Merge branch 'core-fixes-for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6] / drivers / net / ixgbe / ixgbe_phy.c
1 /*******************************************************************************
2
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31
32 #include "ixgbe_common.h"
33 #include "ixgbe_phy.h"
34
35 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45 static bool ixgbe_get_i2c_data(u32 *i2cctl);
46 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
47 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
48 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
49
50 /**
51  *  ixgbe_identify_phy_generic - Get physical layer module
52  *  @hw: pointer to hardware structure
53  *
54  *  Determines the physical layer module found on the current adapter.
55  **/
56 s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
57 {
58         s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
59         u32 phy_addr;
60
61         if (hw->phy.type == ixgbe_phy_unknown) {
62                 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
63                         hw->phy.mdio.prtad = phy_addr;
64                         if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
65                                 ixgbe_get_phy_id(hw);
66                                 hw->phy.type =
67                                         ixgbe_get_phy_type_from_id(hw->phy.id);
68                                 status = 0;
69                                 break;
70                         }
71                 }
72                 /* clear value if nothing found */
73                 hw->phy.mdio.prtad = 0;
74         } else {
75                 status = 0;
76         }
77
78         return status;
79 }
80
81 /**
82  *  ixgbe_get_phy_id - Get the phy type
83  *  @hw: pointer to hardware structure
84  *
85  **/
86 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
87 {
88         u32 status;
89         u16 phy_id_high = 0;
90         u16 phy_id_low = 0;
91
92         status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
93                                       &phy_id_high);
94
95         if (status == 0) {
96                 hw->phy.id = (u32)(phy_id_high << 16);
97                 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
98                                               &phy_id_low);
99                 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
100                 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
101         }
102         return status;
103 }
104
105 /**
106  *  ixgbe_get_phy_type_from_id - Get the phy type
107  *  @hw: pointer to hardware structure
108  *
109  **/
110 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
111 {
112         enum ixgbe_phy_type phy_type;
113
114         switch (phy_id) {
115         case TN1010_PHY_ID:
116                 phy_type = ixgbe_phy_tn;
117                 break;
118         case QT2022_PHY_ID:
119                 phy_type = ixgbe_phy_qt;
120                 break;
121         case ATH_PHY_ID:
122                 phy_type = ixgbe_phy_nl;
123                 break;
124         default:
125                 phy_type = ixgbe_phy_unknown;
126                 break;
127         }
128
129         return phy_type;
130 }
131
132 /**
133  *  ixgbe_reset_phy_generic - Performs a PHY reset
134  *  @hw: pointer to hardware structure
135  **/
136 s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
137 {
138         /*
139          * Perform soft PHY reset to the PHY_XS.
140          * This will cause a soft reset to the PHY
141          */
142         return hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
143                                      MDIO_CTRL1_RESET);
144 }
145
146 /**
147  *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
148  *  @hw: pointer to hardware structure
149  *  @reg_addr: 32 bit address of PHY register to read
150  *  @phy_data: Pointer to read data from PHY register
151  **/
152 s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
153                                u32 device_type, u16 *phy_data)
154 {
155         u32 command;
156         u32 i;
157         u32 data;
158         s32 status = 0;
159         u16 gssr;
160
161         if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
162                 gssr = IXGBE_GSSR_PHY1_SM;
163         else
164                 gssr = IXGBE_GSSR_PHY0_SM;
165
166         if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
167                 status = IXGBE_ERR_SWFW_SYNC;
168
169         if (status == 0) {
170                 /* Setup and write the address cycle command */
171                 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
172                            (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
173                            (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
174                            (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
175
176                 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
177
178                 /*
179                  * Check every 10 usec to see if the address cycle completed.
180                  * The MDI Command bit will clear when the operation is
181                  * complete
182                  */
183                 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
184                         udelay(10);
185
186                         command = IXGBE_READ_REG(hw, IXGBE_MSCA);
187
188                         if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
189                                 break;
190                 }
191
192                 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
193                         hw_dbg(hw, "PHY address command did not complete.\n");
194                         status = IXGBE_ERR_PHY;
195                 }
196
197                 if (status == 0) {
198                         /*
199                          * Address cycle complete, setup and write the read
200                          * command
201                          */
202                         command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
203                                    (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
204                                    (hw->phy.mdio.prtad <<
205                                     IXGBE_MSCA_PHY_ADDR_SHIFT) |
206                                    (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
207
208                         IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
209
210                         /*
211                          * Check every 10 usec to see if the address cycle
212                          * completed. The MDI Command bit will clear when the
213                          * operation is complete
214                          */
215                         for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
216                                 udelay(10);
217
218                                 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
219
220                                 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
221                                         break;
222                         }
223
224                         if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
225                                 hw_dbg(hw, "PHY read command didn't complete\n");
226                                 status = IXGBE_ERR_PHY;
227                         } else {
228                                 /*
229                                  * Read operation is complete.  Get the data
230                                  * from MSRWD
231                                  */
232                                 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
233                                 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
234                                 *phy_data = (u16)(data);
235                         }
236                 }
237
238                 ixgbe_release_swfw_sync(hw, gssr);
239         }
240
241         return status;
242 }
243
244 /**
245  *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
246  *  @hw: pointer to hardware structure
247  *  @reg_addr: 32 bit PHY register to write
248  *  @device_type: 5 bit device type
249  *  @phy_data: Data to write to the PHY register
250  **/
251 s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
252                                 u32 device_type, u16 phy_data)
253 {
254         u32 command;
255         u32 i;
256         s32 status = 0;
257         u16 gssr;
258
259         if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
260                 gssr = IXGBE_GSSR_PHY1_SM;
261         else
262                 gssr = IXGBE_GSSR_PHY0_SM;
263
264         if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
265                 status = IXGBE_ERR_SWFW_SYNC;
266
267         if (status == 0) {
268                 /* Put the data in the MDI single read and write data register*/
269                 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
270
271                 /* Setup and write the address cycle command */
272                 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
273                            (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
274                            (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
275                            (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
276
277                 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
278
279                 /*
280                  * Check every 10 usec to see if the address cycle completed.
281                  * The MDI Command bit will clear when the operation is
282                  * complete
283                  */
284                 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
285                         udelay(10);
286
287                         command = IXGBE_READ_REG(hw, IXGBE_MSCA);
288
289                         if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
290                                 break;
291                 }
292
293                 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
294                         hw_dbg(hw, "PHY address cmd didn't complete\n");
295                         status = IXGBE_ERR_PHY;
296                 }
297
298                 if (status == 0) {
299                         /*
300                          * Address cycle complete, setup and write the write
301                          * command
302                          */
303                         command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
304                                    (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
305                                    (hw->phy.mdio.prtad <<
306                                     IXGBE_MSCA_PHY_ADDR_SHIFT) |
307                                    (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
308
309                         IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
310
311                         /*
312                          * Check every 10 usec to see if the address cycle
313                          * completed. The MDI Command bit will clear when the
314                          * operation is complete
315                          */
316                         for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
317                                 udelay(10);
318
319                                 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
320
321                                 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
322                                         break;
323                         }
324
325                         if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
326                                 hw_dbg(hw, "PHY address cmd didn't complete\n");
327                                 status = IXGBE_ERR_PHY;
328                         }
329                 }
330
331                 ixgbe_release_swfw_sync(hw, gssr);
332         }
333
334         return status;
335 }
336
337 /**
338  *  ixgbe_setup_phy_link_generic - Set and restart autoneg
339  *  @hw: pointer to hardware structure
340  *
341  *  Restart autonegotiation and PHY and waits for completion.
342  **/
343 s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
344 {
345         s32 status = IXGBE_NOT_IMPLEMENTED;
346         u32 time_out;
347         u32 max_time_out = 10;
348         u16 autoneg_reg;
349
350         /*
351          * Set advertisement settings in PHY based on autoneg_advertised
352          * settings. If autoneg_advertised = 0, then advertise default values
353          * tnx devices cannot be "forced" to a autoneg 10G and fail.  But can
354          * for a 1G.
355          */
356         hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
357
358         if (hw->phy.autoneg_advertised == IXGBE_LINK_SPEED_1GB_FULL)
359                 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
360         else
361                 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
362
363         hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
364
365         /* Restart PHY autonegotiation and wait for completion */
366         hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, &autoneg_reg);
367
368         autoneg_reg |= MDIO_AN_CTRL1_RESTART;
369
370         hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, autoneg_reg);
371
372         /* Wait for autonegotiation to finish */
373         for (time_out = 0; time_out < max_time_out; time_out++) {
374                 udelay(10);
375                 /* Restart PHY autonegotiation and wait for completion */
376                 status = hw->phy.ops.read_reg(hw, MDIO_STAT1, MDIO_MMD_AN,
377                                               &autoneg_reg);
378
379                 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
380                 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
381                         status = 0;
382                         break;
383                 }
384         }
385
386         if (time_out == max_time_out)
387                 status = IXGBE_ERR_LINK_SETUP;
388
389         return status;
390 }
391
392 /**
393  *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
394  *  @hw: pointer to hardware structure
395  *  @speed: new link speed
396  *  @autoneg: true if autonegotiation enabled
397  **/
398 s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
399                                        ixgbe_link_speed speed,
400                                        bool autoneg,
401                                        bool autoneg_wait_to_complete)
402 {
403
404         /*
405          * Clear autoneg_advertised and set new values based on input link
406          * speed.
407          */
408         hw->phy.autoneg_advertised = 0;
409
410         if (speed & IXGBE_LINK_SPEED_10GB_FULL)
411                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
412
413         if (speed & IXGBE_LINK_SPEED_1GB_FULL)
414                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
415
416         /* Setup link based on the new speed settings */
417         hw->phy.ops.setup_link(hw);
418
419         return 0;
420 }
421
422 /**
423  *  ixgbe_reset_phy_nl - Performs a PHY reset
424  *  @hw: pointer to hardware structure
425  **/
426 s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
427 {
428         u16 phy_offset, control, eword, edata, block_crc;
429         bool end_data = false;
430         u16 list_offset, data_offset;
431         u16 phy_data = 0;
432         s32 ret_val = 0;
433         u32 i;
434
435         hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
436
437         /* reset the PHY and poll for completion */
438         hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
439                               (phy_data | MDIO_CTRL1_RESET));
440
441         for (i = 0; i < 100; i++) {
442                 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
443                                      &phy_data);
444                 if ((phy_data & MDIO_CTRL1_RESET) == 0)
445                         break;
446                 msleep(10);
447         }
448
449         if ((phy_data & MDIO_CTRL1_RESET) != 0) {
450                 hw_dbg(hw, "PHY reset did not complete.\n");
451                 ret_val = IXGBE_ERR_PHY;
452                 goto out;
453         }
454
455         /* Get init offsets */
456         ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
457                                                       &data_offset);
458         if (ret_val != 0)
459                 goto out;
460
461         ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
462         data_offset++;
463         while (!end_data) {
464                 /*
465                  * Read control word from PHY init contents offset
466                  */
467                 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
468                 control = (eword & IXGBE_CONTROL_MASK_NL) >>
469                            IXGBE_CONTROL_SHIFT_NL;
470                 edata = eword & IXGBE_DATA_MASK_NL;
471                 switch (control) {
472                 case IXGBE_DELAY_NL:
473                         data_offset++;
474                         hw_dbg(hw, "DELAY: %d MS\n", edata);
475                         msleep(edata);
476                         break;
477                 case IXGBE_DATA_NL:
478                         hw_dbg(hw, "DATA:  \n");
479                         data_offset++;
480                         hw->eeprom.ops.read(hw, data_offset++,
481                                             &phy_offset);
482                         for (i = 0; i < edata; i++) {
483                                 hw->eeprom.ops.read(hw, data_offset, &eword);
484                                 hw->phy.ops.write_reg(hw, phy_offset,
485                                                       MDIO_MMD_PMAPMD, eword);
486                                 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
487                                        phy_offset);
488                                 data_offset++;
489                                 phy_offset++;
490                         }
491                         break;
492                 case IXGBE_CONTROL_NL:
493                         data_offset++;
494                         hw_dbg(hw, "CONTROL: \n");
495                         if (edata == IXGBE_CONTROL_EOL_NL) {
496                                 hw_dbg(hw, "EOL\n");
497                                 end_data = true;
498                         } else if (edata == IXGBE_CONTROL_SOL_NL) {
499                                 hw_dbg(hw, "SOL\n");
500                         } else {
501                                 hw_dbg(hw, "Bad control value\n");
502                                 ret_val = IXGBE_ERR_PHY;
503                                 goto out;
504                         }
505                         break;
506                 default:
507                         hw_dbg(hw, "Bad control type\n");
508                         ret_val = IXGBE_ERR_PHY;
509                         goto out;
510                 }
511         }
512
513 out:
514         return ret_val;
515 }
516
517 /**
518  *  ixgbe_identify_sfp_module_generic - Identifies SFP module and assigns
519  *                                      the PHY type.
520  *  @hw: pointer to hardware structure
521  *
522  *  Searches for and indentifies the SFP module.  Assings appropriate PHY type.
523  **/
524 s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
525 {
526         s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
527         u32 vendor_oui = 0;
528         enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
529         u8 identifier = 0;
530         u8 comp_codes_1g = 0;
531         u8 comp_codes_10g = 0;
532         u8 oui_bytes[3] = {0, 0, 0};
533         u8 cable_tech = 0;
534         u16 enforce_sfp = 0;
535
536         if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
537                 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
538                 status = IXGBE_ERR_SFP_NOT_PRESENT;
539                 goto out;
540         }
541
542         status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
543                                              &identifier);
544
545         if (status == IXGBE_ERR_SFP_NOT_PRESENT || status == IXGBE_ERR_I2C) {
546                 status = IXGBE_ERR_SFP_NOT_PRESENT;
547                 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
548                 if (hw->phy.type != ixgbe_phy_nl) {
549                         hw->phy.id = 0;
550                         hw->phy.type = ixgbe_phy_unknown;
551                 }
552                 goto out;
553         }
554
555         if (identifier == IXGBE_SFF_IDENTIFIER_SFP) {
556                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES,
557                                             &comp_codes_1g);
558                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES,
559                                             &comp_codes_10g);
560                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_CABLE_TECHNOLOGY,
561                                             &cable_tech);
562
563                 /* ID Module
564                  * =========
565                  * 0    SFP_DA_CU
566                  * 1    SFP_SR
567                  * 2    SFP_LR
568                  * 3    SFP_DA_CORE0 - 82599-specific
569                  * 4    SFP_DA_CORE1 - 82599-specific
570                  * 5    SFP_SR/LR_CORE0 - 82599-specific
571                  * 6    SFP_SR/LR_CORE1 - 82599-specific
572                  */
573                 if (hw->mac.type == ixgbe_mac_82598EB) {
574                         if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
575                                 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
576                         else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
577                                 hw->phy.sfp_type = ixgbe_sfp_type_sr;
578                         else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
579                                 hw->phy.sfp_type = ixgbe_sfp_type_lr;
580                         else
581                                 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
582                 } else if (hw->mac.type == ixgbe_mac_82599EB) {
583                         if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
584                                 if (hw->bus.lan_id == 0)
585                                         hw->phy.sfp_type =
586                                                      ixgbe_sfp_type_da_cu_core0;
587                                 else
588                                         hw->phy.sfp_type =
589                                                      ixgbe_sfp_type_da_cu_core1;
590                         else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
591                                 if (hw->bus.lan_id == 0)
592                                         hw->phy.sfp_type =
593                                                       ixgbe_sfp_type_srlr_core0;
594                                 else
595                                         hw->phy.sfp_type =
596                                                       ixgbe_sfp_type_srlr_core1;
597                         else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
598                                 if (hw->bus.lan_id == 0)
599                                         hw->phy.sfp_type =
600                                                       ixgbe_sfp_type_srlr_core0;
601                                 else
602                                         hw->phy.sfp_type =
603                                                       ixgbe_sfp_type_srlr_core1;
604                         else
605                                 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
606                 }
607
608                 if (hw->phy.sfp_type != stored_sfp_type)
609                         hw->phy.sfp_setup_needed = true;
610
611                 /* Determine if the SFP+ PHY is dual speed or not. */
612                 hw->phy.multispeed_fiber = false;
613                 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
614                    (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
615                    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
616                    (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
617                         hw->phy.multispeed_fiber = true;
618
619                 /* Determine PHY vendor */
620                 if (hw->phy.type != ixgbe_phy_nl) {
621                         hw->phy.id = identifier;
622                         hw->phy.ops.read_i2c_eeprom(hw,
623                                                     IXGBE_SFF_VENDOR_OUI_BYTE0,
624                                                     &oui_bytes[0]);
625                         hw->phy.ops.read_i2c_eeprom(hw,
626                                                     IXGBE_SFF_VENDOR_OUI_BYTE1,
627                                                     &oui_bytes[1]);
628                         hw->phy.ops.read_i2c_eeprom(hw,
629                                                     IXGBE_SFF_VENDOR_OUI_BYTE2,
630                                                     &oui_bytes[2]);
631
632                         vendor_oui =
633                           ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
634                            (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
635                            (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
636
637                         switch (vendor_oui) {
638                         case IXGBE_SFF_VENDOR_OUI_TYCO:
639                                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
640                                         hw->phy.type = ixgbe_phy_tw_tyco;
641                                 break;
642                         case IXGBE_SFF_VENDOR_OUI_FTL:
643                                 hw->phy.type = ixgbe_phy_sfp_ftl;
644                                 break;
645                         case IXGBE_SFF_VENDOR_OUI_AVAGO:
646                                 hw->phy.type = ixgbe_phy_sfp_avago;
647                                 break;
648                         case IXGBE_SFF_VENDOR_OUI_INTEL:
649                                 hw->phy.type = ixgbe_phy_sfp_intel;
650                                 break;
651                         default:
652                                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
653                                         hw->phy.type = ixgbe_phy_tw_unknown;
654                                 else
655                                         hw->phy.type = ixgbe_phy_sfp_unknown;
656                                 break;
657                         }
658                 }
659
660                 /* All passive DA cables are supported */
661                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
662                         status = 0;
663                         goto out;
664                 }
665
666                 /* 1G SFP modules are not supported */
667                 if (comp_codes_10g == 0) {
668                         hw->phy.type = ixgbe_phy_sfp_unsupported;
669                         status = IXGBE_ERR_SFP_NOT_SUPPORTED;
670                         goto out;
671                 }
672
673                 /* Anything else 82598-based is supported */
674                 if (hw->mac.type == ixgbe_mac_82598EB) {
675                         status = 0;
676                         goto out;
677                 }
678
679                 /* This is guaranteed to be 82599, no need to check for NULL */
680                 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
681                 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
682                         /* Make sure we're a supported PHY type */
683                         if (hw->phy.type == ixgbe_phy_sfp_intel) {
684                                 status = 0;
685                         } else {
686                                 hw_dbg(hw, "SFP+ module not supported\n");
687                                 hw->phy.type = ixgbe_phy_sfp_unsupported;
688                                 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
689                         }
690                 } else {
691                         status = 0;
692                 }
693         }
694
695 out:
696         return status;
697 }
698
699 /**
700  *  ixgbe_get_sfp_init_sequence_offsets - Checks the MAC's EEPROM to see
701  *  if it supports a given SFP+ module type, if so it returns the offsets to the
702  *  phy init sequence block.
703  *  @hw: pointer to hardware structure
704  *  @list_offset: offset to the SFP ID list
705  *  @data_offset: offset to the SFP data block
706  **/
707 s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
708                                         u16 *list_offset,
709                                         u16 *data_offset)
710 {
711         u16 sfp_id;
712
713         if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
714                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
715
716         if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
717                 return IXGBE_ERR_SFP_NOT_PRESENT;
718
719         if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
720             (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
721                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
722
723         /* Read offset to PHY init contents */
724         hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
725
726         if ((!*list_offset) || (*list_offset == 0xFFFF))
727                 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
728
729         /* Shift offset to first ID word */
730         (*list_offset)++;
731
732         /*
733          * Find the matching SFP ID in the EEPROM
734          * and program the init sequence
735          */
736         hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
737
738         while (sfp_id != IXGBE_PHY_INIT_END_NL) {
739                 if (sfp_id == hw->phy.sfp_type) {
740                         (*list_offset)++;
741                         hw->eeprom.ops.read(hw, *list_offset, data_offset);
742                         if ((!*data_offset) || (*data_offset == 0xFFFF)) {
743                                 hw_dbg(hw, "SFP+ module not supported\n");
744                                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
745                         } else {
746                                 break;
747                         }
748                 } else {
749                         (*list_offset) += 2;
750                         if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
751                                 return IXGBE_ERR_PHY;
752                 }
753         }
754
755         if (sfp_id == IXGBE_PHY_INIT_END_NL) {
756                 hw_dbg(hw, "No matching SFP+ module found\n");
757                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
758         }
759
760         return 0;
761 }
762
763 /**
764  *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
765  *  @hw: pointer to hardware structure
766  *  @byte_offset: EEPROM byte offset to read
767  *  @eeprom_data: value read
768  *
769  *  Performs byte read operation to SFP module's EEPROM over I2C interface.
770  **/
771 s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
772                                   u8 *eeprom_data)
773 {
774         return hw->phy.ops.read_i2c_byte(hw, byte_offset,
775                                          IXGBE_I2C_EEPROM_DEV_ADDR,
776                                          eeprom_data);
777 }
778
779 /**
780  *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
781  *  @hw: pointer to hardware structure
782  *  @byte_offset: EEPROM byte offset to write
783  *  @eeprom_data: value to write
784  *
785  *  Performs byte write operation to SFP module's EEPROM over I2C interface.
786  **/
787 s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
788                                    u8 eeprom_data)
789 {
790         return hw->phy.ops.write_i2c_byte(hw, byte_offset,
791                                           IXGBE_I2C_EEPROM_DEV_ADDR,
792                                           eeprom_data);
793 }
794
795 /**
796  *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
797  *  @hw: pointer to hardware structure
798  *  @byte_offset: byte offset to read
799  *  @data: value read
800  *
801  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
802  *  a specified deivce address.
803  **/
804 s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
805                                 u8 dev_addr, u8 *data)
806 {
807         s32 status = 0;
808         u32 max_retry = 1;
809         u32 retry = 0;
810         bool nack = 1;
811
812         do {
813                 ixgbe_i2c_start(hw);
814
815                 /* Device Address and write indication */
816                 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
817                 if (status != 0)
818                         goto fail;
819
820                 status = ixgbe_get_i2c_ack(hw);
821                 if (status != 0)
822                         goto fail;
823
824                 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
825                 if (status != 0)
826                         goto fail;
827
828                 status = ixgbe_get_i2c_ack(hw);
829                 if (status != 0)
830                         goto fail;
831
832                 ixgbe_i2c_start(hw);
833
834                 /* Device Address and read indication */
835                 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
836                 if (status != 0)
837                         goto fail;
838
839                 status = ixgbe_get_i2c_ack(hw);
840                 if (status != 0)
841                         goto fail;
842
843                 status = ixgbe_clock_in_i2c_byte(hw, data);
844                 if (status != 0)
845                         goto fail;
846
847                 status = ixgbe_clock_out_i2c_bit(hw, nack);
848                 if (status != 0)
849                         goto fail;
850
851                 ixgbe_i2c_stop(hw);
852                 break;
853
854 fail:
855                 ixgbe_i2c_bus_clear(hw);
856                 retry++;
857                 if (retry < max_retry)
858                         hw_dbg(hw, "I2C byte read error - Retrying.\n");
859                 else
860                         hw_dbg(hw, "I2C byte read error.\n");
861
862         } while (retry < max_retry);
863
864         return status;
865 }
866
867 /**
868  *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
869  *  @hw: pointer to hardware structure
870  *  @byte_offset: byte offset to write
871  *  @data: value to write
872  *
873  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
874  *  a specified device address.
875  **/
876 s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
877                                  u8 dev_addr, u8 data)
878 {
879         s32 status = 0;
880         u32 max_retry = 1;
881         u32 retry = 0;
882
883         do {
884                 ixgbe_i2c_start(hw);
885
886                 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
887                 if (status != 0)
888                         goto fail;
889
890                 status = ixgbe_get_i2c_ack(hw);
891                 if (status != 0)
892                         goto fail;
893
894                 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
895                 if (status != 0)
896                         goto fail;
897
898                 status = ixgbe_get_i2c_ack(hw);
899                 if (status != 0)
900                         goto fail;
901
902                 status = ixgbe_clock_out_i2c_byte(hw, data);
903                 if (status != 0)
904                         goto fail;
905
906                 status = ixgbe_get_i2c_ack(hw);
907                 if (status != 0)
908                         goto fail;
909
910                 ixgbe_i2c_stop(hw);
911                 break;
912
913 fail:
914                 ixgbe_i2c_bus_clear(hw);
915                 retry++;
916                 if (retry < max_retry)
917                         hw_dbg(hw, "I2C byte write error - Retrying.\n");
918                 else
919                         hw_dbg(hw, "I2C byte write error.\n");
920         } while (retry < max_retry);
921
922         return status;
923 }
924
925 /**
926  *  ixgbe_i2c_start - Sets I2C start condition
927  *  @hw: pointer to hardware structure
928  *
929  *  Sets I2C start condition (High -> Low on SDA while SCL is High)
930  **/
931 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
932 {
933         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
934
935         /* Start condition must begin with data and clock high */
936         ixgbe_set_i2c_data(hw, &i2cctl, 1);
937         ixgbe_raise_i2c_clk(hw, &i2cctl);
938
939         /* Setup time for start condition (4.7us) */
940         udelay(IXGBE_I2C_T_SU_STA);
941
942         ixgbe_set_i2c_data(hw, &i2cctl, 0);
943
944         /* Hold time for start condition (4us) */
945         udelay(IXGBE_I2C_T_HD_STA);
946
947         ixgbe_lower_i2c_clk(hw, &i2cctl);
948
949         /* Minimum low period of clock is 4.7 us */
950         udelay(IXGBE_I2C_T_LOW);
951
952 }
953
954 /**
955  *  ixgbe_i2c_stop - Sets I2C stop condition
956  *  @hw: pointer to hardware structure
957  *
958  *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
959  **/
960 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
961 {
962         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
963
964         /* Stop condition must begin with data low and clock high */
965         ixgbe_set_i2c_data(hw, &i2cctl, 0);
966         ixgbe_raise_i2c_clk(hw, &i2cctl);
967
968         /* Setup time for stop condition (4us) */
969         udelay(IXGBE_I2C_T_SU_STO);
970
971         ixgbe_set_i2c_data(hw, &i2cctl, 1);
972
973         /* bus free time between stop and start (4.7us)*/
974         udelay(IXGBE_I2C_T_BUF);
975 }
976
977 /**
978  *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
979  *  @hw: pointer to hardware structure
980  *  @data: data byte to clock in
981  *
982  *  Clocks in one byte data via I2C data/clock
983  **/
984 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
985 {
986         s32 status = 0;
987         s32 i;
988         bool bit = 0;
989
990         for (i = 7; i >= 0; i--) {
991                 status = ixgbe_clock_in_i2c_bit(hw, &bit);
992                 *data |= bit << i;
993
994                 if (status != 0)
995                         break;
996         }
997
998         return status;
999 }
1000
1001 /**
1002  *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1003  *  @hw: pointer to hardware structure
1004  *  @data: data byte clocked out
1005  *
1006  *  Clocks out one byte data via I2C data/clock
1007  **/
1008 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1009 {
1010         s32 status = 0;
1011         s32 i;
1012         u32 i2cctl;
1013         bool bit = 0;
1014
1015         for (i = 7; i >= 0; i--) {
1016                 bit = (data >> i) & 0x1;
1017                 status = ixgbe_clock_out_i2c_bit(hw, bit);
1018
1019                 if (status != 0)
1020                         break;
1021         }
1022
1023         /* Release SDA line (set high) */
1024         i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1025         i2cctl |= IXGBE_I2C_DATA_OUT;
1026         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1027
1028         return status;
1029 }
1030
1031 /**
1032  *  ixgbe_get_i2c_ack - Polls for I2C ACK
1033  *  @hw: pointer to hardware structure
1034  *
1035  *  Clocks in/out one bit via I2C data/clock
1036  **/
1037 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1038 {
1039         s32 status;
1040         u32 i = 0;
1041         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1042         u32 timeout = 10;
1043         bool ack = 1;
1044
1045         status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1046
1047         if (status != 0)
1048                 goto out;
1049
1050         /* Minimum high period of clock is 4us */
1051         udelay(IXGBE_I2C_T_HIGH);
1052
1053         /* Poll for ACK.  Note that ACK in I2C spec is
1054          * transition from 1 to 0 */
1055         for (i = 0; i < timeout; i++) {
1056                 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1057                 ack = ixgbe_get_i2c_data(&i2cctl);
1058
1059                 udelay(1);
1060                 if (ack == 0)
1061                         break;
1062         }
1063
1064         if (ack == 1) {
1065                 hw_dbg(hw, "I2C ack was not received.\n");
1066                 status = IXGBE_ERR_I2C;
1067         }
1068
1069         ixgbe_lower_i2c_clk(hw, &i2cctl);
1070
1071         /* Minimum low period of clock is 4.7 us */
1072         udelay(IXGBE_I2C_T_LOW);
1073
1074 out:
1075         return status;
1076 }
1077
1078 /**
1079  *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1080  *  @hw: pointer to hardware structure
1081  *  @data: read data value
1082  *
1083  *  Clocks in one bit via I2C data/clock
1084  **/
1085 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1086 {
1087         s32 status;
1088         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1089
1090         status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1091
1092         /* Minimum high period of clock is 4us */
1093         udelay(IXGBE_I2C_T_HIGH);
1094
1095         i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1096         *data = ixgbe_get_i2c_data(&i2cctl);
1097
1098         ixgbe_lower_i2c_clk(hw, &i2cctl);
1099
1100         /* Minimum low period of clock is 4.7 us */
1101         udelay(IXGBE_I2C_T_LOW);
1102
1103         return status;
1104 }
1105
1106 /**
1107  *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1108  *  @hw: pointer to hardware structure
1109  *  @data: data value to write
1110  *
1111  *  Clocks out one bit via I2C data/clock
1112  **/
1113 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1114 {
1115         s32 status;
1116         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1117
1118         status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1119         if (status == 0) {
1120                 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1121
1122                 /* Minimum high period of clock is 4us */
1123                 udelay(IXGBE_I2C_T_HIGH);
1124
1125                 ixgbe_lower_i2c_clk(hw, &i2cctl);
1126
1127                 /* Minimum low period of clock is 4.7 us.
1128                  * This also takes care of the data hold time.
1129                  */
1130                 udelay(IXGBE_I2C_T_LOW);
1131         } else {
1132                 status = IXGBE_ERR_I2C;
1133                 hw_dbg(hw, "I2C data was not set to %X\n", data);
1134         }
1135
1136         return status;
1137 }
1138 /**
1139  *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1140  *  @hw: pointer to hardware structure
1141  *  @i2cctl: Current value of I2CCTL register
1142  *
1143  *  Raises the I2C clock line '0'->'1'
1144  **/
1145 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1146 {
1147         s32 status = 0;
1148
1149         *i2cctl |= IXGBE_I2C_CLK_OUT;
1150
1151         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1152
1153         /* SCL rise time (1000ns) */
1154         udelay(IXGBE_I2C_T_RISE);
1155
1156         return status;
1157 }
1158
1159 /**
1160  *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1161  *  @hw: pointer to hardware structure
1162  *  @i2cctl: Current value of I2CCTL register
1163  *
1164  *  Lowers the I2C clock line '1'->'0'
1165  **/
1166 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1167 {
1168
1169         *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1170
1171         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1172
1173         /* SCL fall time (300ns) */
1174         udelay(IXGBE_I2C_T_FALL);
1175 }
1176
1177 /**
1178  *  ixgbe_set_i2c_data - Sets the I2C data bit
1179  *  @hw: pointer to hardware structure
1180  *  @i2cctl: Current value of I2CCTL register
1181  *  @data: I2C data value (0 or 1) to set
1182  *
1183  *  Sets the I2C data bit
1184  **/
1185 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1186 {
1187         s32 status = 0;
1188
1189         if (data)
1190                 *i2cctl |= IXGBE_I2C_DATA_OUT;
1191         else
1192                 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1193
1194         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1195
1196         /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1197         udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1198
1199         /* Verify data was set correctly */
1200         *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1201         if (data != ixgbe_get_i2c_data(i2cctl)) {
1202                 status = IXGBE_ERR_I2C;
1203                 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1204         }
1205
1206         return status;
1207 }
1208
1209 /**
1210  *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
1211  *  @hw: pointer to hardware structure
1212  *  @i2cctl: Current value of I2CCTL register
1213  *
1214  *  Returns the I2C data bit value
1215  **/
1216 static bool ixgbe_get_i2c_data(u32 *i2cctl)
1217 {
1218         bool data;
1219
1220         if (*i2cctl & IXGBE_I2C_DATA_IN)
1221                 data = 1;
1222         else
1223                 data = 0;
1224
1225         return data;
1226 }
1227
1228 /**
1229  *  ixgbe_i2c_bus_clear - Clears the I2C bus
1230  *  @hw: pointer to hardware structure
1231  *
1232  *  Clears the I2C bus by sending nine clock pulses.
1233  *  Used when data line is stuck low.
1234  **/
1235 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1236 {
1237         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1238         u32 i;
1239
1240         ixgbe_set_i2c_data(hw, &i2cctl, 1);
1241
1242         for (i = 0; i < 9; i++) {
1243                 ixgbe_raise_i2c_clk(hw, &i2cctl);
1244
1245                 /* Min high period of clock is 4us */
1246                 udelay(IXGBE_I2C_T_HIGH);
1247
1248                 ixgbe_lower_i2c_clk(hw, &i2cctl);
1249
1250                 /* Min low period of clock is 4.7us*/
1251                 udelay(IXGBE_I2C_T_LOW);
1252         }
1253
1254         /* Put the i2c bus back to default state */
1255         ixgbe_i2c_stop(hw);
1256 }
1257
1258 /**
1259  *  ixgbe_check_phy_link_tnx - Determine link and speed status
1260  *  @hw: pointer to hardware structure
1261  *
1262  *  Reads the VS1 register to determine if link is up and the current speed for
1263  *  the PHY.
1264  **/
1265 s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1266                              bool *link_up)
1267 {
1268         s32 status = 0;
1269         u32 time_out;
1270         u32 max_time_out = 10;
1271         u16 phy_link = 0;
1272         u16 phy_speed = 0;
1273         u16 phy_data = 0;
1274
1275         /* Initialize speed and link to default case */
1276         *link_up = false;
1277         *speed = IXGBE_LINK_SPEED_10GB_FULL;
1278
1279         /*
1280          * Check current speed and link status of the PHY register.
1281          * This is a vendor specific register and may have to
1282          * be changed for other copper PHYs.
1283          */
1284         for (time_out = 0; time_out < max_time_out; time_out++) {
1285                 udelay(10);
1286                 status = hw->phy.ops.read_reg(hw,
1287                                         IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
1288                                         MDIO_MMD_VEND1,
1289                                         &phy_data);
1290                 phy_link = phy_data &
1291                            IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1292                 phy_speed = phy_data &
1293                             IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1294                 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1295                         *link_up = true;
1296                         if (phy_speed ==
1297                             IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1298                                 *speed = IXGBE_LINK_SPEED_1GB_FULL;
1299                         break;
1300                 }
1301         }
1302
1303         return status;
1304 }
1305
1306 /**
1307  *  ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
1308  *  @hw: pointer to hardware structure
1309  *  @firmware_version: pointer to the PHY Firmware Version
1310  **/
1311 s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
1312                                        u16 *firmware_version)
1313 {
1314         s32 status = 0;
1315
1316         status = hw->phy.ops.read_reg(hw, TNX_FW_REV, MDIO_MMD_VEND1,
1317                                       firmware_version);
1318
1319         return status;
1320 }
1321