
1455          */
1456         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1457         if (!is_valid_ether_addr(mac)) {
1458                 random_ether_addr(mac);
1459                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1460         }
1461
1462         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1463         if (word == 0xffff) {
1464                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1465                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1466                                    ANTENNA_SW_DIVERSITY);
1467                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1468                                    ANTENNA_SW_DIVERSITY);
1469                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1470                                    LED_MODE_DEFAULT);
1471                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1472                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1473                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1474                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1475                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1476         }
1477
1478         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1479         if (word == 0xffff) {
1480                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1481                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1482                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1483                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1484                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1485         }
1486
1487         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1488         if (word == 0xffff) {
1489                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1490                                    DEFAULT_RSSI_OFFSET);
1491                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1492                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1493         }
1494
1495         return 0;
1496 }
1497
1498 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1499 {
1500         u32 reg;
1501         u16 value;
1502         u16 eeprom;
1503
1504         /*
1505          * Read EEPROM word for configuration.
1506          */
1507         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1508
1509         /*
1510          * Identify RF chipset.
1511          */
1512         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1513         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1514         rt2x00_set_chip_rf(rt2x00dev, value, reg);
1515
1516         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1517             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1518             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1519             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1520             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1521             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1522                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1523                 return -ENODEV;
1524         }
1525
1526         /*
1527          * Identify default antenna configuration.
1528          */
1529         rt2x00dev->default_ant.tx =
1530             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1531         rt2x00dev->default_ant.rx =
1532             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1533
1534         /*
1535          * Store led mode, for correct led behaviour.
1536          */
1537 #ifdef CONFIG_RT2X00_LIB_LEDS
1538         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1539
1540         rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1541         if (value == LED_MODE_TXRX_ACTIVITY ||
1542             value == LED_MODE_DEFAULT ||
1543             value == LED_MODE_ASUS)
1544                 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1545                                    LED_TYPE_ACTIVITY);
1546 #endif /* CONFIG_RT2X00_LIB_LEDS */
1547
1548         /*
1549          * Detect if this device has an hardware controlled radio.
1550          */
1551 #ifdef CONFIG_RT2X00_LIB_RFKILL
1552         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1553                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1554 #endif /* CONFIG_RT2X00_LIB_RFKILL */
1555
1556         /*
1557          * Check if the BBP tuning should be enabled.
1558          */
1559         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1560
1561         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1562                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1563
1564         /*
1565          * Read the RSSI <-> dBm offset information.
1566          */
1567         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1568         rt2x00dev->rssi_offset =
1569             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1570
1571         return 0;
1572 }
1573
1574 /*
1575  * RF value list for RF2522
1576  * Supports: 2.4 GHz
1577  */
1578 static const struct rf_channel rf_vals_bg_2522[] = {
1579         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1580         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1581         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1582         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1583         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1584         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1585         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1586         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1587         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1588         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1589         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1590         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1591         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1592         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1593 };
1594
1595 /*
1596  * RF value list for RF2523
1597  * Supports: 2.4 GHz
1598  */
1599 static const struct rf_channel rf_vals_bg_2523[] = {
1600         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1601         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1602         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1603         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1604         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1605         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1606         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1607         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1608         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1609         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1610         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1611         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1612         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1613         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1614 };
1615
1616 /*
1617  * RF value list for RF2524
1618  * Supports: 2.4 GHz
1619  */
1620 static const struct rf_channel rf_vals_bg_2524[] = {
1621         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1622         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1623         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1624         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1625         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1626         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1627         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1628         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1629         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1630         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1631         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1632         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1633         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1634         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1635 };
1636
1637 /*
1638  * RF value list for RF2525
1639  * Supports: 2.4 GHz
1640  */
1641 static const struct rf_channel rf_vals_bg_2525[] = {
1642         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1643         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1644         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1645         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1646         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1647         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1648         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1649         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1650         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1651         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1652         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1653         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1654         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1655         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1656 };
1657
1658 /*
1659  * RF value list for RF2525e
1660  * Supports: 2.4 GHz
1661  */
1662 static const struct rf_channel rf_vals_bg_2525e[] = {
1663         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1664         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1665         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1666         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1667         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1668         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1669         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1670         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1671         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1672         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1673         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1674         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1675         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1676         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1677 };
1678
1679 /*
1680  * RF value list for RF5222
1681  * Supports: 2.4 GHz & 5.2 GHz
1682  */
1683 static const struct rf_channel rf_vals_5222[] = {
1684         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1685         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1686         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1687         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1688         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1689         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1690         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1691         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1692         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1693         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1694         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1695         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1696         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1697         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1698
1699         /* 802.11 UNI / HyperLan 2 */
1700         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1701         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1702         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1703         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1704         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1705         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1706         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1707         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1708
1709         /* 802.11 HyperLan 2 */
1710         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1711         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1712         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1713         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1714         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1715         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1716         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1717         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1718         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1719         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1720
1721         /* 802.11 UNII */
1722         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1723         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1724         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1725         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1726         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1727 };
1728
1729 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1730 {
1731         struct hw_mode_spec *spec = &rt2x00dev->spec;
1732         struct channel_info *info;
1733         char *tx_power;
1734         unsigned int i;
1735
1736         /*
1737          * Initialize all hw fields.
1738          */
1739         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1740                                IEEE80211_HW_SIGNAL_DBM |
1741                                IEEE80211_HW_SUPPORTS_PS |
1742                                IEEE80211_HW_PS_NULLFUNC_STACK;
1743
1744         rt2x00dev->hw->extra_tx_headroom = 0;
1745
1746         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1747         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1748                                 rt2x00_eeprom_addr(rt2x00dev,
1749                                                    EEPROM_MAC_ADDR_0));
1750
1751         /*
1752          * Initialize hw_mode information.
1753          */
1754         spec->supported_bands = SUPPORT_BAND_2GHZ;
1755         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1756
1757         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1758                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1759                 spec->channels = rf_vals_bg_2522;
1760         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1761                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1762                 spec->channels = rf_vals_bg_2523;
1763         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1764                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1765                 spec->channels = rf_vals_bg_2524;
1766         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1767                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1768                 spec->channels = rf_vals_bg_2525;
1769         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1770                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1771                 spec->channels = rf_vals_bg_2525e;
1772         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1773                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1774                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1775                 spec->channels = rf_vals_5222;
1776         }
1777
1778         /*
1779          * Create channel information array
1780          */
1781         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1782         if (!info)
1783                 return -ENOMEM;
1784
1785         spec->channels_info = info;
1786
1787         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1788         for (i = 0; i < 14; i++)
1789                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1790
1791         if (spec->num_channels > 14) {
1792                 for (i = 14; i < spec->num_channels; i++)
1793                         info[i].tx_power1 = DEFAULT_TXPOWER;
1794         }
1795
1796         return 0;
1797 }
1798
1799 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1800 {
1801         int retval;
1802
1803         /*
1804          * Allocate eeprom data.
1805          */
1806         retval = rt2500pci_validate_eeprom(rt2x00dev);
1807         if (retval)
1808                 return retval;
1809
1810         retval = rt2500pci_init_eeprom(rt2x00dev);
1811         if (retval)
1812                 return retval;
1813
1814         /*
1815          * Initialize hw specifications.
1816          */
1817         retval = rt2500pci_probe_hw_mode(rt2x00dev);
1818         if (retval)
1819                 return retval;
1820
1821         /*
1822          * This device requires the atim queue and DMA-mapped skbs.
1823          */
1824         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1825         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1826
1827         /*
1828          * Set the rssi offset.
1829          */
1830         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1831
1832         return 0;
1833 }
1834
1835 /*
1836  * IEEE80211 stack callback functions.
1837  */
1838 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1839 {
1840         struct rt2x00_dev *rt2x00dev = hw->priv;
1841         u64 tsf;
1842         u32 reg;
1843
1844         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1845         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1846         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1847         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1848
1849         return tsf;
1850 }
1851
1852 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1853 {
1854         struct rt2x00_dev *rt2x00dev = hw->priv;
1855         u32 reg;
1856
1857         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1858         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1859 }
1860
1861 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1862         .tx                     = rt2x00mac_tx,
1863         .start                  = rt2x00mac_start,
1864         .stop                   = rt2x00mac_stop,
1865         .add_interface          = rt2x00mac_add_interface,
1866         .remove_interface       = rt2x00mac_remove_interface,
1867         .config                 = rt2x00mac_config,
1868         .configure_filter       = rt2x00mac_configure_filter,
1869         .get_stats              = rt2x00mac_get_stats,
1870         .bss_info_changed       = rt2x00mac_bss_info_changed,
1871         .conf_tx                = rt2x00mac_conf_tx,
1872         .get_tx_stats           = rt2x00mac_get_tx_stats,
1873         .get_tsf                = rt2500pci_get_tsf,
1874         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1875 };
1876
1877 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1878         .irq_handler            = rt2500pci_interrupt,
1879         .probe_hw               = rt2500pci_probe_hw,
1880         .initialize             = rt2x00pci_initialize,
1881         .uninitialize           = rt2x00pci_uninitialize,
1882         .get_entry_state        = rt2500pci_get_entry_state,
1883         .clear_entry            = rt2500pci_clear_entry,
1884         .set_device_state       = rt2500pci_set_device_state,
1885         .rfkill_poll            = rt2500pci_rfkill_poll,
1886         .link_stats             = rt2500pci_link_stats,
1887         .reset_tuner            = rt2500pci_reset_tuner,
1888         .link_tuner             = rt2500pci_link_tuner,
1889         .write_tx_desc          = rt2500pci_write_tx_desc,
1890         .write_tx_data          = rt2x00pci_write_tx_data,
1891         .write_beacon           = rt2500pci_write_beacon,
1892         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1893         .kill_tx_queue          = rt2500pci_kill_tx_queue,
1894         .fill_rxdone            = rt2500pci_fill_rxdone,
1895         .config_filter          = rt2500pci_config_filter,
1896         .config_intf            = rt2500pci_config_intf,
1897         .config_erp             = rt2500pci_config_erp,
1898         .config_ant             = rt2500pci_config_ant,
1899         .config                 = rt2500pci_config,
1900 };
1901
1902 static const struct data_queue_desc rt2500pci_queue_rx = {
1903         .entry_num              = RX_ENTRIES,
1904         .data_size              = DATA_FRAME_SIZE,
1905         .desc_size              = RXD_DESC_SIZE,
1906         .priv_size              = sizeof(struct queue_entry_priv_pci),
1907 };
1908
1909 static const struct data_queue_desc rt2500pci_queue_tx = {
1910         .entry_num              = TX_ENTRIES,
1911         .data_size              = DATA_FRAME_SIZE,
1912         .desc_size              = TXD_DESC_SIZE,
1913         .priv_size              = sizeof(struct queue_entry_priv_pci),
1914 };
1915
1916 static const struct data_queue_desc rt2500pci_queue_bcn = {
1917         .entry_num              = BEACON_ENTRIES,
1918         .data_size              = MGMT_FRAME_SIZE,
1919         .desc_size              = TXD_DESC_SIZE,
1920         .priv_size              = sizeof(struct queue_entry_priv_pci),
1921 };
1922
1923 static const struct data_queue_desc rt2500pci_queue_atim = {
1924         .entry_num              = ATIM_ENTRIES,
1925         .data_size              = DATA_FRAME_SIZE,
1926         .desc_size              = TXD_DESC_SIZE,
1927         .priv_size              = sizeof(struct queue_entry_priv_pci),
1928 };
1929
1930 static const struct rt2x00_ops rt2500pci_ops = {
1931         .name           = KBUILD_MODNAME,
1932         .max_sta_intf   = 1,
1933         .max_ap_intf    = 1,
1934         .eeprom_size    = EEPROM_SIZE,
1935         .rf_size        = RF_SIZE,
1936         .tx_queues      = NUM_TX_QUEUES,
1937         .rx             = &rt2500pci_queue_rx,
1938         .tx             = &rt2500pci_queue_tx,
1939         .bcn            = &rt2500pci_queue_bcn,
1940         .atim           = &rt2500pci_queue_atim,
1941         .lib            = &rt2500pci_rt2x00_ops,
1942         .hw             = &rt2500pci_mac80211_ops,
1943 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1944         .debugfs        = &rt2500pci_rt2x00debug,
1945 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1946 };
1947
1948 /*
1949  * RT2500pci module information.
1950  */
1951 static struct pci_device_id rt2500pci_device_table[] = {
1952         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1953         { 0, }
1954 };
1955
1956 MODULE_AUTHOR(DRV_PROJECT);
1957 MODULE_VERSION(DRV_VERSION);
1958 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1959 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1960 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1961 MODULE_LICENSE("GPL");
1962
1963 static struct pci_driver rt2500pci_driver = {
1964         .name           = KBUILD_MODNAME,
1965         .id_table       = rt2500pci_device_table,
1966         .probe          = rt2x00pci_probe,
1967         .remove         = __devexit_p(rt2x00pci_remove),
1968         .suspend        = rt2x00pci_suspend,
1969         .resume         = rt2x00pci_resume,
1970 };
1971
1972 static int __init rt2500pci_init(void)
1973 {
1974         return pci_register_driver(&rt2500pci_driver);
1975 }
1976
1977 static void __exit rt2500pci_exit(void)
1978 {
1979         pci_unregister_driver(&rt2500pci_driver);
1980 }
1981
1982 module_init(rt2500pci_init);
1983 module_exit(rt2500pci_exit);