4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/clocksource.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
42 #include "timeconst.h"
45 * The timezone where the local system is located. Used as a default by some
46 * programs who obtain this value by using gettimeofday.
48 struct timezone sys_tz;
50 EXPORT_SYMBOL(sys_tz);
52 #ifdef __ARCH_WANT_SYS_TIME
55 * sys_time() can be implemented in user-level using
56 * sys_gettimeofday(). Is this for backwards compatibility? If so,
57 * why not move it into the appropriate arch directory (for those
58 * architectures that need it).
60 asmlinkage long sys_time(time_t __user * tloc)
62 time_t i = get_seconds();
72 * sys_stime() can be implemented in user-level using
73 * sys_settimeofday(). Is this for backwards compatibility? If so,
74 * why not move it into the appropriate arch directory (for those
75 * architectures that need it).
78 asmlinkage long sys_stime(time_t __user *tptr)
83 if (get_user(tv.tv_sec, tptr))
88 err = security_settime(&tv, NULL);
96 #endif /* __ARCH_WANT_SYS_TIME */
98 asmlinkage long sys_gettimeofday(struct timeval __user *tv,
99 struct timezone __user *tz)
101 if (likely(tv != NULL)) {
103 do_gettimeofday(&ktv);
104 if (copy_to_user(tv, &ktv, sizeof(ktv)))
107 if (unlikely(tz != NULL)) {
108 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
115 * Adjust the time obtained from the CMOS to be UTC time instead of
118 * This is ugly, but preferable to the alternatives. Otherwise we
119 * would either need to write a program to do it in /etc/rc (and risk
120 * confusion if the program gets run more than once; it would also be
121 * hard to make the program warp the clock precisely n hours) or
122 * compile in the timezone information into the kernel. Bad, bad....
126 * The best thing to do is to keep the CMOS clock in universal time (UTC)
127 * as real UNIX machines always do it. This avoids all headaches about
128 * daylight saving times and warping kernel clocks.
130 static inline void warp_clock(void)
132 write_seqlock_irq(&xtime_lock);
133 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
134 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
135 update_xtime_cache(0);
136 write_sequnlock_irq(&xtime_lock);
141 * In case for some reason the CMOS clock has not already been running
142 * in UTC, but in some local time: The first time we set the timezone,
143 * we will warp the clock so that it is ticking UTC time instead of
144 * local time. Presumably, if someone is setting the timezone then we
145 * are running in an environment where the programs understand about
146 * timezones. This should be done at boot time in the /etc/rc script,
147 * as soon as possible, so that the clock can be set right. Otherwise,
148 * various programs will get confused when the clock gets warped.
151 int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
153 static int firsttime = 1;
156 if (tv && !timespec_valid(tv))
159 error = security_settime(tv, tz);
164 /* SMP safe, global irq locking makes it work. */
166 update_vsyscall_tz();
175 /* SMP safe, again the code in arch/foo/time.c should
176 * globally block out interrupts when it runs.
178 return do_settimeofday(tv);
183 asmlinkage long sys_settimeofday(struct timeval __user *tv,
184 struct timezone __user *tz)
186 struct timeval user_tv;
187 struct timespec new_ts;
188 struct timezone new_tz;
191 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
193 new_ts.tv_sec = user_tv.tv_sec;
194 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
197 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
201 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
204 asmlinkage long sys_adjtimex(struct timex __user *txc_p)
206 struct timex txc; /* Local copy of parameter */
209 /* Copy the user data space into the kernel copy
210 * structure. But bear in mind that the structures
213 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
215 ret = do_adjtimex(&txc);
216 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
220 * current_fs_time - Return FS time
223 * Return the current time truncated to the time granularity supported by
226 struct timespec current_fs_time(struct super_block *sb)
228 struct timespec now = current_kernel_time();
229 return timespec_trunc(now, sb->s_time_gran);
231 EXPORT_SYMBOL(current_fs_time);
234 * Convert jiffies to milliseconds and back.
236 * Avoid unnecessary multiplications/divisions in the
237 * two most common HZ cases:
239 unsigned int inline jiffies_to_msecs(const unsigned long j)
241 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
242 return (MSEC_PER_SEC / HZ) * j;
243 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
244 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
246 # if BITS_PER_LONG == 32
247 return ((u64)HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
249 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
253 EXPORT_SYMBOL(jiffies_to_msecs);
255 unsigned int inline jiffies_to_usecs(const unsigned long j)
257 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
258 return (USEC_PER_SEC / HZ) * j;
259 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
260 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
262 # if BITS_PER_LONG == 32
263 return ((u64)HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
265 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
269 EXPORT_SYMBOL(jiffies_to_usecs);
272 * timespec_trunc - Truncate timespec to a granularity
274 * @gran: Granularity in ns.
276 * Truncate a timespec to a granularity. gran must be smaller than a second.
277 * Always rounds down.
279 * This function should be only used for timestamps returned by
280 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
281 * it doesn't handle the better resolution of the latter.
283 struct timespec timespec_trunc(struct timespec t, unsigned gran)
286 * Division is pretty slow so avoid it for common cases.
287 * Currently current_kernel_time() never returns better than
288 * jiffies resolution. Exploit that.
290 if (gran <= jiffies_to_usecs(1) * 1000) {
292 } else if (gran == 1000000000) {
295 t.tv_nsec -= t.tv_nsec % gran;
299 EXPORT_SYMBOL(timespec_trunc);
301 #ifndef CONFIG_GENERIC_TIME
303 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
304 * and therefore only yields usec accuracy
306 void getnstimeofday(struct timespec *tv)
311 tv->tv_sec = x.tv_sec;
312 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
314 EXPORT_SYMBOL_GPL(getnstimeofday);
317 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
318 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
319 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
321 * [For the Julian calendar (which was used in Russia before 1917,
322 * Britain & colonies before 1752, anywhere else before 1582,
323 * and is still in use by some communities) leave out the
324 * -year/100+year/400 terms, and add 10.]
326 * This algorithm was first published by Gauss (I think).
328 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
329 * machines where long is 32-bit! (However, as time_t is signed, we
330 * will already get problems at other places on 2038-01-19 03:14:08)
333 mktime(const unsigned int year0, const unsigned int mon0,
334 const unsigned int day, const unsigned int hour,
335 const unsigned int min, const unsigned int sec)
337 unsigned int mon = mon0, year = year0;
339 /* 1..12 -> 11,12,1..10 */
340 if (0 >= (int) (mon -= 2)) {
341 mon += 12; /* Puts Feb last since it has leap day */
345 return ((((unsigned long)
346 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
348 )*24 + hour /* now have hours */
349 )*60 + min /* now have minutes */
350 )*60 + sec; /* finally seconds */
353 EXPORT_SYMBOL(mktime);
356 * set_normalized_timespec - set timespec sec and nsec parts and normalize
358 * @ts: pointer to timespec variable to be set
359 * @sec: seconds to set
360 * @nsec: nanoseconds to set
362 * Set seconds and nanoseconds field of a timespec variable and
363 * normalize to the timespec storage format
365 * Note: The tv_nsec part is always in the range of
366 * 0 <= tv_nsec < NSEC_PER_SEC
367 * For negative values only the tv_sec field is negative !
369 void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
371 while (nsec >= NSEC_PER_SEC) {
372 nsec -= NSEC_PER_SEC;
376 nsec += NSEC_PER_SEC;
384 * ns_to_timespec - Convert nanoseconds to timespec
385 * @nsec: the nanoseconds value to be converted
387 * Returns the timespec representation of the nsec parameter.
389 struct timespec ns_to_timespec(const s64 nsec)
394 return (struct timespec) {0, 0};
396 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
397 if (unlikely(nsec < 0))
398 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
402 EXPORT_SYMBOL(ns_to_timespec);
405 * ns_to_timeval - Convert nanoseconds to timeval
406 * @nsec: the nanoseconds value to be converted
408 * Returns the timeval representation of the nsec parameter.
410 struct timeval ns_to_timeval(const s64 nsec)
412 struct timespec ts = ns_to_timespec(nsec);
415 tv.tv_sec = ts.tv_sec;
416 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
420 EXPORT_SYMBOL(ns_to_timeval);
423 * When we convert to jiffies then we interpret incoming values
426 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
428 * - 'too large' values [that would result in larger than
429 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
431 * - all other values are converted to jiffies by either multiplying
432 * the input value by a factor or dividing it with a factor
434 * We must also be careful about 32-bit overflows.
436 unsigned long msecs_to_jiffies(const unsigned int m)
439 * Negative value, means infinite timeout:
442 return MAX_JIFFY_OFFSET;
444 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
446 * HZ is equal to or smaller than 1000, and 1000 is a nice
447 * round multiple of HZ, divide with the factor between them,
450 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
451 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
453 * HZ is larger than 1000, and HZ is a nice round multiple of
454 * 1000 - simply multiply with the factor between them.
456 * But first make sure the multiplication result cannot
459 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
460 return MAX_JIFFY_OFFSET;
462 return m * (HZ / MSEC_PER_SEC);
465 * Generic case - multiply, round and divide. But first
466 * check that if we are doing a net multiplication, that
467 * we wouldn't overflow:
469 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
470 return MAX_JIFFY_OFFSET;
472 return ((u64)MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
476 EXPORT_SYMBOL(msecs_to_jiffies);
478 unsigned long usecs_to_jiffies(const unsigned int u)
480 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
481 return MAX_JIFFY_OFFSET;
482 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
483 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
484 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
485 return u * (HZ / USEC_PER_SEC);
487 return ((u64)USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
491 EXPORT_SYMBOL(usecs_to_jiffies);
494 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
495 * that a remainder subtract here would not do the right thing as the
496 * resolution values don't fall on second boundries. I.e. the line:
497 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
499 * Rather, we just shift the bits off the right.
501 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
502 * value to a scaled second value.
505 timespec_to_jiffies(const struct timespec *value)
507 unsigned long sec = value->tv_sec;
508 long nsec = value->tv_nsec + TICK_NSEC - 1;
510 if (sec >= MAX_SEC_IN_JIFFIES){
511 sec = MAX_SEC_IN_JIFFIES;
514 return (((u64)sec * SEC_CONVERSION) +
515 (((u64)nsec * NSEC_CONVERSION) >>
516 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
519 EXPORT_SYMBOL(timespec_to_jiffies);
522 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
525 * Convert jiffies to nanoseconds and separate with
528 u64 nsec = (u64)jiffies * TICK_NSEC;
529 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
531 EXPORT_SYMBOL(jiffies_to_timespec);
533 /* Same for "timeval"
535 * Well, almost. The problem here is that the real system resolution is
536 * in nanoseconds and the value being converted is in micro seconds.
537 * Also for some machines (those that use HZ = 1024, in-particular),
538 * there is a LARGE error in the tick size in microseconds.
540 * The solution we use is to do the rounding AFTER we convert the
541 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
542 * Instruction wise, this should cost only an additional add with carry
543 * instruction above the way it was done above.
546 timeval_to_jiffies(const struct timeval *value)
548 unsigned long sec = value->tv_sec;
549 long usec = value->tv_usec;
551 if (sec >= MAX_SEC_IN_JIFFIES){
552 sec = MAX_SEC_IN_JIFFIES;
555 return (((u64)sec * SEC_CONVERSION) +
556 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
557 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
559 EXPORT_SYMBOL(timeval_to_jiffies);
561 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
564 * Convert jiffies to nanoseconds and separate with
567 u64 nsec = (u64)jiffies * TICK_NSEC;
570 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
571 tv_usec /= NSEC_PER_USEC;
572 value->tv_usec = tv_usec;
574 EXPORT_SYMBOL(jiffies_to_timeval);
577 * Convert jiffies/jiffies_64 to clock_t and back.
579 clock_t jiffies_to_clock_t(long x)
581 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
583 return x * (USER_HZ / HZ);
585 return x / (HZ / USER_HZ);
588 u64 tmp = (u64)x * TICK_NSEC;
589 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
593 EXPORT_SYMBOL(jiffies_to_clock_t);
595 unsigned long clock_t_to_jiffies(unsigned long x)
597 #if (HZ % USER_HZ)==0
598 if (x >= ~0UL / (HZ / USER_HZ))
600 return x * (HZ / USER_HZ);
604 /* Don't worry about loss of precision here .. */
605 if (x >= ~0UL / HZ * USER_HZ)
608 /* .. but do try to contain it here */
610 do_div(jif, USER_HZ);
614 EXPORT_SYMBOL(clock_t_to_jiffies);
616 u64 jiffies_64_to_clock_t(u64 x)
618 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
623 do_div(x, HZ / USER_HZ);
629 * There are better ways that don't overflow early,
630 * but even this doesn't overflow in hundreds of years
634 do_div(x, (NSEC_PER_SEC / USER_HZ));
638 EXPORT_SYMBOL(jiffies_64_to_clock_t);
640 u64 nsec_to_clock_t(u64 x)
642 #if (NSEC_PER_SEC % USER_HZ) == 0
643 do_div(x, (NSEC_PER_SEC / USER_HZ));
644 #elif (USER_HZ % 512) == 0
646 do_div(x, (NSEC_PER_SEC / 512));
649 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
650 * overflow after 64.99 years.
651 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
654 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
660 #if (BITS_PER_LONG < 64)
661 u64 get_jiffies_64(void)
667 seq = read_seqbegin(&xtime_lock);
669 } while (read_seqretry(&xtime_lock, seq));
672 EXPORT_SYMBOL(get_jiffies_64);
675 EXPORT_SYMBOL(jiffies);