2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
23 #include <linux/types.h>
24 #include <linux/string.h>
26 #include <linux/highmem.h>
27 #include <linux/module.h>
30 #include <asm/cmpxchg.h>
37 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
39 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
44 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
45 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
49 #define pgprintk(x...) do { } while (0)
50 #define rmap_printk(x...) do { } while (0)
54 #if defined(MMU_DEBUG) || defined(AUDIT)
59 #define ASSERT(x) do { } while (0)
63 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
64 __FILE__, __LINE__, #x); \
68 #define PT64_PT_BITS 9
69 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
70 #define PT32_PT_BITS 10
71 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
73 #define PT_WRITABLE_SHIFT 1
75 #define PT_PRESENT_MASK (1ULL << 0)
76 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
77 #define PT_USER_MASK (1ULL << 2)
78 #define PT_PWT_MASK (1ULL << 3)
79 #define PT_PCD_MASK (1ULL << 4)
80 #define PT_ACCESSED_MASK (1ULL << 5)
81 #define PT_DIRTY_MASK (1ULL << 6)
82 #define PT_PAGE_SIZE_MASK (1ULL << 7)
83 #define PT_PAT_MASK (1ULL << 7)
84 #define PT_GLOBAL_MASK (1ULL << 8)
85 #define PT64_NX_MASK (1ULL << 63)
87 #define PT_PAT_SHIFT 7
88 #define PT_DIR_PAT_SHIFT 12
89 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
91 #define PT32_DIR_PSE36_SIZE 4
92 #define PT32_DIR_PSE36_SHIFT 13
93 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
96 #define PT_FIRST_AVAIL_BITS_SHIFT 9
97 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
99 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
101 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
103 #define PT64_LEVEL_BITS 9
105 #define PT64_LEVEL_SHIFT(level) \
106 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
108 #define PT64_LEVEL_MASK(level) \
109 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
111 #define PT64_INDEX(address, level)\
112 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
115 #define PT32_LEVEL_BITS 10
117 #define PT32_LEVEL_SHIFT(level) \
118 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
120 #define PT32_LEVEL_MASK(level) \
121 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
123 #define PT32_INDEX(address, level)\
124 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
127 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
128 #define PT64_DIR_BASE_ADDR_MASK \
129 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
131 #define PT32_BASE_ADDR_MASK PAGE_MASK
132 #define PT32_DIR_BASE_ADDR_MASK \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
136 #define PFERR_PRESENT_MASK (1U << 0)
137 #define PFERR_WRITE_MASK (1U << 1)
138 #define PFERR_USER_MASK (1U << 2)
139 #define PFERR_FETCH_MASK (1U << 4)
141 #define PT64_ROOT_LEVEL 4
142 #define PT32_ROOT_LEVEL 2
143 #define PT32E_ROOT_LEVEL 3
145 #define PT_DIRECTORY_LEVEL 2
146 #define PT_PAGE_TABLE_LEVEL 1
150 struct kvm_rmap_desc {
151 u64 *shadow_ptes[RMAP_EXT];
152 struct kvm_rmap_desc *more;
155 static struct kmem_cache *pte_chain_cache;
156 static struct kmem_cache *rmap_desc_cache;
157 static struct kmem_cache *mmu_page_header_cache;
159 static int is_write_protection(struct kvm_vcpu *vcpu)
161 return vcpu->cr0 & CR0_WP_MASK;
164 static int is_cpuid_PSE36(void)
169 static int is_nx(struct kvm_vcpu *vcpu)
171 return vcpu->shadow_efer & EFER_NX;
174 static int is_present_pte(unsigned long pte)
176 return pte & PT_PRESENT_MASK;
179 static int is_writeble_pte(unsigned long pte)
181 return pte & PT_WRITABLE_MASK;
184 static int is_io_pte(unsigned long pte)
186 return pte & PT_SHADOW_IO_MARK;
189 static int is_rmap_pte(u64 pte)
191 return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
192 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
195 static void set_shadow_pte(u64 *sptep, u64 spte)
198 set_64bit((unsigned long *)sptep, spte);
200 set_64bit((unsigned long long *)sptep, spte);
204 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
205 struct kmem_cache *base_cache, int min,
210 if (cache->nobjs >= min)
212 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
213 obj = kmem_cache_zalloc(base_cache, gfp_flags);
216 cache->objects[cache->nobjs++] = obj;
221 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
224 kfree(mc->objects[--mc->nobjs]);
227 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
228 int min, gfp_t gfp_flags)
232 if (cache->nobjs >= min)
234 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
235 page = alloc_page(gfp_flags);
238 set_page_private(page, 0);
239 cache->objects[cache->nobjs++] = page_address(page);
244 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
247 free_page((unsigned long)mc->objects[--mc->nobjs]);
250 static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags)
254 r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
255 pte_chain_cache, 4, gfp_flags);
258 r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
259 rmap_desc_cache, 1, gfp_flags);
262 r = mmu_topup_memory_cache_page(&vcpu->mmu_page_cache, 4, gfp_flags);
265 r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
266 mmu_page_header_cache, 4, gfp_flags);
271 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
275 r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT);
276 kvm_mmu_free_some_pages(vcpu);
278 spin_unlock(&vcpu->kvm->lock);
279 kvm_arch_ops->vcpu_put(vcpu);
280 r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL);
281 kvm_arch_ops->vcpu_load(vcpu);
282 spin_lock(&vcpu->kvm->lock);
283 kvm_mmu_free_some_pages(vcpu);
288 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
290 mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
291 mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
292 mmu_free_memory_cache_page(&vcpu->mmu_page_cache);
293 mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
296 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
302 p = mc->objects[--mc->nobjs];
307 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
309 return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
310 sizeof(struct kvm_pte_chain));
313 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
318 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
320 return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
321 sizeof(struct kvm_rmap_desc));
324 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
330 * Reverse mapping data structures:
332 * If page->private bit zero is zero, then page->private points to the
333 * shadow page table entry that points to page_address(page).
335 * If page->private bit zero is one, (then page->private & ~1) points
336 * to a struct kvm_rmap_desc containing more mappings.
338 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
341 struct kvm_rmap_desc *desc;
344 if (!is_rmap_pte(*spte))
346 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
347 if (!page_private(page)) {
348 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
349 set_page_private(page,(unsigned long)spte);
350 } else if (!(page_private(page) & 1)) {
351 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
352 desc = mmu_alloc_rmap_desc(vcpu);
353 desc->shadow_ptes[0] = (u64 *)page_private(page);
354 desc->shadow_ptes[1] = spte;
355 set_page_private(page,(unsigned long)desc | 1);
357 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
358 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
359 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
361 if (desc->shadow_ptes[RMAP_EXT-1]) {
362 desc->more = mmu_alloc_rmap_desc(vcpu);
365 for (i = 0; desc->shadow_ptes[i]; ++i)
367 desc->shadow_ptes[i] = spte;
371 static void rmap_desc_remove_entry(struct page *page,
372 struct kvm_rmap_desc *desc,
374 struct kvm_rmap_desc *prev_desc)
378 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
380 desc->shadow_ptes[i] = desc->shadow_ptes[j];
381 desc->shadow_ptes[j] = NULL;
384 if (!prev_desc && !desc->more)
385 set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
388 prev_desc->more = desc->more;
390 set_page_private(page,(unsigned long)desc->more | 1);
391 mmu_free_rmap_desc(desc);
394 static void rmap_remove(u64 *spte)
397 struct kvm_rmap_desc *desc;
398 struct kvm_rmap_desc *prev_desc;
401 if (!is_rmap_pte(*spte))
403 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
404 if (!page_private(page)) {
405 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
407 } else if (!(page_private(page) & 1)) {
408 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
409 if ((u64 *)page_private(page) != spte) {
410 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
414 set_page_private(page,0);
416 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
417 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
420 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
421 if (desc->shadow_ptes[i] == spte) {
422 rmap_desc_remove_entry(page,
434 static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
436 struct kvm *kvm = vcpu->kvm;
438 struct kvm_rmap_desc *desc;
441 page = gfn_to_page(kvm, gfn);
444 while (page_private(page)) {
445 if (!(page_private(page) & 1))
446 spte = (u64 *)page_private(page);
448 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
449 spte = desc->shadow_ptes[0];
452 BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
453 != page_to_pfn(page));
454 BUG_ON(!(*spte & PT_PRESENT_MASK));
455 BUG_ON(!(*spte & PT_WRITABLE_MASK));
456 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
458 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
459 kvm_flush_remote_tlbs(vcpu->kvm);
464 static int is_empty_shadow_page(u64 *spt)
469 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
471 printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
479 static void kvm_mmu_free_page(struct kvm *kvm,
480 struct kvm_mmu_page *page_head)
482 ASSERT(is_empty_shadow_page(page_head->spt));
483 list_del(&page_head->link);
484 __free_page(virt_to_page(page_head->spt));
486 ++kvm->n_free_mmu_pages;
489 static unsigned kvm_page_table_hashfn(gfn_t gfn)
494 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
497 struct kvm_mmu_page *page;
499 if (!vcpu->kvm->n_free_mmu_pages)
502 page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
504 page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
505 set_page_private(virt_to_page(page->spt), (unsigned long)page);
506 list_add(&page->link, &vcpu->kvm->active_mmu_pages);
507 ASSERT(is_empty_shadow_page(page->spt));
508 page->slot_bitmap = 0;
509 page->multimapped = 0;
510 page->parent_pte = parent_pte;
511 --vcpu->kvm->n_free_mmu_pages;
515 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
516 struct kvm_mmu_page *page, u64 *parent_pte)
518 struct kvm_pte_chain *pte_chain;
519 struct hlist_node *node;
524 if (!page->multimapped) {
525 u64 *old = page->parent_pte;
528 page->parent_pte = parent_pte;
531 page->multimapped = 1;
532 pte_chain = mmu_alloc_pte_chain(vcpu);
533 INIT_HLIST_HEAD(&page->parent_ptes);
534 hlist_add_head(&pte_chain->link, &page->parent_ptes);
535 pte_chain->parent_ptes[0] = old;
537 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
538 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
540 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
541 if (!pte_chain->parent_ptes[i]) {
542 pte_chain->parent_ptes[i] = parent_pte;
546 pte_chain = mmu_alloc_pte_chain(vcpu);
548 hlist_add_head(&pte_chain->link, &page->parent_ptes);
549 pte_chain->parent_ptes[0] = parent_pte;
552 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
555 struct kvm_pte_chain *pte_chain;
556 struct hlist_node *node;
559 if (!page->multimapped) {
560 BUG_ON(page->parent_pte != parent_pte);
561 page->parent_pte = NULL;
564 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
565 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
566 if (!pte_chain->parent_ptes[i])
568 if (pte_chain->parent_ptes[i] != parent_pte)
570 while (i + 1 < NR_PTE_CHAIN_ENTRIES
571 && pte_chain->parent_ptes[i + 1]) {
572 pte_chain->parent_ptes[i]
573 = pte_chain->parent_ptes[i + 1];
576 pte_chain->parent_ptes[i] = NULL;
578 hlist_del(&pte_chain->link);
579 mmu_free_pte_chain(pte_chain);
580 if (hlist_empty(&page->parent_ptes)) {
581 page->multimapped = 0;
582 page->parent_pte = NULL;
590 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
594 struct hlist_head *bucket;
595 struct kvm_mmu_page *page;
596 struct hlist_node *node;
598 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
599 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
600 bucket = &vcpu->kvm->mmu_page_hash[index];
601 hlist_for_each_entry(page, node, bucket, hash_link)
602 if (page->gfn == gfn && !page->role.metaphysical) {
603 pgprintk("%s: found role %x\n",
604 __FUNCTION__, page->role.word);
610 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
615 unsigned hugepage_access,
618 union kvm_mmu_page_role role;
621 struct hlist_head *bucket;
622 struct kvm_mmu_page *page;
623 struct hlist_node *node;
626 role.glevels = vcpu->mmu.root_level;
628 role.metaphysical = metaphysical;
629 role.hugepage_access = hugepage_access;
630 if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
631 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
632 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
633 role.quadrant = quadrant;
635 pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
637 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
638 bucket = &vcpu->kvm->mmu_page_hash[index];
639 hlist_for_each_entry(page, node, bucket, hash_link)
640 if (page->gfn == gfn && page->role.word == role.word) {
641 mmu_page_add_parent_pte(vcpu, page, parent_pte);
642 pgprintk("%s: found\n", __FUNCTION__);
645 page = kvm_mmu_alloc_page(vcpu, parent_pte);
648 pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
651 hlist_add_head(&page->hash_link, bucket);
653 rmap_write_protect(vcpu, gfn);
657 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
658 struct kvm_mmu_page *page)
666 if (page->role.level == PT_PAGE_TABLE_LEVEL) {
667 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
668 if (pt[i] & PT_PRESENT_MASK)
672 kvm_flush_remote_tlbs(kvm);
676 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
680 if (!(ent & PT_PRESENT_MASK))
682 ent &= PT64_BASE_ADDR_MASK;
683 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
685 kvm_flush_remote_tlbs(kvm);
688 static void kvm_mmu_put_page(struct kvm_mmu_page *page,
691 mmu_page_remove_parent_pte(page, parent_pte);
694 static void kvm_mmu_zap_page(struct kvm *kvm,
695 struct kvm_mmu_page *page)
699 while (page->multimapped || page->parent_pte) {
700 if (!page->multimapped)
701 parent_pte = page->parent_pte;
703 struct kvm_pte_chain *chain;
705 chain = container_of(page->parent_ptes.first,
706 struct kvm_pte_chain, link);
707 parent_pte = chain->parent_ptes[0];
710 kvm_mmu_put_page(page, parent_pte);
711 set_shadow_pte(parent_pte, 0);
713 kvm_mmu_page_unlink_children(kvm, page);
714 if (!page->root_count) {
715 hlist_del(&page->hash_link);
716 kvm_mmu_free_page(kvm, page);
718 list_move(&page->link, &kvm->active_mmu_pages);
721 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
724 struct hlist_head *bucket;
725 struct kvm_mmu_page *page;
726 struct hlist_node *node, *n;
729 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
731 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
732 bucket = &vcpu->kvm->mmu_page_hash[index];
733 hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
734 if (page->gfn == gfn && !page->role.metaphysical) {
735 pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
737 kvm_mmu_zap_page(vcpu->kvm, page);
743 static void mmu_unshadow(struct kvm_vcpu *vcpu, gfn_t gfn)
745 struct kvm_mmu_page *page;
747 while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
748 pgprintk("%s: zap %lx %x\n",
749 __FUNCTION__, gfn, page->role.word);
750 kvm_mmu_zap_page(vcpu->kvm, page);
754 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
756 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
757 struct kvm_mmu_page *page_head = page_header(__pa(pte));
759 __set_bit(slot, &page_head->slot_bitmap);
762 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
764 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
766 return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
769 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
773 ASSERT((gpa & HPA_ERR_MASK) == 0);
774 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
776 return gpa | HPA_ERR_MASK;
777 return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
778 | (gpa & (PAGE_SIZE-1));
781 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
783 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
785 if (gpa == UNMAPPED_GVA)
787 return gpa_to_hpa(vcpu, gpa);
790 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
792 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
794 if (gpa == UNMAPPED_GVA)
796 return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
799 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
803 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
805 int level = PT32E_ROOT_LEVEL;
806 hpa_t table_addr = vcpu->mmu.root_hpa;
809 u32 index = PT64_INDEX(v, level);
813 ASSERT(VALID_PAGE(table_addr));
814 table = __va(table_addr);
818 if (is_present_pte(pte) && is_writeble_pte(pte))
820 mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
821 page_header_update_slot(vcpu->kvm, table, v);
822 table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
824 rmap_add(vcpu, &table[index]);
828 if (table[index] == 0) {
829 struct kvm_mmu_page *new_table;
832 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
834 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
836 1, 0, &table[index]);
838 pgprintk("nonpaging_map: ENOMEM\n");
842 table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
843 | PT_WRITABLE_MASK | PT_USER_MASK;
845 table_addr = table[index] & PT64_BASE_ADDR_MASK;
849 static void mmu_free_roots(struct kvm_vcpu *vcpu)
852 struct kvm_mmu_page *page;
854 if (!VALID_PAGE(vcpu->mmu.root_hpa))
857 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
858 hpa_t root = vcpu->mmu.root_hpa;
860 page = page_header(root);
862 vcpu->mmu.root_hpa = INVALID_PAGE;
866 for (i = 0; i < 4; ++i) {
867 hpa_t root = vcpu->mmu.pae_root[i];
870 root &= PT64_BASE_ADDR_MASK;
871 page = page_header(root);
874 vcpu->mmu.pae_root[i] = INVALID_PAGE;
876 vcpu->mmu.root_hpa = INVALID_PAGE;
879 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
883 struct kvm_mmu_page *page;
885 root_gfn = vcpu->cr3 >> PAGE_SHIFT;
888 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
889 hpa_t root = vcpu->mmu.root_hpa;
891 ASSERT(!VALID_PAGE(root));
892 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
893 PT64_ROOT_LEVEL, 0, 0, NULL);
894 root = __pa(page->spt);
896 vcpu->mmu.root_hpa = root;
900 for (i = 0; i < 4; ++i) {
901 hpa_t root = vcpu->mmu.pae_root[i];
903 ASSERT(!VALID_PAGE(root));
904 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
905 if (!is_present_pte(vcpu->pdptrs[i])) {
906 vcpu->mmu.pae_root[i] = 0;
909 root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
910 } else if (vcpu->mmu.root_level == 0)
912 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
913 PT32_ROOT_LEVEL, !is_paging(vcpu),
915 root = __pa(page->spt);
917 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
919 vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
922 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
927 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
934 r = mmu_topup_memory_caches(vcpu);
939 ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
942 paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
944 if (is_error_hpa(paddr))
947 return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
950 static void nonpaging_free(struct kvm_vcpu *vcpu)
952 mmu_free_roots(vcpu);
955 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
957 struct kvm_mmu *context = &vcpu->mmu;
959 context->new_cr3 = nonpaging_new_cr3;
960 context->page_fault = nonpaging_page_fault;
961 context->gva_to_gpa = nonpaging_gva_to_gpa;
962 context->free = nonpaging_free;
963 context->root_level = 0;
964 context->shadow_root_level = PT32E_ROOT_LEVEL;
965 context->root_hpa = INVALID_PAGE;
969 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
971 ++vcpu->stat.tlb_flush;
972 kvm_arch_ops->tlb_flush(vcpu);
975 static void paging_new_cr3(struct kvm_vcpu *vcpu)
977 pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
978 mmu_free_roots(vcpu);
981 static void inject_page_fault(struct kvm_vcpu *vcpu,
985 kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
988 static void paging_free(struct kvm_vcpu *vcpu)
990 nonpaging_free(vcpu);
994 #include "paging_tmpl.h"
998 #include "paging_tmpl.h"
1001 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1003 struct kvm_mmu *context = &vcpu->mmu;
1005 ASSERT(is_pae(vcpu));
1006 context->new_cr3 = paging_new_cr3;
1007 context->page_fault = paging64_page_fault;
1008 context->gva_to_gpa = paging64_gva_to_gpa;
1009 context->free = paging_free;
1010 context->root_level = level;
1011 context->shadow_root_level = level;
1012 context->root_hpa = INVALID_PAGE;
1016 static int paging64_init_context(struct kvm_vcpu *vcpu)
1018 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1021 static int paging32_init_context(struct kvm_vcpu *vcpu)
1023 struct kvm_mmu *context = &vcpu->mmu;
1025 context->new_cr3 = paging_new_cr3;
1026 context->page_fault = paging32_page_fault;
1027 context->gva_to_gpa = paging32_gva_to_gpa;
1028 context->free = paging_free;
1029 context->root_level = PT32_ROOT_LEVEL;
1030 context->shadow_root_level = PT32E_ROOT_LEVEL;
1031 context->root_hpa = INVALID_PAGE;
1035 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1037 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1040 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1043 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1045 if (!is_paging(vcpu))
1046 return nonpaging_init_context(vcpu);
1047 else if (is_long_mode(vcpu))
1048 return paging64_init_context(vcpu);
1049 else if (is_pae(vcpu))
1050 return paging32E_init_context(vcpu);
1052 return paging32_init_context(vcpu);
1055 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1058 if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1059 vcpu->mmu.free(vcpu);
1060 vcpu->mmu.root_hpa = INVALID_PAGE;
1064 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1066 destroy_kvm_mmu(vcpu);
1067 return init_kvm_mmu(vcpu);
1070 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1074 spin_lock(&vcpu->kvm->lock);
1075 r = mmu_topup_memory_caches(vcpu);
1078 mmu_alloc_roots(vcpu);
1079 kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
1080 kvm_mmu_flush_tlb(vcpu);
1082 spin_unlock(&vcpu->kvm->lock);
1085 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1087 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1089 mmu_free_roots(vcpu);
1092 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1093 struct kvm_mmu_page *page,
1097 struct kvm_mmu_page *child;
1100 if (is_present_pte(pte)) {
1101 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1104 child = page_header(pte & PT64_BASE_ADDR_MASK);
1105 mmu_page_remove_parent_pte(child, spte);
1109 kvm_flush_remote_tlbs(vcpu->kvm);
1112 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1113 struct kvm_mmu_page *page,
1115 const void *new, int bytes)
1117 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1120 if (page->role.glevels == PT32_ROOT_LEVEL)
1121 paging32_update_pte(vcpu, page, spte, new, bytes);
1123 paging64_update_pte(vcpu, page, spte, new, bytes);
1126 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1127 const u8 *old, const u8 *new, int bytes)
1129 gfn_t gfn = gpa >> PAGE_SHIFT;
1130 struct kvm_mmu_page *page;
1131 struct hlist_node *node, *n;
1132 struct hlist_head *bucket;
1135 unsigned offset = offset_in_page(gpa);
1137 unsigned page_offset;
1138 unsigned misaligned;
1144 pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1145 if (gfn == vcpu->last_pt_write_gfn) {
1146 ++vcpu->last_pt_write_count;
1147 if (vcpu->last_pt_write_count >= 3)
1150 vcpu->last_pt_write_gfn = gfn;
1151 vcpu->last_pt_write_count = 1;
1153 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1154 bucket = &vcpu->kvm->mmu_page_hash[index];
1155 hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1156 if (page->gfn != gfn || page->role.metaphysical)
1158 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1159 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1160 misaligned |= bytes < 4;
1161 if (misaligned || flooded) {
1163 * Misaligned accesses are too much trouble to fix
1164 * up; also, they usually indicate a page is not used
1167 * If we're seeing too many writes to a page,
1168 * it may no longer be a page table, or we may be
1169 * forking, in which case it is better to unmap the
1172 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1173 gpa, bytes, page->role.word);
1174 kvm_mmu_zap_page(vcpu->kvm, page);
1177 page_offset = offset;
1178 level = page->role.level;
1180 if (page->role.glevels == PT32_ROOT_LEVEL) {
1181 page_offset <<= 1; /* 32->64 */
1183 * A 32-bit pde maps 4MB while the shadow pdes map
1184 * only 2MB. So we need to double the offset again
1185 * and zap two pdes instead of one.
1187 if (level == PT32_ROOT_LEVEL) {
1188 page_offset &= ~7; /* kill rounding error */
1192 quadrant = page_offset >> PAGE_SHIFT;
1193 page_offset &= ~PAGE_MASK;
1194 if (quadrant != page->role.quadrant)
1197 spte = &page->spt[page_offset / sizeof(*spte)];
1199 mmu_pte_write_zap_pte(vcpu, page, spte);
1200 mmu_pte_write_new_pte(vcpu, page, spte, new, bytes);
1206 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1208 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1210 return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1213 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1215 while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1216 struct kvm_mmu_page *page;
1218 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1219 struct kvm_mmu_page, link);
1220 kvm_mmu_zap_page(vcpu->kvm, page);
1224 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1226 struct kvm_mmu_page *page;
1228 while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1229 page = container_of(vcpu->kvm->active_mmu_pages.next,
1230 struct kvm_mmu_page, link);
1231 kvm_mmu_zap_page(vcpu->kvm, page);
1233 free_page((unsigned long)vcpu->mmu.pae_root);
1236 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1243 vcpu->kvm->n_free_mmu_pages = KVM_NUM_MMU_PAGES;
1246 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1247 * Therefore we need to allocate shadow page tables in the first
1248 * 4GB of memory, which happens to fit the DMA32 zone.
1250 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1253 vcpu->mmu.pae_root = page_address(page);
1254 for (i = 0; i < 4; ++i)
1255 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1260 free_mmu_pages(vcpu);
1264 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1267 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1269 return alloc_mmu_pages(vcpu);
1272 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1275 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1277 return init_kvm_mmu(vcpu);
1280 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1284 destroy_kvm_mmu(vcpu);
1285 free_mmu_pages(vcpu);
1286 mmu_free_memory_caches(vcpu);
1289 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1291 struct kvm_mmu_page *page;
1293 list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1297 if (!test_bit(slot, &page->slot_bitmap))
1301 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1303 if (pt[i] & PT_WRITABLE_MASK) {
1304 rmap_remove(&pt[i]);
1305 pt[i] &= ~PT_WRITABLE_MASK;
1310 void kvm_mmu_zap_all(struct kvm *kvm)
1312 struct kvm_mmu_page *page, *node;
1314 list_for_each_entry_safe(page, node, &kvm->active_mmu_pages, link)
1315 kvm_mmu_zap_page(kvm, page);
1317 kvm_flush_remote_tlbs(kvm);
1320 void kvm_mmu_module_exit(void)
1322 if (pte_chain_cache)
1323 kmem_cache_destroy(pte_chain_cache);
1324 if (rmap_desc_cache)
1325 kmem_cache_destroy(rmap_desc_cache);
1326 if (mmu_page_header_cache)
1327 kmem_cache_destroy(mmu_page_header_cache);
1330 int kvm_mmu_module_init(void)
1332 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1333 sizeof(struct kvm_pte_chain),
1335 if (!pte_chain_cache)
1337 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1338 sizeof(struct kvm_rmap_desc),
1340 if (!rmap_desc_cache)
1343 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1344 sizeof(struct kvm_mmu_page),
1346 if (!mmu_page_header_cache)
1352 kvm_mmu_module_exit();
1358 static const char *audit_msg;
1360 static gva_t canonicalize(gva_t gva)
1362 #ifdef CONFIG_X86_64
1363 gva = (long long)(gva << 16) >> 16;
1368 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1369 gva_t va, int level)
1371 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1373 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1375 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1378 if (!(ent & PT_PRESENT_MASK))
1381 va = canonicalize(va);
1383 audit_mappings_page(vcpu, ent, va, level - 1);
1385 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1386 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1388 if ((ent & PT_PRESENT_MASK)
1389 && (ent & PT64_BASE_ADDR_MASK) != hpa)
1390 printk(KERN_ERR "audit error: (%s) levels %d"
1391 " gva %lx gpa %llx hpa %llx ent %llx\n",
1392 audit_msg, vcpu->mmu.root_level,
1398 static void audit_mappings(struct kvm_vcpu *vcpu)
1402 if (vcpu->mmu.root_level == 4)
1403 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1405 for (i = 0; i < 4; ++i)
1406 if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1407 audit_mappings_page(vcpu,
1408 vcpu->mmu.pae_root[i],
1413 static int count_rmaps(struct kvm_vcpu *vcpu)
1418 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1419 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1420 struct kvm_rmap_desc *d;
1422 for (j = 0; j < m->npages; ++j) {
1423 struct page *page = m->phys_mem[j];
1427 if (!(page->private & 1)) {
1431 d = (struct kvm_rmap_desc *)(page->private & ~1ul);
1433 for (k = 0; k < RMAP_EXT; ++k)
1434 if (d->shadow_ptes[k])
1445 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1448 struct kvm_mmu_page *page;
1451 list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1452 u64 *pt = page->spt;
1454 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1457 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1460 if (!(ent & PT_PRESENT_MASK))
1462 if (!(ent & PT_WRITABLE_MASK))
1470 static void audit_rmap(struct kvm_vcpu *vcpu)
1472 int n_rmap = count_rmaps(vcpu);
1473 int n_actual = count_writable_mappings(vcpu);
1475 if (n_rmap != n_actual)
1476 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1477 __FUNCTION__, audit_msg, n_rmap, n_actual);
1480 static void audit_write_protection(struct kvm_vcpu *vcpu)
1482 struct kvm_mmu_page *page;
1484 list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1488 if (page->role.metaphysical)
1491 hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
1493 pg = pfn_to_page(hfn);
1495 printk(KERN_ERR "%s: (%s) shadow page has writable"
1496 " mappings: gfn %lx role %x\n",
1497 __FUNCTION__, audit_msg, page->gfn,
1502 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1509 audit_write_protection(vcpu);
1510 audit_mappings(vcpu);